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Abstract

The Korteweg-de Vries and the Korteweg-de Vries-Burgers equa-
tions are considered. Using the travelling wave the general solutions of
these equations are presented. ”New travelling wave solutions” of the
KdV and the KdV-Burgers equations by Wazzan [Wazzan L., Com-
mun. Nonllinear Sci Numer Simulat, 2009; 14: 443 - 50] are analyzed.
We demonstrate that all his solutions are not new and are transformed
to known exact solutions.
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1 Introduction

The Korteweg-de Vries equation takes the form

ut + 6 uux + uxxx = 0. (1.1)

Eq. (1.1) was discovered in 1895 in [2] by Korteweg and de Vries but this
equation was forgotten during a long time. When great Martin D. Kruskal
obtained Eq. (1.1) from the Fermi-Pasta-Ulam model [3], at the beginning he
thought that he found a new nonlinear partial differential equation. He was
glad but he decided to ask specialists from the department of hydrodynamics
about this equation [3] and they told him about the work by Korteweg and
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de Vries. Now Eq. (1.1) is the most known nonlinear partial differential
equation.

Eq. (1.1) is integrable and the Cauchy problem for this equation can be
solved by the inverse scattering transform [4–6]. Certainly there are many
different exact solutions of Eq. (1.1). This equation has soliton, rational and
elliptic solutions [7–11].

Recently Wazzan [1] made an effort to obtain some new exact solutions of
the Korteweg-de Vries equation. He used ”a modified tanh-coth method to
solve the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations”.
In fact, the author [1] considered these equations taking the travelling wave
into account. He found 22 solitary wave solutions of the KdV equation and
he believed that 14 of them were new solutions.

The aim of this paper is to analyze these ”new travelling wave solutions”
of the Korteweg-de Vries (KdV) and the Korteweg-de Vries-Burgers equa-
tions and show that these solutions are not new.

The paper is organized as follows. In section 2 we give the examples
of nonlinear partial differential equations with solutions expressed via the
general solution of the KdV equation. We also present the general solution
of the KdV equation in the travelling wave and show that all other exact
solutions can be found from this general solution. In section 3 we analyze
the solitary wave solutions of the KdV equation by Wazzan and demonstrate
that his solutions can be transformed to more simple forms. We observe
that all solutions from the list by Wazzan can be obtained from the general
solution of the KdV equation in the travelling wave. In section 4 we apply
the simplest equation method to the KdV equation and obtain all solitary
wave solutions from the list by Wazzan as well. In section 5 we give the
general solution of the KdV-Burgers equation using the travelling wave and
obtain all known solitary wave solutions of this equation from the general
solution.

2 General solutions of the Korteweg-de Vries

equation in the travelling wave

Let us present the general solution of the KdV equation. Using the travelling
wave in Eq. (1.1)

u(x, t) = y(ξ), ξ = x− ω t. (2.1)
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and integrating with respect to ξ, we have the nonlinear ordinary differential
equation

yξξ + 3 y2 − ω y + C1 = 0, (2.2)

where C1 is a constant of integration.
Eq. (2.2) is very important and we can observe this equation in studying

of many nonlinear partial differential equations. Let us give some examples
of nonlinear partial differential equations where Eq. (2.2) arises.

Example 1. The Boussinesq equation [10, 11]

utt + α u uxx + α u2
x + β uxxxx = 0, (2.3)

where α and β are constants. Eq. (2.3) was introduced by Boussinesq in 1871
to describe the propagation of long waves in shallow water. The Boussinesq
equation also arises in many other physical applications including nonlinear
lattice waves, vibrations on a nonlinear string and ion sound waves in plasma.

Taking the travelling wave u(x, t) = U(ξ), ξ = x − C0 t into account we
obtain from Eq. (2.3)

C2
0 Uξξ + α U Uξξ + α U2

ξ + β Uξξξξ = 0. (2.4)

Integrating Eq. (2.4) with respect to ξ two times we have the second
order ordinary differential equation in the form

Uξξ +
α

2 β
U2 +

C2
0

β
U + C2 ξ + C3 = 0, (2.5)

where C2 and C3 are constants of integration.
Assuming in Eq. (2.5)

U(ξ) =
6 β

α
y(ξ), (2.6)

we have equation

yξξ + 3 y2 +
C2

0

β
y +

C2 α

6 β
ξ +

C3 α

6 β
= 0. (2.7)

At C2 6= 0 Eq. (2.7) can be reduced to the first Painleve equation [10,11]

wzz = 3 w2 + z. (2.8)

The Cauchy problem for Eq. (2.8) can be solved by the inverse monodromy
transform method [10] but this equation does not have solutions in the form
of classical functions [10–12].
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If we take

C2 = 0, ω = −C2
0

β
, C1 =

C3 α

6 β
, (2.9)

we have Eq. (2.2). So, in the case (2.9) we obtain the exact solutions of the
Boussinesq equation (2.3) expressed via solutions of Eq. (2.2) by the formula
(2.6).

Example 2. The improved Boussinesq equation [13]

utt − uxx − uuxx − u2
x − uxxtt = 0. (2.10)

The solitary wave solutions of Eq. (2.10) were looked for by the Exp-
function method [13]. The formulae by the authors [13] are very cumbersome
and we could not check them.

Let us demonstrate that the solitary wave solutions of this equation can
be found via solutions of Eq. (2.2). Using the travelling wave u(x, t) = U(ξ)
and ξ = x− C0 t we have from Eq. (2.10)

(C2
0 − 1)Uξξ − 1

2
(U2)ξξ − C2

0 Uξξξξ = 0. (2.11)

Integrating Eq. (2.11) with respect to ξ two times we obtain

Uξξ +
1

2 C2
0

U2 − (C2
0 − 1)

C2
0

U +
C2

C2
0

ξ +
C3

C2
0

= 0 (2.12)

Eq. (2.12) at C2 6= 0 can be transformed to the first Painleve equation

(2.8). Assuming U(ξ) = 6 C2
0 y(ξ), ω =

C2
0−1

C2
0

and C1 = C3

6 C4
0

at C2 = 0 we get

Eq. (2.2). The solitary wave solutions of Eq.(2.10) is found by the formula

U(ξ) = 6 C2
0 y(ξ) (2.13)

where y(ξ) is a solution of Eq.(2.2).
Example 3. The symmetric regular long wave equation [14]

utt + uxx + uuxt + ux ut + uxxtt = 0. (2.14)

Xu [14] searched for the solitary wave solutions of Eq. (2.14) using the
Exp-function method. We have not checked solutions by Xu because they
are cumbersome as well but let us show that solutions of Eq.(2.14) can be
found via solutions of Eq. (2.2).

Taking into consideration u(x, t) = U(ξ), where ξ = x−C0 t we find from
Eq. (2.14)

(C2
0 + 1) Uξξ − C0 U Uξξ − C0 U2

ξ + C2
0 Uξξξξ = 0. (2.15)

4



Eq. (2.15) can be integrated with respect to ξ. We obtain

Uξξ − 1

2 C0

U2 +
(C2

0 + 1)

C2
0

U + C2 ξ + C3 = 0, (2.16)

where C2 and C3 are arbitrary constants. Assuming C2 = 0 and using the
variable and the parameters

U = −6 C0 y(ξ), ω = −(1 + C2
0)

C2
0

, C1 = − C3

6 C0

. (2.17)

we have Eq. (2.2). So, the solutions of Eq. (2.15) can be obtained by

U(ξ) = −6 C0 y(ξ), (2.18)

where y(ξ) is a solution of Eq.(2.2).
Example 4. The generalized shallow water wave equation [15]

uxxtt + α ux uxt + β ut uxx − uxt − uxx = 0. (2.19)

The solitary wave solutions of Eq.(2.19) were considered taking the Exp-
function method in [15]. Let us demonstrate that solutions of this equation
can be found via the general solution of Eq.(2.2).

Using the travelling wave u(x, t) = U(ξ) and ξ = x − C0 t we have from
Eq. (2.19) the nonlinear ordinary differential equation in the form

C2
0 Uξξξξ − C0 (α + β)Uξ Uξξ − (1− C0) Uξξ = 0. (2.20)

After integration of Eq. (2.20) with respect to ξ we get the equation

C2
0 Uξξξ − 1

2
C0 (α + β)(Uξ)

2 − (1− C0) Uξ + C2 = 0. (2.21)

From Eq. (2.21) we have

Uξξξ − (α + β)

2 C0

(Uξ)
2 − (1− C0)

C2
0

Uξ +
C2

C2
0

= 0. (2.22)

Taking the new variable and the parameters into account

Uξ = − 6 C0

(α + β)
y(ξ), ω =

(1− C0)

C2
0

, C1 = −C2 (α + β)

6 C3
0

(2.23)

we have Eq. (2.2) again. Solution of Eq. (2.20) can be found by formula

U(ξ) = − 6 C0

(α + β)

∫
y(ξ)dξ, (2.24)
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where y(ξ) is solution of Eq. (2.2).
Example 5. The Klein-Gordon equation with quadratic nonlinearity [16]

utt − α2 uxx + β u− γ u2 = 0. (2.25)

Zhang [16] has found the solitary wave solutions by means of the Exp-function
method. Let us show that these solutions are expressed via solutions of
Eq.(2.2).

Taking the travelling wave u(x, t) = U(ξ) and ξ = x − C0 t again we
obtain from Eq. (2.25)

(C2
0 − α2) Uξξ + β U − γ U2 = 0. (2.26)

At C2
0 6= α2 Eq. (2.26) can be written in the form

Uξξ − γ

(C2
0 − α2)

U2 +
β

(C2
0 − α2)

U = 0. (2.27)

Using new variable and parameter in Eq. (2.27)

U(ξ) = −3 (C2
0 − α2)

γ
y(ξ), ω =

β

(α2 − C2
0)

(2.28)

we obtain all solutions of Eq. (2.26) expressed via solutions of Eq. (2.2).
The list of equations with solutions expressed via solutions of Eq. (2.2)

can be continued but we hope this list is enough to understand that Eq. (2.2)
is important.

Now let us present the general solution of Eq. (2.2). Multiplying Eq.
(2.2) by yξ and integrating this equation with respect to ξ, we have the
nonlinear differential equation in the form

y2
ξ + 2 y3 − ω y2 + 2 C1 y + 2 C4 = 0, (2.29)

where C4 is the second constant of integration.
Assuming that α, β and γ (α ≥ β ≥ γ) are roots of the algebraic

equation

y3 − 1

2
ω y2 + C1 y + C4 = 0, (2.30)

we can write Eq. (2.29) in the form

y2
ξ = −2 (y − α) (y − β) (y − γ). (2.31)
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The general solution of Eq. (2.29) is expressed via the Jacobi elliptic
function [11,17,18]

y(ξ) = β + (α− β) cn2

{√
α− γ

2
ξ, S2

}
, S2 =

α− β

α− γ
, (2.32)

where cn(ξ) is the elliptic cosine. The general solution of equation (2.32)
were first found by Korteweg and de Vries [2].

Comparison of Eq. (2.30) and Eq. (2.31) allows us to find relations
between the roots α, β, γ and the constants ω, C1, C4 in the form

α β γ = −C4, α β + α γ + β γ = C1, α + β + γ =
ω

2
. (2.33)

We have obtained that there are solutions of the Eq.(2.4), Eq.(2.11),
Eq.(2.15), Eq.(2.20) and Eq.(2.26) which are expressed via the general solu-
tion (2.32).

The solitary wave solutions of Eq. (2.2) arise when Eq. (2.30) has two
equal roots. Wazzan took C1 = 0 in Eq.(2.2). Assuming α = β we have two
cases of Eq. (2.31) for the solitary waves

y2
ξ = −2 y2 (y − 1

2
ω), (2.34)

and

y2
ξ = −2

(
y − ω

3

)2

(y +
ω

6
). (2.35)

So, to find the solitary wave solutions of Eq. (2.29) at C1 = 0 we need to
have two known integrals
∫

dy√
2 y2 (y − 1

2
ω)

= −ξ,

∫
dy√

2
(
y − ω

3

)2
(y + ω

6
)

= −ξ. (2.36)

Calculating these integrals we obtain the following solitary waves solutions
of Eq. (2.29) at C1 = 0

y1 = − 2 ω C5 e(ξ
√

ω)

(
1− C5 e(ξ

√
ω)

)2 , ω > 0, (2.37)

y2 = − ω (1 + C2
5)

2 cos2
{

ξ
2

√−ω
} (

1− C5 tan
{

ξ
2

√−ω
})2 , ω < 0, (2.38)
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y3 =
ω

3
− ω (1 + C2

5)

2 cos2
{

ξ
2

√
ω
} (

1− C5 tan
{

ξ
2

√
ω
})2 , ω > 0, (2.39)

y4 =
ω

3
+

2 ω C5 e (ξ
√−ω)

(
1− C5 e(ξ

√−ω)
)2 , ω < 0, (2.40)

where C5 is an arbitrary constant. All solutions by Wazzan can be obtained
from the solutions Eq. (2.37) - Eq. (2.40) if we use different values of the
constant C5 and some additional transformations.

3 ”New travelling wave solutions” of the Korteweg-

de Vries equation by Wazzan

Wazzan in [1] have found 22 solitary waves of Eq. (2.2). He have asserted
that his 14 solutions are ”new travelling wave solutions”. Below we present
these solutions ( the formulae after the first sign of equality) by Wazzan. We
also give these solutions transformed by us (the formulae after the second
sign of equality). We hope these formulae can be useful as the identities
for the hyperbolic and the trigonometric functions. These identities are the
following

u1 =
ω

3
+

2 ω

exp ξ
√−ω − 1

+
2 ω(

exp ξ
√−ω − 1

)2 =

=
ω

3
+

ω

2 sinh2
{

ξ
2

√−ω
} , ω < 0, ξ = x− ω t;

(3.1)

u2 = − 2 ω

exp ξ
√−ω − 1

− 2 ω(
exp ξ

√−ω − 1
)2 =

= − ω

2 sinh2
{

ξ
2

√
ω
} , ω > 0, ξ = x− ω t;

(3.2)

u3 = −ω

6
+

ω

2

(
coth {ξ√−ω} − csch {ξ√−ω})2

=

=
ω

3
− ω

2 cosh2
{

ξ
2

√−ω
} , ω < 0, ξ = x− ω t;

(3.3)
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u4 = −ω

6
− ω

2

(
cot {ξ√ω} − csc {ξ√ω})2

=

=
ω

3
− ω

2 cos2
{

ξ
2

√
ω
} , ω > 0, ξ = x− ω t;

(3.4)

u5 = −ω

6
− ω

2

(
tan {ξ√ω} − sec {ξ√ω})2

=

=
ω

3
− ω(

cos
{

ξ
2

√
ω
}

+ sin
{

ξ
2

√
ω
})2 , ω > 0, ξ = x− ω t;

(3.5)

u6 =
ω

cosh {ξ√ω}+ 1
=

=
ω

2 cosh2
{

ξ
2

√
ω
} , ω > 0, ξ = x− ω t;

(3.6)

u7 =
ω

cos {ξ√−ω}+ 1
=

=
ω

2 cos2
{

ξ
2

√−ω
} , ω < 0, ξ = x− ω t;

(3.7)

u8 =
ω

2
+

ω

2

(
tan {ξ√−ω} − sec {ξ√−ω})2

=

=
ω(

cos
{

ξ
2

√−ω
}

+ sin
{

ξ
2

√−ω
})2 , ω < 0, ξ = x− ω t;

(3.8)

u9 = −ω

6
+

ω

2

(
coth {ξ√−ω} − csch {ξ√−ω})−2

=

=
ω

3
+

ω

2 sinh2
{

ξ
2

√−ω
} , ω < 0, ξ = x− ω t;

(3.9)
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u10 = −ω

6
− ω

2

(
cot {ξ√ω} − csc {ξ√ω})−2

=

=
ω

3
− ω

2 sin2
{

ξ
2

√
ω
} , ω > 0, ξ = x− ω t;

(3.10)

u11 = −ω

6
− ω

2

(
tan {ξ√ω} − sec {ξ√ω})−2

=

=
ω

3
− ω(

cos
{

ξ
2

√
ω
}− sin

{
ξ
2

√
ω
})2 , ω > 0, ξ = x− ω t;

(3.11)

u12 = − ω

cosh {ξ√ω} − 1
=

= − ω

2 sinh2
{

ξ
2

√
ω
} , ω > 0, ξ = x− ω t;

(3.12)

u13 = − ω

cosh {ξ√−ω} − 1
=

=
ω

2 sin2
{

ξ
2

√−ω
} , ω < 0, ξ = x− ω t;

(3.13)

u14 =
ω

2
+

ω

2

(
tan {ξ√ω} − sec {ξ√ω})−2

=

=
ω(

cos
{

ξ
2

√−ω
}

+ sin
(

ξ
2

√−ω
))2 , ω < 0, ξ = x− ω t;

(3.14)

u15 = −ω

6

(
1− 3 coth2

{
ξ

2

√−ω

})
=

=
ω

3
+

ω

2 sinh2
{

ξ
2

√−ω
} , ω < 0, ξ = x− ω t;

(3.15)
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u16 = −ω

6

(
1− 3 tanh2

{
ξ

2

√−ω

})
=

=
ω

3
− ω

2 cosh2
{

ξ
2

√−ω
} , ω < 0, ξ = x− ω t;

(3.16)

u17 = −ω

6

(
1 + 3 cot2

{
ξ

2

√
ω

})
=

=
ω

3
− ω

2 sin2
{

ξ
2

√
ω
} , ω > 0, ξ = x− ω t;

(3.17)

u18 = −ω

6

(
1 + 3 tan2

{
ξ

2

√
ω

})
=

=
ω

3
− ω

2 cos2
{

ξ
2

√
ωz

} , ω > 0, ξ = x− ω t;

(3.18)

u19 = −ω

2

(
csch2

{
ξ

2

√
ω

})
=

= − ω

2 sinh2
{

ξ
2

√
ω
} , ω > 0, ξ = x− ω t;

(3.19)

u20 =
ω

2

(
sech2

{
ξ

2

√
ω

})
=

=
ω

2 cosh2
{

ξ
2

√
ω
} , ω > 0, ξ = x− ω t;

(3.20)

u21 =
ω

2

(
csc2

{
ξ

2

√−ω

})
=

=
ω

2 sin2
{

ξ
2

√−ω
} , ω < 0, ξ = x− ω t;

(3.21)
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u22 =
ω

2

(
sec2

{
ξ

2

√−ω

})
=

=
ω

2 cos2
{

ξ
2

√−ω
} , ω < 0, ξ = x− ω t.

(3.22)

Studying the formulae (3.1) - (3.22) we can observe that some of these
solutions coincide: u9 = u1, u12 = u2, u14 = u8, u15 = u1, u16 = u3, u17 = u10,
u18 = u4, u19 = u2, u20 = u6, u21 = u13 and u22 = u7. The solutions u1, u2,
u3, u4, u5, u6, u7, u8, u10, u11 and u13 are differed but these solutions can
be found from the solutions (2.37) - (2.40) if we use different values of the
constant C5. Assuming C5 = 1 in (2.40), C5 = 1 in (2.37), C5 = −1 in (2.40),
C5 = 0 and C5 = −1 in (2.39), C5 = −1 in (2.37), C5 = 0 and C5 = −1 in
(2.38), C5 →∞ and C5 = 1 in (2.40), C5 →∞ in (2.39) we accordingly have
the solutions u1, u2, u3, u4, u5, u6, u7, u8, u10, u11 and u13.

The results of our analysis are the following. Wazzan [1] did not find new
solitary travelling wave solutions of the KdV equation. His statement that
his solutions u1, u2, ..., u14 are new is not correct.

4 Application of the simplest equation method

to the Korteweg-de Vries equation

In [1] Wazzan used the complicated variant of the simplest equation method
to look for the solitary wave solutions of nonlinear differential equations. He
have looked for solutions of the KdV equation using the transformation in
the form

y(ξ) = a0 + a1 Y + a2 Y 2 + b1 Y 1 + b2 Y −2, (4.1)

where Y ≡ Y (ξ) satisfies the Riccati equation

Yξ = A + B Y + C Y 2. (4.2)

Sometimes using (4.1) and Eq. (4.2) we can find new solutions of nonlinear
differential equations. This fact depends on the behaviour of the poles of
solutions for the nonlinear differential equations. However the Korteweg-de
Vries and the Korteweg-de Vries-Burgers equations are not these cases.

When we started the study of paper [1] we were very surprised why author
[1] had used formula (4.1) but he did not take more simple formula [19–23]

y(ξ) = a0 + a1 Y (ξ) + a2 Y (ξ)2. (4.3)
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Let us demonstrate that taking into account only transformation (4.3),
where Y (ξ) satisfies the Riccati equation in the form

Yξ = −Y 2 + β, (4.4)

we can find solutions (2.37) - (2.40) and consequently all solutions which
were found by Wazzan.

Taking Y =
ψξ

ψ
into account we have from (4.3)

y(ξ) = a0 + a1
ψξ

ψ
+ a2

(
ψξ

ψ

)2

. (4.5)

In this case Eq. (4.4) reduced to the second order linear equation

ψξξ − β ψ = 0. (4.6)

Substituting (4.3) (or (4.5)) into Eq. (2.2) and taking Eq. (4.4) (or
(4.6)) into account we have the coefficients a0, a1, a2 and the parameter β
as following

a2 = −2, a1 = 0, a0 =
4 β

3
+

ω

6
, β1,2 = ∓ ω

4
. (4.7)

Using these coefficients and the value of the parameter β we have two
solutions of Eq. (2.2) at ω > 0 in the form

U1 =
ω

3
− ω (C1

2 + C2
2)

2
(
C1 sin

(
ξ
2

√
ω
)

+ C2 cos
(

ξ
2

√
ω
))2 , ω > 0, (4.8)

U2 =
2 ω C1C2(

C1e
ξ
2

√
ω + C2e

− ξ
2

√
ω
)2 , ω > 0. (4.9)

In the case ω < 0 we have the following values of the coefficients a0, a1,
a2 and the parameter β

a2 = −2, a1 = 0, a0 =
4 β

3
+

ω

6
, β1,2 = ± ω

4
. (4.10)

Taking (4.10) and (4.6) we have two other solutions of Eq. (2.2)

U3 =
ω C1

2 + ω C2
2

2
(
C1 sin

(
ξ
2

√−ω
)

+ C2 cos
(

ξ
2

√−ω
))2 , ω < 0, (4.11)
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U4 =
ω

3
− 2 ω C1C2(

C1e
ξ
2

√−ω + C2e
− ξ

2

√−ω
)2 , ω < 0. (4.12)

Assuming C2 = −C5 C1 in (4.9), (4.10), (4.11) and (4.12) we have U1 = y3,
U2 = y1, U3 = y2 and U4 = y4 and consequently we obtain the solutions (2.37)
- (2.40). We get all ”new travelling wave solutions” by Wazzan using more
simple method. The results of the application of the formula (4.3) (or (4.5))
show that a modified tanh-coth method did not give any new travelling wave
solutions for the KdV equation.

5 Exact solutions of the KdV-Burgers equa-

tion

Consider the Korteweg-de Vries-Burgers equation

ut + uux + β uxxx − α uxx = 0 (5.1)

Using the travelling wave u(x, t) = y(ξ), ξ = x− ω t we have form Eq. (5.1)
the nonlinear ordinary differential equation

β yξξξ − α yξξ + y yξ − ω yξ = 0, (5.2)

Integrating Eq.(5.2) with respect to ξ we obtain the second-order equation

β yξξ − α yξ +
1

2
y2 − ω y + C6 = 0, (5.3)

where C6 is a constant of integration.
We can meet Eq. (5.3) in studying of other mathematical models. For a

example if we consider the Fisher equation [24–27]

ut = uxx + γ u (1− δ u). (5.4)

then using the travelling wave u(x, t) = U(ξ) and ξ = x − C0 t we have the
equation from Eq. (5.4)

Uξξ + C0 Uξ − γ δ U2 + γ U = 0. (5.5)

Comparison of Eq. (5.3) and Eq. (5.5) points out that these equations
coincide at β = 1, α = −C0, γ = −ω, δ = − 1

2 ω
and C6 = 0. Therefore

solutions of Eq. (5.3) and Eq. (5.5) are similar.
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Let us look for solution of Eq.(5.3) in the form

y(ξ) = b− v(ξ), (5.6)

where b is constant which will be found. Substituting (5.6) into (5.3) we
have equation

β vξξ − α vξ − 1

2
v2 + (b− ω) v. + b ω − b2

2
− C6 = 0 (5.7)

Assuming in (5.7)

C6 = b ω − b2

2
(5.8)

we get equation

vξξ − α

β
vξ − 1

2 β
v2 +

(b− ω)

β
v. (5.9)

Let us search for solution of Eq.(5.9) using the new variable

v(ξ) = e−m ξ W (ξ), (5.10)

where m is unknown parameter which will be found.
Taking (5.10) into account we have

vξ = (Wξ −mW ) e−m ξ, vξξ = (m2 W − 2 mWξ + Wξξ) e−m ξ. (5.11)

Substituting (5.10) and (5.11) into Eq. (5.9) we obtain the equation

Wξξ −
(

2m +
α

β

)
Wξ +

(
m2 +

mα

β
+

b− ω

β

)
W − 1

2β
e−m ξ W 2 = 0.

(5.12)

Suppose

W (ξ) = w(z), z = ϕ(ξ), (5.13)

we have

Wξ = wz
dz

dξ
, Wξξ = wzz

(
dz

dξ

)2

+ wz
d2z

dξ2
. (5.14)
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Substituting (5.13) and (5.14) into Eq. (5.12) we obtain the equation

wzz

(
dz

dξ

)2

− 1

2 β
e−m ξ w2 + wz

(
d2z

dξ2
− (2 m +

α

β
)
dz

dξ

)
+

+

(
m2 +

α

β
+

b− ω

β

)
w = 0.

(5.15)

Assuming in Eq.(5.15)

(
dz

dξ

)2

=
1

12 β
e−m ξ, (5.16)

d2z

dξ2
=

(
2 m +

α

β

)
dz

dξ
, (5.17)

m2 + m
α

β
+

b− ω

β
= 0, (5.18)

we have equation

wzz = 6 w2. (5.19)

Multiplying Eq.(5.19) by wz and integrating with respect to z, we have

w2
z = 4 w2 − C7, (5.20)

where C7 is an arbitrary constant. The solution of Eq.(5.20) is found by
means of integral
∫

dw√
4 w3 − C7

= z (5.21)

and is expressed via the Weierstrass function

w(z) = ℘(z + C8, 0, C7) (5.22)

with invariants g2 = 0 and g3 = C7. (C8 is an arbitrary constant).
From Eq. (5.16) we find z(ξ) in the form

z(ξ) = C9 − 1

m
√

3 β
e−m ξ/2, (5.23)
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where C9 is arbitrary constant. Using z(ξ) we obtain from Eqs. (5.17) and
(5.18) values m and b

m = − 2α

5 β
, b = ω +

6 α2

25 β
. (5.24)

Using this value of b we obtain C6 from Eq.(5.8) in the form

C6 =
ω2

2
− 18 α4

625 β2
. (5.25)

Taking (5.6), (5.10), (5.19), (5.23) and (5.25) into account we have the
general solution of Eq. (5.2) in the form

y(ξ) = ωk +
6α2

25β
− exp

{
2αξ

5 β

}
℘

(
C8 − 5β

α
√

12β
exp

{
α ξ

5 β

}
, 0, C7

)
,

ξ = x− ωk t, (k = 1, 2), ω1,2 =

√
2 C6 +

36 α4

625 β2
.

(5.26)

We have not seen the exact solution (5.26) of the KdV-Burgers equation in
the literature but we cannot tell that this solution is new. We applied the
well known approach [28] and we are sure that some people could find this
solution many years ago.

The solitary travelling wave solutions of the KdV-Burgers equation can
be obtained from solution (5.26) in the case C7 = 0. As this takes place the
solution of Eq. (5.20) takes the form

w(z) =
1

(C8 ± z)2
(5.27)

Using the solutions (5.26) and (5.27) we obtain the solitary travelling wave
solutions in the form

y(ξ) = ω +
6 α2

25 β
−

exp
{

2αξ
5 β

}

(
C8 ± 5 β

α
√

12 β
exp

{
α ξ
5 β

})2 . (5.28)

The solution (5.28) can be transformed to the usual form

y(ξ) = ω +
6 α2

25 β
− 12 α2

25 β
(
1± C8 exp

{
−α ξ

5 β

})2 . (5.29)
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At C6 = 0 we have for the solutions (5.26) and (5.29) ω and ξ in the form

ω1,2 = ± 6 α2

25 β
, ξ = x∓ 6 α2

25 β
t. (5.30)

The solitary wave solutions (5.29) were first found twenty years ago in [29]
by means of the singular manifold method [30–37]. The solution (5.29) can
also be obtained by the simplest equation method [19–22], by the tanh-
function method [38–41] and so on. The solitary wave solutions (5.29) of the
KdV-Burgers equation (5.1) were obtained many times [42–49]. Certainly
new solutions of this equation were not found. Any method cannot give new
exact solutions to the KdV-Burgers equation.

6 Conclusion

Let us shortly formulate the results of our paper. We have considered two
famous nonlinear evolution equations: the KdV and the KdV-Burgers equa-
tions. We have demonstrated that using the travelling wave one can find
the general solutions of these equations. However Wazzan using a modified
tanh-coth method obtained [1] ”new solitary wave solutions” of the KdV and
the KdV-Burgers equations. We have illustrated that the exact solutions by
Wazzan can be transformed to more simple forms and his solutions coincide
with the known solutions of the KdV and the KdV-Burgers equations. We
have confirmed that using the travelling wave nobody can find new exact
solutions of the KdV and the KdV-Burgers equations by any method.
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