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1 Introduction

1.1 A brief review of the literature

Transformations and exact solutions of various classes of nonlinear reaction–
diffusion–convection equations

ut = [f1(u)ux]x + f2(u)ux + f3(u) (1)

and some other nonlinear equations that do not depend explicitly on the variables
x, t, have been considered in many studies (see, for example, [1–18] and the
literature cited therein). To construct exact solutions, the most frequently used
methods were those based on the classical and nonclassical symmetry reductions
[1–3, 5, 7, 9, 13, 14, 16–18], on generalized and functional separation of variables
[6, 8, 10,13,15,16], and on differential constraints [6, 12,13,15,16].

In the general case, equation (1) admits the traveling wave solution u =

U(kx − λt) [2] and for f2(u) = f3(u) = 0, it has the self-similar solution u =

U(xt−1/2) [1]. In addition, other exact solutions to equations of the form (1), in
which at least one of the functions fn(u) is arbitrary, are known [6,9, 13,15,16].

A number of studies (e.g., see [11,16,19–23]) have been devoted to nonlinear
reaction–diffusion equations with variable coefficients,

c(x)ut = [a(x)f1(u)ux]x + b(x)f2(u). (2)

In [16, 24–29], symmetries and some exact solutions of nonlinear diffusion–
convection equations with variable coefficients

c(x)ut = [a(x)f1(u)ux]x + b(x)f2(u)ux

were described.
Other related and more complex nonlinear evolution equations were considered

in [16,30–36]. Exact solutions to a number of systems of coupled equations of the
reaction–diffusion type are described in [16,37] (these books give an extensive list
of publications on this topic); see also [38,39].

It is also noteworthy that lately much attention has been paid to studying
hereditary systems, which are modeled by the nonlinear reaction–diffusion equations

ut = auxx + f(u,w), w = u(x, t− τ),
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where τ > 0 is the delay time. Exact solutions of such and more complicated
nonlinear equations (as well as systems of coupled equations with delay) were
obtained in [40–54].

The present paper deals with exact solutions admitted by nonlinear convection–
diffusion equations of a fairly general form (including some nonlinear delay PDEs)
that depend on one or more arbitrary functions.

Remark 1. Importantly, exact solutions of nonlinear PDEs and delay PDEs
that contain arbitrary functions and therefore have significant generality are
of greatest practical interest for testing and evaluating the accuracy of various
numerical and approximate analytical methods for solving corresponding initial-
boundary value problems.

1.2 The concept of ‘exact solution’ for nonlinear PDEs

In what follows, the term ‘exact solution’ with regard to nonlinear partial
differential equations is used in the following cases:

(i) the solution is expressible in terms of elementary functions;

(ii) the solution is expressible in closed form with definite or/and indefinite
integrals;

(iii) the solution is expressible in terms of solutions to ordinary differential
equations or systems of such equations.

Combinations of cases (i), (ii), and (iii) are also allowed.

Solutions of more-complex nonlinear partial differential equations with delay,
which are expressed in terms of solutions of ordinary differential equations with
delay, will also be attributed to exact solutions.
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2 Construction of exact solutions of one-dimensional nonlinear
convection–diffusion equations

2.1 Class of equations under consideration. Reduction of nonlinear
convection–diffusion equations to ODEs

The paper deals with the nonlinear convection–diffusion equations with variable
coefficients

c(x)ut = [a(x)ux]x + [b(x) + p(x)f(u)]ux, (3)

where f(u) is an arbitrary function. Some of the four functional coefficients a =

a(x) > 0, b = b(x), c = c(x) > 0, and p = p(x) can be free, while the others can be
expressed through them as a result of a subsequent analysis (the free coefficients
can be chosen differently, as shown below).

Exact solutions to equation (3) will be sought in the form of a superposition
of functions

u = U(z), z = φ(x, t). (4)

Substituting (4) in (3) gives the functional-differential equation

a(x)φ2
xU

′′
zz +

{
[a(x)φx]x + b(x)φx − c(x)φt

}
U ′
z + p(x)φxf(U)U

′
z = 0. (5)

In the special case U(z) = z, equation (5) coincides with the original equation (3).
At this stage no solutions are lost.

Let the coefficients of the equation satisfy the relations

p(x) = a(x)s(φ)φx, (6)

c(x)φt = [a(x)φx]x + b(x)φx + a(x)k(φ)φ2
x, (7)

where s(φ) and k(φ) are some functions (s ̸≡ 0). Then equation (5) reduces to
the ordinary differential equation

U ′′
zz + [s(z)f(U)− k(z)]U ′

z = 0. (8)

Exact solutions of the nonlinear ordinary differential equation (8) for some
functions k(z), s(z), f(U) can be found in [55,56].

In the special case k(z) = k = const and s(z) = s = const, the general
solution of equation (8) for any function f(U) can be written in an implicit form∫

dU

kU − sF (U) + C1
= z + C2, (9)
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where F (U) =
∫
f(U) dU , and C1 and C2 are arbitrary constants.

Equations (6)–(8) allow one to construct exact solutions for a wide class of
nonlinear convection–diffusion equations of the form (3).

Remark 2. In equation (3), the number of functional coefficients dependent
on the spatial coordinate can be reduced to two. In particular, transformations of
an independent variable of the form y = Y (x) allow us to reduce equation (3) to
the canonical forms ut = [ā(y)uy]y + p̄(y)f(u)uy and ut = ā(y)uyy + p̄(y)f(u)uy.
However, dealing with the equation in general form (3) is more convenient because
it includes any canonical and noncanonical forms.

Remark 3. In equations (3), (5)–(7), the functions a(x), b(x), c(x), and p(x)
can be replaced with functions of two variables a(x, t), b(x, t), c(x, t), and p(x, t)
(see also Section 3.1).

2.2 A direct procedure for constructing exact solutions. Analysis and
solutions of the determining system of equations in the general
case

A direct procedure for constructing exact solutions of nonlinear equations of the
form (3) suggests that the functions a(x), b(x), c(x), and f(u) are assumed given,
and the functions u = u(x, t) and p = p(x) are the desired ones. In this case, with
the functions k(φ) and s(φ) given in some way, one has first to find particular
solutions p(x) and φ = φ(x, t) of equations (6) and (7) (the last equation can
be linearized; see below). After this, with allowance for relation (6), a solution of
equation (3) is determined by formula (4), where the function U(z) is a solution
of the ordinary differential equation (8).

In the general case, two equations (6) and (7) for given functions a = a(x),
b = b(x), c = c(x), p = p(x), k(φ), and s(φ) form an overdetermined nonlinear
system of coupled equations for one function φ (this system will be called the
determining system of equations). The properties of equations (6) and (7) will be
sequentially investigated.

The general solution of equation (6) is given by the formula∫
s(φ) dφ =

∫
p(x)

a(x)
dx+ ξ(t), (10)

where ξ(t) is an arbitrary function. Therefore, in the general case, the function φ
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must have the form

φ = G(y), y = ξ(t) + θ(x). (11)

Note that solution (11) also admits another (however equivalent) representation
of

φ = Ḡ(ȳ), ȳ = ξ̄(t)θ̄(x), (12)

where ȳ = ey, ξ̄ = eξ, and θ̄ = eθ. Solutions of the form (11) and (12) often occur
in mathematical physics and are called functional separable solutions [13,16].

Nonlinear transformations

φ = F (ψ) (13)

preserve the form of equations (6) and (7), while the functional coefficients k(φ)
and s(φ) are changed by the rule:

k(φ) =⇒ k(F (ψ))F ′
ψ(ψ) +

F ′′
ψψ(ψ)

F ′
ψ(ψ)

, s(φ) =⇒ s(F (ψ))F ′
ψ(ψ). (14)

The degenerate case k(φ) ≡ 0 corresponds to the linear PDE with variable
coefficients (7). For k(φ) ̸≡ 0, the nonlinear equation (7) can be reduced with the
help of the substitution

ψ = C1

∫
K(φ) dφ+ C2, K(φ) = exp

[∫
k(φ) dφ

]
, (15)

where C1 and C2 are arbitrary constants, to the linear equation

c(x)ψt = [a(x)ψx]x + b(x)ψx. (16)

In the special case k(ψ) = k = const, one can use the substitution

φ = k−1 ln |ψ|, (17)

which follows from (16).
Solutions of a linear equation with autonomous coefficients (16) can be

constructed by the method of separation of variables. In particular, this equation
has solutions with additive and multiplicative separation of variables:

ψ = λt+ η(x), [a(x)η′x]
′
x + b(x)η′x − λc(x) = 0; (18)

ψ = exp(λt)ζ(x), [a(x)ζ ′x]
′
x + b(x)ζ ′x − λc(x)ζ = 0, (19)
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where λ is an arbitrary constant. The equation for η in (18) is easily integrated
through the substitution w(x) = ηx, and the solutions of the linear equation for ζ
in (19) for various functions a(x), b(x), and c(x) are given in [55,56]. Other exact
solutions of equation (16) for certain functions a(x), b(x), and c(x) can be found
in [57].

Since transformations of the form (13) change only the functional coefficients
k(φ) and s(φ) in equations (6) and (7), one can choose the function F , without
loss of generality, so as to simplify one of these equations. Three possible ways of
simplifying these equations are described below.

1◦. For s(φ) = 1 and k = k(φ), from formula (10) one finds

φ = ξ(t) + θ(x), (20)

which corresponds to G(y) = y in (11). In this case, p(x) = a(x)θ′x.
2◦. For s(φ) = φ−1 and k = k(φ), formula (10) gives

φ = ξ̄(t)θ̄(x), (21)

which corresponds to Ḡ(y) = y in (12).
3◦. For s = s(φ) and k(φ) = 0, equation (7) is a linear PDE of an

autonomous form, the solutions of which are constructed by the method of
separation of variables.

In what follows, the simplest representation of the solution in Item 1◦ will be
used. Substituting (20) into equation (7) yields the functional-differential equation

c(x)ξ′t = [a(x)θ′x]
′
x + b(x)θ′x + a(x)(θ′x)

2k(φ), φ = ξ(t) + θ(x). (22)

The intention is to find admissible forms of the function k(φ) for which this
equation can have solutions, using the differentiation method [13,16]. To this end,
first, dividing by c = c(x), allows us to represent equation (22) in the form

ξ′t = Q(x) +R(x)k(φ), φ = ξ(t) + θ(x), (23)

where Q(x) = [(aθ′x)
′
x + bθ′x]/c and R(x) = a(θ′x)

2/c. Differentiating both parts
of (23) with respect to t, we transform the obtained equation to the form ξ′′tt/ξ

′
t =

R(x)k′φ(φ). We logarithm both parts of this equation, and then again differentiate
by t. After dividing by ξ′t, we have [ln(ξ′′tt/ξ

′
t)]

′
t/ξ

′
t = [ln k′φ(φ)]

′
φ. Differentiating

further with respect to x, we obtain

[ln k′φ(φ)]
′′
φφ = 0.
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The solutions of this ordinary differential equation are determined by the formulas

k(φ) = k1φ+ k2 (degenerate solution), (24)

k(φ) = k1e
−k2φ + k3 (non-degenerate solution), (25)

where k1, k2, and k3 are arbitrary constants. Formulas (24) and (25) define all
admissible functions k(φ) for which the functional-differential equation (22) can
have a solution.

Formulas (20), (24), and (25) will be used in the subsequent sections
to construct exact solutions of nonlinear convection–diffusion equations with
autonomous coefficients (3).

2.3 The construction of exact solutions for k(φ) = k and s(φ) = 1

Direct method of constructing exact solutions. In the simplest case, k(φ) = k =

const, which corresponds to the values k1 = 0 and k2 = k in (24), substituting
expression (20) into equation (22) gives ξ(t) = t (the constant factor is chosen
equal to unity). Therefore, the class of equations (3) in this case admits functional
separable solutions of the form (4), where

φ(x, t) = t+

∫
g(x) dx. (26)

Here, the function g(x) = θ′x(x) can be prescribed by the researcher or determined
in the subsequent analysis (depending on the goal; see below). Substituting (26)
into equation (6) with s(φ) = 1 and equation (7) with k(φ) = k yields

p(x) = a(x)g(x), (27)

c(x) = [a(x)g(x)]′x + b(x)g(x) + ka(x)g2(x). (28)

Relation (28) connects the first three functional coefficients of equation (3) and the
function g = g(x) in (26) (this relation is differential with respect to the functions
a and g and algebraic with respect to the functions b and c), and relation (27) is
algebraic and is used to determine the functional coefficient p(x).

If the three functions a(x), b(x), and c(x) are assumed to be given, then
relation (28) with k ̸= 0 is a Riccati equation for the function g = g(x). Let us
rewrite this equation in the standard form:

a(x)g′x + ka(x)g2 + [b(x) + a′x(x)]g − c(x) = 0. (29)
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An extensive list of exact solutions of equation (29) for the functions a(x), b(x),
and c(x) of various forms can be found in [55,56]. Two cases will be considered.

Degenerate case. For k = 0, the Riccati equation (29) degenerates into a
linear equation whose general solution has the form

g(x) =
1

a(x)
E(x)

[∫
c(x)

E(x)
dx+ C1

]
, E(x) = exp

[
−
∫

b(x)

a(x)
dx

]
, (30)

where C1 is an arbitrary constant.
Example 1. In the case of constant coefficients a = c = 1 and b = 0,

using formulas (30) with C1 = 0, one finds g(x) = x. Substituting this function
in (26) and (27) gives φ(x, t) = t + 1

2x
2, p(x) = x. It follows that the nonlinear

convection–diffusion equation

ut = uxx + xf(u)ux (31)

for an arbitrary function f(u) admits a functional separable solution

u = U(z), z = t+ 1
2x

2. (32)

Here, the function U(z) is described by the autonomous ordinary differential
equation

U ′′
zz + f(U)U ′

z = 0 (33)

(obtained by substituting k = 0 and s = 1 into (8)), whose general solution can
be represented implicitly (9).

Example 2. Consider a more complicated situation when one of the coefficient
of the equation depends in an arbitrary way on the spatial variable, a = a(x), and
the other two are constants, b(x) = 0 and c(x) = 1. Using formulas (30) with
C1 = 0, one finds that g(x) = x/a(x). Substituting this function in (26) and (27)
with s(φ) = 1 gives φ(x, t) = t +

∫
x

a(x) dx, p(x) = x. Therefore, the nonlinear
convection–diffusion equation

ut = [a(x)ux]x + xf(u)ux, (34)

dependent on two arbitrary functions a(x) and f(u), admits a functional separable
solution

u = U(z), z = t+

∫
x

a(x)
dx, (35)
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where the function U(z) is described by the solvable autonomous ordinary
differential equation (33).

Substituting a(x) = xn and a(x) = eλx into (35) yields the nonlinear
equations

ut = (xnux)x + xf(u)ux, (36)

ut = (eλxux)x + xf(u)ux, (37)

which admit exact solutions for an arbitrary function f(u).
Interestingly, the equation ut = (xux)x + xf(u)ux, which is a special case

of equation (36) with n = 1, admits a noninvariant traveling-wave solution u =

U(x+ t).
Nondegenerate case. For k = const (k ̸= 0), the substitution

g =
1

k

y′x
y

(38)

reduces equation (29) to the second-order linear differential equation

a(x)y′′xx + [b(x) + a′x(x)]y
′
x − kc(x)y = 0. (39)

An extensive list of exact solutions of this equation for various forms of the
functions a(x), b(x), and c(x) can be found in [55,56].

Example 3. In the case of constant coefficients a = c = 1 and b = 0, the
general solution of equation (39) has the form

y =

{
C1 cosh(mx) + C2 sinh(mx) if k = m2 > 0,

C1 cos(mx) + C2 sin(mx) if k = −m2 < 0,
(40)

where C1 and C2 are arbitrary constants. By setting C1 = 1, C2 = 0, and k = 1

in (40) and using formula (38), we find that

g(x) = tanhx.

Substituting this function into (26) and (27), we have

φ(x, t) = t+ ln cosh x, p(x) = tanh x.

It follows that the nonlinear convection–diffusion equation

ut = uxx + tanhxf(u)ux (41)
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for an arbitrary function f(u) admits the functional separable solution

u = U(z), z = t+ ln cosh x, (42)

where the function U(z) is described by the autonomous ordinary differential
equation

U ′′
zz + [f(U)− 1]U ′

z = 0. (43)

This equation has the general solution (9), where k = s = 1.
Table 1 lists nonlinear equations ut = uxx + p(x)f(u)ux, where f(u) is an

arbitrary function, that admit functional separable solutions of the form u = U(z),
z = φ(x, t) (the function φ is determined to within an additive constant). For
Equations 1, 2, 4–7, the function φ(x, t) is the sum of functions of different
arguments (26). A traveling wave solution (see Equation 1) corresponds to a
degenerate solution of equation (29) of the form g = α = const. Solutions of
some equations of this type with more complicated functions p(x) can be obtained
using formulas (40) from Example 3. The solution to Equation 3 is self-similar (see
Example 4).

No. Function p(x) Function φ(x, t) Equation for the function U=U(z)

1 1 t+αx α2U ′′
zz+[αf(U)−1]U ′

z=0

2 x t+ 1
2x

2 U ′′
zz+f(U)U ′

z=0

3 x−1 xt−1/2 U ′′
zz+[ 12 z+z

−1f(U)]U ′
z=0

4 tanh(αx) t+α−2 ln cosh(αx) U ′′
zz+[αf(U)−α2]U ′

z=0

5 coth(αx) t+α−2 ln |sinh(αx)| U ′′
zz+[αf(U)−α2]U ′

z=0

6 tan(αx) t−α−2 ln |cos(αx)| U ′′
zz+[αf(U)+α2]U ′

z=0

7 cot(αx) t−α−2 ln |sin(αx)| U ′′
zz+[αf(U)+α2]U ′

z=0

Таблица 1. Nonlinear equations ut=uxx+p(x)f(u)ux that admit exact solutions of the form
u=U(z), z=φ(x, t). Here, f(u) is an arbitrary function and α is an arbitrary constant (α ̸=0).

Other ways of constructing exact solutions. We now consider other possibilities
for constructing exact solutions of equations of the form (3) with k(φ) = k and
s(φ) = 1 without integrating the Riccati equation (29). To do this, we assume
that g(x) and any two of the three functions a(x), b(x), and c(x) are given, and
the remaining function will be found from (29). Table 2 lists the possible situations
and provides formulas for determining the required function. The final form of the

11



No. Functions assumed known Function looked for

1 a=a(x), b=b(x), g=g(x) c(x)=ag′x+kag
2+(b+a′x)g

2 a=a(x), c=c(x), g=g(x) b(x)= 1
g (c−ag

′
x)−a′x−kag

3 b=b(x), c=c(x), g=g(x) a(x)= 1
gE

[∫
(c−bg) 1

E dx+C1

]
, E=exp

(
−k

∫
g dx

)
Таблица 2. Different ways of specifying the functional coefficients of equation (3) with p(x)=

a(x)g(x). Here, k and C1 are arbitrary constants.

nonlinear convection–diffusion equation is determined by substituting the function
p(x) = a(x)g(x) in (3).

Example 4. We use the third way described in Table 2 with b = 0 and c = 1

for an alternative representation of the equations and their exact solutions. There
are two possible cases.

1. Degenerate case for k = 0. From Table 2, row 3, we find a(x) = xg−1(x),
p(x) = x, which leads to equation (34).

2. Nondegenerate case for k ̸= 0. From Table 2, row 3, with k ̸= 0 and
C1 = 0, we have a(x) = g−1E

∫
E−1dx. We introduce a new function h = h(x)

by putting h =
∫
E−1dx. Differentiating this expression and taking into account

the formula E = exp
(
−k

∫
g dx

)
, we express the function g in terms of h. After

simple manipulations, we finally get g = k−1h′′xx/h
′
x, a = kh/h′′xx, p = h/h′x. It

follows that the equation

ut = [a(x)ux]x + p(x)f(u), a(x) = k
h

h′′xx
, p(x) =

h

h′x
, (44)

where f(u) and h = h(x) are arbitrary functions, and k ̸= 0 is an arbitrary
constant, admits a generalized separable solution

u = U(z), z = t+
1

k
ln |h′x|.

Here, the function U(z) is determined from the solvable ordinary differential
equation U ′′

zz + [f(U)− k]U ′
z = 0.

By setting, for example, h = sinh(αx) and k = α2 in (44), we get Equation 4
from Table 1.

2.4 The direct construction of exact solutions for k(φ) ̸= const

1. Case k(φ) = k1φ, s(φ) = 1. For k(φ) = k1φ, which corresponds to k2 = 0 in
(24), substituting expression (20) in equation (22), we obtain ξ(t) = eλt. Therefore,
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in this case the class of equations (3) admits functional separable solutions of the
form (4), where

φ(x, t) = eλt + θ(x). (45)

Substituting (45) into relation (6) with s(φ) = 1 and equation (22) with k(φ) =
k1φ, we obtain

c(x) =
k1
λ
a(x)(θ′x)

2, p(x) = a(x)θ′x. (46)

In this case, the functions a(x) and b(x) remain arbitrary, and the function θ =

θ(x) is determined by solving the ordinary differential equation

[a(x)θ′x]
′
x + b(x)θ′x + k1a(x)θ(θ

′
x)

2 = 0. (47)

The substitution η =
∫
exp

(
1
2k1θ

2
)
dθ reduces equation (47) to the linear equation

[a(x)η′x]
′
x + b(x)η′x = 0, the general solution of which is expressed as η =

C1

∫
1
a exp

(
−
∫

b
a dx

)
dx+ C2.

2. Case k(φ) = k1e
−k2φ + k3, s(φ) = 1. For k(φ) = k1e

−k2φ + k3,
which corresponds to using the dependence (25), substituting expression (20) into
equation (22), we obtain ξ(t) = k−1

2 ln t. In this case, the class of equations (3)
admits functional separable solutions of the form (4), where

φ(x, t) =
1

k2
ln t+ θ(x). (48)

Substituting (48) into relation (6) with s(φ) = 1 and equation (22) with k(φ) =
k1e

−k2φ + k3, we get

c(x) = k1k2a(x)e
−k2θ(θ′x)

2, p(x) = a(x)θ′x. (49)

The functions a(x) and b(x) remain arbitrary, and the function θ = θ(x) is
determined by solving the nonlinear ordinary differential equation

[a(x)θ′x]
′
x + b(x)θ′x + k3a(x)(θ

′
x)

2 = 0. (50)

This equation is easily integrated, since the substitution ζ(x) = θ′x leads to a
Bernoulli equation. In particular, for k3 = 0, the general solution of equation (50)
is given by

θ(x) = C1

∫
1

a
exp

(
−
∫

b

a
dx

)
dx+ C2.
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Example 5. Let

a(x) = 1, b(x) = 0, k1 = − 1
2 , k2 = −2, k3 = 1. (51)

In this case, equation (50) has a solution θ = lnx. Substituting this function into
formulas (48) and (49), and taking (51) into account, we obtain

φ(x, t) = − 1
2 ln t+ lnx, p(x) = x−1, c(x) = 1. (52)

Therefore, the equation

ut = uxx + x−1f(u)ux (53)

admits the self-similar solution

u = U(z), z = − 1
2 ln t+ lnx ≡ ln(xt−1/2), (54)

where the function U(z) satisfies the ordinary differential equation

U ′′
zz + [ 12e

2z − 1 + f(U)]U ′
z = 0. (55)

Note that an alternative representation of similar solutions is often used in
applications, which is based on the introduction of the self-similar variable
z̄ = ez = xt−1/2 and reduction of equation (53) to the equation U ′′

zz + [ 12z +

z−1f(U)]U ′
z = 0 (see Equation 3 in Table 1).

Example 6. Equations (49) and equation (50) are satisfied if we set

a(x) = 1, b(x) = 0, c(x) = e−x, p(x) = 1, θ(x) = x, k1 = k2 = 1, k3 = 0.

Therefore, the equation e−xut = uxx+f(u)ux admits an exact solution of the form
u = U(z), where z = x+ ln t.

3 Some generalizations and modifications

3.1 More-complex one-dimensional nonlinear diffusion-type equations

Below is a useful theorem that allows one to construct exact solutions of more-
complex nonlinear diffusion-type equations.

Theorem 1. Suppose φ = φ(x, t) is a solution to the parabolic equation with quadratic
nonlinearity

c(x, t)φt = [a(x, t)φx]x + b(x, t)φx + ka(x, t)φ2
x, (56)

14



where k is an arbitrary constant. Then the nonlinear PDE

c(x, t)ut = [a(x, t)ux]x + b(x, t)ux + a(x, t)φ2
xF (φ, u, ux/φx), (57)

where F (φ, u,w) is an arbitrary function of three arguments, admits a functional separable solution of
the form

u = U(z), z = φ(x, t). (58)

Here, the function U(z) is determined by solving the ODE

U ′′
zz − kU ′

z + F (z, U, U ′
z) = 0. (59)

Thus, exact solutions of equation (56) generate corresponding exact solutions
of the nonlinear equation (57). Equation (56) will be called a generating equation.
Note that this equation is invariant with respect to translation, φ⇒ φ+ const.

Theorem 1 is proved by direct verification by substituting function (58) into
equation (57) while taking into account relation (56).

Remark 4. For k = 0, we get the linear PDE (56). For k ̸= 0, substitution
(17) takes the nonlinear equation (56) to the linear equation

c(x, t)ψt = [a(x, t)ψx]x + b(x, t)ψx. (60)

Thus, exact solutions of the linear equation (60) generate corresponding exact
solutions of the nonlinear equation (57).

Exact solutions of equation (60) for certain functions a(x, t), b(x, t), and
c(x, t) can be found in [57].

Example 8. By setting

a(x, t) = a(x), b(x, t) = 0, c(x, t) = 1, k = 0, φ(x, t) = t+

∫
x dx

a(x)
,

F (φ, u, w) = f(u)w2 + g(u)w + h(u)

in (56) and (57), we obtain the nonlinear PDE

ut = [a(x)ux]x + a(x)f(u)u2x + xg(u)ux +
x2

a(x)
h(u),

dependent on four arbitrary functions a(x), f(u), g(u), h(u), which has the exact
solution

u = U(z), z = t+

∫
x dx

a(x)
.

The function U = U(z) is described by the nonlinear ODE

U ′′
zz + f(U)(U ′

z)
2 + g(u)U ′

z + h(u) = 0.
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3.2 Nonlinear systems of coupled diffusion-type equations

Theorem 1 admits a generalization to systems of coupled equations.
Theorem 2. Suppose φ = φ(x, t) is a solution to the parabolic equation with quadratic

nonlinearity (56). Then the nonlinear system of coupled PDEs

c(x, t)ut = [a(x, t)ux]x + b(x, t)ux + a(x, t)φ2
xF (φ, u, v, ux/φx, vx/φx),

c(x, t)vt = [a(x, t)vx]x + b(x, t)vx + a(x, t)φ2
xG(φ, u, v, ux/φx, vx/φx),

(61)

where F (φ, u, v, w1, w2) and G(φ, u, v, w1, w2) are arbitrary functions of five arguments, admits a
functional separable solution of the form

u = U(z), v = V (z), z = φ(x, t). (62)

The functions U(z) and V (z) are determined by solving the coupled ODEs

U ′′
zz − kU ′

z + F (z, U, V, U ′
z, V

′
z) = 0,

V ′′
zz − kV ′

z +G(z, U, V, U ′
z, V

′
z ) = 0.

(63)

Theorem 2 is proved by direct verification by substituting functions (62) into
equations (61) while taking into account relation (56).

Example 9. By setting

a(x, t) = c(x, t) = 1, b(x, t) = 0, k = 0, φ(x, t) = t+ 1
2x

2,

F (φ, u, v, w1, w2) = f(u, v)w2, G(φ, u, v, w1, w2) = g(u, v)w1

in (56) and (61), we obtain the nonlinear system of coupled PDEs

ut = uxx + xf(u, v)vx,

vt = vxx + xg(u, v)ux,

involving arbitrary functions f(u, v), and g(u, v), which has the exact solution

u = U(z), v = V (z), z = t+ 1
2x

2.

The functions U = U(z) and V = V (z) are described by the nonlinear coupled
ODEs

U ′′
zz + f(U, V )V ′

z = 0,

V ′′
zz + g(U, V )U ′

z = 0.
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3.3 Nonlinear diffusion equations with several spatial variables

Theorem 1 admits various multidimensional generalizations. An example is given
below.

Theorem 3. Suppose φ = φ(x, t) is a solution to the parabolic equation with quadratic
nonlinearity

c(x, t)φt = ∆φ+ b(x, t) · ∇φ+ k|∇φ|2, (64)

where x = (x1, . . . , xn), ∆ is the Laplace operator, ∇ is the gradient operator, and k is an arbitrary
constant. Then the nonlinear PDE

c(x, t)ut = ∆u+ b(x, t) · ∇u+ |∇φ|2F (φ, u, |∇u|/|∇φ|), (65)

where F (φ, u,w) is an arbitrary function of three arguments, admits a functional separable solution of
the form

u = U(z), z = φ(x, t). (66)

The function U(z) is determined by solving the ODE

U ′′
zz − kU ′

z + F (z, U, |U ′
z|) = 0. (67)

Theorem 3 is proved by direct verification by substituting function (66) into
equation (65) while taking into account relation (64).

Remark 5. For k ̸= 0, substitution (17) takes the nonlinear generating
equation (64) to the linear equation c(x, t)ψt = ∆ψ + b(x, t) · ∇ψ.

3.4 Nonlinear equations of convection–diffusion type with delay

The results obtained in Section 2 can also be generalized to the case of more
complicated nonlinear convection–diffusion equations with delay of the form

c(x)ut = [a(x)ux]x + b(x)ux + p(x)f(u,w)ux, w = u(x, t− τ), (68)

where τ > 0 is the delay time, f(u,w) is an arbitrary function of two arguments.
Let us show how the solutions of the nonlinear convection–diffusion equation

without delay (3), which are determined by formulas (4) and (26), can be used to
construct exact solutions of the nonlinear equation with delay (68). Let equation
(3) admit a functional separable solution of the form

u = U(z), z = t+ θ(x), (69)

where the function U(z) satisfies the ordinary differential equation (8) with k(z) =
k = const and s(z) = 1. Then the equation with delay (68) admits an exact
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solution of the form (69), where U(z) satisfies the ordinary differential equation
with delay

U ′′
zz + [f(U,W )− k]U ′

z = 0, W = U(z − τ). (70)

Equations (31), (34), (36), (37), as well as Equations 4–7 from Table 1
(obtained for k(z) = 0 and s(z) = 1), have solutions of the form (69). Therefore,
more-complex nonlinear convection–diffusion equations with delay, which are
obtained from these equations by replacing the function f(u) with f(u,w), also
admit exact solutions of the form (69).

Example 9. Nonlinear convection–diffusion equation with delay

ut = uxx + xf(u,w)ux, w = u(x, t− τ), (71)

which is a generalization of equation (31), for an arbitrary function f(u,w) admits
a functional separable solution

u = U(z), z = t+ 1
2x

2, (72)

where the function U(z) is described by the delay ordinary differential equation

U ′′
zz + f(U,W )U ′

z = 0, W = U(z − τ). (73)

Note that for f(U,W ) = g(W/U), equation (73) admits an exact solution of
the form U = Ceλz, where C is an arbitrary constant, and λ is determined from
the transcendental equation λ+ g(e−τλ) = 0.

3.5 Remarks on exact solutions of nonlinear wave-type equations

Nonlinear wave-type equations

c(x)utt = [a(x)ux]x + [b(x) + p(x)f(u)]ux, (74)

in which ut is replaced with utt, can also have functional separable solutions of the
form u = U(z) with z = ξ(t) + θ(x). Some solutions of this type can be found
in [16].

Below is an example of a new exact functional separable solution.
Example 10. Consider the equation

utt = [a(x)ux]x + [λ2a(x)− k2]f(u)ux, (75)
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where a(x) and f(u) are arbitrary functions, while k and λ are arbitrary constants.
Equation (75) has the exact solutions

u = U(z), z = λt+ k

∫
dx

a(x)
, (76)

where the function U = U(z) is described by an autonomous ordinary differential
equation of the form (8),

U ′′
zz − kf(U)U ′

z = 0. (77)

Replacing k with −k in (76) and (77) gives another solution to equation
(75).

4 Brief conclusions

To summarize, the paper has presented a number of exact functional separable
solutions to nonlinear convection–diffusion equations of the form

c(x)ut = [a(x)ux]x + [b(x) + p(x)f(u)]ux,

where f(u) is an arbitrary function. Solutions were sought in the form u = U(z)

with z = φ(x, t), where the functions U(z) and φ(x, t) are determined in the
course of further analysis. It has been shown that any three of the four functional
coefficients a(x), b(x), c(x), p(x) of the convection–diffusion equation can be
chosen arbitrarily. Examples of specific equations and their exact solutions are
given. Also some functional separable solutions of nonlinear convection–diffusion
equations with delay

ut = uxx + a(x)f(u,w)ux, w = u(x, t− τ),

where τ > 0 is the delay time and f(u,w) is an arbitrary function of two
arguments, have been obtained.
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