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Abstract

We analyze the paper by Wazwaz and Mehanna [Wazwaz A.M., Mehanna
M.S., A variety of exact travelling wave solutions for the (2+1) – dimen-
sional Boiti – Leon – Pempinelli equation, Appl. Math. Comp. 217 (2010)
1484 – 1490]. The authors claim that they have found exact solutions of
the (2+1) – dimensional Boiti – Leon – Pempinelli equation using the
tanh – coth method and the Exp – function method. We demonstrate
that two of their solutions are incorrect. All the others can be simplified
and they are the cases of the well-known solution. Wazwaz and Mehanna
made a number of typical mistakes in finding exact solutions of nonlinear
differential equations. Taking the results of this paper we introduce the
definition of redundant exact solutions for the nonlinear ordinary differ-
ential equations.

1 Introduction

Construction of exact solutions for nonlinear differential equations is an impor-
tant part of nonlinear science and we can see significant progress in this area in
the last years [1–6]. Many of these achievements were reached using symbolic
calculations by means of such software as MAPLE and MATHEMATICA. How-
ever there are some shortcomings of this approach. Of course, computers can
help investigators to do calculating routine but they cannot completely replace
the investigators since computers do not know mathematics. Total reliance
on computers without knowledge of mathematics can lead to various errors in
finding exact solutions of nonlinear differential equations.

We have seen many papers in different journals with such examples but for
this note we selected one of them. Our aim is to demonstrate the mistakes
of [7] which were made in finding exact solutions for the system of nonlinear
differential equations.

In the paper [7] Wazwaz and Mehanna considered the system of equations

uty = (u2 − ux)xy + 2 vxxx, (1)

vt = vxx + 2 u vx. (2)

To look for exact solutions of this system the authors used the traveling wave
solutions u(x, y, t) = u(ξ), v(x, y, t) = v(ξ), ξ = µ(x + y − c t). Wazwaz and
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Mehanna have looked for solutions of the following system of nonlinear ordinary
differential equations

−c u
′′

= (u2)
′′ − µu

′′′
+ 2µ v

′′′
, (3)

−c v
′
= µ v

′′
+ 2 u v

′
, (4)

where
u
′
=

du

dξ
, v

′
=

d v

dξ

and so on.
The authors wrote in [7]: ”integrating the first equation twice with respect

to ξ gives”

v
′
=

1
2

u
′ − u2 + c u

2 µ
. (5)

In fact, after integration Eq.(3) twice with respect to ξ we obtain

v
′
=

1
2

u
′ − u2 + c u

2 µ
+ A1 ξ + A2, (6)

where A1 and A2 are arbitrary constants. Wazwaz and Mehanna omitted these
constants of integration and reduced a class of exact solutions for Eqs.(3)–(4).
Thus we can see that the authors made the third error from the list of errors by
Kudryashov [8] while finding exact solutions of nonlinear differential equations.

Substituting (5) into (4) Wazwaz and Mehanna obtained the equation in the
form

µ2 u
′′ − 2 u3 − 3 c u2 − c2 u = 0. (7)

They investigated this second-order ordinary differential equation using the
tanh-coth function and the Exp-function methods for finding exact solutions.

The outline of this note is the following: in Section 2 we give the general
solution of (7). In Section 3 we analyze the application of the tanh - coth method
for finding exact solutions of Eq.(7) and show that all the solutions presented by
Wazwaz and Mehanna can be reduced to a single one. In Section 4 we consider
the application of the Exp - function method to Eq.(7) and illustrate that two of
the found solutions are incorrect and all the others can be simplified. In Section
5 we introduce a definition of the redundant exact solutions for a nonlinear
ordinary differential equation and discuss some examples.

2 General solution of Eq.(7)

Let us show that the general solution of Eq. (7) can be expressed via the Jacobi
elliptic function and consequently all the other exact solutions can be found
from this general solution.

Multiplying Eq.(7) on u
′
and integrating Eq. (7) once with respect to ξ we

have
µ2 (u

′
)2 = u4 + 2 c u3 + c2 u2 − α, (8)

where α is an integration constant.
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Eq.(8) has the following general solution [5]

u =

√
c2 − 4

√
α

2
sn

{
1

2 µ

√
c2 + 4

√
α(ξ − ξ0),

√
c2 − 4

√
α

c2 + 4
√

α

}
− c

2
, (9)

where ξ0 is an arbitrary constant.
In the case α = 0 from solution (9) we have

u = − c

1 + C1 e±
c
µ η

, (10)

where C1 is an arbitrary constant.
Note that solution (10) can be presented in the form

u =
c

2

(
± tanh

{
c

2 µ
(ξ − ξ0)

}
− 1

)
. (11)

In the case α = c4

16 solution of Eq. (7) has the following form

u = − 2 c2 C2 e
∓
√
−c2√
2µ

η

C2
2 e

∓ 2
√
−c2√
2µ

η + 2 c2

− c

2
. (12)

All the exact solutions of Eq.(7) can be obtained from solution (9). However
Wazwaz and Mehanna have looked for the exact solutions of Eq.(7) using the
tanh – coth and the Exp – function methods.

3 Application of the tanh-coth method by Wazwaz
and Mehanna to Eq.(7)

Let us show explicitly that all solutions of Eq. (7) found by Wazwaz and
Mehanna by means of the tanh – coth method can be reduced to solution (11)
and the authors of Ref. [7] have made the second error from the Kudryashov
list of typical errors [8].

At the beginning Wazwaz and Mehanna applied the tanh – coth method to
obtain solutions of Eq.(7). They have found the following three solutions

u1(ξ) = − c

2
± c

2
tanh ξ, (13)

u2(ξ) = − c

2
± c

2
coth ξ, (14)

u3(ξ) = − c

2
± c

4
tanh ξ ± c

4
coth ξ. (15)

Let us obtain solutions (13)-(15) from solution (11). In the case of µ = ± c
2

and ξ0 = 0 from (11) we have solution (13).
Let us note that following relations take place

tanh
(

ξ − i π

2

)
= coth ξ, (16)

3



tanh
(

ξ − i π

2

)
=

1
2

(
tanh

ξ

2
+ coth

ξ

2

)
. (17)

Solutions (14) and (15) can be easily found using equalities (16) and (17)
from solution (11) with ξ0 = i π

2 and µ = ± c
2 and µ = ± c

4 respectively.
Thus solutions (13)-(15) are partial cases of solution (11) of Eq.(7). There-

fore the authors of Ref. [7] also made the fourth mistake from the Kudryashov
list of errors in finding exact solutions of nonlinear differential equations.

4 Application of the Exp – function method by
Wazwaz and Mehanna to Eq.(7)

Using the Exp – function method Wazwaz and Mehanna also found 16 exact
solutions of Eq.(7). These exact solutions will be given later after the first sign
of equality. Afterwards we will present our transformations of these solutions
to (10) and (12) to simple forms.

Exact solutions u1 and u3 do not satisfy Eq.(7). Actually, they are wrong.
Let us demonstrate that all the other solutions coincide with solutions (10) and
(12). It is easy to see that the solutions u2, u4, u5, u8, u11 and u13 have 2
arbitrary constants, but these solutions are not reduced to the general solution.
The solutions u1, u3, u6, u9, u12, u14 and u15 contain 3 arbitrary constants.
This situation is not possible for a second-order ordinary differential equation.
The solutions u7, u10 and u16 contain 4 arbitrary constants. The authors of
Ref. [7] should ask each other: how can it be possible?

We can easily see that Eq.(7) is the equation of the second order. As a
consequence we can obtain only two arbitrary constants for the general solution.
For a special case we can have less than two arbitrary constants. It is amusing
that the authors of Ref. [7] do not know this fact. So they made the seventh
error from the list of errors [8] as well.

Now let us illustrate that the solutions by Wazwaz and Mehanna can be
simplified to two solutions (10) and (12).

The solution u1 is wrong but if we take e−η in place of eη in the last expression
of denominator we can transform the solution u1

u1(η) =
a0 − cb−1 e−η

−a0 (a0+b0 c)eη

c2b−1
+ b0 + b−1 e−η

=

= − c (a0 − b−1 c e−η)
(1 + b0 c+a0

b−1 c eη)(a0 − b−1 c e−η)
= − c

1 + b0 c+a0
b−1 c eη

= − c

1 + C1 eη
,

(18)

where C1 = b0 c+a0
b−1 c is an arbitrary constant. So, we can see that the solution u1

is essentially simplified. Moreover we note that this solution is the partial case
of solution (10) at µ = ±c.

The solution u2 can be simplified and is the partial case of solution (10) at
µ = ∓ c

2 . In this case we have

u2(η) = − b1 ceη

b1 eη + b−1 e−η
= − c

1 + C1 e−2 η
, (19)
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where C1 = b−1
b1

is an arbitrary constant.
The solution u3 by Wazwaz and Mehanna do not satisfy (7) but if we sub-

stitute b−1 for b1 we will have

u3(η) =
−b1 ceη + a0

b1 eη + b0 − a0 (a0+b0 c)e−η

c2b1

=

= − c(a0 − b1 c eη)
(1 + a0+b0

b1 c e−η)(a0 − b1 c eη)
= − c

1 + a0+b0
b1 c e−η

= − c

1 + C1 e− η
,

(20)

where C1 = a0+b0
b1 c is an arbitrary constant. In this case we have that u3 is the

partial case of solution (10) at µ = ∓c again.
The solution u4 can be simplified by transformations

u4(η) =
− a0

2eη

4b−1 c + a0 − cb−1
2 e−η

a2
0e

η

2c2b−1
+ b−1 e−η

= − 2 c2 C2 eη

2 c2 + C2
2 e2 η

− c

2
, (21)

where C2 = a0
b−1

is an arbitrary constant. We see that (21) is the partial case of
solution (12).

The solution u5 is the partial case of (10) at µ = ∓ c
3 . It follows from

equalities

u5(η) = − b2 ce2 η

b2 e2 η + b−1 e−η
= − c

1 + C1 e−3 η
, (22)

where C1 = b−1
b2

is an arbitrary constant.
We observe that u6 is the partial case of solution (10) at µ = ∓ c

2 if we take
into consideration the following transformations

u6(η) =
−b2 ce2 η − cb2 b−1 eη

b0

b2 e2 η + b2 b−1 eη

b0
+ b0 + b−1 e−η

=

= −
c b2
b0

e2 η(b0 + b−1e−η)

(b0 + b−1e−η)(1 + b2
b0

e2 η)
= −

c b2
b0

e2 η

1 + b2
b0

e2 η
= − c

1 + b0
b2

e−2 η
=

= − c

1 + C1 e−2 η
,

(23)

where C1 = b0
b2

is an arbitrary constant.
We obtain that u7 is the partial case of solution (10) at µ = ∓c using the
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following transformations

u7(η) =
−b2 ce2 η + a1 eη + a0

b2 e2 η + b1 eη − a1 b1 c+a0 b2 c+a12

b2 c2 − a0 (a1+b1 c)e−η

b2 c2

=

=
−b2 c2 (b2 c eη − a1 − a0 e−η) eη

(b1 c + a1 + b2 c eη) (b2 c eη − a1 − a0 e−η)
=

= − c

1 + b1 c+a1
b2 c e−η

= − c

1 + C1 e−η
,

(24)

where C1 = b1 c+a1
b2 c is an arbitrary constant.

We can see that the solution u8 is the partial case of (10) at µ = ± c
3 if we

reduce u8 to the form

u8(η) = − cb−1 e−η

b2 e2 η + b−1 e−η
= − c

1 + b2
b−1

e3 η
= − c

1 + C1 e3 η
, (25)

where C1 = b2
b−1

is an arbitrary constant.
The solution u9 can be simplified as well. As a result we can see that u9 is

the partial case of solution (10) at µ = ± c
2 by using transformations

u9(η) =
−b0 c− cb−1 e−η

b2 e2 η + b2 b−1 eη

b0
+ b0 + b−1 e−η

= − c(b0 + b−1 e−η)(
1 + b2

b0
e2η

)
(b0 + b−1 e−η)

=

= − c

1 + b2
b0

e2η
= − c

1 + C1 e2 η
,

(26)
where C1 = b2

b0
is an arbitrary constant.

The solution u10 can be simplified by performing the transformations

u10(η) =
a1 eη − c(cb2 b−1+b0 a1)

a1
− cb−1 e−η

b2 e2 η − (c3b22b−1+a1 b0 b2 c2+a13)eη

ca12 + b0 + b−1 e−η
=

=
c
(
a3
1 eη − c a1 (c b2 b−1 + b0 a1)− c a2

1 b−1 e−η
)

(
b2c
a1

eη − 1
)

(a3
1 eη − c a1 (c b2 b−1 + b0 a1)− c a2

1 b−1 e−η)
=

= − c

1− b2 c
a1

eη
= − c

1 + C1 eη
,

(27)

where C1 = − b2 c
a1

is an arbitrary constant. We can see that the solution u10 is
the partial case of solution (10) at µ = ±c.

It is easy to see that the solution u11 is the partial case of solution (10) at
µ = ∓c

u11(η) = − cb−1 e−η

b−1 e−η + b−2 e−2 η
= − c

1 + b−2
b−1

e−η
= − c

1 + C1e−η
, (28)
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where C1 = b−2
b−1

is an arbitrary constant.
Taking into account the following transformations for u12

u12(η) =
−b0 c + a−1 e−η

b0 + b−1 e−η − a−1 (b−1 c+a−1)e−2η

c2b0

=

= − c(b0 − a−1
c e−η)

(b0 − a−1
c e−η)(1 + c b−1+a−1

c b0
e−η)

= − c

1 + c b−1+a−1
c b0

e−η
=

= − c

1 + C1 e−η
,

(29)

where C1 = c b−1+a−1
c b0

is an arbitrary constant, we note that u12 is partial case
of solution (10) at µ = ∓c.

We can simplify u13 using the transformations

u13(η) =
−c b−2 e−2 η

b0 + b−2 e−2 η
= − c

1 + b0
b−2

e 2 η
= − c

1 + C1 e 2 η
, (30)

where C1 = b0
b−2

is an arbitrary constant. We can see that u13 is the partial case
of (10) at µ = ± c

2 .
We obtain that the solution u14 is the partial case of solution (10) at µ = ±c

using the following transformations

u14(η) =
a−1 e−η − cb−2 e−2 η

−a−1 (b−1 c+a−1)
c2b−2

+ b−1 e−η + b−2 e−2 η
,=

= − c e−η
(a−1

c − b−2 e−η
)

(
b−1
b−2

+ a−1
c b−2

+ e−η
) (a−1

c − b−2 e−η
) = − c e−η

(
b−1
b−2

+ a−1
c b−2

+ e−η
) =

= − c

1 +
(

b−1
b−2

+ a−1
c b−2

)
eη

= − c

1 + C1 eη
,

(31)

where C1 =
(

b−1
b−2

+ a−1
c b−2

)
is an arbitrary constant.

We have that the solution u15 is the partial case of (10) at µ = ± c
2 by taking

into account the following transformations

u15(η) =
−c b−1 e−η − cb−2 e−2 η

b1 eη + b1 b−2
b−1

+ b−1e−η + b−2e−2 η
=

= − c e−η (b−1 + b−2 e−η)(
b1

b−1
eη + e−η

)
(b−1 + b−2e−η)

= − c e−η

b1
b−1

eη + e−η
=

= − c

1 + C1 e2 η
,

(32)
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where C1 = b1
b−1

is an arbitrary constant.
We obtain that the solution u16 is the partial case of solution (10) at µ = ±c

using the following transformations

u16(η) =
a0 − c(a0 b−1+cb1 b−2)e

−η

a0
− c b−2 e−2 η

b1eη − a0 b1 c2b−1+b21c3b−2+a3
0

c a2
0

+ b−1 e−η + b−2e−2 η
=

=
c

(
a3
0 − c a0 (a0 b−1 + c b1b−2) e−η − c a2

0 b−2e−2 η
)

(
b1c
a0

eη − 1
)

(a3
0 − c a0 (a0 b−1 + c b1 b−2)e−η − c a2

0 b−2e−2 η)
=

=
c

b1 c
a0

e η − 1
= − c

1 + C1 e η
,

(33)

where C1 = − b1 c
a0

is an arbitrary constant.
So, we can see that 15 out of 16 solutions by Wazwaz and Mehanna can be

simplified and these simplified forms are partial cases of solution (10) at µ = ∓c;
µ = ±c, µ = ∓ c

2 ; µ = ± c
2 ; µ = ∓ c

3 ; µ = ± c
3 . So, the authors of [7] also made

the fifth error from the list of errors of Ref. [8].
We would like to ask the authors: why did they find only 16 solutions at

these values µ? It is obvious that using other values of µ they could find 100,
1000 or even more solutions. They can fill out all pages of the journal by these
”solutions” of Eq.(7) at various values of the parameter µ.

There is also another good question. Why did the authors use only multi-
pliers with 2 monomials in the solutions u1, u3, u6, u9, u12, u14, u15, with 3
monomials in the solution u7, with 4 monomials in the solutions u10 and u16?
They could obtain much more solutions for Eq.(7) if they used 5, 6 and more
monomials. Many other solutions could be made up and presented as some
”new solutions” of Eq.(7).

5 Redundant exact solutions of nonlinear differ-
ential equations

In section 4 we analyzed the exact solutions of Eq.(7) suggested in Ref. [7]. We
have observed that all these solutions can be simplified to simple forms and
all these solutions are partial cases of the well known general solution (9). We
believe that these exact solutions by Wazwaz and Mehanna make no sense.

We can observe different types of such solutions. Many examples of these
solutions were given in Refs. [8–13].

Suppose that we have a nonlinear differential equation in the form

E(w,wz, . . . , z) = 0. (34)

Assume that there is an exact solution of this equation in the form of a fraction

w =
ϕ(z)
ψ(z)

. (35)
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Let us also suppose that the functions ϕ(z) and ψ(z) can be presented in the
form: ϕ(z) = ϕ1(z) f(z) and ψ(z) = ψ1(z) f(z). In this case exact solution (35)
can be reduced to the form

w =
ϕ1(z) f(z)
ψ1(z) f(z)

=
ϕ1(z)
ψ1(z)

. (36)

We can see that the exact solution (35) can be simplified. Thus the exact
solution (35) is the redundant exact solution because it can be reduced to a
simpler form. Let us introduce the following definition of an redundant exact
solution.

Definition. The exact solution (35) is called the redundant exact solution
of the differential equation (34) if we can reduce this exact solution to the a
simpler form with a necessary amount of arbitrary constants.

Let us explain what we mean when we say about a necessary amount of
arbitrary constants. We mean that if we study the ordinary differential equation
of the N – th order we can have the general solution with N arbitrary constants.
As special cases we can obtain solution with less amount of arbitrary constants.
For the second order Eq.(7) we have the general solution with two arbitrary
constants.

However if we obtain exact solutions without arbitrary constants we can
also have redundant exact solutions in many cases. From the formal point of
view exact solutions (13), (14) and (15) are exact solutions of Eq.(7) but these
solutions are redundant solutions as well. Due to arbitrary constant in solution
(11) we can find infinite quantity of exact solutions of Eq.(7). Unfortunately
many popular methods of finding exact solutions can often lead to obtaining
some redundant exact solutions.

As we can see from the previous section, all the solutions of Eq.(7) obtained
by Wazwaz and Mehanna using the Exp – function method are the redundant
exact solutions. It is clear that we can obtain a lot of solutions of nonlinear
differential equation if we multiple nominator and denominator on any expres-
sion but these solutions can be simplified. All these solutions are not of no
interest. Moreover, the authors of [7] do not take care of paper usage and set a
bad example for many young people.

It was shown in Ref. [9] that the application of the Exp-function method in
finding exact solutions is not effective and can lead to redundant solutions. The
work of Wazwaz and Mehanna illustrates all disadvantages of the Exp-function
method. First, Wazwaz and Mehanna obtained two incorrect solutions. Second,
the exact solutions from Ref. [7] contain superfluous arbitrary constants. Third,
these exact solutions have cumbersome form and, as we have shown above, can
be simplified. And the last point is that all the correct exact solutions by
Wazwaz and Mehanna can be simplified and they are partial cases of the well-
known exact solution. So we must say to the scientific community again: be
careful with the Exp – function method.

In conclusion, we strongly recommend authors to look through the papers [8–
20] carefully before they start looking for exact solutions of nonlinear differential
equations.

9



References

[1] Kudryashov N.A., Exact soliton solutions of the generalized evolution equa-
tion of wave dynamics, Journal of Applied Mathematics and Mechanics,
1988; 52(3):361 - 5.

[2] Kudryashov N.A., Exact solutions of the generalized Kuramoto - Sivashin-
sky equation, Phys Lett A 147, 1990; 147:287 – 91.

[3] Parkes E.J., Duffy B.R., An automated tanh-function method for finding
solitary wave solutions to non-linear evolution equations, Comput. Phys.
Commun., 1996;98:288 - 300

[4] Fan E, Extended tanh-function method and its applications to nonlinear
equations, Phys. Letters A, 2000;277: 212 – 218.

[5] Polyanin A.D., Zaitsev V.F., A.I. Zhyrov A.I. Methods of nonlinear equa-
tions of mathematical physics and mechanics, Fizmatlit, Moscow, 2005,
260

[6] Kudryashov N.A., Simplest equation method to look for exact solutions of
nonlinear differential equations, Chaos, Solitons and Fractals, 2005,24:1217
– 31

[7] Wazwaz A.M., Mehanna M.S., A variety of exact travelling wave solutions
for the (2+1) – dimensional Boiti – Leon – Pempinelli equation, Appl.
Math. Comp., 2010;217:1484 – 1490

[8] Kudryashov N.A., Seven common errors in finding exact solutions of
nonlinear differential equations, Commun Nonlinear Sci Numer Simul
2009;14:35033529.

[9] Kudryashov N.A., Loguinova N.B., Be careful with Exp-function method,
Commun. Nonlinear Sci. Numer. Simulat., 2009;14:1881 - 1890

[10] Kudryashov N.A., On ”new travelling wave solutions” of the KdV
and the KdV-Burgers equations. Commun Nonlinear Sci Numer Simul,
2009;14:1891-900.

[11] Kudryashov N.A., Soukharev M.B. , Popular Ansatz methods and Solitary
wave solutions of the Kuramoto-Sivashinsky equation, Regular and Chaotic
Dynamics, 2009;14:407 – 19

[12] Kudryashov N.A., Comment on: ”A novel approach for solving the Fisher
equation using Exp-function method”, Physics Letters A 2009;373:1196 -
1197

[13] Kudryashov N.A. Meromorphic solutions of nonlinear differential equa-
tions, Commun Nonlinear Sci Numer Simulat, 2010;15(10):2778 – 2790.

[14] Allen M.A. Current obsession with publication statistics, ScienceAsia,
2010;36:1 – 5.

[15] Kudryashov N.A., A note on New Exact solutions for the Kawahara equa-
tion using Exp – function method, Journal of Computational and Applied
Mathematics, 2010;234(12):3511 – 12

10



[16] Kudryashov N.A., Sinelshchikov D.I., A Note on the Lie Symmetry Analysis
and Exact Solutions for the Extended mKdV Equation, Acta Applicandae
Mathematics, 2011;113:41 – 44.

[17] Parkes E.J., A note on travelling - wave solutions to Lax’s seventh - order
KdV equation, Appl Math Comput 2009; 215:864 - 65

[18] Parkes E.J., Observations on the tanh-coth expansion method for find-
ing solutions to nonlinear evolution equations, Appl Math Comput
2010;217:1749 – 54

[19] Parkes E.J., A note on solitary travelling-wave solutions to the trans-
formed reduced Ostrovsky equation, Commun Nonlinear Sci Numer Simul,
2010;15:2769 – 71

[20] Popovych R.O., Vaneeva O.O., More common errors in finding exact so-
lutions of nonlinear differential equations, Commun Nonlinear Sci Numer
Simul 2010;15:3887 – 99

11


