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Abstract 

Based on the equations, constitutive relations and boundary conditions of the kinetic theory 
of colliding particles in a gas-solid suspension, the approximate theory of the steady, developed 
vertical flow of a gas-particulate mixture is developed for the case of moderate gas pressure gra- 
dient in a vertical tube. The basic equations and boundary conditions show a singular behaviour 
of the solution of the problem at the wall. The method of matched asymptotic expansions is 
applied to develop a boundary layer-type theory for the flow parameters of the particulate phase, 
The basic equations in the bulk flow are reduced to a system of two ordinary integrodifferential 
equations for the particle-phase concentration and mean kinetic energy of particle velocity fluc- 
tuations (particle-phase pseudotemperature). The distributions of the particle concentration and 
velocity are found in both the bulk and the boundary layer. The solution shows the bifurcation of 
flow parameters, and an explicit criterion is derived to identify a range of the given macroscopic 
parameters corresponding to upward or downward particulate flow. The integrated parameters 
(total fluxes of the gas and particle phase) are calculated. 

Keywords: Kinetic theory of gas-particulate suspensions; Interparticle collisions; Multiphase 
flow; Two-phase gas-particulate flow; Granular flow 

I. Introduction 

The two-fluid model  based on the kinetic theory of  the colliding particles in a sus- 

pension (see, for example,  [1,2]) has been successfully applied for a numerical study 
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of two-phase flow in vertical tubes in [3-5]. The numerical results, giving a two-phase 
flow pattern (particularly the particle volume fraction and velocity distributions), clearly 
show the phenomenon of the formation of a dense layer of the particle phase at the 
wall, while the gas-solid mixture in the bulk of two-phase flow remains dilute. This 
phenomenon is of key importance for the analysis of the structure of the gas-particulate 
suspension in vertical tubes. It has also been shown in [6] that a 'microscopic' mech- 
anism for formation of such a layer can be linked with the formation of clusters of 
solid particles and their disintegration at the wall. 

Based on the numerical results showing that the behaviour of the solution near the 
wall is singular, we can expect that further progress to be made by an application 
of analytical perturbation methods. The dimensionless formulation of the equations 
and boundary conditions of the collisional version of the two-fluid model involves 
a parameter related to a balance between the flux and the rate of dissipation of the 
kinetic energy of the microscale random motion of particles at the wall. This parameter 
is proportional to the particle diameter scaled by the tube radius and, therefore, is very 
small in most cases of interest. It enters the mathematical formulation of the problem 
in a way typical for the theory of singular perturbations, so that an application of the 
matched asymptotic expansion technique is expected to be the most relevant for the 
analytical treatment of the problem. 

An attempt to apply such a technique for an analysis of the fully developed two-phase 
vertical flow has been made in [7]. However, the consideration given in the cited work 
was limited by the case of very high gas pressure gradients. Below the approximate 
asymptotic theory is developed for the case of intermediate pressure gradients, the latter 
being of major theoretical and practical interest. 

2. Basic equations 

We consider the developed plane-parallel steady flow of a suspension of interacting 
solid particles in a gas in a vertical cylindrical tube. Solid particles are assumed to be 
spherical and of the same size, and the gas density is assumed to be much lower than 
the density of solid material. The version of the kinetic theory of a suspension of solid 
particles in a gas [2], in which the mechanism of interparticle interaction is assumed in 
the form of direct particle-particle collisions, is applied to formulate the basic equations, 
constitutive relations and boundary conditions of the two-phase flow. With the above 
assumptions these equations are the equations of mass and momentum conservation 
of the gas and particulate phase and the equation of conservation of the energy of 
microscale random motion of solid particles (i.e. the particle-phase pseudotemperature). 

In case of steady plane-parallel developed flow of a suspension in a cylindrical tube, 
the radial components of the gas and particle velocity vanish, and these equations 
reduce to (see [3-5]) 

~ I I +  p g e g  - b(z ,  Iv - u l ) ( v  - u )  = 0 ,  (1 )  
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1 d 
r dr (rare) + e l I +  peg + b(e, Iv - u[)(v - u) = 0 ,  (2) 

d 
- - f f r r  = 0, (3) 
dr 

dv 1 d(rq)  
CrrZ-~r + r - - d r  + y = 0 '  (4) 

where Eqs. (1) and (2) represent the axial components of momentum conservation 
equations of the gas and particulate phase, respectively (the former is valid since 
pg ~ p, where pg and p are the densities of the gas and solid material respectively), 
Eq. (3) the radial component of the momentum conservation equation of the particle 
phase, and Eq. (4) the equation of conservation of the kinetic energy of the microscale 
random particulate motion. In Eqs. (1 ) - (4 )  r and z are the radial and vertical co- 
ordinate, respectively, e is the particle concentration (particle-phase volume fraction), 

= 1 - ~  the voidage, v and u are the vertical components of the particulate phase and 
gas velocity, respectively, g is the gravity, II = dp/dz  the pressure gradient, p the gas 
pressure, a the effective stress tensor of the particulate phase, b(e, I v -  u[) the viscous 
drag coefficient, and 7 and q are, respectively, the rate of dissipation and the flux of 
the energy of microscale random motion of solid particles. The closure of system of 
equations (1 ) - (4 )  is given below by the constitutive relations for a, 7, and q following 
from the kinetic theory of interparticle collisions. For the developed plane-parallel flow 
the pressure gradient must be assumed a given constant parameter: 17 = dp/dz = const. 

Below, instead of the system (1 ) - (4 )  we consider the system of equations (3), (4) 
and the following equation of momentum conservation of the mixture obtained by the 
summation of Eqs. (1) and (2): 

1 d 
r dr  (r~rz) + H + (ep + epg)g = 0 . (5) 

To consider the closure for the system of equations (3)- (5) ,  we start with the con- 
stitutive relations for the components of the effective stress tensor a of the particulate 
phase. The effective stresses in the particulate phase are induced by the random partic- 
ulate motion, the latter created by interparticle collisions; see [2]. Based on the kinetic 
theory of a suspension of colliding particles in a gas [1,2], the components of the stress 
tensor can be expressed through the pseudotemperature E of random particulate motion. 
For the considered plane-parallel developed flow in a vertical tube, these components 
are (see also [3,5]) 

arz = - Dpp~(  e )x /E dv/dr  , (6) 

f f r r  = p = p S ( e ) E ,  (7) 

where Dp is the particle diameter, p* can be understood as the effective pressure in 
the panicle phase (see also [8]). The functions ~(e)  and S(e) are found in [2,4] (see 
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also [5]) in the form 

5 v ~ [  l ( 8 )?' 32~x56 J q~(~) = ~ ~ 1 + ~ a o ( ~ )  + ~2go(~) , (8a) 

S(c 0 = c~ [1 + 4~90(~)], (8b) 

where 9o(~) is the Carnahan-Starling radial distribution function 

1 
90(~) - 1 - (~/O7)1/3 , (9) 

with o7 _~ 0.65 the maximum volume fraction of the random packing of  spherical 
particles in a suspension. 

In the framework of  the collision theory the constitutive relation for the flux of the 
'pseudothermal' energy q can be written in the form [2] 

q = -Dpp ~P(~ ) v ~  dE~dr, ( 1 O) 

where ~(~) is given by the relation 

[ (  + 5  / 12 ,~2 5 7 1 2  20~(c0] . (11) _ 2 5 V ~  1 1 - - ~ 9 0 ( ~ ) /  + ~(~) 
128 g0(a) z ~ v n  J 

To close the system of equations (3) - (5)  we also need the constitutive relation for 
the rate of dissipation 7. Such a relation is given in [2] in the form ? = ~(~)E 3/2. 
However, to simplify the following analysis we neglect the dissipation in the particulate 
phase (7 = 0), which is often justified in case of relatively dilute suspension. (For the 
rapid two-phase flow in vertical tubes • hardly exceeds 0.1-0.2 at the wall and 0.02- 
0.05 at the centre. Two-phase flows that are dilute in comparison with conventional 
dense fluidized beds, where dissipation in the particulate phase plays an important role, 
are considered below. We note, however, that the rate of dissipation in the particulate 
phase can be incorporated into the analysis given below). 

Now we formulate the system of boundary conditions. At the axis of the tube we 
obviously have the conditions of symmetry: 

d v / d r = d E / d r - - O  at r = 0  (12) 

(the condition of symmetry for c~ then follows automatically from Eq. (3) and the 
constitutive relation (7)). 

The general form of the boundary condition for the particulate phase velocity at 
the wall has been obtained in [9]. However, according to [3-5] the above-mentioned 
condition can be considerably simplified in case of rapid gas-particulate flow in a 
vertical tube. In this case the particle velocity at the centre considerably exceeds the 
velocity of solid particles at the wall, so that the boundary condition can be formulated 
in the approximate form 

v = 0  at r = R ,  (13) 

where R is the tube radius. 
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The boundary condition for the particle-phase pseudotemperature obtained in [9] (see 

also [2,4,5]) is of the form 

w~go(~)E + Dp~(~)dE/dr  = 0 at r = R ,  (14) 

where 

w = x/3~(1 - e2w) (15) 
407 

ew is the coefficient of restitution for particle-wall collisions. It is natural to assume 
particle-wall collisions to be inelastic, so that w ¢ 0 (in fact the assumption that 
particle-wall collisions are perfectly diffuse is practically always close to reality, so 
that we can safely set ew = 0 and w = x/3~z/(4c~) _~ 2.09). Condition (15) actually 
represents the balance between the flux of the pseudothermal energy of the microscale 
random motion of the particulate phase and the rate of dissipation created by inelastic 
particle-wall collisions. 

The system of equations, constitutive relations and boundary conditions is not yet 
closed; for closure we must, naturally, assume a given total mass flux of solid particles. 
Such a condition would, however, cause a certain inconvenience in solving the problem 
and interpreting the results. It is convenient to replace the integral condition for the 
total flux by the condition 

c~=c~+ at r = R ,  (16) 

where the particle concentration at the wall ~+ is assumed to be given. As soon as the 
solution of the problem (3)-(5) ,  (12)-(14)  and (16) has been found, the total mass 
flux J can be calculated as a function of c~+ and, therefore, ~+ will be determined as 
a function of J to solve a problem in its original form. 

With the above constitutive relations and boundary conditions, Eqs. (3 ) - (5 )  represent 
a close system for the unknowns v, ~ and E. 

To introduce the dimensionless variables we note that for the considered problem the 
most convenient scales of length, velocity and solid pseudotemperature are, respectively, 

gR2 

R, V Dpp' Dp (17) 

Neglecting the density ratio pg/p ~ 1 we obtain the following system of dimension- 
less equations: 

1 d ( r q ~ ( c 0 X / ~ d ~ ) . = _ G + c ~  (18) 
r dr 

d[S(~)E] 
- - 0 ,  (19) 

dr 

1 1 d (r~(cc)x/E dE) (dv)2=O (20) 
~,(~)v~ ; dr ~ + \ dr } ' 
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where the same symbols are now used for the dimensionless variables, 0 ~< r < 1. The 
dimensionless pressure gradient G, given by 

G = - I I / (pg) ,  (21) 

is the only parameter entering the basic equations (18)-(20). 
Obviously, the conditions of symmetry (12) remain unchanged, while instead of (13) 

and (16) we now have 

v = 0  and a = a +  a t r = l .  (22) 

The dimensionless form of the condition (14) is as follows: 

/3~--ff--Er + E = 0  a t r = l ,  (23) 

where we have introduced the dimensionless parameter 

/3_  Dp ku(a+) (24) 
R wa+9o(a+) 

Since Dv/R ,~ 1 and w # 0, the parameter /3 will be small provided the particle con- 
centration at the wall is not zero. (Indeed, the suspension at the wall is always dense 
- see the analysis below.) Since the coefficient of the first-order derivative in (23) is a 
small parameter, we have a singular perturbation problem which can be treated by the 
method of matching asymptotic expansions (see, for example, [10]). The solution of 
the problem (18)-(20), (12), (22)-(23) is then expected to show a boundary-layer- 
type behaviour; two domains can be identified, i.e. a thin boundary layer near the wall 
where the particle concentration is expected to be relatively high, and the dilute bulk 
(the existence of such domains is definitely confirmed by results of numerical studies 
of the collision model of gas-particulate suspension in a vertical tube, see [3-5]). 

To proceed with an asymptotic analysis of the problem we must estimate first the 
thickness of the boundary layer. From Eq. (19) as r ~ 1 we find 

( d a )  _ 1 ( d E )  [d inS(a+)]  -I 
d r  r = l  E+ -~r r=l [ da+ j ' (25) 

where E+ is the particle-phase pseudotemperature at the wall, From (25) and the 
boundary condition (23) we find the gradient of the particle concentration at the wall 
in the form 

(~-rr)r=,=[/3dlnS(°~+)]-~da+ J " (26, 

It should be noted that the RHS of (26) depends only on a+ and the parameter/3. The 
thickness of the particulate boundary layer can then be estimated from (26) as 

a+ _ d inS(a+)  Dp a+~(~+) d inS(a+)  _ 0(/3) (27) 
3 -- (da/dr)r=l - [3a+ ~ = R-  "wgo(a+) da+ 
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provided w # 0 and ~+ is not too close to the concentration of the maximum random 
packing o7 (see (9) and (11)). 

The particle velocity gradient can be explicitly expressed in terms of a and E from 
Eq. (18) with the aid of the first boundary condition in (12) as follows: 

_ 
q~(ot)v/- ~ d v  Gr  

d r  2 + r ~ r d r  (28) 
o 

so that the closed system of Eqs. (18)-(20) reduces to the system of two equations 
for the unknown functions E and c~: 

d[S(cz)e]  _ 0 

d r  

+ - + - -  ~r d r  
F 

0 

= 0 ,  (29) 

(30) 

subject to the second boundary condition in (12), the second condition in (22), and 
the condition (23). 

We also need to specify an order of magnitude of the dimensionless pressure gradient 
G. An obvious choice is G = O(1); such a magnitude of the pressure gradient has been 
used for the numerical analysis in [3-5] and asymptotical anal2~sis in [7]. This case, 
however, corresponds to very high d i m e n s i o n a l  pressure gradients and, consequently, 
particle velocities. When G = O(1), c~ can be neglected compared with G in the RHS 
of the equation of momentum conservation of the paniculate phase (18). Obviously, 
for very low pressure gradients, only a downward motion of solid particles is possible 
(G ~ c~ in Eq. (18)); this type of flow, however, is not of a considerable interest. 
The case of major theoretical and practical interest is characterized by intermediate 
pressure gradients when both upward and downward flow of the particulate phase is 
possible (and both terms in RHS of Eq. (18) are of the same order of magnitude). We, 
therefore, must specify the order of magnitude of the dimensionless pressure gradient 
G in terms of small parameter t :  

G = O(fl k) = o(1) (k > 0).  (31) 

This will be done in the next section. 

3. Asymptotic analysis 

The solution of the problem will be found by means of the method of matched 
asymptotic expansions (see, for example, [10]) with respect to the small parameter ft. 
It will be sufficient to analyse only principal terms of asymptotic expansions of E, ~ and 
v. The following two domains are considered within the two-phase flow field: the inner 
region (i.e. the particulate boundary layer), 1 - r  ~ O(f l ) ,  in which the flow parameters 
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are denoted as ~*, E* and v*, and the outer region (the bulk), 0~<r < 1 - O(/~), in 
which we use the notations ~,,  E ,  and v, for the flow parameters. In each of these 
domains the principal terms of the asymptotic expansions of the solution are sought. 

Results of  numerical studies [3,5] lead us to expect that the radial distribution of the 
particle concentration is such that, being of the order of unity at the wall, it decreases 
to the very small value in the bulk. It is, therefore, reasonable to assume 

e+ -- O(1).  (32) 

The boundary condition in the form (23) also suggests that E is small within the 
boundary layer, so that at the wall 

Elr=l = E+ = O(/~v), (33) 

where v > 0, while in the bulk Eq. (29) shows that the particle concentration is low, 
~, = o(1 ), and E ,  = O(1 ). The value of v will be found in the process of solving the 
problem (29)-(30) ,  (12), (22)-(23).  

Integrating Eq. (30) we obtain 

S ( ~ ) E = C = c o n s t  for 0~<r-N<l. (34) 

The constant C is to be found in the process of solving the above-mentioned problem. 
From (33) and (32) it follows immediately that C = 0 ( ~  v) = o(1). 

It is important to note that for small ~ the function S(~) assumes an asymptotic 

behaviour (see (8b)) 

S ( ~ ) = ~  a s c ~ 0 ,  (35) 

and the relation (34) takes a simple form 0rE = C. 
We start with a formulation of the problem within the boundary layer, 1 - O ( ~ ) ~ r  

~< 1. Introducing the stretched coordinate 

x =/~-1(1 - r)  (36) 

such that 0 ~<x ~< oo (0 ~<x ~ O(1 ) within the boundary layer) and neglecting the terms 
of the orders higher than O(1), from (19) and (20) we obtain the boundary layer 
equations in the form 

d aE* ] 
dx dx J = O, dx - O. (37) 

The boundary conditions for the system of equations (37) must be formulated at the 
wall: 

c¢* =c¢+ and E * = d E * / d x  at x = 0 .  (38) 

The boundary conditions (38) are not sufficient to find a solution of the equations (37), 
and the condition of matching of the solution of (37) with the solution in the bulk must 
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be added. However, it is shown below that the distribution of  the particle concentration 
in the boundary layer can be found irrespective of the solution in the outer region. 

The equations (37) have the first integrals which can be written in the form 

~P(~* ) d(E* )3/2/dx : C1 , S3/2(0~ *) (E*)3/2 = C2, (39) 

where C1 = const and C2 = const. Using the boundary conditions (38) we find the 
following relation between the constants: 

2 $3/2(~+) 
C 2 -  - -  C1. (40) 

3 ~(~+) 

Expressing (E*)3/2 through ~* by means of the second relation in (39) and substituting 
the result into the first equation in (39) we obtain the following equation for the 
distribution of particle concentration within the boundary layer: 

d~* 
- -  + #(c¢+)2(ct*) = 0,  (41) 
dx 

where 

( d S y  1 
#(=¢) -- $3/2(c¢) , 2(~) - ~(~--~- \dot,} " (42) 

Eq. (41) is to be solved subject to the first boundary condition in (38). It is seen 
immediately that the particle concentration distribution in the boundary layer depends 
only on the single parameter ~+ (particle concentration at the wall), and ~* ~ 0 as 
x ~ oc. This enables us to find an asymptotic behaviour of the particle concentration 
at the outer boundary of the inner region (boundary layer) and, hence, to derive a 
matching condition. 

To achieve this, we note that ko(~) ~ 7~(0) and S(ct) ~_ ~ for small ~, so that, using 
(11 ), we find the asymptotic behaviour of ~.(0t) in the form 

32 2 - 
2(c¢) = 75x/-~ ~ x/c~ as =¢ --~ 0. (43) 

It then follows from Eq. (41) that 

~* [3~(0)$3/2(~+) ] 2/3 --2/3 
= [ 2~--~+) ] x as x - - * o o .  (44) 

Relation (35) then shows the order of magnitude of the particle concentration in the 
outer region (the bulk): 

~, = O(fl 2/3). (45) 

This conclusion is consistent with the remark made above concerning the low magni- 
tude of particle concentration at the centre of the tube. 

It must also be noted that the simple, approximate, form of the particle concentration 
distribution in the boundary layer can be obtained in the case when the particle volume 
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fraction at the wall is sufficiently low. In this case both ~ ( ~ . )  and ~(~+) can be 
approximated by their value at ~ = 0, i.e. ~g(~) _ ~(0),  and S(~ , )  and S(~+) by ~. 
and ~+, respectively (see (11) and (8b)), so that, from (41) and (42), we obtain 

= c¢+(1 + 32-x) -2/3 . (46) 

This relation can be used for c¢+ ~<0.15, what is a realistic value for many practical 
applications. 

We do not give here the, rather trivial, graphic illustration of the concentration dis- 
tribution in the boundary layer; the solution is represented by smooth curves emerging 
from ~+ and decreasing with x, and is very well described by the asymptotic be- 
haviour (44) and approximate formula (46). 

We now return to the analysis of  the distributions of the parameters ~ and E in the 
bulk. First of  all we formulate a basic assumption regarding the order of  magnitude of 
the dimensionless pressure gradient G. Requiring now that both the terms on the RHS 
of  Eq. (18) be of the same order, we assume 

G = O(fl  2/3). (47) 

It was already mentioned that larger values of  G correspond to very high pressure 
gradients, while from Eq. (18) it follows that a higher order of magnitude of G 
with respect to the parameter fl corresponds only to a downward motion of the par- 
ticle phase; the latter case is of  a minor theoretical and practical interest. Assump- 
tion (47) is used below to analyse the most relevant case when the gas pressure 
gradient is not extremely high, but also not very low, so that both upward and down- 
ward flow of solid particles is possible. For the purpose of  the following analy- 
sis we introduce the parameter (scaled dimensionless pressure gradient) F by the 

relation 

G = ~2/3F (48) 

such that 

F = O(1).  (49) 

Now we estimate the order of  magnitude of the particle-phase pseudotemperature in 
the bulk (outer region), E , .  Assuming all terms of Eq. (29) to be of  the same order 

of  magnitude, from (45) and (47) we find 

E ,  = O ( ~ 2 / 3 ) .  (50) 

Using (35), the constant C in (34) is found to be of  the order of fl4/3. Since ~, is 
small, the leading asymptotic terms of  the functions ~(~t) and ~(0t) are 

~(o) 5v~ 25v~ = ~ 0.0923 ~(0)  -- ~ 0.346 (51) 
96 ' 128 -- ' 
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respectively. Introducing now the scaled particle concentration ~o and pseudotempera- 

ture ~ by the relations 

fl2/3 c 
~,  = ½132/3F q~, E ,  = 2x/q~(0)~(0) ~ (52) 

so that q~ = O(1) and ff = O(1), and using again the approximation (35), we reduce 

Eqs. (29) and (30) in the bulk to 

( 0 j )  2 V~ d ( V / ~ d ~ _ )  1 r + - r + - -  q)rdr - - 0  (53) 
r dr  r ' 

d(~o~)  _ 0 ( 5 4 )  
dr  

within the interval 0~<r < 1 - O ( f l ) .  The first integral of (54) obviously is 

~p( = h = const, (55) 

where the constant h is related to the constant C in (34) as follows: 

h = C 4~l/2(0)t/tl/2(0) 
f14/3 F2 

Now we can formulate the 
as the following equation for 

- r v ~  + - r +  - -  
dr  T r ~ - -  

0 

= O(1).  (56) 

problem in the outer region 0 ~ r  < 1 - O ( f l )  (the bulk) 
the scaled pseudotemperature: 

2 = 0 (57) 

subject to the boundary condition 

d ~ / d r = O  a t r = 0 .  (58) 

We emphasize that the constant h is not yet known, and that the last boundary con- 
dition (58) is not sufficient to solve Eq. (57). To find the missing boundary condition 
and to determine h in terms of the given macroscopic parameters of the flow, we need 
to formulate the condition of asymptotical matching of the solution of the problem (57) 
- (58)  in the outer region with the leading term of the pseudotemperature distribution 
in the boundary layer found from the problem (37)-(38).  First of all we find the 
asymptotic behaviour of the particle-phase pseudotemperature at the outer boundary of 
the inner region (boundary layer). Since a* ~ 0 as x ~ cx~, expressing from (34) 
the pseudotemperature in the boundary layer in the form E* = C/S(~*) ,  representing 
S(~*) in the asymptotic form (35), and using the relation (56) between the constants 
C and h yields 

E* = h 32/3f14/3F2tI't2/3(°~+ ) X 2/3 as x ~ cx~. (59) 
~1/2(0) ~J5/6(0)S2/3(0~+ ) 
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In particular, this means that the particle-phase pseudotemperature is of the order fl4/3 
within the boundary layer, and is of the order fl2/3 in the bulk. 

To find the unknown constant h we require, as r --~ 1, the particle pseudotemperature 
in the outer region, E . ,  given by (52), to match the asymptotic behaviour of the particle 
pseudotemperature in the boundary layer as x ~ c¢. This, however, means that ( ~ 0 
as r ~ 1, so instead of the equation for the pseudotemperature formulated within 

the interval 0~<r~<l - O ( f l )  subject to the conditions of symmetry and asymptotical 
matching we can consider Eq. (57) within the whole interval 0~<r~< 1 subject to the 
boundary conditions 

= 0  at r =  1, d ~ / d r = O  a t r = O .  (60) 

The asymptotic analysis of  the problem (57), (60) in the vicinity of r = 1 shows 
that 

=A(h) (1  - r )  2/3 as r--~ 1 (61) 

for any value of h in the interval 0 ~<h < c¢. Here the function A(h) must be calculated 
from the numerical solution of the problem (57), (60). 

The numerical solution of this problem gives two branches of the curve A(h) shown 
in Fig. 1; the 'upper' branch exists for h<~hc ~- 0.15 (A(hc) ~- 0.35), while the 'lower' 
branch is represented by the continuous monotonic curve in the interval 0 ~<h < co. 
These two branches represent two different solutions of the problem (57), (60), where 
h = hc is the bifurcation point, and, therefore, correspond to two different flow regimes 
potentially existing for h<<.hc "~ 0.15. The physical interpretation of the both regimes 

will be given later in this paper. 
Since the asymptotic behaviour of E* as x ~ co, given by (59), must coincide with 

the asymptotic behaviour of E ,  as r ~ 1, given by (61) together with the second 
relation in (52), we find the following relation: 

h 
- z ,  ( 6 2 )  

A(h) 

where the parameter z is a known function of  the macroscopic parameters r ,  G, and ~+, 
namely, 

/~2/3 S(~+) ff2/3 25/3~1/6(0) S(0t+) "~ 1.279 . (63) 
r(fl, G , ~ + ) =  G 32/3 ~2/3(~x+) G ~gZl3(0t+) 

The parameter ~ plays a key role in the following analysis. Since the function A(h) 

is already determined by the results given in Fig. 1, Eq. (62) gives h and A as func- 
tions of the known parameter z, e.g. h(T) and A(z), shown in Figs. 2 and 3, re- 
spectively. Both h(z) and A(z) have two branches each for z<~Zc ~- 0.43; the val- 
ues of h and A at the bifurcation point are hc -~ 0.15 and Ac _~ 0.35. It is im- 
portant to note that two branches exist simultaneously at relatively low values of ~. 
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Fig. 1. Function A(h) ('upper' branch corresponds to the regime of upward particulate flow); he "~ 0.15, 
Ac "~ 0.35. 
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/ 

Fig. 2. Function h(z) ('upper' branch corresponds to the regime of upward particulate flow); Zc ~ 0.43. 

F rom the defini t ions o f  the parameters  fl and G (see (24)  and (21) )  it then fol- 

lows that two branches  o f  the solut ion exist  e i ther  in the case  o f  re la t ive ly  high pres-  

sure gradients  or in the case  o f  a very  large tube radius  ( compared  with  the par t ic le  
size).  
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Fig. 3. Function A(~) ( 'upper'  branch corresponds to the regime of upward particulate flow). 

The (scaled) pseudotemperature distribution, being the solution of the problem (57), 
(60), and the (scaled) particle concentration distribution in the bulk can now be rep- 
resented as if(r, ~) and 

h(~) 
~(r,T) - ~(r ,T~'  (64) 

respectively. These functions are illustrated in Figs. 4 and 5, respectively, for various ~, 
where figures a correspond to the 'lower' branches and figures b to the 'upper' branches 
of the curves A(h), h(z), and A(z). 

To conclude this section, we analyse the distribution of the pseudotemperature of 
the particulate phase in the boundary layer. Since the distribution of  the particle con- 
centration in the boundary layer is given by the solution of Eq. (41) (for intermediate 
concentrations at the wall, ~+, the explicit formula (46) can be used), from (34), 
(52), (56), (62) and (63) we find the pseudotemperature in the boundary layer in the 
form 

E* = t~2/3GA(~c)~'tl/6(O) S(ot+ ) (65) 
(18)1/3q~1/3(0)~2/3(~+) S(ot*(x)) " 

The pseudotemperature at the wall, using (51), can now be calculated as 

/~2/3 GA (z(/~, G, ~+ ) ) 
E+(fl, G, ~+) = 0.707 T2/3(ce+ ) (66) 
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Fig. 4. Radial distribution of  the scaled particle pseudotemperature in the bulk: (a) regime of upward 
particulate flow; (b) regime of downward particulate flow. 
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Fig. 5. Radial distribution of  the scaled particle concentration in the bulk: (a) regime of  upward particulate 
flow;. (b) regime of  downward particulate flow. 
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4 in (33) Since G = 0(//2/3), the order of magnitude of E+ is//4/3, and this gives v : 3- 
(in accordance with the order of magnitude of the constant C = 0(//4/3) in (34) found 

above). 

4. Velocity distribution: Interpretation of flow regimes 

We start with the derivation of the equations governing the velocity distribution in 
the bulk and the boundary layer and with the estimate of the orders of magnitude of 
the velocity in both domains. 

Since ~, = 0(//2/3), we write the equation for the velocity in the outer region v, in 
the form 

= k ,  - r +  r ~ -  , (67) 

0 

where ff = ~(r, z) is the solution of the problem (57), (60) and the coefficient k, is 

fll/3I"1/2 I//1/4(0 ) 
k, = ~-- 3.239//1/3F1/2. (68) 

21/2 qb3/4(0 ) 

Eq. (67) is valid within the interval 0~<r < 1 - O(//). From (67) and (68) it follows 
that the order of magnitude of the particle velocity in the bulk is//1/3. 

To derive the equation for the velocity in the boundary layer, we first represent 
Eq. (67) in the asymptotic form 

d v ,  
k,L(~z~ ) as r ~ 1 . (69) 

dr  q ;  

Here 

1 

f r d r  (70) L(v)  = 1 - h(~) ~(r, ~) 

o 

which is represented in Fig. 6. It is important to note that the function L(T) also has 
two branches; the 'upper' one corresponds to the 'upper' branches of the functions 
h(z), A(z )  and A(h); for this branch L(z)  > 0 for all ~ from the interval 0 < z < zc. 
For the 'lower' branch of L(z), corresponding to the 'lower' branch of h(z), L(r)  < 0 
for all r. 

Since ~ = A(z)(1 - - r )  2/3 as r ~ 1, from (67)-(70)  it follows the order of magnitude 
of the velocity v* in the boundary layer: 

v* = 0(/3). (71) 

Since the integral term in Eq. (28) can be represented in the form 

1 2/3/~h(~) - -  + O(B)  (72)  - c~rdr = e , r d r  + O(B) = r d r  
r ~(r,z)  

o o o 
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Fig. 6. Function L(~) ('upper' branch, L(z) > O, corresponds to the regime of upward particulate flow). 

as 1 - O(fl) <<. r <<. 1, the equation for the leading asymptotic term of the velocity in the 
boundary layer immediately follows from (28) in the form 

~( c~ * )vFE -~ dv * /dx = -~ ~5/3 rL (  ~ ) . (73) 

This equation must be considered subject to the first boundary condition in (22). 
The particle velocity distribution in the bulk can be found irrespective of the velocity 

distribution in the boundary layer. Indeed, from (71) it follows that Eq. (67) can be 
solved within the whole interval 0 ~< r ~< 1 subject to the first boundary condition in (22). 

Using the obtained numerical solution for ~(r,z) to calculate the RHS of (67), we 
find that, for the 'upper' branch of the curve h(v), 

h(~) / r d r  
r ~(r, ~-----ff < 1 (74) 

0 

for all • in the interval 0 < ~<Tc. The opposite inequality holds for the 'lower' branch. 
It then follows that the solution corresponding to the 'lower' branch of the curves A(h), 
h(v), A(r) and L(v) (see Figs. 1-3 and 6) describes the regime of downward flow of 
particles in the entire volume of the tube. Since the inequality (74) corresponds to the 
regime of upward flow in the bulk, using (63) and the found above value vc - 0.43, 
the necessary condition for the existence of the upward flow of solid particles can be 
found in the form 

G > 3.55/~2/3 ~l/6(0)S(~ +)7t-2/3(~+). (75) 

Condition (75) actually gives a minimum gas pressure gradient sufficient to provide 
an upward flow of solid particles. The following interpretation can be given to the 
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phenomenon of existence of two different solutions for the same value of z < re. 
For this it is convenient to consider small z when the existence of two solutions is 
guaranteed. Small values of z may correspond to a relatively high gas pressure gradient, 
when the regime of upward flow of particles must be expected, as well as to the case of 
a low pressure gradient and very low fl ~ Dp/R, such that the tube radius is extremely 
large compared with the particle size. When R is very large the flow in the bulk is 
practically not affected by the wall region and the low pressure gradient is not sufficient 
to build up an upward flow of the particulate phase in the bulk. 

The solution of Eq. (67) subject to the first boundary condition in (22) can be 
represented in the explicit form to give the following particle velocity distribution in 
the bulk: 

v.  = k . [H(r ,  z)  - h(z)I(r ,  z)], 

where 

f rt dr t H ( r , v )  = ~ , 

1 ( i ' d ' )  
r r ' ~  ((r-(-~,z) d r ' .  

(76) 

(77a) 

(77b) 

The velocity distribution obtained by numerical integration of (77) for various z corre- 
sponding to the regime of upward particulate flow (i.e. for the 'upper' branch of h(z), 

~< re) is depicted in Fig. 7. 
To conclude this section, we note that the details of the velocity distribution in 

the boundary layer are not significant for the present analysis (all essential physical 
information is given by the analysis of the particle velocity in the bulk). However, 
below we give the results of calculation of the velocity in the boundary layer for 
the special case of low particle concentration at the wall. In this case ~(ct+) can 
be replaced by ~(0), and S(~+) _~ ~+, so that, using the approximation (46) for 
the particle concentration distribution in the boundary layer, from (65) we find the 
pseudotemperaatre in the inner region: 

E* =- fla/3FA(z) 
(18)1/3~1/3(0)1/tl/2(0) (1 --}- 2x)2/3 . (78) 

Integrating Eq. (72) we find the required velocity distribution for small ct+: 

v* = 10.17 flF1/2L(z)A-1/2(z)[(1 + 2x)2/3 - 1]. (79) 

Here we should make an important remark. Since L(z) > 0 in the regime of upward 
particulate flow (for ~ < re), the downward flow in the wall region never occurs at 
any values of the macroscopic parameters, and the radial particle velocity distribution 
remains monotonic from the centre to the wall, i.e. for 0~<r~< 1, no matter how low 
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Fig. 7. Dimensionless particle-phase velocity distribution in the bulk in the regime of upward particulate 
flow. 

the gas pressure gradient is (provided the latter satisfies the condition (75)). However, 

the numerous experimental data for upward granular flow in vertical tubes show the 

formation of the downward particulate flow in the near-wall region at sufficiently low 

pressure gradient. It can be expected that an absence of the downward flow in the near- 
wall region was caused in the present theory by the use of  the boundary condition for 

the particle velocity in the approximate form v = 0 at r = 1. Indeed, such a condition 

(used also in the numerical analysis [3,5]) has been formulated only in a sense that 
the particle velocity at the wall is much lower than that in the bulk, as follows, for 

example, from [9]. Such an approximate condition is not sufficient to describe a possible 
downward flow in the near-wall region, and more detailed condition derived in [9] is 

needed to be included in the theory for this purpose. 

5. Integrated parameters and particle concentration at the wall 

The integrated parameters are the total mass fluxes of  the gas and particle phase. As 
soon as the total particle flux has been found as a function of the given macroscopic 

parameters, J = J(fl, G,a+), the particle concentration can be calculated as a+ = 
• +(fl, G,J) and the problem solved in its original formulation (i.e. for the given J) .  

The dimensional integral flux of particles can be conveniently represented through 
the dimensionless integral flux j as follows: 

J=2npR3  9 ~ p j ,  (80) 
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where 

1 

j = f ~vrdr. (81) 

0 

The integral (81) can be represented as the sum of two integrals, one taken over the 
bulk and the other over the boundary layer. Since ~t = O(fl 2/3) and v = O(fl 1/3) in 
the bulk, the contribution of the first integral is of the order ft. In the boundary layer 
~t = ~* = O(1) and v* = O(fl); since the thickness of the boundary layer is O(fl), 
the contribution of the second integral is O(f12), so that it can be neglected compared 
with the first one. To calculate the leading asymptotic term of j with respect to fl, the 
integration of the first integral can be then carried over the whole interval 0 ~< r ~< 1, so 
that for the dimensionless flux we obtain 

1 

j = /~ , v , rdr .  (82) 

0 

Substituting the first relation in (52), the relation (62), the definition of the parameter 
(63), and (76)-(77) together with (68) into (82), and using the definition of the 
parameter fl given by (24), we obtain from (80) the following result for the dimensional 
integral flux of solid particles: 

k/77/3/31/6 J = v . .  ~p v v ~ - r B ~ + j W t z j ,  (83) 

where the coefficient kj is the constant value defined through q~(0) and 7t(0), 

kj  = 25/63-2/3'/~qb-3/4(O)t/j5/6(O) '~ 13.01, (84) 

and the functions B(~+) and W(z) are as follows: 

s(~+) 
B(~+) = [wa+go(ct+)]2/3 ' (85) 

f H(r, T)Y dr 
W(~) = A(~) ~ I 

~(r,O ( i 

1 } 
h('r) / I(r,z)rdr 

~(r,z) 
o 

(86) 

Here the functions H(r,z) and J(r,z) are given by (77). From (9) and (8b) it follows 
that 

B(o~+ ) = w -2/3 1+/3 (87) 

for not very high ~+ (actually for ~+ ~<0.15, which is a realistic estimate for granular 
flow in vertical tubes). The function W(z) is shown in Fig. 8 for the 'upper' branch 
corresponding to the regime of upward flow of solid particles. It is seen from Fig. 8 
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Fig. 8, Function W(Q for the regime of  upward particulate flow. 

that the function W ( z )  within the interval 0~<z~<ze -~ 0.43 can be approximated by 
the linear relation 

W ( z )  ~- 0.485 - 1.619(Zc - r ) .  (88) 

The results given by (83)-(86)  determine the particle concentration at the wall ~+ 
as a function of  the total mass flux J and other macroscopic parameters of the system, 
and, therefore, complete the solution of the problem in the original formulation. 

The results obtained for the integral flux of particles can be represented in a simple 
explicit form in the practically important case of small r. From the definition of r (63) 
and the properties of the function S(a) at small ~ it follows that small values of ~ may 
correspond to relatively high pressure gradients as well as to the case of  low a+ and 
not very high G ~ fl2/3. To illustrate the latter case let us suppose that G : 2fl2/3; in 
this case the parameter z is small already with ~+ _~ 0.2 corresponding to the range of 
parameters of  practical interest. Since h(z) ~ 0 and A ( z )  ~ Ao ~-- 0.969 as z ~ 0, the 
value W ( z )  in (83) becomes 

1 

H ( r , O ) r d r  ~_ 1.181. (89) 
W(0) = A0 ~(r, 0) 

o 

Substituting (88) and (86) into (83) we obtain the following explicit expression for 
the integral flux of the particulate phase valid for not very high a+: 

J = 15.36R7/3D~/6w-Z/3ocl+/3V/p[II [ . (90) 

The latter formula gives an explicit dependence of ct+ on J and other macroscopic 
parameters (i.e., R, Dp,  p, 1-I and w). It must be noted that the integral flux of solid 



Y.A. Seroeev, A.I. ZhurovlPhysica A 236 (1997) 243-267 265 

particles depends strongly on the tube radius (as R 7/3 ), but very weakly on the particle 
size. We should also mention here that particle-wall collisions are usually very inelastic 
so that ew = 0 in (15) and w = 2.09 in (90) can be assumed. 

To conclude this section we also calculate the dimensional integral mass flux of the 
gas phase. In case of sufficiently small particles the viscous drag coefficient b in (1) and 
(2) is very large, so that the terminal velocity of particles is much lower than the mean 
velocity of particles in the bulk and, therefore, the gas velocity practically coincides 
with the velocity of solid particles. It then follows that the dimensional integral gas 
flux can be calculated in the form 

Jg --- 2~zpgR 3 ~/g/Dpjg ,  (91) 

where 

jg = / ¢vr dr . (92) 

Applying the procedure used for the derivation of the leading asymptotic term of the 
particle flux (82) and recalling that ~ = 0(//2/3) in the bulk, we arrive to the following 
expression for the leading asymptotic term of the dimensionless gas flux: 

1 

jg = f v,(r,T)rdr, 
o 

(93) 

where v, is the particle velocity in the bulk. By means of (76), (77) and (68) we find 
the dimensional gas flux from (91) and (93) in the form 

V p/-)p 
(94) 

where the function Wg(z), given by the relation 

1 1 

Wg(z)= f H(r,v)rdr-h(,)/I(r,,)rdr 
o o 

(95) 

is shown in Fig. 9 for the 'upper' branch of h(z) corresponding to the regime of 
upward particulate flow. It must be noted that the integral gas flux, unlike the flux 
of solid particles, is strongly affected by the particle size (as D;l/2). For the case of 
small z we find the following simple approximate result for Jg: 

Jg = 6.48pgR 3 ~/lIII/(pDp). (96) 
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Fig. 9. Function Wg(z) for the regime of upward particulate flow. 

6 .  C o n c l u s i o n  

In this work, based on the equations of the two-fluid model together with the bound- 
ary conditions and constitutive relations following from the collision version of the 
kinetic theory of a suspension of solid particles in a gas [2], we developed the approx- 
imate asymptotic theory of the developed gas-particulate flow through vertical tubes. 
This problem has been earlier treated numerically in [3-5]. Since the mathematical for- 
mulation of the problem shows a singular behaviour of the flow parameters at the wall, 
the problem can be treated analytically by means of the method of matched asymptotic 
expansions. The solution obtained clearly shows the existence of two main regions in 
the flow: the dense particle-phase boundary layer and the dilute bulk, is consistent with 
the numerical results [3-4], that gives an explicit explanation to the very well known 
phenomenon of the formation of the dense layer of particles at the wall. The radial 
distributions of particle phase concentration and velocity are found, and the integrated 
parameters (total mass fluxes) are calculated as functions of macroscopic parameters 
of the system. The condition for the existence of the upward particulate flow (i.e. the 
critical pressure gradient) is derived. 

It is important to underline here that the theory is developed for intermediate val- 
ues of the gas pressure gradient. The earlier development [7] of the analytical model 
assumed very high gas pressure gradients, while for the pressure gradients lower than 
these considered in the present work only a downward flow of particles exists, which 
is of much less theoretical and practical interest. We can, therefore, expect the re- 
sults of the present work to cover the theoretically and practically important range of 
parameters of two-phase flow. 

One more concluding remark is to be made here. To develop the above theory, 
the equations, boundary conditions and constitutive relations were used in the form 
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following from the kinetic theory of a suspension of solid particles in a gas based on 
the assumption on the direct (generally inelastic) collisions between particles as the 
only mechanism of interparticle interaction. It can be, however, often expected that 
the general structure of basic equations, constitutive relations and boundary conditions 
remains the same in case of more general assumptions on the character of interparticle 
interaction (e.g. particle-particle and particle-wall interactions through the gas in a 
two-phase turbulent flow, see, for example, [11]). It is then hoped that the method 
developed in the present work can be as well applied for an analytical study of more 
complicated models of gas-particulate two-phase flow. 
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