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Abstract--The method of generalized separation of variables for solving nonlinear steady and unsteady heat- 
and mass-transfer equations is outlined. New exact solutions of one-, two-, and three-dimensional heat equa- 
tions are obtained. Anisotropic media with a nonlinear heat source of general form are considered for the case 
in which the main thermal diffusivities show a power or an exponential dependence on the spatial coordinates. 
Equations with a logarithmic heat source are analyzed in detail. The results obtained are applied to the problem 
of thermal explosion in an anisotropic medium. 

Heat (mass) transfer in a stagnant medium (solid, liq- 
uid, or gas) is described by a heat (diffusion) equation 
[1-4]. In a homogeneous and isotropic medium, the ther- 
mal diffusivity (diffusion coefficient) appearing in the 
equation remains constant throughout the range under 
examination [5-7], and the heat (diffusion) equation is 
linear and has constant coefficients. In anisotropic 
media, the thermal diffusivity (diffusion coefficient) 
depends on the direction of heat (mass) transfer; in inho- 
mogeneous media, it may depend on coordinates and 
even on temperature [8-11]. In the latter case, the heat 
(diffusion) equation is nonlinear. There are numerous 
approximation formulas (among them linear, power-low, 
and exponential) describing the dependence of the trans- 
fer coefficients on temperature or concentration (see, 
e.g., [8, 10, 12, 13]). 

Heat (mass) transfer in a stagnant medium may be 
complicated by the presence of bulk sources or sinks, 
which emerge through various physicochemical mech- 
anisms of absorption and release of heat (matter). In 
combustion theory and the nonisothermal macrokinet- 
ics of complex chemical reactions [4, 14], the power of 
heat sources (sinks) often depends on temperature, and 
it often does so nonlinearly, being an exponential [14] 
or power [15] function. In the mass-transfer theory, the 
concentration dependence of the rate of a bulk chemical 
reaction is commonly described by a power-low func- 
tion, whereas for complex reactions, other (exponential 
or logarithmic) functions are used. 

Exact solutions of heat- and mass-transfer equations 
play a significant role in gaining correct insight into 
various thermal and diffusion processes. Exact solu- 
tions of nonlinear equations enable one to look into the 
mechanisms of important and complex physical phe- 
nomena, such as spatial localization of heat-transfer 
processes, peaking processes, and the multiplicity or 
absence of a steady state. Even if particular exact solu- 
tions of differential equations have no clear physical 

meaning, they can be used in test problems for check- 
ing the correctness and estimating the accuracy of var- 
ious numerical, asymptotic, and approximate analytical 
methods. Moreover, model equations and problems 
admitting exact solutions serve as a basis for develop- 
ing new numerical, asymptotic, and approximate meth- 
ods, which, in turn, enable one to study more complex 
heat- and mass-transfer problems that have no exact 
analytical solution. 

STRUCTURE OF EXACT SOLUTIONS OF SOME 
HEAT- AND MASS-TRANSFER EQUATIONS 

Self-similar solutions of nonlinear heat- and 
mass-transfer equations. For simplicity, let us con- 
sider the one-dimensional case. Self-similar solutions 
of one-dimensional heat-transfer equations are usually 
represented in the following form [16, 17]: 

T(x, t) = t~f(xltV), (1) 

where [3 and ~/are some constants. The sought function 
f ix/ tO is found from the ordinary differential equation 
that is obtained by substituting solution (1) into the 
original partial differential equation. 

In a more general case, the term self-similar solution 
is used for solutions of the form 

T(x, t) = tp( t ) f (x /ql( t ) ) ,  (2) 

where the form of the functions tp(t) and ~(t) is chosen 
with consideration for convenience of solving a specific 
problem. 

Let us give an example of the simplest self-similar 
solution of a nonlinear heat-transfer equation in the 
case for which the nonlinearity is caused by tempera- 
ture variation of the thermal diffusivity. Let us consider 
a one-dimensional problem of unsteady heat transfer in 
a semi-infinite plate whose initial (t < 0) temperature is 
T i. For t > 0, the temperature of the x = 0 plate boundary 
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404 POLYANIN et al. 

is maintained at Ts. It is required to find the temperature 
distribution T(x, t) for t > 0. The corresponding bound- 
ary-value problem has the form 

/)t (3) 

TI,= 0 = Ti,  TIx=0 = T s, TIx_~.. . T i. 

This problem has been an object of numerous investi- 
gations in the nonlinear heat-conduction and filtration 
theories (see, e.g., [4, 1 8]). The solution to problem (3) 
is sought for in the form 

T = T(03), 03 = x/.ft ,  

which leads to the following ordinary differential equa- 
tion and boundary conditions: 

, , l , 
[a(T)T~]~ + ~03To~ = O, 

TIo =0 = L ,  . T/. 

An analytical solution to this problem has been 
obtained for linear [2, 19, 20], hyperbolic [3, 21], and 
power-low [15, 22] functions a(T). 

A comprehensive list of exact solutions to equations 
of the form 

is available for both �9 = 0 [18] and �9 ~: 0 [23]. 
S e p a r a t i o n  o f  v a r i a b l e s  in l inear  e q u a t i o n s .  Many 

linear equations of mathematical physics (partial differ- 
ential equations) are solvable by separation of vari- 
ables. For definiteness, let us further examine second- 
order linear equations 

~(x ,  t, T, ~T ~T ~2T ~.~T) 
0x' 0 t '  Ox 2' = 0 (4) 

in two independent variables x and t (the sought func- 
tion T(x, t) is a function of these variables). Below, we 
briefly describe the procedure of solving Eq. (4) and 
problems involving this equation. 

At thefirst step, a particular solution is sought for in 
the form 

T(x, t) = tp(x)~(t).  (5) 

Expression (5) is substituted into Eq. (4), and the latter 
is then represented as the equality whose left-hand side 
depends only on x (and contains x, tp, tp' x , and tp~ x) and 
whose right side depends only on t (and contains t, W, 
W't, and ~',', ). Two expressions with different variables 
can be equal only if both of them are equal to a certain 
constant, which is termed the separation constant. 
Therefore, when finding functions {p and ~, we arrive at 
ordinary differential equations with a free parameter k. 

This procedure is called the separation of variables 
in linear equations (from which the name of the method 
arises). 

At the second step, the principle of linear superposi- 
tion is used: a linear combination of particular solutions 
of a linear equation is also a solution of this equation. 

The functions tp and ~ in solution (5) depend not 
only on the variables x and t but also on the separation 
constant: 

tp = tp(x,k), W = ~/(t,k). 

For different values kl, k2 . . . .  of the parameter k, differ- 
ent particular solutions 
obtained: 

Tj(x, t) = tpl(X)~l(t), 

where 

of the original equation are 

T2(x, t) = ( P 2 ( x ) ~ / 2 ( t )  . . . . .  

tpi = tp(x, ki), ~i = ~(t ,  ki), i = 1 ,2 ,3  . . . . .  

According to the principle of linear superposition, 
the set of particular solutions 

T(x, t) = tpl(x)~l(t) + ~2(X)~l/2(t) + . . .  (6) 

is also a solution of the original equation. 
Note that relation (6) is usually written as 

T(x, t) = Altp~(x)~ltl(t) + A2tP2(x)~2(t) + .... 

where A 1, A 2 . . . .  are arbitrary constants. In relation (6), 
they are combined, for convenience, with the functions 
9i(x), which are determined up to a constant factor. 

At the third step, which is executed in solving spe- 
cific problems, the spectrum of the separation parame- 
ter values {kl, k2 . . . .  } is found from the boundary con- 
ditions, which lead to the Sturm-Liouville eigenvalue 
problem for the function % The arbitrary constants 
appearing as normalization factors in the products 
q~i(x)~i(t) are determined from the initial conditions. 

Remark. Many linear equations of mathematical 
physics also admit exact solutions in the form of the 
sum of functions of different arguments: 

T(x, t) = 0(x) + Z(t), (7) 

where the functions 0(x) and X(t) are found, after sepa- 
ration of variables, from the corresponding ordinary 
differential equations. 

Example. Let us consider the linear equation that 
describes convective mass transfer at the rate -U(x) 
under the following conditions: the diffusion coeffi- 
cient D is coordinate-dependent (D = D(x)); a first- 
order chemical reaction (KoC) occurs in the system; and 
bulk absorption (sink) of matter, whose rate O(t) is 
time-dependent (O = ~(t))  there takes place: 

~C ~.~__~[D(x)~_xC] + u(X)~x + KoC + . ( t ) .  
37 = 
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EXACT SOLUTIONS OF NONLINEAR HEAT- AND MASS-TRANSFER EQUATIONS 405 

This equation admits exact solutions of form (7) but has 
no exact solutions of form (5). Furthermore, this equa- 
tion has more complex solutions of the form 

C(x,  t) = 0(x)Zl( t  ) + Z2(t), (8) 

where Zl(t) = exp(K0t) and the function Z2(t) is deter- 
mined from the first-order ordinary differential equa- 

tion X2 = KoZ2 + O(t). 

Separation of variables in nonlinear equations. 
Some nonlinear equations, like linear ones, admit exact 
solutions in the form of the product of functions of dif- 
ferent arguments (see Eq. (5)). The functions are found 
from ordinary differential equations that are obtained, 
after substituting Eq. (5) into the original equation, by 
nonlinear separation of variables. 

Example 1. The nonlinear heat equation in which 
the thermal diffusivity is a power-low function of tem- 
perature, 

0T 8 ( _.ST~ 
- 

where t~ and n are constants, admits exact solutions of 
form (5) [18]. 

There also exist nonlinear equations that admit 
exact solutions in the form of the sum of functions of 
different arguments (form (7)). 

Example 2. The nonlinear heat equation in which 
the thermal diffusivity is an exponential function of 
temperature, 

OT 0 ( ~ri)T~ 
-~ - -~o~e ~xJ' 

where ~ and ~ are constants, admits exact solutions of 
form (7) [18]. 

Let us outline the generalized separation of vari- 
ables in nonlinear equations. 

1. Suppose that a nonlinear equation in Tis  obtained 
from a linear equation in u by the following nonlinear 
change of the dependent variable: 

T = F(u) ,  (9) 

where F is some function. Let the linear equation admit 
solutions in the form of the product or sum of functions 
of different variables (forms (5) and (7), respectively). 
The exact solutions of the nonlinear partial differential 
equation will then be expressed as 

T(x,  t) = F(u) ,  u = to(x)~(t) ;  (10) 

T(x,  t) = F(u) ,  u = 0(x) + X(t). (11) 

For example, the above simplest self-similar solu- 
tion of Eq. (3) is representable in form (10). 

Nonlinear equations most often admit traveling- 
wave solutions 

T ( x , t )  = F(u ) ,  u = x+~, t ,  (12) 

which are the special case of Eq. (11) with 0(x) = x and 
Z(t) = ~,t. Note that solution (12) can also be repre- 
sented in form (10): 

T ( x , t )  = F j ( v ) ,  v = e x§ x ~t = e e  , 

F l ( v  ) = F ( l n v ) .  

Similarly, solution (11) can be represented in form 
(10) by performing the change of variables u = In v and 
designating F(u) = Fl( v). 

The functions t o and ~ (or 0 and Z) and the temper- 
ature profile F = F(u) in formulas (10) and (11) are 
found in one of the following ways: 

(1) The profile is determined from an ordinary dif- 
ferential equation that is obtained after choosing suit- 
able functions to and ~ (or 0 and Z). The functions to 
and ~ (or 0 and Z) are also given by ordinary differen- 
tial equations. Using this method, one can find self- 
similar and some more complex solutions. 

(2) The profile F = F(u) is specified a priori from 
various considerations (as this profile, one can use, for 
exemple, a solution of a simpler auxiliary equation). 
Separation of variables in the equations obtained, if 
possible, yields differential equations for the functions 
to and Ill (or 0 and X). 

Table 1 lists some specific nonlinear equations 
admitting exact solutions of forms (10) and (11) (self- 
similar solutions at to(x) = x and traveling-wave solu- 
tions are not considered here). 

2. Suppose that a nonlinear equation is derived from 
a linear equation by the change of the dependent vari- 
able according to formula (9). Then, the exact solutions 
of the resulting nonlinear partial differential equation, 
which correspond to the exact solutions of the linear 
equation of form (6), are given by 

T(x,  t) = F(u) ,  
(13) 

u = tol(x)l l t l ( t)  + to2(x)llt2(t) + . . . .  

Structural formula (13) can serve as the basis for 
seeking exact solutions of various nonlinear partial dif- 
ferential equations of mathematical physics that are 
irreducible to linear equations. The profile F = F(u) and 
the functions tol(x), to2(x) . . . . .  ~l(t),  ~l12(t)  . . . .  are to be 
found. Solutions of form (13) generally cannot be 
obtained by the methods of group analysis. 

Exact solutions of partial differential equations with 
quadratic nonlinearity have been sought for in form 
(13) with F(u) = u, ~2 = 1, and ~i = 0 for i > 3 [26]. 
Quite a general scheme has been proposed [29] for 
searching for exact solutions of differential equations 
with quadratic nonlinearity at F(u) = u (under the 
assumption that the equations considered are not 
explicitly dependent on spatial variables and time). 
Solutions of form (13) are a natural generalization of 
the solutions examined in [26, 29]. 
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Table 1. Some nonlinear equations having exact solutions of  forms (10) and (11) 

Equation Solution References 

b T  O2T , ( b T ~  2 

2-'7 = a~x2 + " t a J  

b_._T = a O..(rmO_._T] 
bt bx~. bxJ 

bT a O_(eXr OT) 
gi = 

aT aO2_~T2 + aT lnT  
-Ei= bx 

OT - .  b, .OT 
-~  = ax ~-x(X ~ x ) + b T l n T  

b2T b2T T 
+ ~ = a e  

bx 2 by 2 

O2T b2T 
+ - -  = a s h T  

bX 2 Dy E 

b2T b2T 
- - + - -  = a T I n T  
bx 2 by 2 

O2T b2T 
+ = a s i n  T 

bx 2 by 2 

b ( nbT"~ ~__(bym~___T] cT k 
~-x~ ax "~x ) + bye, by:  = 

O : x, bT'~ b (be~VOT') 
 tae = 

~-xt ax "~x ) + by t  by)  = ce ~tT 

b ( _.bT'~ b (bT,nbT') 
g t  a" gJ+ t Vyy) = ~  

b ( ~rbTb+ b (bel~rbT'~ 
ae bT) aTy) : ~  

b2T b2T r 
- - -  +ae 

bt 2 bx 2 

~2 T b2T 
- - -  + a s h T  

Ot 2 bx 2 

32T 32T 
- - -  + a T l n T  

3t 2 3x 2 

~2 T 02T 
- - -  + a s i n T  

~t 2 bX 2 

T = tp(x) + ~l/(t); 
T = (alb)lnu, u = tp(x) + W(t) 

T= tp(x)W(t) 

T = tp(x) + ~t(t) 

T = tp(x) ~(t) 

T = tp(x) ~(t) 

T =  -21nu,  u = tp(x) + ~I/(Y) 

l + u  
T =  21n 1 - u '  u = tp(x)w(y) 

T = e u, u = ~(x) + W(y) 

T =  4atanu, u = tp(x)W(y) 

T = F(u), u = tp(x) + ~t(y) 

T = F(u), u = tp(x) + W(y) 

T = F(u), u = tp(x) + W(Y) 

T = ~(x)~(y) 

T = tp(x) + W(Y) 

T =  -21nu,  u = tp(x) + ~(t) 

l + u  
T =  2In 1 - u '  u = tp(x)~l(t) 

T = e u, u = t,p(x) + W(t) 

T =  4atanu, u = tp(x)W(t) 

[241 

[15, 16] 

[15, 18, 25] 

[15,23] 

[15, 26] 

[14]  

[27] 

[27] 

[27] 

[28] 

[281 

[281 

[28] 

[241 

[24] 

[27] 

[271 

[27] 

Note: a ,  b, c ,  k,  m ,  n, [3, 7, and ~. are parameters. 
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Table 2. Some nonlinear equations having exact solutions of form (13) 

407 

Equation Solution References 

O T O T 2 ~x 
= a - u - 5 + b T  

Ot Ox 

OT 02T , (OT'~ 2 
o-7 = a +Ot x) +cIT+Co 

OT 02T . (OT'~ 2 
= 

OT a O (TmOT ") = 

OT a ~..~_(Tm~T~ 
O-"t = Oxk. Ox ) + b T 

- :  rxO + '  
OT T" + b :  
bt 

aT  a a (TmO_T] -m 
- ~  = ~x~, -~x ) + b Tl 

OT O ( rOT'~ 
0"-t" = a~x~.e ~xx) + b e r + c  

OT O ( rOT'~ -r  
O'-'~ = a~-x~e - ~ )  + b + ce 

OT 02T 
a--~-~ + a T  In T + bT  

Ox 

OT 02T 
m = a - s  
bt  Ox 

OT -n O ( nOT'~ 
- ~  = ax ~xxCX ~ x )  + a T l n T  

T= 1/u, u = tp(x)O(t) + ql(x) 

T = ~(t)x 2 + ~(t)x + X(t) 

T = {p(t)O(x) + ~(t) 
0(x) = e ~, 0(x) = sin(Xx) 

T = u l/m, u = tp(t)x 2 + ql(t) 

T = U lira, U = tp(t)x 2 + ~(t) 

T = ultm, u = tp(OO(x) + ~(t)  

T = u l/m, u = tp(t)x 2 + W(t) 

T= lnu, u = tp(t)O(x) + ql(t) 
0(x) = e ~,  0(x) = sin(Lx) 

T = lnu, u = cp(t)x2+ ~( t )x  + X(t) 

T = e u, u = tp(t)x + ql(t) 
T = e u, u = tp(t)x 2 + ql(t) 

T = e u, u = tp(t)O(x) + ~(t)  
0(x) = e ~, 0(x) = sin (Xx) 

T = e u, u = tp(t)x2+ q/(t) 

[25] 

[28] 

[26] 

[4, 18] 

[23-25,29] 

[i51 

[30] 

[31] 

[26.28] 

[15,23,281 

[26] 

[15] 

Note: a, b, c, c 0, c 1, c 2, m, n, and ~L are parameters. 

In the analysis o f  special equations, it is convenient 
to use particular cases of  formula (13): 

T(x ,  t) = F ( u ) ,  u = ~l(X)~l/l(t) + ~l/2(t); (14) 

T(x ,  t) = F ( u ) ,  u = c p l ( x ) ~ l ( t )  + ~P2(x). (15) 

Table 2 presents some special nonlinear equations 
admitting exact solutions in form (13). One can see that 
most  o f  the solutions are representable by formula (14). 

It is important that, in principle, representation (13) 
enables one to find exact solutions to nonlinear equa- 
tions that are obtained by the change of  variables of  
form (9) from the linear equation with separable vari- 
ables. 

3. Suppose that, in the initial equation, one can per- 
form a more general change of  the dependent  variable: 

T = g (x ,  t ) F ( u )  + h (x ,  t ) .  

Narrowing down the classes of  the functions g(x, t) 
and h(x, t), one can arrive at simpler dependences, and on 
their basis, search for exact solutions of  nonlinear equa- 
tions (which are already irreducible to linear equations). 

Below, we present structural formulas that are the 
respective generalizations of  formulas (14) and (15): 

T(x ,  t) = g ( t ) F ( u )  + h ( t ) ,  
(16) 

u = Cp l ( x )~ l ( t  ) + ~2( t ) ;  

T(x ,  t)  = g ( x ) F ( u )  + h ( x ) ,  
(17) 

u = ~l(X)~l/l(t) + (P2(x). 
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They can be used in searching for exact solutions of 
nonlinear equations. 

In the special case of 9n(x) = x and 1l/2(t ) = 0, for- 
mula (16) corresponds to generalized self-similar solu- 
tions. 

Further, we use the above approach to obtain new 
exact solutions to various classes of nonlinear equa- 
tions. 

NONLINEAR EQUATIONS OF HEAT AND MASS 
TRANSFER IN ANISOTROPIC MEDIA 

Separation of variables. Let us consider a class of 
partial differential equations of the form 

pi (x i )  = ~[w] ,  (18) 
i = l  

where Pi(Xi) are some functions, whose form will be 
determined below, and xn . . . . .  Xm are independent vari- 
ables (m > 2). The right-hand side of this equation is 
generally a prescribed nonlinear differential operator. 
This operator depends on w, on a number of indepen- 
dent variables Xm + t . . . . .  & ,  which do not appear on the 
left-hand side of the equation, and on the derivatives of 
w with respect to these variables. 

We will search for particular solutions to Eq. (18) in 
the form 

m 

w = w(r ;  Xm+ I . . . . .  Xk), r 2 "~ Z q ) i ( X i ) ,  (19) 
i=l 

which, owing to fewer independent variables, are given 
by a simpler equation. The unknown functions tpi(x~) 
and p~(xi) will be found in the course of the investiga- 
tion. 

Substituting expression (19) into Eq. (18) and tak- 
ing into account 

Ow qr 
~x  i Dr 2r '  

02w ( b2w bw' (qYi) 2 Ow 'i' 
= L, ror 2 -37 + 37 2"-r' 

we obtain 

l_~_(rO2W Ow)~--, . ,.2 
4r3k, Or 2 - - ~ ) 2 - - ~  pi({pi) 

i = 1  

+ 2rOr  (PitP;)' = ~ [w] ,  

(20) 

i = 1  

where the primes at the functions 9i mean differentia- 
tion with respect to xi. 

Function (19) is a solution of the original Eq. (18) 
if the sums in expression (20) are constants or functions 
only of a new variable r. 

In the general case, this is possible if 

pi((P'i) 2 = AcPi + Ai, (pifp}) ' = B~ i  + Bi, (21) 

where A, A i, B, and B i are some constants (i = 1 . . . . .  m). 
In this case, in Eq. (20), one should take 

m 

2 p i ( ( P ' i )  2 = A r  2 + A s ,  

i ; l  

m 

2 (PitPl)' = Br2 + B~, 
i = l  

where 

m m 

A ~ =  Z A i ,  B z =  Z B i .  
i = 1  i = 1  

At any i, we have two ordinary differential 
Eqs. (21) inpi(xi) and cPi(xi). 

Let us express the function Pi in terms of cpi from the 
first of Eqs. (21): 

AtPi + A i 
(22) Pi = (q)})2 

Substituting this expression into the second of 
Eqs. (21), we obtain the following autonomous equa- 
tion for the function {Pi: 

(A{Pi + Ai){PI" + (B(Pi + ~i)((pti)2 = 0, (23) 

where I.t i = B i - A. This equation is solved through the 

change {P'i = zi(cPi) �9 

At A ~: 0, the general solution of Eq. (23) can be 
written in the implicit form 

Alai- B A~ 

xi + C2 = CjSexp(BtPi lA)[AcPi  + Ail A2 d(Pi, 

BAi_AI.t ' (24) 
, 1 ( Bq~ix A2 

= Zi((Pi ) ~- ~-~lexp [~-'S'-][A(Pi + Ai[ {Pi 1 - 1 . /  

where C~ and C2 are arbitrary constants. 

At A = 0 and A i r 0, the general solution of Eq. (23) 
can be written in the implicit form 

, rBtp~ + 2BitPi) 
xi+C2= C,Jexp  )d i, 

(25) 
B{p~ 1 f q- 2B,(Pi~ 

cp' i = zi(cPi) = ~--exp|  
2A i J" t~l \ 
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Table 3. Cases when the functions ~(x i) and ~ i ( X i )  a r e  representable in an explicit form 

409 

No. p i ( x i )  q)i(Xi) Relations 

1 

2 

3 

4 

ailxi + sil n' 

k~xi 
ale 

2 
aix i 

(alnlx,I + 

2 - n  i 
bilx i + si[ + c i 

bi e-kixi + c i 

biln[xi[ + c i 

clnlxi[ + d i 

A i = - A c  i, B = 0, B i = A/(2 - hi), b i = A/(ai(2 - ni) 2) 

A i = - A c  i, B = B i = O, b i = A/(ai~,2i ) 

A = O, A i = ai b2 , B = O, B i = aib  i 

A = ac, A i = (bic  - adi )c ,  B = a, B i = ac + (bic - adi) 

In some cases, the functions Pi(Xi)  and (Pi(xi) are rep- 
resentable explicitly. For example, at A i = B = B i = O, 

from Eqs. (24) and (22), we have 

C_~ A A(Di 
x i + C 2 = lnlaq)i[, (P'i = "~l(Pi, Pi = i(p,i) 2, 

whence 

~,ixi . -~,ixi 
Pi(Xi) = aie , (Pi(Xi) = hie , 

where 

, a - I  AC21CI 
ai = -t-C~ e - A c d c l ,  ~'i = - A / C I ,  bi = "vii e . 

Table 3 covers the special cases when the functions 
pi(xi) and (Pi(xi) can be represented in an explicit form. 

On the basis of the results obtained, one can con- 
struct exact solutions to specific equations. 

Exact solutions of  three.dimensional  heat- and 
mass- t ransfer  equations.  To illustrate the approach 
described, let us examine some families of nonlinear 
three-dimensional heat- and mass-transfer equations 
and obtain their exact solutions. 

Let us consider the equations corresponding to 
cases 1 and 2 in Table 3, which are of most interest. In 
the equations analyzed below (cases 1-4), the operator 
~[T] is assumed to be a nonlinear function of the 
source q~(T). 

1. The equation (k, m, n ~e 2) 

~9 k~9 ~_.~(alxl ~_~ + 0 m~9 -~ (b l y l  - ~  

0 ,0  
+ ~ ( c l Z l  ~zT) = e~(T) ,  

(26) 

which describes steady-state heat or mass transfer in an 
inhomogeneous anisotropic medium with heat release 
(bulk reaction), has exact solutions of the form 

2 
r 

T = T( r ) ,  

= aF  [xlZ---1 [yl2-Z [zl2-n ] 

L a ( 2 -  k) 2 + b ( 2 -  m) 2 + c ( ~ _  n)2J" 

(27) 

The function T(r) is determined from the ordinary dif- 
ferential equation 

D = 

T;'r+ DT'r r = 4 dp(T),  

1 1 
(28) 

This equation is solvable in an explicit form at D = 1 
and ~(T) = Cexp(o~T), where C and o~ are constants. At 
D = 0 and an arbitrary function O(T), Eq. (28) is inte- 
grable in quadrature (there exist other exact solutions 
[321). 

Note that, instead of Ixl, lY I, and Izl, Eqs. (26) and 
(27) can contain Ix + Sll, [y + s21, and [z + s31, respec- 
tively, where sl, s2, and s 3 are some constant. 

At k = m = n = 0 and a = b = c, Eq. (26) appears as 
the classical equation of heat and mass transfer in an 
isotropic medium with heat release (bulk reaction). 
Solution (27), (28) then corresponds to the spherically 
symmetric case. 

2. The equation 04tv ~: 0) 

-~x ~ a e -~x ) + ~y  ~, " -~yy ) 

0 ( v z O T )  
+ - -  ce - -  = Oz( Oz) o(r)  

(29) 

admits exact solutions of the form 

T T ( r ) ,  r z ( e-~x A ~ e-~tY e-VZ'~ 
= = ~ + -"5)" a)~ + bit 2 cv 

The function T(r) is found from the ordinary differen- 
tial equation 

T'r'r- IT'r r = 4 O ( T )  �9 
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3. The equation (n, m ~ 2; v ;e 0) 

0 /  .0T~ 3r  .,07~ 
~ k  ax - ~  ) + " ~ t b Y  ~yy J 

+ -~Zt ce -~Z) = @ ( r )  

admits exact solutions of the form 

(30) 

e-VZ 1 T= T(r), r2= a [  Ix12~ + lyl2-m + ~ .  
L a ( 2 - n )  2 b ( 2 - m )  2 cv2J 

The function T(r) is obtained from the ordinary differ- 
ential equation 

,, 4 : ( ,  , )  Tr r + D , r T r  = O(T),  D =  ~-~_n+2_--_--_--_--_--_--~-1. 

4. The equation (n ;e 2, itv ~: 0) 

( ,OT~+ 3_r ~ ~ f ~OT~ ~t, ax ~ )  Oyt Oy) +~-~ce ~zz) = o ( r )  (31) 

has exact solutions of the form 

= AF Ixl~-" e-~tr e-V~l 
T = T(r) ,  r 2 L,a(~_--~) 2 + ~ + ~  

bit 2 cv2J" 

The function T(r) is determined from the ordinary dif- 
ferential equation 

T'r'r+DT' = 4 0 ( T ) ,  D = n l ( 2 - n ) .  
r r 

This equation is integrable in quadrature, e.g., at n = 0 
and an arbitrary function 0(73. At n = 1 and O(T) = 
Ce '~r, where tx and C are constants, this equation is inte- 
grable in an explicit form. 

5. Let 

~[T]  = ig--T-o(T). 
~t 

Consider the unsteady-state heat equation (k, m, n ~: 2) 

~T ~ [ kigT'~ i9 (, ,.igT~ ax 

c3 ( .o~T~ 
+ zkCZ +,I,(r). 

(32) 

In terms of the approach presented above, this equation 
has exact solutions of the form 

T = T(t, r), 

r 2 : 4AV Ixi2"22 lYI~-" + Izl~-" 1 
L a ( 2 - k )  + b ( ' 2 - m )  2 c( '2-n)2J" 

The function T(t, r) satisfies a simpler partial differen- 
tial equation in two independent variables: 

Dr A(~2T +D-~r ) 
~-t = t,~r2 r + O ( T ) ,  

2 2 2 
D = 2_k+2_--S--~+2_n 

Exact solutions of this equation are described in the lit- 
erature [24, 32]. 

Remark 1. Solutions of unsteady-state equations 
corresponding to Eqs. (29)-(31) can be constructed in 
a similar manner. 

The approach proposed is applicable not only to 
elliptic and parabolic equations but also to hyperbolic 
ones. 

6. Let 

~[T]  - ~2T O(T). 
3t 2 

Consider the equation (Tt, laV ;~ 0) 

(33) 
0 ( vz0T~ 

+ ~-~,ce ~--~) + O(T), 

which describes the propagation of nonlinear waves 
through an inhomogeneous anisotropic medium. This 
equation admits exact solutions of the form 

[ ~ -~ e-,y e-VZ -] 
T = T(r), r 2 = A - ( t + C ) 2 + e - - - + m + - - - i  , 

a~, 2 bit 2 cv J 

where A and C are arbitrary constants. The function 
T(r) is found from the ordinary differential equation 

T'r' r + 4r = O, 

which is integrable in quadrature for any O(T) function: 

c'• 8 - - " 2  - r =  

Remark 2. Exact solutions of wave analogs of heat 
Eqs. (26), (30), and (31) are built similarly. 

Remark 3. Exact solutions of two-dimensional ana- 
logs of the above three-dimensional equations can be 
obtained in a similar way. 

NONLINEAR EQUATIONS WITH A HEAT 
SOURCE OF THE LOGARITHMIC TYPE 

Further, we will present some other exact solutions 
of nonlinear heat- and mass-transfer equations, which 
are obtained by the method of generalized separation of 
variables. 
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Steady-state equation. Let us examine the nonlin- 
ear equation of heat transfer in an isotropic medium 
with a heat source of the logarithmic type: 

02T 32T 
= o~Tln~T. 

Ox 2 + Oy2 
(34) 

This equation can be regarded as a two-dimensional 
special case of Eq. (26) at k = m = c = 0, a = b, and 
~(T) = otTlnl3T. Therefore, Eq. (34) has exact solutions 
of the form 

T = T(r),  r 2 = A[(x  + C1) 2 + (y + C2)2], 

where A, Cl, and (72 are arbitrary constants and the 
unknown functions are determined from the ordinary 
differential equation 

T'r'r+ ~T'r = A T l n ~ T .  

Exact solutions of Eq. (34) can also be sought for in 
the form 

~T = e v. 

After substitution, we have 

OX 2 3y z ~.Ox J + ~,Oy J = t~U. 

Equation (35) has traveling-wave solutions 

(35) 

U(x, y) = F(u),  u = AlX + A2y + A 3, (36) 

where A 1, A2, and A 3 are  arbitrary constants. Substitut- 
ing expression (36) into Eq. (35), we arrive at the equa- 
tion 

2 ,1 12 
(A~ + A2)(F,, u + Fu ) = a F ,  

whose solution is implicitly expressed as 

ll • C l + ~ [ C 2 e - 2 F +  t~ C F - ~ ) ] - ' 1 2 d F ,  
A~+A~ 

where C 1 and C2 are arbitrary constants. 

In addition, Eq. (35) has exact solutions in the form 
of the sum of functions of different arguments: 

U(x, y) = tp(x) + W(y). 

Substituting this expression into Eq. (35) yields 

11 II 12  
(Pxx + (P'x 2 -- O~(p = -- ~lyy -- ~ly + 0~1. 

The left and right of this equation are expressions in 
independent variables. Hence, the variables in this 
equation are separable, and the left and right sides of 
this equation should be equal to a constant, which, in 
this case, can be taken to be zero. Solving these equa- 

tions, one can implicitly express the unknown functions 
by the formulas 

J'( 1 '- ' /2 x = A l + Ble -2~~ + a t p -  ~ a )  dtp, (37) 

/*f I ~-1/2 
_ -  Y 

where A l, A2, B1, B 2 are arbitrary constants. 
Equation (35) admits more complex exact solutions 

in the form of the sum of functions of different argu- 
ments: 

U(x, y) = tp(~) + ~01) ,  

= cos(~,x) - sin(~,y), r I = sin(~,x) + cos(~,y), 

where ~, is an arbitrary constant and the functions r 
and ~(rl) are found from relations (37) and (38), 
respectively. 

Unsteady-state equations in one spatial variable. 
1. Let us consider the one-dimensional unsteady- 

state equation of heat transfer in an isotropic medium: 

3T 0 2 T  
- - -  + o~TlnT. (39) 

3t OX 2 

Exact solutions are sought for in the form 

T = e U(x't). 

There are several ways of representation of U(x, t) 
that are suitable for finding exact solutions. 

Let 

U(x, t) = tp(x) + ~ll(t). 

In this case, the variables in the equation are separa- 
ble and equations integrable in quadrature are obtained 
for the unknown functions: 

f (  1 "x-l/2 _+ Ale -2~ - Cttp + ~0~) dip = x + A 2, 

~l/(t) = A3 eat, 

where A1, A2, and A 3 are  arbitrary constants. 
Let 

U(x, t) = ffJ(x + ~t) + V(t ) .  

In this instance, the variables are separable as well. 
The equation for ~ is easily integrable, and tp is deter- 
mined from the ordinary differential equation 

II tp~ + r _ ~tp~ + ~tp = 0, V(t)  = Ae at, 

where ~ = x + 13t. 
2. Let us examine the one-dimensional equation 

3T -k 3 ( kOT~ 
- ax  b--~x(X ~ x ) +  f ( t ) r l n r ,  
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where a and k are some constants andf(t) is an arbitrary 
function. Note that the values k = 0, 1, and 2 correspond 
to the plane, cylindrical, and spherical cases, respec- 
tively. The variables are separable by the transforma- 
tion 

T(x, t) = e u(x''), U(x, t) = to(t)X 2 + Ilt(t). 

An analysis shows that the functions ~ t )  and ~(t) can 
be found from the set of first-order ordinary differential 
equations 

to't = fto + 4ato 2, ~'t = f ~  + 2a(k + 1)to. 

The first of these equations is the Bernoulli equation; it 
is integrable in quadrature at an arbitrary function f = 
fit). If the to(t) dependence is known, the second equa- 
tion, which is linear in ~, is readily integrable as well. 
As a result, we obtain 

to(t) = eF(a-4a;eVd t )  -t, F = ~f( t )dt ,  

~( t )  = Be F + 2a(k + 1 )eV;to(t)e-Vdt, 

where A and B are arbitrary constants. 
3. The equation 

c)T ~ r (x)/)T7 
37 - f ~xJ + aTlnT + [g(x) + h(t)] T ,  

where fix), g(x), and h(t) are arbitrary functions, has 
exact solutions of the form 

T(x, t ) =  exp[Cea '+ ea'~e-a'h(t)dt]to(x). 

Here, C is an arbitrary constant and the function t0(x) is 
found from the ordinary differential equation 

(fto'x)'x + aq01nqo + g(x)to = O. 

4. A more general equation, 

~T _ f(x)O~_.~f bT ~t + g(x)-ff-~ + aTlnT  + [h(x) + s(t)]T 

has exact solutions of the form 

T(x, t ) =  exp[Cea' + ea';e-ats(t)dt]to(x), 

where C is an arbitrary constant and the function ~x)  is 
the solution of the ordinary differential equation 

f(x)toxx + g(x)to'x + atolnto + h(x)to - O. 

Unsteady-state equation in two spatial variables 
for an isotropic medium. Let us consider the follow- 
ing two-dimensional equation of heat transfer in an iso- 
tropic medium: 

3T (32T O2T~ 
- ai---=+---=j-@TlnT.~.ax, ay ~ (40) 37 

Let us make the change T = e vtx, Y, t). Exact solutions for 
the function U can be sought for in the form 

U(x, y, t) = to(x, y) + V(t).  

The time dependence is described by the expression 
Ilt(t ) = Ae at, where A is an arbitrary constant and the 
function to(x, y) obeys the steady-steady equation 

ca + + ar(a   (ato'  l 
a ~ x 2  ay 22 L t a x )  + = 0. 

The equation for U have other exact solutions, e.g., 
solutions of the form 

U(x, y, t) = to(x, t) + ~(y,  t). 

Here, the unknown functions are found from two inde- 
pendent one-dimensional nonlinear parabolic differen- 
tial equations: 

Oto_ ~2to a(Oto)2 
~t a~x2 + ~.~xJ - r 

= 2 a(OV~2 
~ O..__~ + - a~ .  

There also exist more complex exact solutions of the 
form 

U(x, y, t) = to(~, t) + ~t(rl, t), 

= x+13t, 1] = y+yt .  

Here, 13 and Y are arbitrary constants and the unknown 
functions to(~, t) and ~(rl, t) are determined from two 
independent one-dimensional nonlinear parabolic dif- 
ferential equations 

2 

a 2 + a 

av_ a2v a0v  2 
~)t aOrl2 + ~,~--~.) -Y~-~ -Otllt" 

In the special case of to(~, t) = to(~) and ~(TI, t) = 
~(rl), we deal with autonomous ordinary differential 
equations. 

Unsteady-state equation in two spatial variables 
for an anisotropie medium. The nonlinear unsteady- 
state equation of heat and mass transfer and combustion 
in an anisotropic medium at an arbitrary concentration 
dependence of the main thermal diffusivities has the 
form 

OT - ~x[ f (x ,Y )~x~+ ~-~[g(x,Y)~v ~ 37 
There exist exact solutions 

+ kTlnT. 

T(x, y, t) = exp(Aekt)O(x, y), 
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where A is an arbitrary constant and the function 
O(x, y) satisfies the steady-state equation 

y)~-~] + y ~ ] + k O l n O  = 0. 

In the particular case of 

f ( x , y )  = f ( x ) ,  g ( x , y )  = g(y)  

there are exact solutions of the form 

T(x, y, t) = (p(x, t )~(y ,  t). 

Here, the functions (p(x, t) and ~(y, t) are found from 
two independent one-dimensional nonlinear parabolic 
differential equations 

- ~- |f(x)~-:7_ / + kCplncp + C(t)tp, 
0t OXL OXl 

Ot g(y)  + k ~ l n ~ -  C(t )~ ,  

where C(t) is an arbitrary function. 
Unsteady-state equation in three spatial vari- 

ables for an isotropic medium. Let us consider the 
equation 

0T 
- a A T +  f ( t ) T l n T +  g( t )T,  

Ot 

~2 ~2 ~2 
A -  ~-5 + ~-5 + 

Oxl Ox2 0x~" 

The change T = e v leads to the equation with quadratic 
nonlinearity: 

0U - a A U + a l V U l E + f ( t ) U + g ( t ) .  
Ot 

Therefore, the original equation has exact solutions 

T(xl,  x2, x 3, t) 

-- exp %m(t)x.x,~ + ~.( t )x~ + X(t) �9 
n, 1 n =  1 

Atf(t) = b (b = const), there are also exact solutions 
of the form 

T(xl,  x2, x3, t) = exp[tp(t) + O(xl, x2, x3) ]. 

Here, (p(t) is given by the formula 

(p( t) = Ae bt + ebt~e-btg( t)dt, 

where A is an arbitrary constant and O(Xl, x2, x3) is any 
solution of the steady-state equation 

aAO + alVO[ 2 + b e  = 0. 

EXACT SOLUTIONS OF SOME PROBLEMS 
OF THERMAL EXPLOSION 

IN INHOMOGENEOUS MEDIA 

Let us use the above results to obtain an exact solu- 
tion of the nonlinear unsteady-state problem of heat 
transfer with the kinetic function having an exponential 
form (thermal-explosion problem). 

Classical theory of thermal explosion. The nonlin- 
earity of this problem is due to the presence of distrib- 
uted heat sources. 

In the Frank-Kamenetskii steady-state thermal- 
explosion theory [14], equations are written under the 
assumption of uniformity and constancy of the thermal 
conductivities ~.. The main equation that describes the 
temperature distribution in a spatial region with bound- 
ary S in the presence of distributed heat sources with 
density Q~(T) and the boundary conditions have the 
form 

~.AT = - Q O ( T ) ,  (41) 

r ~ S ,  T =  T s. (42) 

We assume that the temperature variation of the reac- 
tion rate is described by the Arrhenius law. 

After introducing the dimensionless temperature 0 
and the parameter ~5 = Q/(XL 2) (L is the characteristic 
length), under the assumption that the preexplosion 
temperature is low in comparison with the absolute 
temperature of the walls, the problem is substantially 
simplified and is described by the following ordinary 
differential equation and boundary conditions: 

r0~r + 70'r + ~Sre ~ = 0, 

r = l ,  0 = 0 ;  

(43) 

(44) i r = 0 ,  0r--0. 

Here, T = 0, 1, and 2 correspond to the plane, cylindri- 
cal, and spherical cases, respectively. For a circular 
tube and sphere, r is the dimensionless radial coordi- 
nate (related to the radius). 

For a plane-parallel strip (y= 0), Eq. (43) is indepen- 
dent of r and easily integrable. The solution obeying the 
symmetry condition at the center of half-strip (44) has 
the form [14] 

0 = In[ 2b 7 (45) 
Lcosh2 (4r~r)_]" 

The constant b is found by solving the transcendental 
equation 

2b = cosh2(4rb--~), (46) 

which follows from the first of the boundary conditions 
(44). It has been shown [14] that, at 0 < ~i < ~i,, ~5, = 0.88, 

Eq. (46) has two unequal roots. The smaller root corre- 
sponds to an unsteady temperature distribution; the 
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larger root, to a steady one. A t 15 = 15,, the roots coincide 

and are equal to 1.64. At 15 > 15,, the transcendental 

equation (46) has no roots. The critical value 15, speci- 

fies the ignition condition for a gas mixture. The maxi- 
mum preexpiosion temperature is calculated by for- 
mula (45), where one should set r = 0 and b = b(15,). As 

a result, we obtain 0 = 1.2. 
For a circular tube (y = 1), Eq. (43) is also integrable 

in quadrature. Introducing the new variables 

= r, ~ = 0 + 2 1 n r ,  

one can bring this equation to the form that coincides 
with Eq. (43) for the plane case. Integration with the 
boundary conditions yields a solution [14] in the form 

0 = 1n(8/15) - 21n(e-br 2 + eb), (47) 

where b is found from the transcendental equation 

15cosh2b = 2. (48) 

Since cosh2b > 1, then, from Eq. (48), we obtain the 
critical value 15, = 2, which corresponds to b ,  = 0. 

According to (47), the maximum preexplosion temper- 
ature at the tube axis is 0 ,  = In4 -- 1.38. 

A qualitative analysis of Eq. (43) at arbitrary ), with 
boundary conditions of form (44) was performed ear- 
lier [32]. 

Thermal explosion in inhomogeneous media. Let 
us demonstrate how one can extend the classical theory 
of thermal explosion to the case of inhomogeneous 
media with the use of the results obtained. 

1. Let us consider a medium that is isotropic in one 
direction and anisotropic in the other. Assume that the 
anisotropy is described by an exponential function. In 
the dimensionless coordinates, the corresponding heat 
equation has the form 

0 ( ,x~0"~ +/)2_...00 = q~(0). (49) 
~-~,a e ~--~) ~y2 

This equation is a special case of Eq. (31) and has exact 
solutions of the form 

= 0(r) ,  r E = ae-,X + ~y2. (50) 0 

Here. the function is given by the ordinary differential 
equation 

0;r = 4 ~ ( 0 ) ,  

whose general solution is 

dO 

r + a  = ~ J B + Z ~ q ~ ( 0 ) d 0 '  

where A and B are constants of integration. 

Suppose that the kinetic function satisfies the Frank- 
Kamenetskii law [ 14] 

O(0)  = 6e ~ 

Let us consider a spatial region with the boundary 
specified by the condition r = 1. Let the temperature at 
this boundary be constant and equal to T,; then 

0 = 0 at r = 1. (51) 

The problem we arrived at completely coincides 
with the above classical thermal-explosion problem; 
hence, its solution is given by expressions (45) and 
(46), where r is determined from formula (50). In this 
case, all the above values corresponding to the critical 
ignition conditions are valid. 

2. Let us consider a problem of steady-state thermal 
explosion in a medium that is linearly anisotropic along 
one axis and isotropic along the other. As above, the 
kinetic function is taken to be exponential. The heat 
equation in this medium is written as 

al(lxl + a2)~-~ + - -  = 15e ~ (52) Oy2 

and condition (51) is met on the surface of the body. 
Equation (52) has exact solutions of the form 

0 = 0(r) ,  r 2 Ixl + y2 _ a2 + (53) 
al 4-' 

where 0(r) is determined from the ordinary differential 
equation 

0~r+ 10' = 48e ~ 
r r 

Note that this problem coincides with the above 
problem of thermal explosion in a tube. Therefore, the 
solution within the region under examination can be 
represented in form (47), with the constant b deter- 
mined from the transcendental equation 

8cosh2b = 0.5, 

whence the parameters corresponding to the critical 
ignition conditions are found to be 15, = 0.5 and b ,  = 0. 
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