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Abstract

Solutions of the Korteweg – de Vries hierarchy are discussed. It is
shown that results by Wazwaz [Wazwaz A.M. Multiple – soliton solutions
of the perturbed KdV equation, Commun Nonlinear Sci Numer Simulat,
2010; 15911: 3270 – 3273] are the well – known consequences of the full
integrability for the Korteweg – de Vries hierarchy.

The Korteweg – de Vries hierarchy can be written as [1, 2]
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where tn, (n = 0, . . . , N) are real parameters of equation and the Lenard oper-
ator Ln+1[u] is determined by the following recursion formula [3, 4]
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Assuming n = 0, n = 1 and n = 2 in Eq. (2) we have the following formulae

L1[u] = u, L2[u] = uxx + 3 u2, (3)

L3[u] = uxxxx + 10uuxx + 5 u2
x + 10 u3 (4)

and so on.
There is the Lax pair for Eq.(1) in the form

ψxx + (λ + u)ψ = 0, (5)
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(6)
where we denote

Lj,x[u] =
∂

∂x
Lj [u].

In the case N = 2 the system equation (5) – (6) takes the form

ψxx + (λ + u)ψ = 0, (7)
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ψt = [C + (t1 − 4 λ t2) ux + t2 (uxxx + 6 uux)] ψ−
−2

[
0.5 t0 − 2λ (t1 − 4 λ t2) + (t1 − 4 λ t2) u + t2 (uxx + 3 u2)

]
ψx.

(8)

Using the compatibility condition

(ψxx)t = (ψt)xx

for the system of equation (5)–(6) we obtain the Korteweg–de Vries hierarchy
(1). In the case N = 2 we have the fifth order Korteweg – de Vries equation in
the form

ut + t0 ux + t1 (uux + uxxx) + t2 (30u2 ux + 10 u uxxx + 20 ux uxx + uxxxxx) = 0
(9)

Assuming t0 = 0, t1 = 1 and t2 = ε in Eq.(9) we have the ”perturbed KdV
equation” by Wazwaz [5]. We can see that that Eq.(9) is the partial case of the
Korteweg – de Vries hierarchy (1).

Every member of the Korteweg–de Vries hierarchy (1) (case t0=t1 = t2 =
. . . = tN−1 = 0 and tn = 1) and the Lax pair for them was firstly introduced
in [3]. The Korteweg–de Vries hierarchy (1) and Lax pair (5) and (6) is trivial
generalization of the results by Lax.

It is well known that the Cauchy problem for every member of the Korteweg–
de Vries hierachy can be solved by means of the inverse scattering transform
method. It is known that there are rational, special and soliton solutions of
these equations [1, 2, 6–13].

It is clear that the Cauchy problem for the Korteweg – de Vries hierarchy
(1) can be solved by means of the inverse scattering transform method as well
taking Lax pair (5)–(6) into account.

Assuming λ = −k2 and u = ux = uxx = . . . = 0 we have from Eq.(5)

ψ(x, k, t) = C1(k, t) ek x + C2(k, t) e−k x. (10)

Substituting Eq.(10) into Eq.(6) we obtain the system of equations in the form

d ln C2
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From the system of equations (11) and (12) we find the time evolution of
the scattering data for solving the Cauchy problem to the Korteweg – de Vries
hierarchy
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(
t

N∑
n=1

22 n tn κ2 n+1
n

)
,
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(13)
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where i2 = −1, κj are values of the discrete spectrum, Cj(0), (j = 0, 1, . . . , J)
are the normalisation constants determined at t = 0 and b(k, 0) is the reflection
coefficient.

The Cauchy problem for the Korteweg – de Vries hierarchy (1) can be solved
taking into account the scattering data (13) and the well – known inverse scat-
tering transform method for the Korteweg – de Vries equation [4, 8, 14]. Multi
– soliton solutions of the Korteweg – de Vries hierarchy (1) can be found using
the scattering data for the reflectionless potentials at b(k, t) = 0 [4, 8, 14].

Multi – soliton solution of the Korteweg – de Vries hierarchy (1) can also be
found using the well – known formula by Hirota

u = 2 (ln F )xx . (14)

Assuming F (x, t) in the form [15]

F1 = 1 + C1 eθ1 , θ1 = k1 x−
N∑

n=1

tn k2 n+1
1 t + k1 x

(0)
1 (15)

where C1 and x
(0)
1 are arbitrary constant, we obtain one soliton solution.

Taking into account F (x, t) in the form [15]

F1 = 1 + C1 eθ1 + C2 eθ2 + C1 C − 2 eθ1+θ2+A12 , eA12 =
(k1 − k2)2

(k1 + k2)2
, (16)

where C1 and C2 are arbitrary constants and
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N∑
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tn k2 n+1
j t + kj x

(0)
j , (17)

we have two soliton solution and so on.
Rational solutions of hierarchy (1) can be found taking the generalized

Yablonskii – Vorob’ev polynomials [11, 12]. There are solutions expressed via
the higher Painlevé transcendent functions [9, 10].

In discussion author [5] say that ”Multiple – soliton solutions and multiple
singular soliton solutions were derived. It was formally proved that this equation
is completly integrable equation”. We agree with author completely but we saw
that his results are consequence of the integrability for the Korteweg – de Vries
hierarchy (1). In this paper we have pointed out additionally to works [16–20]
the danger in finding exact solutions of the well – known equations.

References

[1] Kudryashov N.A. , Analitical theory of nonlinear differential equations,
Moskow - Igevsk, Institute of computer investigations 2004: 360 (in Rus-
sian).

[2] Kudryashov N.A. Soliton, rational and special solutions of
the Korteweg–de vries hierarchy, Appl. Math. Comput. 2009;
doi:10.1016/j.amc.2009.11.024

3



[3] Lax P.D., Integrals of nonlinear equations of evolution and solitary waves,
Comm. Pure Appl. Math., 1968; 21: 467 - 490.

[4] Ablowitz M.J. and Clarkson P.A., Solitons Nonlinear Evolution Equa-
tions and Inverse Scattering, Cambridge university press, 1991; 516 p.

[5] Wazwaz A.M. Multiple – soliton solutions of the perturbed KdV equation
equation, Commun Nonlinear Sci Simul 2010; 15(11): 3270 – 3273

[6] Korteweg D.J., de Vries G. On the change of form of long waves advancing
in a rectangular canal and on a new tipe of long stationary waves. Phil.
Mag. 1895; 39: 422 – 43

[7] Zabuski N.J., Kruskal M.D., Integration of ”solitons” in a collisionless
plasma and the recurrence of initial states, Phys. Rev. Lett. 1965; 15:
240 – 42

[8] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Method for solv-
ing the Korteweg - de Vries equation, J. Math. Phys., 1967; 19: 1095 –
1097

[9] Kudryashov N. A. The first and the second Painleve equations of higher
order and some relations between them, Physics Letters A 1997; 224:
353 – 360

[10] Kudryashov N. A. On new transcendents defined by nonlinear ordinary
differential equations, Journal of Physics A. Math. and Gen. 1998; 31(6):
L129 - L137

[11] Kudryashov N.A., Demina M.V. The generalized Yablonskii - Vorob’ev
polynomials and their properties, Physics Letters A, 2008; 372: 4885 –
4890

[12] Kudryashov N. A. and Pickering A. Rational solutions for Schwarzian
integrable hierarchies, Journal of Physics A. Math. And Gen., 1998; 31:
9505 – 9518

[13] Kudryashov N A Fourth - order analogies to the Painleve equations,
Journal of Pysics A.: Mathematical and General, 2002; 35: 4617 – 4632

[14] Drazin P.G., Johnson R.S., Soliton: an introduction, Caambridge Uni-
versity Press, 1989; 226 p

[15] Hirota R., Exact solution of the Korteweg-de Vries for multiple collisions
of solutions, Phys. Rev. Lett., 1971; 27: 1192 – 94

[16] Kudryashov N.A., Loguinova N.B. Be careful with the Exp-function
method, Communications in Nonlinear Science and Numerical Simula-
tion, 2009; 14(5): 1881 – 1890

[17] Kudryashov N.A. On ”new travelling wave solutions” of the KdV and
the KdV - Burgers equtions, Communications in Nonlinear Science and
Numerical Simulation, 2009;14(5): 1891 – 1900

4



[18] Kudryashov N.A. Seven common errors in finding exact solutions of non-
linear differential equations, Communications in Nonlinear Science and
Numerical Simulation, 2009;14: 3507 – 3529

[19] Parkes E.J., A note on travelling - wave solutions to Lax’s seventh - order
KdV equation, Appl. Math. Comput. 2009; 215:864 - 865

[20] Parkes E.J., A note on solitary travelling-wave solutions to the trans-
formed reduced Ostrovsky equation, Commun. Nonlinear. Sci. Numer.
Simul. 2010;15: 2769 – 2771

5


