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Abstract

We outline generalized separation of variables as applied to nonlinear second-order
partial differential equations (PDEs). In this context, we suggest a method for
constructing exact solutions of nonlinear PDEs. The method involves searching for
transformations that `̀ reduce the dimensionality'' of the equation. New families of
exact solutions of 3D nonlinear elliptic and parabolic equations that govern processes
of heat and mass transfer in inhomogeneous anisotropic media are described.
Moreover, the method makes it possible to construct exact solutions of nonlinear wave
equations. We also present solutions for three families of equations with logarithmic
heat sources; the solutions are obtained by nonlinear separation of variables.

Introduction

Heat and mass transfer phenomena in a medium (solid, liquid, or gas) at rest are
governed by heat (diffusion) equations [1±4]. For a homogeneous and isotropic
medium, the thermal diffusivity (diffusion coef®cients) that occurs in these equations
is constant in the entire domain under study [5±7] and the heat (diffusion) equation is a
linear partial differential equation with constant coef®cients. In anisotropic media, the
thermal diffusivity (diffusion coef®cient) depends on the heat (mass) transfer direction
and, in inhomogeneous media, can depend on the coordinates and even on the
temperature [8±11]. In the last case, the heat (diffusion) equation is nonlinear. Various
authors suggested a lot of different relations to approximate the dependence of the
transfer coef®cients on the temperature or concentration, including linear, power-law,
and exponential (e.g., see [8, 10, 12, 13]).

Heat (mass) transfer can be complicated by sources or sinks, which are associated with
various physicochemical mechanisms of absorption and release of heat (substance). In
combustion theory and nonisothermal macrokinetics of complex chemical reactions
[4, 14], it is not infrequent that the power of heat sources/sinks depends on the
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temperature, often nonlinearly, e.g., exponentially [14] or in accordance with a power
law [15]. In mass transfer theory, the rate of volumetric chemical reaction is widely
approximated by power-law dependences on the concentration; at the same time,
exponential, logarithmic, and other dependences are also used.

Exact solutions of heat and mass transfer equations play an important role in forming a
proper understanding of qualitative features of various thermal and diffusion
processes. Exact solutions of nonlinear equations make it possible to look into the
mechanism of intricate phenomena such as spatial localization of heat transfer,
peaking regimes, multiplicity and absence of steady states under certain conditions,
etc. Even those particular exact solutions of PDEs which do not have a clear physical
interpretation can be used as test problems for checking the correctness and accuracy
of various numerical, asymptotic, and approximate analytical methods. In addition,
model equations and problems that allow exact solutions serve as a basis for
developing new numerical, asymptotic, and approximate methods. These, in turn,
permit one to study more complicated problems that have no analytical solution.

Three basic approaches are traditionally used to seek exact solutions of nonlinear
differential equations: (i) search for traveling-wave solutions, (ii) search for self-
similar solutions, and (iii) application of groups to search for symmetries of the
equations. The method of nonlinear separation of variables outlined below includes
the ®rst two approaches as its special cases and, quite often, allows ®nding exact
solutions that cannot be obtained by application of groups. Except for special cases of
partial differential equations, the precise connection between symmetries and
separation of variables is not established at present; e.g., see [16, page xx].

1. Structure of Exact Solutions for Some Heat and Mass Transfer Equations

1.1. Self-similar solutions

For simplicity we consider the one-dimensional case. Self-similar solutions of one-
dimensional heat equations are solutions of the form [17, 18]

T�x; t� � t�f
x

t


� �
; �1�

where � and 
 are some constants. The unknown function f �x=t
� is determined by an
ordinary differential equation resulting from the substitution of solution (1) into the
original PDE.

More generally, self-similar solutions are said to be solutions of the form

T�x; t� � '�t� f x

 �t�
� �

: �2�

The functions '�t� and  �t� are chosen for reasons of convenience in the speci®c
problem.
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For illustration, we consider a nonlinear problem describing unsteady heat transfer in
a semiin®nite plate, x � 0, with thermal diffusivity depending on the temperature,
a � a�T�. Initially, for t � 0, the plate has a uniform temperature Ti. For t > 0, a
temperature Ts is maintained at the plate boundary x � 0. Thus, we have the
following boundary value problem:

@T

@t
� @

@x
a�T� @T

@x

� �
; T jt�0 � Ti; T jx�0 � Ts; T jx!1 ! Ti: �3�

This problem has been the subject of much investigation in heat conduction theory
and seepage theory (e.g., see [4, 19]).

A solution of problem (3) is sought in the form T � T�!�; ! � x=
��
t
p

, thus resulting in
the ODE

�a�T�T 0!�0! �
1

2
!T 0! � 0; T j!�0 � Ts; T j!!1 ! Ti: �4�

Solutions of problem (4) have been obtained for linear dependence of a on T [2, 20,
21], hyperbolic approximation [3, 22], and power-law dependence [14, 23].

A detailed list of exact solutions to equations of the form

@T

@t
� @

@x
a�T� @T

@x

� �
� ��T�

can be found in [19] for � � 0 and [24] for � 6� 0.

1.2. Separation of variables in linear equations

For the sake of presentation of nonlinear separation of variables, we ®rst brie¯y
remind the procedure of separation of variables for linear equations. A lot of linear
PDEs can be solved by separation of variables. For illustration, we consider a linear
second order PDE of the from

F x; t;T ;
@T

@x
;
@T

@t
;
@2T

@x2
;
@2T

@x@t
;
@2T

@t2

� �
� 0; �5�

with two independent variables, x and t, and the unknown function T � T�x; t�. The
solution procedure involves several stages, which are outlined below.

1. At the ®rst stage, one seeks a particular solution of the form

T�x; t� � '�x� �t�: �6�

After substituting solution (6) into equation (5), one rewrites, if possible, the equation
so that its left-hand side depends only on x (involves x; '; '0x, and '00xx) and the right-
hand side depends only on t (involves t;  ;  0t, and  00tt). The equality is possible only
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if both sides are equal to the same constant, k, called the separation constant. Thus,
one obtains ODEs for '�x� and  �t� which contain the parameter k.

This procedure is called separation of variables in linear equations.

2. At the second stage, the principle of linear superposition is used ± a linear
combination of exact solutions of a linear equation is also an exact solution of this
equation.

The functions ' and  in solution (6) depend not only on x and t but also on the
separation constant, ' � '�x; k� and  �  �t; k�. For various values k1; k2; . . . of k
we obtain distinct particular solutions of equation (5),

T1�x; t� � '1�x� 1�t�; T2�x; t� � '2�x� 2�t�; . . . ;

where 'i � '�x; ki� and  i �  �t; ki�; i � 1; 2; . . . The spectrum of possible values of
k can be established from the boundary conditions.

According to the principle of linear superposition, the sum

T�x; t� � A1'1�x� 1�t� � A2'2�x� 2�t� � � � � ; �7�

where A1;A2; . . . are arbitrary constants, is an exact solution of the original equation.
Formally, all Ai's can be set equal to 1, thus combining them with the 'i's.

3. The third stage serves to determine the spectrum of k from the boundary conditions
when solving speci®c problems. Here we arrive at the Sturm-Liouville eigenvalue
problem for '. The constants Ai can be determined from the initial conditions.

Remark. Note that a lot of linear equations of mathematical physics can also admit
exact solutions of the form

T�x; t� � #�x� � ��t�; �8�

where #�x� and ��t� are determined by the corresponding ODEs after separating the
variables.

Example. Consider the linear equation

@C

@t
� @

@x
D�x� @C

@x

� �
� U�x� @C

@x
� KC � ��t�

that governs a convective mass transfer at a velocity of ÿU�x�, provided that the
diffusion coef®cient D�x� depends on the coordinate, a ®rst order chemical reaction
takes place, KC, and there is a volume absorption of substance with intensity
depending on time, ��t�. This equation admits solutions of the form (8) but does not
have exact solutions of the form (6). However, the equation admits more complicated
solutions of the form

C�x; t� � #�x��1�t� � �2�t�; �9�
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where �1�t� � exp�Kt� and �2�t� is determined by the ®rst order ODE �02 �
K�2 � ��t�.

1.3. Separation of variables in nonlinear equations

Just as linear PDEs, some nonlinear equations admit exact solutions of the form (6). In
this case, the functions '�x� and  �t� are determined by the ODEs obtained by
substituting equation (6) into the original equation and followed by nonlinear
separation of variables.

Example 1. The nonlinear heat equation

@T

@t
� @

@x
�Tn @T

@x

� �
�10�

with the thermal diffusivity �Tn, where � and n are constants, admits exact solutions
of the form (6), see [19].

There are also nonlinear PDEs that admit exact solutions of the form (8).

Example 2. The nonlinear heat equation

@T

@t
� @

@x
�e�T @T

@x

� �
�11�

with the thermal diffusivity �e�T, where � and � are constants, admits exact solutions
of the form (8), see [19].

Below we consider generalized separation of variables in nonlinear equations. Some
aspects of this approach were considered in [25].

1. Suppose that a nonlinear equation for T�x; t� is obtained from a linear equation for
u�x; t� admitting exact solutions of the form (6) or (8) by a nonlinear change of
variable

T � F�u�; �12�
where F�u� is some function. Then the nonlinear equation admits exact solutions of
the form

T�x; t� � F�u�; u � '�x� �t�; �13�
T�x; t� � F�u�; u � #�x� � ��t�: �14�

For example, the above self-similar solution to the equation of (3) can be represented
in the form (13) with '�x� � x and  �t� � tÿ1=2.

Most commonly, solutions of nonlinear equations are sought in the form of traveling
waves,

T�x; t� � F�u�; u � x� �t: �15�

Generalized Separation of Variables in Nonlinear Heat and Mass Transfer Equations 255

J. Non-Equilib. Thermodyn. � 2000 �Vol. 25 �Nos. 3/4



Such solutions are special cases of equation (14) with #�x� � x and ��t� � �t. Note
that solution (15) can also be represented in the form (13),

T�x; t� � F1�v�; v � ex��t � exe�t; F1�v� � F�ln v�:
Similarly, solution (14) can be represented in the form (13) by setting u � lnv and
denoting F�u� � F1�v�.
Usually, the functions ' and  or # and �, as well as the `̀ temperature pro®le'' F �
F�u�, occurring in equations (13) and (14) can be determined in either of the following
two ways:

± The pro®le F � F�u� is determined by an ODE resulting from the original
equation after appropriate ' and  (or # and �) have been chosen. The functions '
and  (or # and �) also are determined by ODEs. Self-similar solutions and some
more complicated solutions can be found in this way.

± The pro®le F � F�u� is prescribed a priori on the basis of some considerations
(e.g., a solution of a simpler auxiliary equation can be used as the pro®le) so that
the variables can be separated. This leads to ODEs for ' and  (or # and �).

Table 1 presents some speci®c nonlinear equations that admit exact solutions of the
form (13) or (14). We do not consider here self-similar solutions with '�x� � x and
traveling-wave solutions.

2. Suppose a nonlinear PDE for T�x; t� is obtained from a linear PDE for u�x; t�
admitting exact solutions of the form (7) by a nonlinear change of variable T � F�u�.
Then the nonlinear equation admits solutions of the form

T�x; t� � F�u�; u � '1�x� 1�t� � '2�x� 2�t� � � � � : �16�
The structural formula (16) can be used as a basis for seeking exact solutions to
nonlinear equations that cannot be reduced to linear PDEs. The pro®le F�u� and the
functions '1�x�; '2�x�; . . . ;  1�t�;  2�t�; . . . are to be determined. It should be noted
that generally solutions of this form cannot be obtained by group methods.

It is worth mentioning that in [28] exact solutions of the form (16) with F�u� � u,
 2 � 1, and  i � 0; i � 3, were sought for PDEs with quadratic nonlinearities. In
[25] a quite general procedure for seeking exact solutions of equations with quadratic
nonlinearities for F�u� � u is presented. Solutions of the form (16) are a natural
extension of equations considered in the cited papers.

In the analysis of speci®c equations, it is useful to try the following special cases of
formula (16):

T�x; t� � F�u�; u � '1�x� 1�t� �  2�t�; �17�
T�x; t� � F�u�; u � '1�x� 1�t� � '2�x�: �18�

Table 2 presents some nonlinear equations admitting solutions of the form (16). One
can see that solutions of the form (17) are most frequent.

It is important to note that in principle the representation (16) permits one to ®nd
exact solutions of nonlinear equations derived from a separable linear equation by a
nonlinear transformation T � F�u�.
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3. Suppose now that a nonlinear equation for T�x; t� is obtained from a linear equation
for u�x; t� by a more general nonlinear change of variable T � g�x; t�F�u� � h�x; t�.
By narrowing the classes of the functions g�x; t� and h�x; t�, one arrives at more simple
dependences, which can be used as a basis for seeking exact solutions of nonlinear
equations that cannot be reduced to linear equations.

We suggest below structural formulas that are generalizations of relations (17) and (18):

T�x; t� � g�t�F�u� � h�t�; u � '1�x� 1�t� �  2�t�; �19�
T�x; t� � g�x�F�u� � h�x�; u � '1�x� 1�t� � '2�x�: �20�

In the special case '1�x� � x and  2�t� � 0, formula (19) corresponds to generalized
self-similar solutions.

Table 1. Some nonlinear PDEs admitting (13) or (14) type solutions

Equation Solution structure References

@T
@t
� a @2T

@x2 � b @T
@x

ÿ �2
T � '�x� �  �t�;
T � a

b
ln u; u � '�x� �  �t�

[26]

@T
@t
� a @

@x
Tn @T

@x

ÿ �
T � '�x� �t� [15, 17]

@T
@t
� a @

@x
e�T @T

@x

ÿ �
T � '�x� �  �t� [15, 19, 27]

@T
@t
� a @2T

@x2 � aT ln T T � '�x� �t� [15, 24]

@T
@t
� a

xn
@
@x

xn @T
@x

ÿ �� aT ln T T � '�x� �t� [15, 28]

@2T
@x2 � @2T

@y2 � aeT T � ÿ2 ln u; u � '�x� �  �y� [14]

@2T
@x2 � @2T

@y2 � a sinh T T � 2 ln 1�u
1ÿu

; u � '�x� �y� [29]

@2T
@x2 � @2T

@y2 � aT ln T T � eu; u � '�x� �  �y� [29]

@2T
@x2 � @2T

@y2 � a sin T T � 4 arctan u; u � '�x� �y� [29]

@
@x

ÿ
axn @T

@x

�� @
@y

ÿ
bym @T

@y

� � cTk T � F�u�; u � '�x� �  �y� [30]

@
@x

ÿ
ae�x @T

@x

�� @
@y

ÿ
be�y @T

@y

� � ce
T T � F�u�; u � '�x� �  �y� [30]

@
@x

ÿ
axn @T

@x

�� @
@y

ÿ
be�y @T

@y

� � ce
T T � F�u�; u � '�x� �  �y� [30]

@
@x

ÿ
aTn @T

@x

�� @
@y

ÿ
bTm @T

@y

� � 0 T � '�x� �y� [30]

@
@x

ÿ
ae�T @T

@x

�� @
@y

ÿ
be�T @T

@y

� � 0 T � '�x� �  �y� [26]

@2T
@t2 � @2T

@x2 � aeT T � ÿ2 ln u; u � '�x� �  �t� [26]

@2T
@t2 � @2T

@x2 � a sinh T T � 2 ln 1�u
1ÿu

; u � '�x� �t� [29]

@2T
@t2 � @2T

@x2 � aT ln T T � eu; u � '�x� �  �t� [29]

@2T
@t2 � @2T

@x2 � a sin T T � 4 arctan u; u � '�x� �t� [29]

Here a, b, c, k, m, n, �; �; 
, and � are constants.
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2. Exact Solutions of 3D Nonlinear Heat and Mass Transfer Equations

2.1. Nonlinear separation of variables

Consider the following class of m-dimensional PDEs:Xm

i�1

@

@xi

pi�xi� @w

@xi

� �
� P�w�; �1�

where the pi�xi� are some functions to be established below, x1; . . . ; xm are
independent variables �m � 2�. In general, the right-hand side of equation (1) is
assumed to be a given nonlinear differential operator that depends on w, its derivatives
with respect to independent variables xm�1; . . . ; xk that do not enter the left-hand side,
and the variables xm�1; . . . ; xk themselves. The unknown function w can play the role
of temperature, concentration, or some other quantity.

We look for particular solutions of equation (1) of the form

w � w�r; . . .�; r2 �
Xm

i�1

'i�xi�; �2�

Table 2. Some nonlinear PDEs admitting solutions of the form (16)

Equation Solution structure References

@T
@t
� a @2T

@x2 � bT @T
@x

T � 1=u; u � '�x���t� �  �x� [27]

@T
@t
� a @2T

@x2 � b @T
@x

ÿ �2�c1T � c0 T � '�t�x2 �  �t�x� ��t� [30]

@T
@t
� a @2T

@x2 � b @T
@x

ÿ �2�c2T2 � c1T T � '�t���x� �  �t�,
��x� � e�x; ��x� � sin��x�

[28]

@T
@t
� a @

@x
Tm @T

@x

ÿ �
T � u1=m; u � '�t�x2 �  �t� [4, 19]

@T
@t
� a @

@x
Tm @T

@x

ÿ �� bT T � u1=m; u � '�t�x2 �  �t� [24±27]

@T
@t
� a @

@x
Tm @T

@x

ÿ �� bTm�1 T � u1=m; u � '�t���x� �  �t� [15]

@T
@t
� a @

@x
Tm @T

@x

ÿ �� bT1ÿm T � u1=m; u � '�t�x2 �  �t� [31]

@T
@t
� a @

@x
eT @T

@x

ÿ �� beT � c T � ln u; u � '�t���x� �  �t�,
��x� � e�x; ��x� � sin��x�

[32]

@T
@t
� a @

@x
eT @T

@x

ÿ �� b� ceÿT T � ln u; u � '�t�x2 �  �t�x� ��t� [30]

@T
@t
� a @2T

@x2 � aT ln T � bT T � eu; u � '�t�x�  �t�;
T � eu; u � '�t�x2 �  �t�

[30]

@T
@t
� a @2T

@x2 � T�a ln2 T � b ln T � c� T � eu; u � '�t���x� �  �t�,
��x� � e�x; ��x� � sin��x�

[28]

@T
@t
� a

xn
@
@x

xn @T
@x

ÿ �� aT ln T T � eu; u � '�t�x2 �  �t� [15]

Here a, b, c, c0; c1; c2;m; n, and � are constants.
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in which the number of independent variables is reduced by mÿ 1. The unknown
functions 'i�xi� and pi�xi� will be determined in the course of the study.

Substituting solution (2) into equation (1), we arrive at the equation

1

4r3
r
@2w

@r2
ÿ @w

@r

� �Xm

i�1

pi�'0i�2 �
1

2r

@w

@r

Xm

i�1

� pi'
0
i�0 � P�w�; �3�

where the primes denote the derivatives with respect to xi.

The function of equation (2) is a solution of the original equation (1) only if the sums
in equation (3) are constants or functions of r alone.

Generally, this is possible if

pi�'0i�2 � A'i � Ai; � pi'
0
i�0 � B'i � Bi; �4�

where A;Ai;B, and Bi are some constants �i � 1; . . . ;m�. In this case,

Xm

i�1

pi�'0i�2�Ar2�A�;
Xm

i�1

�pi'
0
i�0�Br2 � B�; A� �

Xm

i�1

Ai; B� �
Xm

i�1

Bi:

For each i we have a system of two ODEs (4) for pi�xi� and 'i�xi�.
Express pi from the ®rst equation in (4) in terms of 'i to obtain

pi � A'i � Ai

�'0i�2
: �5�

Substituting this expression into the second equation in (4) yields the following
autonomous equation for 'i:

�A'i � Ai�'00i � �B'i � �i��'0i�2 � 0; �6�

where �i � Bi ÿ A. This equation can be solved by the substitution '0i � zi�'i�.
For A 6� 0 the general solution of equation (6) can be represented in the implicit
form

xi � C2 � C1

�
exp

B'i

A

� �
jA'i � Aij

A�iÿBAi

A2 d'i;

'0i � zi�'i� � 1

C1

exp ÿB'i

A

� �
jA'i � Aij

BAiÿA�i

A2 ; �7�

where C1 and C2 are arbitrary constants.
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For A � 0 and Ai 6� 0 the general solution of equation (6) is given by

xi � C2 � C1

�
exp

B'2
i � 2Bi'i

2Ai

� �
d'i;

'0i � zi�'i� � 1

C1

exp ÿB'2
i � 2Bi'i

2Ai

� �
: �8�

In some cases the dependences pi�xi� and 'i�xi� can be represented in explicit form.
For example, if Ai � B � Bi � 0, from (7) and (5) we obtain

xi � C2 � C1

A
ln jA'i j; '0i �

A

C1

'i; pi � A'i

�'0i�2
:

Whence,

pi�xi� � aie
�ixi ; 'i�xi� � bie

ÿ�ixi ;

where ai � �C2
1eÿAC2=C1 ; �i � ÿA=C1, and bi � �Aÿ1eAC2=C1 .

Table 3 shows special cases where the pi�xi� and 'i�xi� can be represented in explicit
form.

On the basis of the preceding, we can formulate results for speci®c equations. In this
paper, we con®ne ourself to 3D equations and present exact solutions obtained using
the above approach.

2.2. Exact solutions of heat/mass transfer and wave equations

Consider 3D equations corresponding to rows 1 and 2 in Table 3, which describe heat
(mass) transfer or propagation of nonlinear waves in an anisotropic medium. In cases
1±4 below, we assume the operator P�T � to be a nonlinear source function ��T�.
1. The equation �k;m; n 6� 2�

@

@x
ajxjk @T

@x

� �
� @

@y
bjyjm @T

@y

� �
� @

@z
cjzjn @T

@z

� �
� ��T� �9�

Table 3. Some cases where pi�xi� and 'i�xi� can be written out explicitly

# pi�xi� 'i�xi� Relations for the parameters

1 aijxi � sijni bijxi � sij2ÿni � ci Ai � ÿAci; B � 0;

Bi � A
2ÿni

; bi � A

ai�2ÿni�2
2 aie

�ixi bie
ÿ�ixi � ci Ai � ÿAci; B � Bi � 0; bi � A

ai�2
i

3 aix
2
i bi ln jxij � ci A � 0; Ai � aib

2
i ;B � 0; Bi � aibi

4 �a ln jxij � bi�x2
i c ln jxij � di A � ac; Ai � �bicÿ adi�c;

B � a; Bi � ac� �bicÿ adi�
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has exact solutions of the form

T � T�r�; r2 � A
jxj2ÿk

a�2ÿ k�2 �
jyj2ÿm

b�2ÿ m�2 �
jzj2ÿn

c�2ÿ n�2
" #

; �10�

where A is an arbitrary constant. The function T�r� is determined by the ODE

T 00rr �
D

r
T 0r �

4

A
��T�; D � 2

1

2ÿ k
� 1

2ÿ m
� 1

2ÿ n

� �
ÿ 1: �11�

This equation can be solved explicitly for D � 1 and ��T� � C exp��T�, where C
and � are constants. For D � 0 and arbitrary ��T�, equation (11) can be integrated in
quadrature. For other exact solutions, see [33].

Note that jxj; jyj, and jzj in equations (9) and (10) can be replaced by x� s1; y� s2,
and z� s3, respectively, where s1; s2, and s3 are arbitrary constants.

For k � m � n � 0 and a � b � c, equation (9) becomes a classical equation of heat
(mass) transfer in an isotropic medium with heat release (volume reaction). In this
case, solution (10), (11) corresponds to a spherically symmetric case.

2. The steady-state heat equation ���� 6� 0�

@

@x
ae�x @T

@x

� �
� @

@y
be�y @T

@y

� �
� @

@z
ce�z @T

@z

� �
� ��T� �12�

admits solutions of the form

T � T�r�; r2 � A
eÿ�x

a�2
� eÿ�y

b�2
� eÿ�z

c�2

� �
;

where T�r� is determined by the ODE

T 00rr ÿ
1

r
T 0r �

4

A
��T�:

3. The equation (n;m 6� 2 and � 6� 0)

@

@x
axn @T

@x

� �
� @

@y
bym @T

@y

� �
� @

@z
ce�z @T

@z

� �
� ��T� �13�

admits solutions of the form

T � T�r�; r2 � A
x2ÿn

a�2ÿ n�2 �
y2ÿm

b�2ÿ m�2 �
eÿ�z

c�2

" #
;
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where T�r� is determined by the equation

T 00rr �
D

r
T 0r �

4

A
��T�; D � 2

1

2ÿ n
� 1

2ÿ m

� �
ÿ 1:

4. The equation (n 6� 2 and �� 6� 0)

@

@x
axn @T

@x

� �
� @

@y
be�y @T

@y

� �
� @

@z
ce�z @T

@z

� �
� ��T� �14�

has solutions of the form

T � T�r�; r2 � A
x2ÿn

a�2ÿ n�2 �
eÿ�y

b�2
� eÿ�z

c�2

" #
:

The function T�r� is determined by the ODE

T 00rr �
D

r
T 0r �

4

A
��T�; D � n

2ÿ n
:

For example, this equation is integrable in quadrature for n � 0 and arbitrary ��T�
and explicitly for n � 1 and ��T� � Ce�T , where C and � are constants.

5. Assume that P�T � � @T
@t
ÿ ��T�. Consider the unsteady heat equation �k;m; n 6� 2�

@T

@t
� @

@x
axk @T

@x

� �
� @

@y
bym @T

@y

� �
� @

@z
czn @T

@z

� �
� ��T�: �15�

Following the approach of Subsection 2.1, we ®nd that this equation has solutions of
the form

T � T�t; r�; r2 � 4A
x2ÿk

a�2ÿ k�2 �
y2ÿm

b�2ÿ m�2 �
z2ÿn

c�2ÿ n�2
" #

:

The function T�t; r� satis®es a simpler PDE with two independent variables,
speci®cally,

@T

@t
� A

@2T

@r2
� D

r

@T

@r

� �
� ��T�; D � 2

2ÿ k
� 2

2ÿ m
� 2

2ÿ n
ÿ 1:

For exact solutions of this equation, see [26].

Remark 1. Solutions of unsteady equations corresponding to equations (12)±(14) can
be constructed in a similar manner.
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6. Assume that P�T � � @2T=@t2 ÿ ��T�. Consider the following 3D equation des-
cribing the propagation of nonlinear waves in an inhomogeneous anisotropic medium
���� 6� 0�:

@2T

@t2
� @

@x
ae�x @T

@x

� �
� @

@y
be�y @T

@y

� �
� @

@z
ce�z @T

@z

� �
� ��T�: �16�

It admits solutions of the form

T � T�r�; r2 � A ÿ 1

4
�t � C�2 � eÿ�x

a�2
� eÿ�y

b�2
� eÿ�z

c�2

� �
;

where A and C are arbitrary constants and T�r� is determined by the ODE

T 00rr �
4

A
��T� � 0;

which is integrable in quadrature for any ��T�.
Remark 2. Solutions of wave analogues of the heat equations (9), (13), and (14) can
be constructed using similar considerations.

Remark 3. Two-dimensional analogues of the 3D equations considered above can be
treated in a similar manner.

3. Nonlinear Equations with a Logarithmic Source

Following the method of nonlinear separation of variables outlined in Subsection 1.3,
we found solutions of a number of other nonlinear equations. We chose to present
three families of equations.

3.1. A 2D steady-state heat equation

Consider the two-dimensional equation

@2T

@x2
� @

2T

@y2
� �T ln�T : �1�

1. This equation can be treated as a 2D special case of equation (9) with m � n � 0
and ��T� � �T ln�T . Thus, equation (1) has solutions of the form

T � T�r�; T 00rr �
1

r
T 0r �

�

A
T ln�T ; r2 � A��x� C1�2 � �y� C2�2�;

where A;C1 and C2 are arbitrary constants.
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2. Exact solutions of equation (1) can also be sought in the form T � 1
� eU�x;y�. With

this change of variable, equation (1) becomes

@2U

@x2
� @

2U

@y2
� @U

@x

� �2

� @U

@y

� �2

� �U: �2�

Equation (2) admits traveling-wave solutions:

U�x; y� � F�u�; u � A1x� A2y� A3; �3�

where A1;A2, and A3 are arbitrary constants. Substituting solution (3) into equation
(2) and integrating the resulting equation, we obtain the dependence of F�u� on u in
the implicit form

u � C1 �
�

C2eÿ2F � �

A2
1 � A2

2

F ÿ 1

2

� �� �ÿ1=2

dF;

where C1 and C2 are arbitrary constants.

3. In addition, equation (2) has solutions of the form

U�x; y� � '�x� �  �y�:

Substituting this expression into equation (2) yields

'00xx � '02x ÿ �' � ÿ 00yy ÿ  02y � � :

It follows that the variables separate and both sides must be equal to the same constant,
which here can be set equal to zero. Solving the resulting equations, we obtain

x � A1 �
�

B1eÿ2' � �'ÿ 1
2
�

ÿ �ÿ1=2
d'; �4�

y � A2 �
�

B2eÿ2 � � ÿ 1
2
�

ÿ �ÿ1=2
d ; �5�

where A1;B1;A2, and B2 are arbitrary constants.

4. Equation (2) admits also more complicated solutions of the form

U�x; y� � '��� �  ���; � � x cos�ÿ y sin�; � � x sin�� y cos�;

where � is an arbitrary constant and '��� and  ��� are determined by relations (4)
and (5).
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3.2. A 1D unsteady heat equation

Consider the one-dimensional equation

@T

@t
� a

xk

@

@x
xk @T

@x

� �
� f �t�T ln T ; �6�

where a and k are some constants and f �t� is an arbitrary function. Note that the
values k � 0, 1, and 2 correspond to the plane, cylindrical, and spherical cases. The
variables separate with the transformation

T�x; t� � eU�x;t�; U�x; t� � '�t�x2 �  �t�:
Analysis shows that '�t� and  �t� are determined by the following system of ®rst
order ODEs:

'0t � f'� 4a'2;  0t � f � 2a�k � 1�':
The ®rst of these Bernoulli type equations is integrable in quadrature for any f � f �t�.
Whenever '�t� is found, the second, linear equation can be easily solved.

3.3. A 2D unsteady heat equation

Consider the following two-dimensional heat equation:

@T

@t
� a

@2T

@x2
� @

2T

@y2

� �
ÿ �T ln T :

We carry out the change of variable T � eU�x;y;t�.

1. Exact solutions for U can be sought in the form U�x; y; t� � '�x; y� �  �t�. The
time-dependent term is expressed as  �t� � Ae�t, where A is an arbitrary constant.
The function '�x; y� satis®es the stationary equation

a
@2'

@x2
� @

2'

@y2

� �
� a

@'

@x

� �2

� @'

@y

� �2
" #

ÿ �' � 0;

which was considered in Subsection 3.1.

2. The equation for U admits other exact solutions, for example, U�x; y; t� �
'�x; t� �  �y; t�. The two unknown functions are determined by two independent
one-dimensional nonlinear equation of the parabolic type,

@'

@t
� a

@2'

@x2
� a

@'

@x

� �2

ÿ�';

@ 

@t
� a

@2 

@y2
� a

@ 

@y

� �2

ÿ� :
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3. The following more sophisticated solutions are also possible:

U�x; y; t� � '��; t� �  ��; t�; � � x� �t; � � y� 
t:

Here, � and 
 are arbitrary constants. The unknown functions '��; t� and  ��; t� are
determined by two independent one-dimensional nonlinear equations of the parabolic
type,

@'

@t
� a

@2'

@�2
� a

@'

@�

� �2

ÿ� @'
@�
ÿ �';

@ 

@t
� a

@2 

@�2
� a

@ 

@�

� �2

ÿ
 @ 
@�
ÿ � :

To the special case '��; t� � '���;  ��; t� �  ���, there correspond autonomous
ordinary differential equations.
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