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Abstract

Two new methods of numerical integration of Cauchy problems for nonlinear
ODEs of the first- and second-order, which have blow-up solutions are described.
In such problems, the position of the singular point is not known in advance. The
first method is based on obtaining an equivalent system of equations by apply-
ing a differential transformation, where the first derivative (given in the origi-
nal equation) is chosen as a new independent variable, t = y′x. The second
method is based on introducing a new auxiliary non-local variable of the form
ξ =

∫ x

x0
g(x, y, y′x) dx with the subsequent transformation to the Cauchy problem

for the corresponding system of coupled ODEs. Both methods lead to problems
whose solutions are represented in parametric form and do not have blowing-up
singular points; therefore the standard fixed-step numerical methods can be ap-
plied. The efficiency of the proposed methods is illustrated with a number of test
problems that admit exact solutions. It is shown that the methods, based on spe-
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cial exp-type transformations (which are particular cases of the general non-local
transformation), are more efficient than the method based on the hodograph trans-
formation, the method of the arc-length transformation, and the method based
on the differential transformation. The method, based on introducing a non-local
variable, can be generalized to the n th-order ODEs and systems of coupled ODEs.

Keywords: non-linear differential equations, blow-up solutions, numerical
integration, differential transformations, non-local transformations, arc-length
transformation

1. Introduction

We will consider Cauchy problems for ODEs, whose solutions tend to infinity
at some finite value of x, say x = x∗. Such x∗ does not appear explicitly in the
given differential equation and it is not known in advance. Similar solutions exist
on a bounded interval (hereinafter in this article we assume that x0 ≤ x < x∗) and
are called blow up solutions. This raises the important question for practice: how
to determine the position of a singular point x∗ and the solution in its neighbor-
hood with the aid of numerical methods.

In general, the blow-up solutions, that have a power singularity, can be repre-
sented in a neighborhood of the singular point x∗ as

y ≃ A(x∗ − x)−β, β > 0, (1)

where A is a constant. For these solutions we have lim
x→x∗

|y| = ∞ and lim
x→x∗

|y′x| =
∞.

For blow-up solutions with the power singularity (1) near the singular point x∗
we have

y′x/y ≃ β/(x∗ − x), (2)

i.e. the required function grows more slowly than its derivative. Therefore, we
have lim

x→x∗
y′x/y = ∞ (this is a common property of any blow-up solutions; it

must be taken into account when carrying out numerical calculations).
The direct application of the standard fixed-step numerical methods in such

problems leads to certain difficulties because of the singularity in the blow-up
solutions and the unknown (in advance) range of variation of the independent
variable x (see, for example, [1, 2]).
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One of the basic ideas of numerical solution of such problems is to find a suit-
able transformation, leading to the equivalent problem for one differential equa-
tion or a system of coupled equations, the solutions of which have no singularities
at unknown point.

Currently, two methods based on this idea are most commonly used. The first
one is proposed by Acosta et al. [3]. They have suggested to apply a hodograph
transformation x = ȳ, y = x̄, where the independent and dependent variables are
reversed. The second method, which is based on the arc-length transformation,
has been proposed by Moriguti et al. [4] (for details, see below Items 2◦ in Sec-
tions 3.1 and 5.1 as well as reference [5]). This method is rather general and it can
be applied for numerical integration of systems of ODEs.

The methods based on the hodograph and arc-length transformations for blow-
up solutions with a power singularity of the form (1) lead to the Cauchy problems
whose solutions tend to the asymptote with respect to the power law for large
values of the new independent variable. This creates certain difficulties in some
problems, since one has to consider large intervals of variation of the independent
variable in numerical integration.

Based on other ideas, some special methods of numerical integration of blow-
up problems are described, for example, in [1, 2, 5–9].

In this paper, we propose two new methods of numerical integration of non-
linear Cauchy problems for ODEs of the first- and second-orders, which have
blow-up solutions. These methods are based on the differential and non-local
transformations allowing us to obtain the equivalent systems of ODEs, whose so-
lutions do not have singularities at some a priori unknown point. It is shown
that special exp-type transformations (which are particular cases of the general
non-local transformation) lead to the Cauchy problems whose solutions tend ex-
ponentially to the asymptote (which determines the position of the required singu-
lar point x∗) for large values of the new independent variable; therefore exp-type
transformations are more preferable than the hodograph and arc-length transfor-
mations.

2. Problems for first-order equations. Differential transformations

2.1. Solution method based on a differential transformation
The Cauchy problem for the first-order differential equation has the form

y′x = f(x, y) (x > x0), (3)
y(x0) = y0. (4)
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In what follows we assume that f = f(x, y) > 0, x0 ≥ 0, y0 > 0, and f/y1+ε →
∞ as y → ∞, where ε > 0 (in such problems, blow-up solutions arise when the
right-hand side of a non-linear ODE is quite rapidly growing as y → ∞).

First, we present the ODE (3) as an equivalent system of differential-algebraic
equations

t = f(x, y), y′x = t, (5)

where y = y(x) and t = t(x) are unknown functions to be determined.
By applying (5), we derive a system of equations of the standard form, assum-

ing that y = y(t) and x = x(t). By taking the full differential of the first equation
in (5) and multiplying the second one by dx, we get

dt = fx dx+ fy dy, dy = t dx, (6)

where fx and fy are the respective partial derivatives of f = f(x, y). Eliminat-
ing first dy, and then dx from (6), we obtain a system of the first-order coupled
equations

x′
t =

1

fx + tfy
, y′t =

t

fx + tfy
(t > t0), (7)

which must be supplemented by the initial conditions

x(t0) = x0, y(t0) = y0, t0 = f(x0, y0), (8)

Conditions (8) are derived from (4) and the first equation of (5).
Assuming that the conditions fx + tfy > 0 at t0 < t < ∞ are valid, the

Cauchy problem (7)–(8) can be integrated numerically, for example, by applying
the Runge–Kutta method or other standard numerical methods (see for example
[10–15]). In this case, the difficulties (described in the introduction) will not oc-
cur since x′

t rapidly tends to zero as t → ∞. The required critical value x∗ is
determined by the asymptotic behavior of the function x = x(t) for large t.

2.2. Test problems. Exact and numerical solutions
Let us illustrate the method proposed in Section 2.1 with simple examples.
Example 1. Consider the model Cauchy problem for the first-order ODE with

separated variables

y′x = y2 (x > 0), y(0) = a, (9)
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where a > 0. The exact solution of this problem has the form

y =
a

1− ax
. (10)

It has a power-type singularity (a first-order pole) at a point x∗ = 1/a and does
not exist for x > x∗.

By introducing a new variable t = y′x in (9), we obtain the following Cauchy
problem for the system of equations:

x′
t =

1

2ty
, y′t =

1

2y
(t > t0);

x(t0) = 0, y(t0) = a, t0 = a2,

(11)

which is a particular case of the problem (7)–(8) with f = y2, x0 = 0, and y0 = a.
The exact solution of this problem has the form

x =
1

a
− 1√

t
, y =

√
t (t ≥ a2). (12)

It has no singularities; the function x = x(t) increases monotonically for t > a2,
tending to to the desired limit value x∗ = lim

t→∞
x(t) = 1/a, and the function

y = y(t) monotonously increases with increasing t. The solution (12) for the
system (11) is a solution of the original problem (9) in parametric form.

The maximum error of the numerical solution of the Cauchy problem for sys-
tem of equations (11) with a = 1 obtained by the classical Runge–Kutta method
of the fourth-order approximation for stepsize h = 0.2 does not exceed 0.017%
for y ≤ 50.

Remark 1. Here and in what follows, the numerical integration interval for the new
variable t (or ξ) is usually determined, for demonstration calculations, from the condition
Λm = 50, where

Λm = min{|y|, y′x/y} (for |y0| ∼ 1 and |y1| ∼ 1), (13)

and y1 = y′x(x0). In a few cases, the condition Λm = 100 or Λm = 150 is used, which
is specially stipulated. In the definition of Λm, a relation y′x/y is included that takes into
account the property (2). For first-order ODE problems of the form (3)–(4), the definition
of Λm can be replaced by the equivalent definition Λm = min{|y|, f/y}.

Conditions |y0| ∼ 1 and |y1| ∼ 1 in (13) are not strongly essential, since the substi-
tution y = y0 − 1 + (y1 − 1)(x− x0) + ȳ leads to an equivalent problem with the initial
conditions ȳ(x0) = ȳ′x(x0) = 1.
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Example 2. For a more general two-parameter Cauchy problem,

y′x = yγ, y(0) = a > 0,

having a blow-up solution for γ > 1, the introduction of a new variable t = y′x
leads to the system of equations of the form (7), the solution of which is deter-
mined by the formulas

x =
1

γ − 1

(
a1−γ − t

1−γ
γ

)
, y = t

1
γ (t ≥ aγ). (14)

This solution behaves qualitatively similar to the solution (12) as t → ∞.

Remark 2. Solutions (12) and (14) slowly tend to the asymptotic values x → x∗ as
t → ∞. To speed up the process of approaching the asymptotic behavior with respect to
x in the system (7) is useful additionally to make the substitution of the exponential type

t = t0 exp(κτ), τ ≥ 0, (15)

where

τ = (1/κ) ln(t/t0) = (1/κ) ln(y′x/t0) (16)

is a new independent variable and κ > 0 is a numerical parameter that can be varied.
Transformations with a new independent variable of the form (16) will be called the mod-
ified differential transformations. See also Remarks 4 and 5.

3. Problems for first-order equations. Non-local transformations

3.1. Solution method based on non-local transformations
Introducing a new non-local variable [16, 17] according to the formula,

ξ =

∫ x

x0

g(x, y) dx, y = y(x), (17)

leads the Cauchy problem for one equation (3)–(4) to the equivalent problem for
the autonomous system of equations

x′
ξ =

1

g(x, y)
, y′ξ =

f(x, y)

g(x, y)
(ξ > 0);

x(0) = x0, y(0) = y0.

(18)
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Here, the function g = g(x, y) has to satisfy the following conditions:

g > 0 if x ≥ x0, y ≥ y0; g → ∞ as y → ∞; f/g = k as y → ∞, (19)

where k = const > 0 (and the limiting case k = ∞ is also allowed); otherwise
the function g can be chosen rather arbitrarily.

It follows from (17) and the second condition (19) that x′
ξ → 0 as ξ → ∞. The

Cauchy problem (18) can be integrated numerically applying the Runge–Kutta
method or other standard numerical methods.

Let us consider some possible selections of the function g in the system (18).

1◦. The special case g = f is equivalent to the hodograph transformation [3, 18]
with an additional shift of the dependent variable, which gives ξ = y − y0.

2◦. Setting g =
√

1 + f 2, we arrive at the method of the arc-length transforma-
tion [4]. In this case, k = 1 in (19).

3◦. Choosing g = 1 + |f |, we obtain the Cauchy problem

x′
ξ =

1

1 + |f(x, y)|
, y′ξ =

f(x, y)

1 + |f(x, y)|
;

x(0) = x0, y(0) = y0.

(20)

Note that we use here the absolute value sign to generalize the results, since
the system (20) can also be used in the case f < 0 for numerical integration
of the problems having solutions with a root singularity [2]. In this case we
have k = 1 in (19).

4◦. We can take g = f/y that corresponds to k = ∞ in (19). In this case, the
second equation of the system is immediately integrated and, taking into
account the initial condition, we get y = y0e

ξ. In addition, the variable x
tends exponentially rapidly to a blow-up point x∗ with increasing ξ. This
transformation will be called the special exp-type transformation.

Remark 3. It follows from Items 1◦ and 2◦ that the method based on the hodograph
transformation and the method of the arc-length transformation are particular cases of
the method based on the non-local transformation of the general form, described in Sec-
tion 3.1.
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3.2. Test problems. Exact and numerical solutions
Example 3. For the test Cauchy problem (9) with a = 1, the equivalent the

problem for the system of equations (20) admits an exact solution, which is ex-
pressed in terms of elementary functions in a parametric form as follows:

x = 1 + 1
2
ξ − 1

2

√
ξ2 + 4, y = 1

2
ξ + 1

2

√
ξ2 + 4 (ξ ≥ 0). (21)

This solution satisfies the initial conditions x(0) = 0 and y(0) = 1 and has no
singularities. The function x(ξ) is bounded, increases monotonically, and tends to
its limiting value x∗ = lim

ξ→∞
x(ξ) = 1. The function y(ξ) increases monotonically

and tends to infinity as ξ → ∞. At large ξ we have x ≈ 1− ξ−1 and y ≈ ξ + ξ−1.
Example 4. For the test problem (9), in which f = y2, we take g = f/y = y

(see Item 4◦ above). By substituting these functions in (18), we arrive at the
Cauchy problem

x′
ξ =

1

y
, y′ξ = y (ξ > 0);

x(0) = 0, y(0) = a.

(22)

The exact solution of this problem is written as follows:

x =
1

a

(
1− e−ξ

)
, y = aeξ. (23)

We can see that the unknown quantity x = x(ξ) exponentially tend to the asymp-
totic values x = x∗ = 1/a as ξ → ∞.

The numerical solution of the problem (22) with a = 1, obtained by the fourth-
order Runge–Kutta method for the stepsize h = 0.2, is presented in Fig. 1 (for the
sake of clarity, a scale factor ν = 30 is introduced for the function x = x(ξ)). In
Fig. 1b, we also show the results of the numerical integration of the problem (11).

We can see (Fig. 1) that the numerical solutions are in a good agreement, but
the speed of the process of approaching the asymptote (with respect to x) is differ-
ent. For example, for system (11) it is required to take t ∈ [1, 2400] to approach
the asymptote, and for system (22), it is required to take a significantly smaller
interval ξ ∈ [0, 4]. In this sense, the method based on a non-local transformation
is more efficient than the method based on a differential transformation.

For comparison, similar calculations were performed according to the method
based on the hodograph transformation (see Section 3.1, Item 1◦) and the method
of the arc-length transformation (see Section 3.1, Item 2◦ for c = 1 and s = 2).
For both methods it is required to take ξ ∈ [0, 49] to approach the asymptote. To
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Figure 1: 1a—the dependences x = x(ξ) and y = y(ξ), obtained by numerical solution of the
problem (22) for a = 1 (ν = 30); 1b—numerical solution of the problem (22) (circle), numerical
solution of the problem (11) (solid box), and exact solution (10) (solid line).

control the solution process, the calculations were performed with the aid of the
three most powerful problem solving environments: Maple (2016), Mathematica
(11), and MATLAB (2016a).

It can be observed that the method, based on the use of a special case of the
system (18) with g = f/y (see Item 4◦), is a more efficient method compared
to the method based on the hodograph transformation and the method of the arc-
length transformation.

The absolute and percent errors of numerical integration of the problem (22)
for stepsize h = 0.2 and Λm = 50 are shown in Fig. 2. The maximum absolute and
relative errors of numerical integration of the problem (22) for different values of
stepsize h and Λm are given in Table 1. It can be seen that reducing the stepsize by
one-half reduces the percent errors of numerical solutions by more than a factor
of 14, and increasing Λm leads to an almost linear increasing of percent errors
(increasing Λm by a factor of 3 increases the percent errors by a factor of 2.75).

Remark 4. The use of the transformation (15) with κ = 2 in the problem (11) leads
to an exact solution in a parametric form, which coincides (up to renaming τ by ξ) with
the exponential-type solution (23).

9



Figure 2: The absolute error (circle) and percent error (solid point) of numerical integration of the
problem (22) for h = 0.2 and Λm = 50.

Stepsize h = 0.1 Stepsize h = 0.2

Λm ξmax |error|max errormax,% Λm ξmax |error|max errormax,%
50 4.0 0.0109472 0.0200465 50 4.0 0.1577264 0.2880668

100 4.6 0.0366579 0.0368345 100 4.6 0.5293520 0.5293070
150 5.0 0.0818718 0.0551346 150 5.0 1.1851609 0.7922731

Table 1: The maximum absolute and percent errors of numerical solutions of the problem (22) for
various values of Λm and stepsize h.

3.3. Comparison of efficiency of various transformations for numerical integra-
tion of first-order ODE blow-up problems

In Table 2, a comparison of the efficiency of the numerical integration meth-
ods, based on various nonlocal transformations of the form (17) is presented by
using the example of the test blow-up problem for the first-order ODE (9) with
f = y2 and a = 1. The comparison is based on the number of grid points needed
to perform calculations with the same maximum error (approximately equal to
0.005). In all cases, for the integration of the transformed problems the standard
fourth-order Runge–Kutta method was used.

It can be seen that for the first three transformations it is necessary to use a lot
of grid points (the hodograph transformation is the least effective). This is due to
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Errormax,% = 0.005

Transformation Function g Max. interval Stepsize Grid points
ξmax h number N

Hodograph, Item 1◦ g=f 49.035 0.1050 467
Arc-length, Item 2◦ g=

√
1+f2 49.266 0.1380 357

Nonlocal, Item 3◦ g=1+|f | 50.135 0.1850 271
Special exp-type, Item 4◦ g=f/y 3.9150 0.0725 54

Table 2: Various types of analytical transformations applied for numerical integration of the prob-
lem (9) for f = y2 with a given accuracy (percent error = 0.005 and Λm ≤ 50) and their basic
parameters (maximum interval, stepsize, grid points number).

the fact that in these cases x tends to the point x∗ rather slowly for large ξ (x∗−x ∼
1/ξ, y ∼ ξ). The last transformation with g = f/y require a significantly less
number of grid points; in this case x tends exponentially rapidly to the point x∗
for large ξ. We note that an analogous situation holds for Errormax,% = 0.1.

Remark 5. To get the percent error = 0.005, in the case of using the modified differ-
ential transformation (16) with κ = 2 to problem (9), it is necessary to take only 38 grid
points.

4. Problems for second-order equations. Differential transformations

4.1. Solution method based on a differential transformation
The Cauchy problem for the second-order differential equation has the form

y′′xx = f(x, y, y′x) (x > x0); (24)
y(x0) = y0, y′x(x0) = y1. (25)

Note that the exact solutions of equations of the form (24), which can be used
for the formulation of test problems with blow-up solutions, can be found, for
example, in [18–21].

Let f(x, y, u) > 0 if y > y0 ≥ 0 and u > y1 ≥ 0, and the function f
increases quite rapidly as y → ∞ (for example, if f does not depend on y′x, then
lim
y→∞

f/y1+ε = ∞, where ε > 0).

First, as in Section 2.1, we represent ODE (24) as an equivalent system of
differential-algebraic equations

y′x = t, y′′xx = f(x, y, t), (26)
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where y = y(x) and t = t(x) are unknown functions.
Taking into account (26), we derive further a standard system of equations,

assuming that y = y(t) and x = x(t). To do this, we differentiate the first equation
in (26) with respect to t. We have (y′x)

′
t = 1. Taking into account the relations

y′t = tx′
t (follows from the first equation of (26)) and (y′x)

′
t = y′′xx/t

′
x = x′

ty
′′
xx, we

get further
x′
ty

′′
xx = 1. (27)

If we eliminate the second derivative y′′xx by using a second equation of (26), we
obtain the first-order equation

x′
t =

1

f(x, y, t)
. (28)

Considering further the relation y′t = tx′
t, we transform (28) to the form

y′t =
t

f(x, y, t)
. (29)

Equations (28) and (29) represent a system of coupled first-order equations with
respect to functions x = x(t) and y = y(t). The system (28)–(29) should be
defined with the initial conditions

x(t0) = x0, y(t0) = y0, t0 = y1, (30)

which are derived from (25) and the first equation of (26).
The Cauchy problem (28)–(30) can be integrated numerically applying the

standard numerical methods [10–15], without fear of blow-up solutions.

Remark 6. Systems of differential-algebraic equations (5) and (26) are particular
cases of parametrically defined non-linear differential equations, which are considered
in [22, 23]. In [23], the general solutions of several parametrically defined ODEs were
obtained via the differential transformations, based on introducing a new independent
variable t = y′x.

4.2. Test problems. Exact and numerical solutions
Example 5. Consider a model Cauchy problem for the second-order ODE

y′′xx = 2yy′x (x > 0); y(0) = a > 0, y′x(0) = a2, (31)

which is obtained by differentiating equation (9). Exact solution of this problem
is defined by the formula (10).
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Introducing a new variable t = y′x in (31), we obtain the Cauchy problem,
which exactly coincides with the problem (11). The exact solution of this problem
is determined by the formulas (12).

Example 6. Let us now consider another Cauchy problem

y′′xx = 2y3 (x > 0); y(0) = a, y′x(0) = a2, (32)

which is obtained by excluding the first derivative from the equations (9) and (31)
(the latter one is a consequence of (9)). The exact solution of the problem (32) is
defined by the formula (10).

Introducing a new variable t = y′x in (32), we transform (32) to the Cauchy
problem for the system of the first-order ODEs

x′
t =

1

2y3
, y′t =

t

2y3
(t > t0);

x(t0) = 0, y(t0) = a, t0 = a2,

(33)

which is a particular case of the problem (28)–(30) with f = y2, x0 = 0, and
y0 = a. The exact solution of the problem (33) is given by the formulas (12).

The maximum error of numerical solution of the Cauchy problem for the sys-
tem of equations (33) with a = 1 obtained by the classical Runge–Kutta method
of the fourth-order approximation for stepsizes h = 0.1, 0.2, 0.4, does not exceed,
respectively, 0.001%, 0.022%, and 0.339% for y ≤ 50 and t ∈ [1, 2400].

The function x(t) slowly tends to the asymptotic value x∗. Therefore to accel-
erate this process in the system (33) is useful additionally to make the exponential-
type substitution (15).

5. Problems for second-order equations. Non-local transformations

5.1. Solution method based on non-local transformations
First, equation (24) can be represented as a system of two equations

y′x = t, t′x = f(x, y, t),

and then we introduce the non-local variable of the general form [16, 17] by the
formula

ξ =

∫ x

x0

g(x, y, t) dx, y = y(x), t = t(x). (34)
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As a result, the Cauchy problem (24)–(25) can be transformed to following prob-
lem for the autonomous system of three equations:

x′
ξ =

1

g(x, y, t)
, y′ξ =

t

g(x, y, t)
, t′ξ =

f(x, y, t)

g(x, y, t)
(ξ > 0);

x(0) = x0, y(0) = y0, t(0) = y1.

(35)

For a suitable choice of the function g = g(x, y, t) (not very restrictive conditions
of the type (19) must be imposed on it), the Cauchy problem (35) can be numer-
ically integrated applying the standard numerical methods [10–15], without fear
of blow-up solutions.

Let us consider some possible choices of the function g in the system (35).

1◦. The special case g = t is equivalent to the hodograph transformation with an
additional shift of the dependent variable, which gives ξ = y − y0.

2◦. We can take g =
(
c + |t|s + |f |s

)1/s with c ≥ 0 and s > 0. The case c = 1
and s = 2 corresponds to the method of the arc-length transformation [4].

3◦. By taking g = f in (35), after the integration of the third equation we
arrive at the system (28)–(30). It follows that the method based on the
non-local transformation (34) is a generalization of the method described in
Section 4.1, which is based on the differential transformation.

4◦. We can take g = t/y or g = kt/y, where k > 0 is a numerical parameter that
can be varied.

5◦. Also, we can take g = f/t or g = kf/t, where k > 0 is a free numerical
parameter.

Remark 7. In the last two cases, 4◦ and 5◦, the system (35) is much simplified, since
one of its equations is directly integrated (for g = t/y and g = f/t we accordingly obtain
the exponential components of the solutions, y = aeξ and t = a2eξ). The transformations
corresponding to these two cases will be called special exp-type transformations, they
lead to the solutions, in which the variable x tends exponentially rapidly to a blow-up
point x∗.

Remark 8. It follows from Items 1◦, 2◦, and 3◦ that the method based on the hodo-
graph transformation, the method of the arc-length transformation, and the method based
on the differential transformation are particular cases of the method based on the non-local
transformation of the general form, described in this section.
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Figure 3: 3a—the dependences t = t(ξ), x = x(ξ), y = y(ξ), obtained by numerical solution
of the problem (36) for a = 1 (ν = 30); 3b—numerical solution of the problem (36) (circle),
numerical solution of the problem (33) (solid box), and exact solution (10) (solid line).

5.2. Test problems. Exact and numerical solutions
Example 7. For the test problem (32), in which f = 2y3, we put g = t/y (see

Item 4◦ above). By substituting these functions in (35), we arrive at the Cauchy
problem

x′
ξ =

y

t
, y′ξ = y, t′ξ =

2y4

t
(ξ > 0);

x(0) = 0, y(0) = a, t(0) = a2.
(36)

The exact solution of this problem is written as follows:

x =
1

a

(
1− e−ξ

)
, y = aeξ, t = a2e2ξ. (37)

We can see that the unknown quantity x = x(ξ) exponentially tend to the asymp-
totic values x = x∗ = 1/a as ξ → ∞.

The numerical solution of the problem (36) with a = 1, obtained by the fourth-
order Runge–Kutta method for the stepsize h = 0.2, is presented in Fig. 3. In
Fig. 3b, we also show the results of the numerical integration of the problem (33).
The numerical solutions are in a good agreement, but the speed of the process
of approaching the asymptote (with respect to x) is different. For example, for
system (33) it is required to take t ∈ [1, 2400] to approach the asymptote, and for
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system (36), it is required to take a significantly smaller interval ξ ∈ [0, 4]. In this
sense, the method based on the special exp-type transformation with g = t/y is
more efficient than the method based on a differential transformation.

For comparison, similar calculations were performed with the aid of Maple
(2016) according to the method based on the hodograph transformation (see Sec-
tion 5.1, Item 1◦) and the method of the arc-length transformation (see Section 5.1,
Item 2◦ for c = 1 and s = 2). To approach the asymptote, it is required to take
ξ ∈ [0, 49] for the method based on the hodograph transformation, and for the
method of the arc-length transformation we have to take ξ ∈ [0, 2500]. To control
the solution process, the calculations were performed also with the aid of the other
two problem solving environments, Mathematica (11) and MATLAB (2016a). It
can be observed that the method, based on the use of a special case of the sys-
tem (35) with g = t/y (see Example 7), is a more efficient method compared
to the method based on the hodograph transformation and the method of the arc-
length transformation.

The absolute and percent errors of numerical integration of the problem (36)
for stepsize h = 0.2 and Λm = 50 are shown in Fig. 4. The maximum absolute and
relative errors of numerical integration of the problem (36) for different values of
stepsize h and Λm are given in Table 3. It can be seen that reducing the stepsize by
one-half reduces the percent errors of numerical solutions by more than a factor
of 14, and increasing Λm leads to an almost linear increasing of percent errors
(increasing Λm by a factor of 3 increases the percent errors by a factor of 2.8).

Stepsize h = 0.1 Stepsize h = 0.2

Λm ξmax |error|max errormax,% Λm ξmax |error|max errormax,%
50 4.0 0.0221947 0.0406347 50 4.0 0.3233162 0.5887147

100 4.6 0.0741643 0.0744934 100 4.6 1.0851569 1.0790677
150 5.0 0.1655186 0.1114017 150 5.0 2.4339050 1.6135814

Table 3: The maximum absolute and percent errors of numerical solutions of the problem (36) for
various values of Λm and stepsize h.

Example 8. For the test problem (32), in which f = 2y3, we take g = f/t
(see Item 5◦ in Section 5.1). Substituting these functions into (35), we arrive at
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Figure 4: The absolute error (circle) and percent error (solid point) of numerical integration of the
problem (36) for h = 0.2 and Λm = 50.

the Cauchy problem

x′
ξ =

t

2y3
, y′ξ =

t2

2y3
, t′ξ = t (ξ > 0);

x(0) = 0, y(0) = a, t(0) = a2.

(38)

The exact solution of this problem in parametric form has the form

x =
1

a

(
1− e−ξ/2

)
, y = aeξ/2, t = a2eξ. (39)

The required value x=x(ξ) tends exponentially to the asymptotic value x = x∗ =
1/a as ξ → ∞. However, in comparison with the method applied in Example 7,
in this case the rate of approximation of the parametric solution to the asymptote
is less (which is not important for application of the standard numerical methods
for solving similar problems). Note that the solution (39) coincides with (37) if
we redenote ξ by 2ξ.

Remark 9. For applying non-local transformations is not necessary to compute the
integrals (34) (or (17)).
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5.3. Comparison of efficiency of various transformations for numerical integra-
tion of second-order blow-up ODE problems

In Table 4, a comparison of the efficiency of the numerical integration meth-
ods, based on various nonlocal transformations of the form (34) is presented by
using the example of the test blow-up problem for the second-order ODE (32).
The comparison is based on the number of grid points needed to make calcula-
tions with the same maximum error (approximately equal to 0.005). In all cases,
for the integration of the transformed problems the standard fourth-order Runge–
Kutta method was used.

Errormax,% = 0.005

Transformation Function g Max. interval Stepsize Grid points
ξmax h number N

Arc-length, Item 2◦ g=
√

1+t2+f2 2500.0 0.200 12500
Nonlocal, Item 2◦ g=1+|t|+|f | 2544.0 0.350 7268
Hodograph, Item 1◦ g=t 49.0 0.125 392
Special exp-type, Item 5◦ g=f/t 7.821 0.099 79
Special exp-type, Item 4◦ g=t/y 3.9 0.060 65

Table 4: Various types of analytical transformations applied for numerical integration of the prob-
lem (32) for f = 2y3 with a given accuracy (percent error = 0.005 and Λm ≤ 50) and their basic
parameters (maximum interval, stepsize, grid points number).

It can be seen that the arc-length transformation is the least effective, since
the use of this transformation is associated with a large number of grid points
(in particular, when using the last two transformations, you need about 160 and
190 times less of a number of grid points). The hodograph transformation has an
intermediate (moderate) efficiency. The use of the exp-type transformations with
g = f/t and g = t/y gives rather good results. This is due to the fact that for the
last two transformations, the variable x tends exponentially rapidly to the singular
point x∗ for large ξ, while for the first three transformations, the variable x tends
to the point x∗ much slower (by the power law) for large ξ. We note that a similar
situation holds for Errormax,% = 0.1.

6. Brief conclusions

We describe two new methods for numerical integration of non-linear Cauchy
problems for ODEs of the first- and second-orders, which have blow-up solutions.
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These methods are based on the differential and non-local transformations allow-
ing us to obtain the equivalent systems of ODEs, whose solutions do not have
singularities. It is shown that:

(i) the proposed method based on the general non-local transformation includes,
as particular cases, the method based on the hodograph transformation, the
method of the arc-length transformation, and the method based on the dif-
ferential transformation;

(ii) methods based on special exp-type and modified differential transformations
are more efficient than the method based on the hodograph transformation,
the method of the arc-length transformation, and the method based on the
differential transformation.

It is important to note that the method described in Section 5.1 can be gener-
alized to non-linear ODEs of arbitrary order and systems of coupled ODEs.
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