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Abstract

Unlike primary stability of coated cementless implants, their secondary stability has been poorly studied. This paper considers
some theoretical aspects of the secondary stability of a coated cementless hip implant in a human femur. The bone is separated
from the implant by a thin layer of microscopic peaks and troughs formed on the surface of the coating. The size of the peaks and
troughs is very small compared with the macrosize of the implant stem and bone in contact. The study of the bone–stem contact
by direct application of the finite element method is prohibitively costly. A two-scale asymptotic homogenisation procedure that
takes into account the microgeometry of the interface layer and mechanical properties of bone and the implant material is applied
to obtain effective, homogenised contact parameters. These parameters can be used in finite element analyses involving smooth
interfaces, which require hundreds of times fewer finite elements. With the homogenisation technique and finite element analyses
for a simplified design, two parameters were found to be most important—the normal contact stiffness and the friction coefficient.
They both increase several times as bone grows into the rough surface of the implant and mineralises, thus providing a stronger
interface and resulting in reduced micromotions.
 2003 IPEM. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Treatment for hip osteoarthritis focuses on decreasing
pain and improving joint movement. When conservative
methods of treatment fail, it is necessary to replace the
affected joint with an artificial replacement prosthesis.
Of the two types of hip prosthesis, cemented and
cementless, the cementless hip prosthesis represents
today approximately 35% of the European market and
is regarded as more promising. The surface of the
cementless implant is coated in such a way that the bone
is in direct contact with this surface with the idea that
the bone grows into the micro-troughs and pores of the
coating to provide enhanced stability and rapid osseoin-
tegration.

It is well known that the primary stability of cement-
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less stems is the key biomechanical factor determining
the overall stability of the implant. The majority of
authors agree that the implant mobility is the most
important biomechanical cause for aseptic loosening of
implants; e.g., see Refs.[1–4]. The stem stability is mea-
sured by the relative micromotion at the bone–implant
interface. Once the primary stability has been achieved,
due to the implant design and initial press-fit, bone
remodelling processes are initiated, resulting eventually
in additional, secondary stability, provided that the rela-
tive micromotions do not exceed a threshold value of
about 200µm and the stress field is nondestructive and
other than zero. For experimental studies of the bone–
implant interface structure and bone remodelling under
various conditions, e.g., see Refs.[5–12].

The aim of the present paper is to take into account
the effect of secondary stability and establish the macro-
contact parameters that allow the replacement of the
micro-rough bone–implant interface by a smooth one at
the expense of a slight decrease in the accuracy of the



826 J. Orlik et al. / Medical Engineering & Physics 25 (2003) 825–831

results predicted. These parameters should take into
account the microgeometry of the interface and mechan-
ical properties of the contacting materials. To achieve
this aim, we use an asymptotic homogenisation pro-
cedure based on the results of Refs. [13,14] and the
approach of Refs. [15–17] extended to elastic contact
problems and also numerically analyse a model design
by the finite element method.

For mathematical treatment, the following assump-
tions are made: (i) the problem is linear elastic; (ii) the
bone and implant materials are homogeneous; (iii) the
implant is much stiffer than bone; (iv) the usual contact
conditions at the interface are adopted: the contact sur-
faces do not penetrate each other and the normal stress
is continuous and can only be compressive or zero; (v)
Coulomb’s friction law is adopted: as long as the absol-
ute value of the shear stress at the contact boundary is
less than the friction coefficient times the normal stress,
the shear displacement at the interface is continuous; as
soon as the equality is attained, a jump in the shear dis-
placement arises which is proportional to the shear stress
with some coefficient; and (vi) there is a small para-
meter, e, the ratio of the characteristic dimension of the
interface irregularities to the characteristic length of the
bone–implant interaction zone, which allows applying an
asymptotic homogenisation procedure.

Fig. 1 shows the typical surface microgeometry of a
coated stem. The optimum range of pore sizes (average
distances between major peaks and average peak
heights) is reported (e.g., see Refs. [24]) to be between
100 and 400 µm.

2. Mathematical methods

Below, provided in brief, is the mathematical state-
ment of the problem in the strong and variational formu-
lations, as well as basic notation, methods employed, and
main results. A detailed mathematical consideration will
be given elsewhere.

2.1. Strong formulation

Two contacting domains are considered, De (implant)
and �e (bone), as schematically shown in Fig. 2.
Although a 2D case is considered for simplicity, it can
easily be extended to 3D. The right part of the boundary
of De is assumed to have a pattern represented by peaks
arranged periodically with period eY0, where e is a small
parameter and Y0 is a characteristic length of the interac-
tion zone. The domain �e is in contact with De at the
peaks. Formally we assume that �e is a Lipschitz domain
in the 3D Euclidean space. We also introduce fixed
domains ���e and D�De with plane boundaries, so
that (�e�De)\(��D)��e, where �e is the thin layer

(a)

(b)

Fig. 1. Typical surface microgeometry of a coated stem: (a) isometric
view of a coated area, (b) top view. Dark regions correspond to troughs
and light regions, to peaks.

 

  

 Πε ∂Ωε 
u

∂Ωε   

Periodicity cell

NS

CS

Y

     

x1 

S0 
Y 0

 SN  SC

Y0ε  

 
  

Implant Bone

ε

ε

Ωε

Ω

N

0
0 1

ξ 2, 3

ξ 1

Fig. 2. Contact domains and some notations.

containing the peaks of De (Fig. 2); the volume of
(�e�De)\(��D) tends to zero as e→0.

Let x = (x1, x2, x3) and x̂ = (x2, x3) be the coordinates
of a point in R3 and those of a point at the plane x1 =
0. For the periodicity cell Y, we introduce the local coor-
dinates x that are related to x by x = ex and denote by
T the cross-section of the periodicity cell by a plane
x1 = constant, i.e., T = {x : 0 � xj � Y0, j = 2,3}. The
other notation should be clear from Fig. 2.

We consider the case where the domains are bounded
and periodic contact conditions are imposed. For the
elastic solids occupying the domains �e and De, denote
by seij(x) the stress tensor, uei (x) the displacement vector,
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and aijkl(x) the symmetric fourth-order tensor of elastic
constants at a point x��e�De (aijkl(x) = a�

ijkl if x��e

and aijkl(x) = aD
ijkl if x�De); i, j, k, l = 1,2,3.

As is usual in contact problems (see Chapter 6 in Ref.
[22]), the contact surfaces are generally unknown, which
makes the problem nonlinear, and have to be determined
in the course of the solution of the problem. Denote the
unknown micro-contact surfaces by S�e

C and SDe
C and their

projection on the plane x1 = 0 by SeC.
Following Refs. [22,18], we write out the equilibrium

equations and constitutive elastic relations with contact
and boundary conditions:

∂seij(x)
∂xj

� fi(x), seij(x) � aijkl

∂uek(x)
∂xl

, x��e�De, (1)

uRe
n (x)�ge(x), sen(x)�0, sen(x)(uRe

n (x)�ge(x)) � 0, x�SeC,

|seit(x)| � mi(uet)|sen(x)| ⇒ uRe
it � 0, x�SeC, (2)

seit � �mi(uet)|sn(ue)|
ueit
|ue|

⇒ ∃ l�0 such that uRe
it �

�lseit, x�SeC,

seijnj(x) � ti(x), x�∂�eN�∂DeN; uei (x) (3)

� gi0(x), x�∂�eu�∂Deu.

Here, sen(x) = seij(x)nej (x)nei (x) is the normal stress,
seit(x) = seij(x)nej (x)�sennei (x) are the components of the
tangential stress vector, uRe(x) = ue(x)�SD

e

C
�ue(x)�S�

e

C
,

uRe
n (x) = uRe

i (x)ni(x /e) is the jump in the normal displace-
ment, uRe

it (x) = uRe
i (x)�uRe

n nei (x) are the jumps in the tan-
gential displacements, m is the friction coefficient
(m = 0 in the case of pure sliding), nei (x) = ni(x,x /e) are
the components of the unit outward normal to the contact
interface (more precisely, to the boundary SDe

C ), ge(x) =
g(x,x /e) is the initial gap between the contacting sur-
faces, gi0 and ti are the components of the prescribed
boundary displacement and traction vectors; the Latin
subscripts assume the values from 1 to 3.

Relations (1)–(3) represent the strong formulation of
the problem, which applies to smooth domains as well as
smooth elastic coefficients and right-hand-side functions
(prescribed volume forces, boundary displacements, and
tractions). Since we treat nonsmooth domains and allow
nonsmooth functions and intend to adopt the finite
element method for numerical solution, the problem is
to be rewritten in a weak (variational) formulation.

2.2. Variational formulation

Following Refs. [20,22,23], rewrite relations (1)–(3)
in the variational formulation: minimize the functional

Ie,d(v) �
1
2��

e�De
aijkl

∂vk(x)
∂xl

∂vi(x)
∂xj

dx

�
1
2d�SeC

b�x̂,
x
e�[vR

n(x)�ge(x)]2
+ ds (4)

� �
SeC

Gei (x)|vR
it(x)|ds��

�
e�De

fi(x)vi(x)dx

��
∂�
e
N�∂DeN

ti(x)vi(x)ds

for any admissible test functions vi(x), where Gei (x) =
mi(uet) �sn(ue)� is the friction force, [·] + = max{0,·}, and
b and d are positive penalty parameters, which corre-
spond to the normal contact stiffness and the contact
fibre length in the Winkler theory of elastic foun-
dation, respectively.

2.3. Homogenisation procedure

Since relations (1)–(3), as well as its variational for-
mulation (3), have two different size scales on the micro-
and macrolevels, it is very difficult to perform its direct
numerical solution. Here, it is intended to reduce the
problem to a single-scale problem with special interest
being given to the effective contact parameters that will
arise. For the scale reduction, asymptotic homogenis-
ation was chosen.

The notion of two-scale convergence is adopted,
which is understood in the following sense (see Refs.
[19,21] for details).

Defintion 1. A sequence of functions ue�L2(�) is said
to be two-scale convergent to a limit u0(x,x)�
L2(� × Y) if and only if for any function
y(x,x)�D (�,C	

per(Y)), we have

lim
e→0

�
�

ue(x)y�x,
x
e� dx (5)

�
1

�Y���
�

Y

u0(x,x)y(x,x) dx dx.

The second and third terms in Eq. (4) are of primary
interest, since they are contact terms. By the homogenis-
ation of the second term, expressions are obtained of the
macroscopic normal and tangential contact stiffnesses.
The homogenisation of the third term results in an effec-
tive friction force (friction coefficient). Omitting techni-
cal details here, the expressions of the effective para-
meters just mentioned—normal contact stiffness kn,
tangential contact stiffness kt, and friction force G0

jt —
are given:

kn � �
1
�T��Sact

C

ke(x̂,x̂)b2
1(x) dsx, (6)

kt � �
1
�T��Sact

C

ke(x̂,x̂)b̂2(x) dsx, (7)

G0
jt(x̂)�

1
�T��Sact

C

Gi(x̂,x̂)|a(i)
j+1(x)|dsx, (8)
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Fig. 3. Periodic microgeometry patterns of the stem surface: (a) rec-
tangular trough, (b) triangular trough, (c) circular trough.

where �T� is the area of the reference contact surface;
Sact

C is the actual contact surface; i = 1,2,3; j = 1,2; ke

= b /d; a(i)
j (x) is the ith direction cosine of the jth tangent

unit vector to the micro-contact surface with respect to
the macro-coordinate system; and b1 and b̂ are the coef-
ficients in the decomposition of the micro-normal n:
n(x,x) = b1(x)n0(x) + b̂(x)t̂0(x), t̂0 = (t01,t02), and n, t01,
and t02 are the macro-normal and macro-tangents.

2.4. A full contact example

To illustrate the results just presented, consider three
2D cases of various types of trough shown in Fig. 3. We
assume that b = constant, g0 = 0, and the surfaces are
in full contact (i.e., Sact

C coincides with SC). Denote by
a(x) both the outward micro-normal and the angle
between this vector and the macro-normal. Table 1
presents the normal (kn) and tangential (kt) contact stiff-
nesses for the three interface microgeometries shown in
Fig. 3:

Let us note a few special cases.

(i) In the first case (Fig. 3a), the normal macro-contact
stiffness kn always coincides with the micro-contact
stiffness ke = b /d. The tangential contact stiffness kt
increases with the depth a2 of the trough.

(ii) In Fig. 3b, in the limit case of no trough, a1 = a2

= 0, or a trough with vertical walls, a1 = a2

= π/2, the macro-contact stiffness kn coincides with
the micro-contact stiffness b/d, as one should expect.
In all other cases, kn is somewhat lower than ke; in
particular, it can be as low as (1 /2)kne at a1 = a2

= π/3 and a1 = a2 = L. It is apparent that kt increases
from zero as the pit depth increases.

(iii) For a semicircle (Fig. 3c), again kn = ke in the limit
case a = 0 and kn � ke in all other cases, attaining

Table 1

Contact stiffness Rectangle Triangle Semicircle

kn/(b/d) 1 1�(1/L)Σ2
i = 1 ai(1�cosai)cosai 1�((4�π) /2)(a /L)

kt/(b/d) (1/L)a2 (1/L)Σ2
i = 1 aisin2ai (π/2)(a /L)

L = �T� is the length of the periodicity cell.

its minimum (π/4)ke at a = (1 /2)L. The value of kt
increases from zero to (π/4)ke with a.

(iv) It is interesting to compare the values of kn for the
three different types of pits having the same depth
h. For example, if h = (1 /4)L, we have (a) kn =
ke, (b) kn = (7 /8)ke (minimum), and (c) kn = ((4 +
π) /8)ke.

2.5. Partial plane contact with known contact area

With the assumption that all micro-peaks have plane
summits, and thus the contact surface is plane, a simple
formula is obtained for the homogenised contact stiff-
ness kn,

kn(x̂) �
1
�T��Sact

C

ke(x̂,x) dsx. (9)

In particular, it follows that if ke = constant, the
characteristic dimensions of the periodicity cell is �T� =
L, then

kn � ke |Sact
C | /L2. (10)

It also follows that, assuming for rough estimates that
all micro-peaks have plane summits with initial contact
area of about 0.1–0.2, the periodicity cell cross-section,
the effective (homogenised) normal contact stiffness kn

can increase 5–10 times during bone ingrowth from
initial partial contact to final full contact, after bone has
completely filled the pores in the implant coating and
mineralised.

For accurate calculations, it is required to solve a non-
linear contact problem for the periodicity cell or every
single peak to find the actual contact area and other
characteristics. This procedure is not presented here (this
is an iterative procedure that involves several compu-
tational steps); it will be given elsewhere.

3. Numerical results

3.1. Configuration and parameters

To illustrate and validate the results obtained theoreti-
cally, a simplified axisymmetric model was analysed
numerically. The aim is to verify that the effective para-
meters obtained affect the strength of the bone–implant
interface and can be used to predict the behaviour of
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actual bone–implant designs taking into account the
effect of secondary stability.

We consider a bone–implant configuration where the
bone is modelled by a hollow cylinder, fully clamped at
the base, with a conical hole for a conical stem with
rounded end to avoid stress singularities at the corners;
see Fig. 4b. Such a stem models the most important part
of a real “conical” stem (see Fig. 4a). The angle of taper
of the model stem was taken to be slightly less than that
of the real stem to provide higher micromotions at the
interface, thus giving an upper estimate for real
micromotions. The materials were taken to be isotropic
and linear elastic with Young’s moduli Estem = 105
GPa (titanium stem) and Ebone = 14 GPa (cortical bone).
Poisson’s ratios were assumed identical and equal to 0.3.
The geometric dimensions are shown in Fig. 4b. A series
of surface-to-surface large-displacement asymmetric
contact analyses was undertaken using the finite element
software ANSYS.

An axisymmetric quadrilateral eight-noded finite
element was used with target elements on the exterior
surface of the stem and contact elements on the interior
of the conical hole in the bone. The finite element mesh
is shown in Fig. 4c. The values of most of the contact
parameters that influence the accuracy of the compu-
tation were chosen by default. The penetration tolerance
was decreased to 0.01. The normal contact stiffness kn

was varied between 100 and 10 000 GPa/m, and the fric-
tion coefficient between 0.1 and 0.6. For full contact, the
normal contact stiffness is evaluated as ke = Ebone /d,
where d is the so-called thickness of the contact layer,
which can be estimated as d = 1–5 mm, and hence ke

= 2800–14 000 GPa/m. Initially, the contact area can be
fairly small—about one tenth of the full contact area in
projection onto the macro-surface of contact, so the
effective contact stiffness is estimated as kn = 0.1ke�
280–1400 GPa/m. The tangential contact stiffness was

2.
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5
cm

2 cm

10
cm

0.8 cm

1.2 cm

Fig. 4. Axisymmetric macro-model: (a) a typical “conical” stem, (b)
model bone–stem configuration, (c) finite element mesh of the
model configuration.

found to have no noticeable effect on the results and thus
was left default.

3.2. Press-fit simulation

At the first stage, the initial press-fitting of the stem
and bone was simulated for various press-fit loads. Fig.
5a shows the settlement of the stem against the press-fit
load for two friction coefficients m = 0.1 and 0.3 and
normal contact stiffness kn = 2000 GPa/m. It is apparent
that the settlement is practically linearly dependent on
the normal load applied. Fig. 5b illustrates the corre-
sponding number of iterations for the solution to attain
the required accuracy. Fig. 5c reveals the effect of the
normal contact stiffness kn on the stem settlement at the
press-fit load P = 50 MPa and m = 0.3. It is shown that
the effect becomes weaker as P increases.

3.3. Loading simulation

The same model was then considered with an initial
settlement of 5 mm. This settlement was simulated by
an initial penetration of 0.2 mm, i.e., the radius of the
stem at each point of contact was 0.2 mm greater than
the radius of the hole. At this stage, it was important to
estimate how the change in the normal contact stiffness
kn and friction coefficient m affects the interface
micromotions, i.e., the relative sliding at the bone–
implant interface. A load of 5 MPa was applied to the
top face of the stem, which approximately corresponds
to 1.5 the patient’s weight.

A sensitivity analysis for the maximum sliding and
maximum von Mises stress at the interface was carried
out in the range of normal contact stiffnesses between
100 and 5000 GPa/m and that of friction coefficients
between 0.1 and 0.6. The results are depicted in Fig. 6.
As follows from Fig. 6a,b, the effect of kn on the
maximum sliding is significant only for fairly low kn,
i.e., the bone ingrowth effectively increases the interface
strength at early stages. Furthermore, an increase in the
effective friction coefficient m leads to a decrease in the
maximum sliding, i.e., strengthens the interface.

As far as the maximum von Mises stresses at the inter-
face is concerned, it is quite sensitive to a change in
m and weakly dependent on kn. This is apparent from
Fig. 6c,d.

4. Discussion and conclusions

In cementless surgery, coated-porous implants are
used to obtain biological fixation. Bone grows into
troughs and pores of an initially press-fitted coated
implant within 4–8 weeks and mineralises to provide
additional, secondary stability of the implant (e.g., see
Refs. [1,3,5,6,8,25]). The effect of secondary stability is
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Fig. 5. Press-fit simulation results: (a) settlement vs press-fit load, (b) iteration number to convergence vs press-fit load; kn = 2000 GPa/m; (c)
settlement vs normal contact stiffness; P = 50 MPa.

Fig. 6. Sensitivity analysis results: (a) maximum sliding at the inter-
face vs kn, (b) maximum sliding at the interface vs m, (c) maximum
von Mises stress vs kn, (d) maximum von Mises stress vs m. Load
applied: P = 5 MPa.

absent immediately after the implant has been press-fit-
ted, increases as bone grows into the rough surface of
the implant coating, and attains its maximum when bone
has completely filled the voids and mineralised.

The study of the bone–stem contact by direct appli-
cation of the FEM is prohibitively costly. This is because
there are two different scales—the micro-size of the
peaks and troughs of the coating and the macro-size of
the contacting parts of the design. Direct finite element
modelling would require millions of finite elements,
which is highly prohibitive and, furthermore, does not
seem necessary. A natural approach is to simplify the
problem by considering the contacting surfaces to be
smooth, thus introducing some effective parameters that
take into account the interface microgeometry. In this
case, the 3D FE modelling would require only tens of
thousands of finite elements.

The problem is simplified by the homogenisation of
the interface layer, assuming that the stem surface has
equal and periodically arranged micro-peaks on some
portion of the macro-interface. The mathematical analy-
sis provided us with homogenised parameters, the most
important of them being the normal contact stiffness and
the friction force (friction coefficient). These parameters

are not constant over the interface and increase as the
bone grows into the rough surface of the implant and
the effective contact surface increases. Higher values of
these parameters increase the interface strength, decrease
relative micromotions, and provide for enhanced stab-
ility and rapid osseointegration.

One of the problems in designing cementless hip
implants and providing their stability is to reduce relative
micromotions at the interface to an acceptable level of
50–200 µm. It is reported by many researchers (e.g., see
Refs. [4,11,25,26]) that higher micromotions can inhibit
bone ingrowth and lead to a fibrous membrane forming
between the bone and implant, thus resulting in a mech-
anically unstable implant. Too low micromotions
decrease the rate of bone ingrowth. The above two effec-
tive parameters give a tool to control micromotions in
FE analyses.

The normal contact stiffness and the friction coef-
ficient can increase several times during the bone
ingrowing and mineralisation. In essence, the secondary
stability effect arises when bone begins to mineralise.
The value of the effective normal contact stiffness is
mainly determined by the relative contact area, the ratio
of the bone–implant contact area in projection onto the
smooth macro-contact surface of contact to the area of
the macro-contact surface itself; this ratio is initially
about 0.05–0.2 and ultimately about 1. In contrast, the
effective friction coefficient is determined by the average
slope of peaks on the implant coating; it can be as small
as 0.1 initially and can be greater than 1 at late stages
(see also Ref. [27]).

Unfortunately, we do not have reliable experimental
data at the moment about bone ingrowth and mineralis-
ation processes, which would allow us to establish quan-
titative laws of change of the effective normal contact
stiffness and effective friction coefficient. This issue
calls for further investigation.
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