CONTENTS

Preface to the Second Edition xxv
Preface to the First Edition xxvi
Authors xxix
Notation xxxi

Part I Exact Solutions 1

1 First-Order Equations with Two Independent Variables 3
1.1 Equations of the Form $f(x, y) \frac{dw}{dx} + g(x, y) \frac{dw}{dy} = 0$ 3
 1.1.1 Equations Containing Power-Law Functions 3
 1.1.2 Equations Containing Exponential Functions 22
 1.1.3 Equations Containing Hyperbolic Functions 29
 1.1.4 Equations Containing Logarithmic Functions 33
 1.1.5 Equations Containing Trigonometric Functions 36
 1.1.6 Equations Containing Inverse Trigonometric Functions 45
 1.1.7 Equations Containing Arbitrary Functions of x 51
 1.1.8 Equations Containing Arbitrary Functions of Different Arguments 59
1.2 Equations of the Form $f(x, y) \frac{dw}{dx} + g(x, y) \frac{dw}{dy} = h(x, y)$ 66
 1.2.1 Equations Containing Power-Law Functions 67
 1.2.2 Equations Containing Exponential Functions 71
 1.2.3 Equations Containing Hyperbolic Functions 74
 1.2.4 Equations Containing Logarithmic Functions 77
 1.2.5 Equations Containing Trigonometric Functions 78
 1.2.6 Equations Containing Inverse Trigonometric Functions 82
 1.2.7 Equations Containing Arbitrary Functions 85
1.3 Equations of the Form $f(x, y) \frac{dw}{dx} + g(x, y) \frac{dw}{dy} = h(x, y)w$ 91
 1.3.1 Equations Containing Power-Law Functions 91
 1.3.2 Equations Containing Exponential Functions 95
 1.3.3 Equations Containing Hyperbolic Functions 97
 1.3.4 Equations Containing Logarithmic Functions 100
 1.3.5 Equations Containing Trigonometric Functions 102
 1.3.6 Equations Containing Inverse Trigonometric Functions 105
 1.3.7 Equations Containing Arbitrary Functions 108
1.4 Equations of the Form $f(x, y) \frac{dw}{dx} + g(x, y) \frac{dw}{dy} = h_1(x, y)w + h_0(x, y)$ 114
 1.4.1 Equations Containing Power-Law Functions 114
 1.4.2 Equations Containing Exponential Functions 120
 1.4.3 Equations Containing Hyperbolic Functions 122
 1.4.4 Equations Containing Logarithmic Functions 125
 1.4.5 Equations Containing Trigonometric Functions 126
 1.4.6 Equations Containing Inverse Trigonometric Functions 131
 1.4.7 Equations Containing Arbitrary Functions 133
2 First-Order Equations with Three or More Independent Variables 139

2.1 Equations of the Form $f(x, y, z) \frac{\partial w}{\partial x} + g(x, y, z) \frac{\partial w}{\partial y} + h(x, y, z) \frac{\partial w}{\partial z} = 0$ 139

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>Equations Containing Power-Law Functions</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Equations Containing Exponential Functions</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Equations Containing Hyperbolic Functions</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Equations Containing Logarithmic Functions</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Equations Containing Trigonometric Functions</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Equations Containing Inverse Trigonometric Functions</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Equations Containing Arbitrary Functions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1</td>
<td>Equations Containing Power-Law Functions</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Equations Containing Exponential Functions</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Equations Containing Hyperbolic Functions</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Equations Containing Logarithmic Functions</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Equations Containing Trigonometric Functions</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Equations Containing Inverse Trigonometric Functions</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Equations Containing Arbitrary Functions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1</td>
<td>Equations Containing Power-Law Functions</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Equations Containing Exponential Functions</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Equations Containing Hyperbolic Functions</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Equations Containing Logarithmic Functions</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Equations Containing Trigonometric Functions</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Equations Containing Inverse Trigonometric Functions</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Equations Containing Arbitrary Functions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1</td>
<td>Equations Containing Power-Law Functions</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Equations Containing Exponential Functions</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Equations Containing Hyperbolic Functions</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Equations Containing Logarithmic Functions</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Equations Containing Trigonometric Functions</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Equations Containing Inverse Trigonometric Functions</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Equations Containing Arbitrary Functions</td>
</tr>
<tr>
<td>2.4.8</td>
<td>Equations with Four or More Independent Variables</td>
</tr>
</tbody>
</table>

3 Second-Order Parabolic Equations with One Space Variable 261

3.1 Constant Coefficient Equations 261

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1</td>
<td>Heat Equation $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2}$</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + \Phi(x, t)$</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + bw + \Phi(x, t)$</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + \Phi(x, t)$</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + cw + \Phi(x, t)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.6</td>
<td>Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + \Phi(x, t)$</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + bw + \Phi(x, t)$</td>
</tr>
</tbody>
</table>
3.2 Heat Equation with Axial or Central Symmetry and Related Equations 288
3.2.1 Equation of the Form \(\frac{\partial w}{\partial t} = a \left(\frac{\partial^2 w}{\partial x^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right) \) 288
3.2.2 Equation of the Form \(\frac{\partial w}{\partial t} = a \left(\frac{\partial^2 w}{\partial x^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right) + \Phi(r, t) \) 294
3.2.3 Equation of the Form \(\frac{\partial w}{\partial t} = a \left(\frac{\partial^2 w}{\partial x^2} + \frac{2}{r} \frac{\partial w}{\partial r} \right) \) 298
3.2.4 Equation of the Form \(\frac{\partial w}{\partial t} = a \left(\frac{\partial^2 w}{\partial x^2} + \frac{2}{r} \frac{\partial w}{\partial r} \right) + \Phi(r, t) \) 305
3.2.5 Equation of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + \frac{1 - 2\beta}{x} \frac{\partial w}{\partial x} \) 308
3.2.6 Equation of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + \frac{1 - 2\beta}{x} \frac{\partial w}{\partial x} + \Phi(x, t) \) 311
3.3 Equations Containing Power Functions and Arbitrary Parameters 312
3.3.1 Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) w \) 312
3.3.2 Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} \) 318
3.3.3 Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t) w + h(x, t) \) 321
3.3.4 Equations of the Form \(\frac{\partial w}{\partial t} = (ax + b) \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t) w \) 324
3.3.5 Equations of the Form \(\frac{\partial w}{\partial t} = (ax^2 + bx + c) \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t) w \) 327
3.3.6 Equations of the Form \(\frac{\partial w}{\partial t} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x, t) \frac{\partial w}{\partial x} + h(x, t) w \) 329
3.3.7 Equations of the Form \(\frac{\partial w}{\partial t} = f(x, t) \frac{\partial^2 w}{\partial x^2} + g(x, t) \frac{\partial w}{\partial x} + h(x, t) w \) 334
3.3.8 Liquid-Film Mass Transfer Equation \((1 - y^2) \frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial y^2} \) 335
3.3.9 Equations of the Form \(f(x, y) \frac{\partial w}{\partial t} + g(x, y) \frac{\partial w}{\partial y} = \frac{\partial^2 w}{\partial y^2} + h(x, y) \) 338
3.4 Equations Containing Exponential Functions and Arbitrary Parameters 338
3.4.1 Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) w \) 338
3.4.2 Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} \) 341
3.4.3 Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t) w \) 344
3.4.4 Equations of the Form \(\frac{\partial w}{\partial t} = ax^n \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t) w \) 345
3.4.5 Equations of the Form \(\frac{\partial w}{\partial t} = ae^{3x} \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t) w \) 346
3.4.6 Other Equations 349
3.5 Equations Containing Hyperbolic Functions and Arbitrary Parameters 349
3.5.1 Equations Containing a Hyperbolic Cosine 349
3.5.2 Equations Containing a Hyperbolic Sine 350
3.5.3 Equations Containing a Hyperbolic Tangent 351
3.5.4 Equations Containing a Hyperbolic Cotangent 352
3.6 Equations Containing Logarithmic Functions and Arbitrary Parameters 354
3.6.1 Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t) w \) 354
3.6.2 Equations of the Form \(\frac{\partial w}{\partial t} = ax \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t) w \) 354
3.7 Equations Containing Trigonometric Functions and Arbitrary Parameters 356
3.7.1 Equations Containing a Cosine 356
3.7.2 Equations Containing a Sine 357
3.7.3 Equations Containing a Tangent 358
3.7.4 Equations Containing a Cotangent 359
3.8 Equations Containing Arbitrary Functions 360
3.8.1 Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) w \) 360
3.8.2 Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} \) 363
3.8.3 Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t) w \) 368
3.8.4 Equations of the Form $\frac{\partial w}{\partial t} = ax^n \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t)w$.. 370
3.8.5 Equations of the Form $\frac{\partial w}{\partial t} = ae^{\beta x} \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x} + g(x, t)w$.. 372
3.8.6 Equations of the Form $\frac{\partial w}{\partial t} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x, t) \frac{\partial w}{\partial x} + h(x, t)w$.. 373
3.8.7 Equations of the Form $\frac{\partial w}{\partial t} = f(t) \frac{\partial^2 w}{\partial x^2} + g(x, t) \frac{\partial w}{\partial x} + h(x, t)w$.. 382
3.8.8 Equations of the Form $\frac{\partial w}{\partial t} = f(x, t) \frac{\partial^2 w}{\partial x^2} + g(x, t) \frac{\partial w}{\partial x} + h(x, t)w$.. 385
3.8.9 Equations of the Form $s(x) \frac{\partial w}{\partial t} = \frac{\partial}{\partial x} [p(x) \frac{\partial w}{\partial x}] - q(x)w + \Phi(x, t)$.. 388

3.9 Equations of Special Form ... 393
3.9.1 Equations of the Diffusion (Thermal) Boundary Layer 393
3.9.2 One-Dimensional Schrödinger Equation $ih \frac{\partial w}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 w}{\partial x^2} + U(x)w$ 396

4 Second-Order Parabolic Equations with Two Space Variables 401
4.1 Heat Equation $\frac{\partial w}{\partial t} = a \Delta_2 w$.. 401
4.1.1 Boundary Value Problems in Cartesian Coordinates 401
4.1.2 Problems in Polar Coordinates ... 416
4.1.3 Axisymmetric Problems ... 423
4.2 Heat Equation with a Source $\frac{\partial w}{\partial t} = a \Delta_2 w + \Phi(x, y, t)$... 434
4.2.1 Problems in Cartesian Coordinates ... 434
4.2.2 Problems in Polar Coordinates ... 442
4.2.3 Axisymmetric Problems ... 445

4.3 Other Equations .. 455
4.3.1 Equations Containing Arbitrary Parameters 455
4.3.2 Equations Containing Arbitrary Functions 457

5 Second-Order Parabolic Equations with Three or More Space Variables ... 463
5.1 Heat Equation $\frac{\partial w}{\partial t} = a \Delta_3 w$.. 463
5.1.1 Problems in Cartesian Coordinates .. 463
5.1.2 Problems in Cylindrical Coordinates .. 487
5.1.3 Problems in Spherical Coordinates ... 517
5.2 Heat Equation with Source $\frac{\partial w}{\partial t} = a \Delta_3 w + \Phi(x, y, z, t)$... 522
5.2.1 Problems in Cartesian Coordinates ... 522
5.2.2 Problems in Cylindrical Coordinates .. 528
5.2.3 Problems in Spherical Coordinates ... 534

5.3 Other Equations with Three Space Variables 537
5.3.1 Equations Containing Arbitrary Parameters 537
5.3.2 Equations Containing Arbitrary Functions 539
5.3.3 Equations of the Form $\rho(x, y, z) \frac{\partial w}{\partial t} = \text{div} [a(x, y, z) \nabla w] - g(x, y, z)w + \Phi(x, y, z, t)$.. 542
5.4 Equations with n Space Variables .. 545
5.4.1 Equations of the Form $\frac{\partial w}{\partial t} = a \Delta_n w + \Phi(x_1, \ldots, x_n, t)$.. 545
5.4.2 Other Equations Containing Arbitrary Parameters 548
5.4.3 Equations Containing Arbitrary Functions 549

6 Second-Order Hyperbolic Equations with One Space Variable 557
6.1 Constant Coefficient Equations ... 557
6.1.1 Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2}$.. 557
6.1.2 Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} + \Phi(x, t)$.. 563
6.1.3 Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} - bw + \Phi(x, t)$.. 567
6.1.4 Equation of the Form \(\frac{\partial^2 w}{\partial t^2} = a^2 \Delta w \) \hspace{1cm} 607
6.1.5 Equation of the Form \(\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + cw + \Phi(x, t) \) \hspace{1cm} 574

6.2 Wave Equations with Axial or Central Symmetry \hspace{1cm} 577
6.2.1 Equation of the Form \(\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} + \Phi(r, t) \) \hspace{1cm} 580
6.2.2 Equation of the Form \(\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial r^2} + \frac{2}{r} \frac{\partial w}{\partial r} + \Phi(r, t) \) \hspace{1cm} 581
6.2.3 Equation of the Form \(\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial r^2} + \frac{\partial w}{\partial r} + \Phi(r, t) \) \hspace{1cm} 585
6.2.4 Equation of the Form \(\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial r^2} + \frac{2}{r} \frac{\partial w}{\partial r} - bw + \Phi(r, t) \) \hspace{1cm} 586
6.2.5 Equation of the Form \(\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial r^2} + \frac{\partial w}{\partial r} - bw + \Phi(r, t) \) \hspace{1cm} 590

6.3 Equations Containing Power Functions and Arbitrary Parameters \hspace{1cm} 593
6.3.1 Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = (ax + b) \frac{\partial^2 w}{\partial x^2} + c \frac{\partial w}{\partial x} + kw + \Phi(x, t) \) \hspace{1cm} 593
6.3.2 Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = (ax^2 + b) \frac{\partial^2 w}{\partial x^2} + c^2 \frac{\partial w}{\partial x} + kw + \Phi(x, t) \) \hspace{1cm} 598
6.3.3 Other Equations \hspace{1cm} 600

6.4 Equations Containing the First Time Derivative \hspace{1cm} 607
6.4.1 Equations of the Form \(\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = a^2 \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + cw + \Phi(x, t) \) \hspace{1cm} 607
6.4.2 Equations of the Form \(\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x) \frac{\partial w}{\partial x} + h(x) w + \Phi(x, t) \) \hspace{1cm} 616
6.4.3 Other Equations \hspace{1cm} 621

6.5 Equations Containing Arbitrary Functions \hspace{1cm} 623
6.5.1 Equations of the Form \(s(x) \frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[p(x) \frac{\partial w}{\partial x} \right] - q(x) w + \Phi(x, t) \) \hspace{1cm} 623
6.5.2 Equations of the Form \(\frac{\partial^2 w}{\partial t^2} + a(t) \frac{\partial w}{\partial t} = b(t) \left\{ \frac{\partial}{\partial x} \left[p(x) \frac{\partial w}{\partial x} \right] - q(x) w \right\} + \Phi(x, t) \) \hspace{1cm} 626
6.5.3 Other Equations \hspace{1cm} 628

7 Second-Order Hyperbolic Equations with Two Space Variables \hspace{1cm} 633
7.1 Wave Equation \(\frac{\partial^2 w}{\partial t^2} = a^2 \Delta w \) \hspace{1cm} 633
7.1.1 Problems in Cartesian Coordinates \hspace{1cm} 633
7.1.2 Problems in Polar Coordinates \hspace{1cm} 639
7.1.3 Axisymmetric Problems \hspace{1cm} 645

7.2 Nonhomogeneous Wave Equation \(\frac{\partial^2 w}{\partial t^2} = a^2 \Delta w + \Phi(x, y, t) \) \hspace{1cm} 651
7.2.1 Problems in Cartesian Coordinates \hspace{1cm} 651
7.2.2 Problems in Polar Coordinates \hspace{1cm} 653
7.2.3 Axisymmetric Problems \hspace{1cm} 656

7.3 Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = a^2 \Delta w - bw + \Phi(x, y, t) \) \hspace{1cm} 659
7.3.1 Problems in Cartesian Coordinates \hspace{1cm} 659
7.3.2 Problems in Polar Coordinates \hspace{1cm} 664
7.3.3 Axisymmetric Problems \hspace{1cm} 670

7.4 Telegraph Equation \(\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = a^2 \Delta w - bw + \Phi(x, y, t) \) \hspace{1cm} 676
7.4.1 Problems in Cartesian Coordinates \hspace{1cm} 676
7.4.2 Problems in Polar Coordinates \hspace{1cm} 681
7.4.3 Axisymmetric Problems \hspace{1cm} 688

7.5 Other Equations with Two Space Variables \hspace{1cm} 693
8 Second-Order Hyperbolic Equations with Three or More Space Variables

8.1 Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_3 w$.. 695
 8.1.1 Problems in Cartesian Coordinates ... 695
 8.1.2 Problems in Cylindrical Coordinates .. 701
 8.1.3 Problems in Spherical Coordinates .. 712

8.2 Nonhomogeneous Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_3 w + \Phi(x, y, z, t)$ 717
 8.2.1 Problems in Cartesian Coordinates ... 717
 8.2.2 Problems in Cylindrical Coordinates .. 718
 8.2.3 Problems in Spherical Coordinates .. 719

8.3 Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_3 w - bw + \Phi(x, y, z, t)$ 720
 8.3.1 Problems in Cartesian Coordinates ... 720
 8.3.2 Problems in Cylindrical Coordinates .. 726
 8.3.3 Problems in Spherical Coordinates .. 738

8.4 Telegraph Equation $\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = a^2 \Delta_3 w - bw + \Phi(x, y, z, t)$ 743
 8.4.1 Problems in Cartesian Coordinates ... 743
 8.4.2 Problems in Cylindrical Coordinates .. 748
 8.4.3 Problems in Spherical Coordinates .. 760

8.5 Other Equations with Three Space Variables .. 765
 8.5.1 Equations Containing Arbitrary Parameters 765
 8.5.2 Equation of the Form $\rho(x, y, z) \frac{\partial^2 w}{\partial t^2} = \text{div}[a(x, y, z)\nabla w] - q(x, y, z)w + \Phi(x, y, z, t)$... 765

8.6 Equations with n Space Variables ... 768
 8.6.1 Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_n w$.. 768
 8.6.2 Nonhomogeneous Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_n w + \Phi(x_1, \ldots, x_n, t)$ 770
 8.6.3 Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_n w - bw + \Phi(x_1, \ldots, x_n, t)$ 773
 8.6.4 Equations Containing the First Time Derivative 776

9 Second-Order Elliptic Equations with Two Space Variables

9.1 Laplace Equation $\Delta_2 w = 0$.. 781
 9.1.1 Problems in Cartesian Coordinate System .. 781
 9.1.2 Problems in Polar Coordinate System ... 787
 9.1.3 Other Coordinate Systems. Conformal Mappings Method 792

9.2 Poisson Equation $\Delta_2 w = -\Phi(x)$... 794
 9.2.1 Preliminary Remarks. Solution Structure .. 794
 9.2.2 Problems in Cartesian Coordinate System 796
 9.2.3 Problems in Polar Coordinate System ... 803
 9.2.4 Arbitrary Shape Domain. Conformal Mappings Method 807

9.3 Helmholtz Equation $\Delta_2 w + \lambda w = -\Phi(x)$ 809
 9.3.1 General Remarks, Results, and Formulas .. 809
 9.3.2 Problems in Cartesian Coordinate System 813
 9.3.3 Problems in Polar Coordinate System ... 824
 9.3.4 Other Orthogonal Coordinate Systems. Elliptic Domain 830

9.4 Other Equations ... 832
 9.4.1 Stationary Schrödinger Equation $\Delta_2 w = f(x, y)w$ 832
 9.4.2 Convective Heat and Mass Transfer Equations 835
 9.4.3 Equations of Heat and Mass Transfer in Anisotropic Media 843
 9.4.4 Other Equations Arising in Applications .. 851
 9.4.5 Equations of the Form $a(x) \frac{\partial^2 w}{\partial x^2} + b(x) \frac{\partial w}{\partial x} + c(x) w = -\Phi(x, y)$ 855
10 Second-Order Elliptic Equations with Three or More Space Variables 859
10.1 Laplace Equation $\Delta_3w = 0$... 859
 10.1.1 Problems in Cartesian Coordinates .. 859
 10.1.2 Problems in Cylindrical Coordinates .. 862
 10.1.3 Problems in Spherical Coordinates .. 863
 10.1.4 Other Orthogonal Curvilinear Systems of Coordinates 866
10.2 Poisson Equation $\Delta_3w + \Phi(x) = 0$... 866
 10.2.1 Preliminary Remarks, Solution Structure .. 866
 10.2.2 Problems in Cartesian Coordinates .. 871
 10.2.3 Problems in Cylindrical Coordinates .. 883
 10.2.4 Problems in Spherical Coordinates .. 888
10.3 Helmholtz Equation $\Delta_3w + \lambda w = -\Phi(x)$ 892
 10.3.1 Homogeneous Helmholtz Equation. Eigenvalue problems 892
 10.3.2 Nonhomogeneous Helmholtz Equation. General Remarks, Results, and
 Formulas .. 893
 10.3.3 Problems in Cartesian Coordinates .. 900
 10.3.4 Problems in Cylindrical Coordinates ... 915
 10.3.5 Problems in Spherical Coordinates .. 924
 10.3.6 Other Orthogonal Curvilinear Coordinates 929
10.4 Other Equations with Three Space Variables .. 931
 10.4.1 Equations Containing Arbitrary Functions 931
 10.4.2 Equations of the Form $\div[a(x, y, z)\nabla w] - q(x, y, z)w = -\Phi(x, y, z)$ 934
10.5 Equations with n Space Variables ... 936
 10.5.1 Laplace Equation $\Delta_n w = 0$.. 936
 10.5.2 Other Equations .. 937
11 Higher-Order Partial Differential Equations 941
11.1 Third-Order Partial Differential Equations ... 941
 11.1.1 One-Dimensional Equations Containing the First Derivative in t 941
 11.1.2 One-Dimensional Equations Containing the Second Derivative in t ... 944
 11.1.3 One-Dimensional Equations Containing a Mixed Derivative and the
 First Derivative in t .. 945
 11.1.4 One-Dimensional Equations Containing a Mixed Derivative and the
 Second Derivative in t .. 951
 11.1.5 Two- and Three-Dimensional Equations ... 954
11.2 Fourth-Order One-Dimensional Nonstationary Equations 957
 11.2.1 Equation of the Form $\frac{\partial w}{\partial x} + a^2 \frac{\partial^4 w}{\partial x^4} = \Phi(x, t)$ 957
 11.2.2 Equation of the Form $\frac{\partial^2 w}{\partial x^2} + a^2 \frac{\partial^3 w}{\partial x^3} = 0$ 960
 11.2.3 Equation of the Form $\frac{\partial^2 w}{\partial x^2} + a^2 \frac{\partial^3 w}{\partial x^3} = \Phi(x, t)$ 962
 11.2.4 Equation of the Form $\frac{\partial^2 w}{\partial x^2} + a^2 \frac{\partial^3 w}{\partial x^3} + kw = \Phi(x, t)$ 965
 11.2.5 Other Equations without Mixed Derivatives 968
 11.2.6 Equations Containing Second Derivative in x and Mixed Derivatives 971
 11.2.7 Equations Containing Fourth Derivative in x and Mixed Derivatives 980
11.3 Two-Dimensional Nonstationary Fourth-Order Equations 986
 11.3.1 Equation of the Form $\frac{\partial w}{\partial x} + a^2 \left(\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial y^4} \right) = \Phi(x, y, t)$ 986
 11.3.2 Equation of the Form $\frac{\partial^2 w}{\partial x^2} + a^2 \Delta w = 0$ 988
 11.3.3 Equation of the Form $\frac{\partial^2 w}{\partial x^2} + a^2 \Delta w + kw = \Phi(x, y, t)$ 991
11.3.4 Equation of the Form $\frac{\partial^2 w}{\partial x^2} + a^2 \left(\frac{\partial^4 w}{\partial x^2 \partial y^2} \right) + kw = \Phi(x, y, t)$.. 993
11.3.5 Other Two-Dimensional Nonstationary Fourth-Order Equations 994
11.4 Three- and n-Dimensional Nonstationary Fourth-Order Equations 997
11.4.1 Equation of the Form $\frac{\partial^2 w}{\partial x^2} + a^2 \Delta w = 0$ 997
11.4.2 Equations Containing Mixed Derivatives ... 999
12.6.1 Biharmonic Equation $\Delta^2 w = 0$... 1003
12.6.2 Equation of the Form $\Delta w = \Phi$... 1009
12.6.3 Equation of the Form $\Delta w - \lambda w = \Phi(x, y)$ 1012
12.6.4 Cauchy Problem and Its Solution. Fundamental Solution Matrix 1014
12.6.5 Equation of the Form $\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial y^4} + kw = \Phi(x, y)$ 1016
12.6.6 Stokes Equation (Axisymmetric Flows of Viscous Fluids) 1017
12.6.7 Other Equations with Two Independent Variables 1039
12.6.8 Equations with Three and More Independent Variables 1041
11.6 Higher-Order Linear Equations with Variable Coefficients 1020
11.6.1 Fundamental Solutions. Cauchy Problem .. 1020
11.6.2 Elliptic Operators and Elliptic Equations ... 1022
11.6.3 Hyperbolic Operators and Hyperbolic Equations 1025
11.6.4 Regular Equations. Number of Initial Conditions in the Cauchy Problem .. 1025
11.6.5 Some Equations with Two Independent Variables Containing the First Derivative in t ... 1029
11.6.6 Some Equations with Two Independent Variables Containing the Second Derivative in t ... 1035
11.6.7 Other Equations with Two Independent Variables 1039
11.6.8 Equations with Three and More Independent Variables 1041
11.7 Higher-Order Linear Equations with Variable Coefficients 1045
11.7.1 Equations Containing the First Time Derivative 1045
11.7.2 Equations Containing the Second Time Derivative 1050
11.7.3 Nonstationary Problems with Many Space Variables 1052
11.7.4 Some Special Equations with Variable Coefficients 1054
12 Systems of Linear Partial Differential Equations 1059
12.1 Preliminary Remarks. Some Notation and Helpful Relations 1059
12.2 Systems of Two First-Order Equations ... 1059
12.2.1 Systems of Two Second-Order Equations ... 1063
12.2.2 Systems of Hyperbolic or Elliptic Equations 1064
12.2.3 Systems of Two Higher-Order Equations .. 1064
12.4 Simplest Systems Containing Vector Functions and Operators $\text{curl } u = \Phi(x)$... 1066
12.5.1 Equation $\text{curl } u = \Phi(x)$... 1066
12.5.2 Simple Systems of Equations Containing Operators $\text{curl } u = \Phi(x)$ 1067
12.5.3 Two Representations of Vector Functions .. 1069
12.6 Elasticity Equations .. 1071
12.6.1 Elasticity Equations in Various Coordinate Systems 1071
12.6.2 Various Forms of Decompositions of Homogeneous Elasticity Equations with $f = 0$... 1073
12.6.3 Various Forms of Decompositions for Nonhomogeneous Elasticity Equations ... 1075
12.6.4 Cauchy Problem and Its Solution. Fundamental Solution Matrix 1076
12.7 Stokes Equations for Viscous Incompressible Fluids
12.7.1 Stokes Equations in Various Coordinate Systems
12.7.2 Various Forms of Decompositions for the Stokes Equations with $f = 0$
12.7.3 Various Forms of Decompositions for the Stokes Equations with $f \neq 0$
12.7.4 General Solution of the Steady-State Homogeneous Stokes Equations
12.7.5 Solution of the Steady-State Nonhomogeneous Stokes Equations
12.7.6 Solution of the Cauchy Problem

12.8 Oseen Equations for Viscous Incompressible Fluids
12.8.1 Vector Form of Oseen Equations. Some Remarks
12.8.2 Various Forms of Decompositions for the Oseen Equations with $f = 0$
12.8.3 Various Forms of Decompositions for the Oseen Equations with $f \neq 0$
12.8.4 Oseen Equations with Variable Coefficients

12.9 Maxwell Equations for Viscoelastic Incompressible Fluids
12.9.1 Vector Form of the Maxwell Equations
12.9.2 Various Forms of Decompositions for the Maxwell Equations with $f = 0$
12.9.3 Various Forms of Decompositions for the Maxwell Equations with $f \neq 0$

12.10 Equations of Viscoelastic Incompressible Fluids (General Model)
12.10.1 Linearized Equations of Viscoelastic Incompressible Fluids. Some Models of Viscoelastic Fluids
12.10.2 Various Forms of Decompositions for Equations of Viscoelastic Incompressible Fluids with $f = 0$
12.10.3 Various Forms of Decompositions for Equations of Viscoelastic Incompressible Fluids with $f \neq 0$

12.11 Linearized Equations for Inviscid Compressible Barotropic Fluids
12.11.1 Vector Form of Equations without Mass Forces. Some Remarks
12.11.2 Decompositions of Equations for Inviscid Compressible Barotropic Fluid
12.11.3 Vector Form of Equations with Mass Forces

12.12 Stokes Equations for Viscous Compressible Barotropic Fluids
12.12.1 Linearized Equations of Viscous Compressible Barotropic Fluids
12.12.2 Decompositions of Equations of Viscous Compressible Barotropic Fluid with $f = 0$
12.12.3 Decompositions of Equations of a Viscous Compressible Barotropic Fluid with $f \neq 0$
12.12.4 Reduction to One Vector Equation and Its Decompositions
12.12.5 Independent Equations for u and p

12.13 Oseen Equations for Viscous Compressible Barotropic Fluids
12.13.1 Vector Form of Equations. Some Remarks
12.13.2 Decompositions of Equations with $f = 0$
12.13.3 Decomposition of Equations with $f \neq 0$

12.14 Equations of Thermoelasticity
12.14.1 Vector Form of Thermoelasticity Equations
12.14.2 Decompositions of Thermoelasticity Equations with $f = 0$
12.14.3 Decompositions of Thermoelasticity Equations with $f \neq 0$
12.15 Nondissipative Thermoelasticity Equations (the Green–Naghdi Model)
12.15.1 Vector Form of the Nondissipative Thermoelasticity Equations
12.15.2 Decompositions of the Nondissipative Thermoelasticity Equations with $f = 0$
12.15.3 Decompositions of Thermoelasticity Equations with $f \neq 0$

12.16 Viscoelasticity Equations
12.16.1 Vector Form of Viscoelasticity Equations
12.16.2 Decompositions of Viscoelasticity Equations with $f = 0$
12.16.3 Various Forms of Decompositions for Viscoelasticity Equations with $f \neq 0$

12.17 Maxwell Equations (Electromagnetic Field Equations)
12.17.1 Maxwell Equations in a Medium and Constitutive Relations
12.17.2 Some Transformations and Solutions of the Maxwell Equations

12.18 Vector Equations of General Form
12.18.1 Vector Equations Containing Operators div and ∇
12.18.2 Decompositions of the Homogeneous Vector Equation
12.18.3 Decompositions of the Nonhomogeneous Vector Equation
12.18.4 Vector Equations Containing More General Operators

12.19 General Systems Involving Vector and Scalar Equations: Part I
12.19.1 Systems Containing Operators div and ∇
12.19.2 Decompositions of Systems with Homogeneous Vector Equation
12.19.3 Decompositions of Systems with Nonhomogeneous Vector Equation
12.19.4 Equations for u and p. Reduction to One Vector Equation
12.19.5 Systems Containing More General Operators

12.20 General Systems Involving Vector and Scalar Equations: Part II
12.20.1 Class of Systems Considered
12.20.2 Asymmetric Decomposition
12.20.3 Symmetric Decomposition

Part II Analytical Methods

13 Methods for First-Order Linear PDEs
13.1 Linear PDEs with Two Independent Variables
13.1.1 Special First-Order Linear PDEs with Two Independent Variables
13.1.2 General First-Order Linear PDE with Two Independent Variables
13.2 First-Order Linear PDEs with Three or More Independent Variables
13.2.1 Characteristic System. General Solution
13.2.2 Cauchy Problems

14 Second-Order Linear PDEs: Classification, Problems, Particular Solutions
14.1 Classification of Second-Order Linear Partial Differential Equations
14.1.1 Equations with Two Independent Variables
14.1.2 Equations with Many Independent Variables
14.2 Basic Problems of Mathematical Physics
14.2.1 Initial and Boundary Conditions. Cauchy Problem. Boundary Value Problems
14.2.2 First, Second, Third, and Mixed Boundary Value Problems
CONTENTS

14.3 Properties and Particular Solutions of Linear Equations 1144
 14.3.1 Homogeneous Linear Equations. Basic Properties of Particular Solutions ... 1144
 14.3.2 Separable Solutions. Solutions in the Form of Infinite Series 1147
 14.3.3 Nonhomogeneous Linear Equations and Their Properties 1150
 14.3.4 General Solutions of Some Hyperbolic Equations 1150

15 Separation of Variables and Integral Transform Methods 1153
 15.1 Separation of Variables (Fourier Method) ... 1153
 15.1.1 Description of Separation of Variables. General Stage of Solution 1153
 15.1.2 Problems for Parabolic Equations: Final Stage of Solution 1157
 15.1.3 Problems for Hyperbolic Equations: Final Stage of Solution 1159
 15.1.4 Solution of Boundary Value Problems for Elliptic Equations 1160
 15.1.5 Solution of Boundary Value Problems for Higher-Order Equations 1163
 15.2 Integral Transform Method ... 1165
 15.2.1 Laplace Transform and Its Application in Mathematical Physics 1165
 15.2.2 Fourier Transform and Its Application in Mathematical Physics 1170
 15.2.3 Fourier Sine and Cosine Transforms ... 1173
 15.2.4 Mellin, Hankel, and Other Integral Transforms 1177

16 Cauchy Problem. Fundamental Solutions 1181
 16.1 Dirac Delta Function. Fundamental Solutions 1181
 16.1.1 Dirac Delta Function and Its Properties 1181
 16.1.2 Fundamental Solutions. Constructing Particular Solutions 1182
 16.2 Representation of the Solution of the Cauchy Problem via the Fundamental Solution ... 1185
 16.2.1 Cauchy Problem for Ordinary Differential Equations 1185
 16.2.2 Cauchy Problem for Parabolic Equations 1187
 16.2.3 Cauchy Problem for Hyperbolic Equations 1190
 16.2.4 Higher-Order Linear PDEs. Generalized Cauchy Problem 1193

17 Boundary Value Problems. Green’s Function 1199
 17.1 Boundary Value Problems for Parabolic Equations with One Space Variable. Green’s Function ... 1199
 17.1.1 Representation of Solutions via the Green’s Function 1199
 17.1.2 Problems for Equation \(s(x) \frac{\partial w}{\partial x} = \frac{\partial}{\partial x} \left[p(x) \frac{\partial w}{\partial x} \right] - q(x)w + \Phi(x, t) \) 1202
 17.2 Boundary Value Problems for Hyperbolic Equations with One Space Variable. Green’s Function. Goursat Problem ... 1205
 17.2.1 Representation of Solutions via the Green’s Function 1205
 17.2.2 Problems for Equation \(\frac{\partial^2 w}{\partial x^2} + a(t) \frac{\partial w}{\partial x} = b(t) \left\{ \frac{\partial}{\partial x} \left[p(x) \frac{\partial w}{\partial x} \right] - q(x)w \right\} + \Phi(x, t) \) 1207
 17.2.3 Problems for Equation \(\frac{\partial^2 w}{\partial x^2} + b(t) \frac{\partial w}{\partial x} + c(x)w = -\Phi(x, y) \) 1214
 17.2.4 Generalized Cauchy Problem with Initial Conditions Set along a Curve. Riemann Function ... 1210
 17.2.5 Goursat Problem (a Problem with Initial Data on Characteristics) 1212
 17.3 Boundary Value Problems for Elliptic Equations with Two Space Variables .. 1214
 17.3.1 Problems and the Green’s Functions for Equation \(a(x) \frac{\partial^2 w}{\partial x^2} + b(x) \frac{\partial w}{\partial x} + c(x)w = -\Phi(x, y) \) 1214
 17.3.2 Representation of Solutions of Boundary Value Problems via Green’s Functions ... 1216
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4</td>
<td>Problems for Parabolic Equations</td>
<td>1218</td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td>Problems for Hyperbolic Equations</td>
<td>1220</td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td>Problems for Elliptic Equations</td>
<td>1221</td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td>Comparison of the Solution Structures for Boundary Value Problems for Equations of Various Types</td>
<td>1222</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>Construction of the Green’s Functions. General Formulas and Relations</td>
<td>1223</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>Green’s Functions of Boundary Value Problems for Equations of Various Types in Bounded Domains</td>
<td>1223</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>Green’s Functions Admitting Incomplete Separation of Variables</td>
<td>1224</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>Construction of Green’s Functions via Fundamental Solutions</td>
<td>1227</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Duhamel’s Principles in Nonstationary Problems</td>
<td>1233</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Problems for Homogeneous Linear Equations</td>
<td>1233</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Problems for Nonhomogeneous Linear Equations</td>
<td>1235</td>
<td></td>
</tr>
<tr>
<td>18.2</td>
<td>Transformations Simplifying Initial and Boundary Conditions</td>
<td>1237</td>
<td></td>
</tr>
<tr>
<td>18.2</td>
<td>Transformations That Lead to Homogeneous Boundary Conditions</td>
<td>1237</td>
<td></td>
</tr>
<tr>
<td>18.2</td>
<td>Transformations That Lead to Homogeneous Initial and Boundary Conditions</td>
<td>1238</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Asymmetric and Symmetric Decompositions</td>
<td>1239</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Asymmetric Decomposition. Order of Decomposition</td>
<td>1239</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Symmetric Decomposition. Invariant Transformations</td>
<td>1242</td>
<td></td>
</tr>
<tr>
<td>19.2</td>
<td>First-Order Decompositions. Examples</td>
<td>1244</td>
<td></td>
</tr>
<tr>
<td>19.2</td>
<td>Systems of Linear PDEs without Mass Forces ((f = 0))</td>
<td>1244</td>
<td></td>
</tr>
<tr>
<td>19.2</td>
<td>Systems of Linear PDEs with Mass Forces</td>
<td>1249</td>
<td></td>
</tr>
<tr>
<td>19.3</td>
<td>Higher-Order Decompositions</td>
<td>1251</td>
<td></td>
</tr>
<tr>
<td>19.3</td>
<td>Decomposition of Systems Consisting of One Vector Equation</td>
<td>1251</td>
<td></td>
</tr>
<tr>
<td>19.3</td>
<td>Decomposition of Systems Consisting of a Vector Equation and a Scalar Equation (the First Approach)</td>
<td>1252</td>
<td></td>
</tr>
<tr>
<td>19.3</td>
<td>Decomposition of Systems Consisting of a Vector Equation and a Scalar Equation (the Second Approach)</td>
<td>1253</td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>Statement of the Problem</td>
<td>1256</td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>Formulas for the Coefficients of the Expansion</td>
<td>1256</td>
<td></td>
</tr>
<tr>
<td>20.2</td>
<td>Cauchy Problem for the Schrödinger Equation</td>
<td>1257</td>
<td></td>
</tr>
<tr>
<td>20.2</td>
<td>Stationary Phase Method</td>
<td>1261</td>
<td></td>
</tr>
<tr>
<td>20.2</td>
<td>Fourier Transform with a Parameter</td>
<td>1264</td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td>Generalized Functions of One Variable</td>
<td>1265</td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td>Important Terminological Remark</td>
<td>1265</td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td>Test Function Space</td>
<td>1265</td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td>Distribution Space. Dirac Delta Function</td>
<td>1266</td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td>Derivatives of Distributions. Some Formulas</td>
<td>1267</td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td>Operations on Distributions and Some Transformations</td>
<td>1269</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

21.1.6 Tempered Distributions and Fourier Transform 1270
21.1.7 Generalized Solutions of Linear Ordinary Differential Equations 1271
21.2 Generalized Functions of Several Variables .. 1271
 21.2.1 Some Definitions. Partial Derivatives. Direct Product. Linear
 Transformations ... 1271
 21.2.2 Dirac Delta Function. Generalized Solutions of Linear PDEs 1273

Part III Symbolic and Numerical Solutions with Maple, Mathematica,
and MATLAB®

22 Linear Partial Differential Equations with Maple 1275
 22.1 Introduction ... 1277
 22.1.1 Preliminary Remarks .. 1277
 22.1.2 Brief Introduction to Maple ... 1279
 22.1.3 Maple Language .. 1280
 22.2 Analytical Solutions and Their Visualizations ... 1282
 22.2.1 Constructing Analytical Solutions in Terms of Predefined Functions . 1282
 22.2.2 Constructing General Solutions via the Method of Characteristics . . 1289
 22.2.3 Constructing General Solutions via Transformations to Canonical
 Forms .. 1291
 22.2.4 Constructing Analytical Solutions of Cauchy Problems 1293
 22.2.5 Constructing Analytical Solutions of Boundary Value Problems 1297
 22.2.6 Constructing Analytical Solutions of Initial-Boundary Value Problems 1298
 22.2.7 Constructing Analytical Solutions of Systems of Linear PDEs 1299
 22.3 Analytical Solutions of Mathematical Problems 1301
 22.3.1 Constructing Separable Solutions ... 1301
 22.3.2 Constructing Analytical Solutions via Integral Transform Methods 1305
 22.3.3 Constructing Analytical Solutions in Terms of Green’s Functions 1306
 22.4 Numerical Solutions and Their Visualizations ... 1309
 22.4.1 Constructing Numerical Solutions in Terms of Predefined Functions . 1310
 22.4.2 Numerical Methods Embedded in Maple .. 1312
 22.4.3 Numerical Solutions of Initial-Boundary Value Problems 1318
 22.4.4 Numerical Solutions of Boundary Value Problems 1322
 22.4.5 Numerical Solutions of Cauchy Problems ... 1323
 22.4.6 Numerical Solutions of Systems of Linear PDEs 1325

23 Linear Partial Differential Equations with Mathematica 1327
 23.1 Introduction ... 1327
 23.1.1 Some Notational Conventions ... 1327
 23.1.2 Brief Introduction to Mathematica .. 1327
 23.1.3 Mathematica Language ... 1329
 23.1.4 Dynamic Computation and Visualization in Mathematica Notebook .. 1332
 23.2 Analytical Solutions and Their Visualizations ... 1333
 23.2.1 Constructing Analytical Solutions in Terms of Predefined Functions . 1333
 23.2.2 Constructing General Solutions via the Method of Characteristics . . 1335
 23.2.3 Constructing General Solutions via Conversion to Canonical Forms . 1338
 23.2.4 Constructing Analytical Solutions of Cauchy Problems 1340
 23.2.5 Constructing Analytical Solutions of Boundary Value Problems 1342
 23.2.6 Constructing Analytical Solutions of Initial-Boundary Value Problems 1344
 23.2.7 Constructing Analytical Solutions of Systems of Linear PDEs 1345
23.3 Analytical Solutions of Mathematical Problems ... 1347
 23.3.1 Constructing Separable Solutions .. 1347
 23.3.2 Constructing Analytical Solutions via Integral Transform Methods 1350
 23.3.3 Constructing Analytical Solutions in Terms of Green’s Functions ... 1352

23.4 Numerical Solutions and Their Visualizations ... 1356
 23.4.1 Constructing Numerical Solutions in Terms of Predefined Functions .. 1356
 23.4.2 Numerical Methods Embedded in Mathematica 1358
 23.4.3 Numerical Solutions of Initial-Boundary Value Problems 1359
 23.4.4 Numerical Solutions of Boundary Value Problems 1363
 23.4.5 Numerical Solutions of Cauchy Problems ... 1364
 23.4.6 Numerical Solutions of Systems of Linear PDEs 1365

24 Linear Partial Differential Equations with MATLAB® 1367

24.1 Introduction ... 1367
 24.1.1 Preliminary Remarks .. 1367
 24.1.2 Brief Introduction to MATLAB ... 1368
 24.1.3 MATLAB Language ... 1371

24.2 Numerical Solutions of Linear PDEs ... 1374
 24.2.1 Constructing Numerical Solutions via Predefined Functions 1375
 24.2.2 Numerical Methods Embedded in MATLAB 1383
 24.2.3 Numerical Solutions of Cauchy Problems .. 1383
 24.2.4 Numerical Solutions of Initial-Boundary Value Problems 1385
 24.2.5 Numerical Solutions of Boundary Value Problems 1388

24.3 Constructing Finite-Difference Approximations 1392
 24.3.1 Explicit Finite Difference Solutions ... 1392
 24.3.2 Implicit Finite Difference Solutions .. 1395

24.4 Numerical Solutions of Systems of Linear PDEs 1396
 24.4.1 Linear Systems of 1D PDEs ... 1396
 24.4.2 Linear Systems of 2D PDEs ... 1399

Part IV Tables and Supplements ... 1403

25 Elementary Functions and Their Properties .. 1405

25.1 Power, Exponential, and Logarithmic Functions 1405
 25.1.1 Properties of the Power Function ... 1405
 25.1.2 Properties of the Exponential Function .. 1405
 25.1.3 Properties of the Logarithmic Function .. 1406

25.2 Trigonometric Functions ... 1407
 25.2.1 Simplest Relations .. 1407
 25.2.2 Reduction Formulas ... 1408
 25.2.3 Relations between Trigonometric Functions of Single Argument 1408
 25.2.4 Addition and Subtraction of Trigonometric Functions 1408
 25.2.5 Products of Trigonometric Functions ... 1409
 25.2.6 Powers of Trigonometric Functions .. 1409
 25.2.7 Addition Formulas ... 1409
 25.2.8 Trigonometric Functions of Multiple Arguments 1410
 25.2.9 Trigonometric Functions of Half Argument 1410
 25.2.10 Differentiation Formulas ... 1410
 25.2.11 Integration Formulas .. 1410
 25.2.12 Expansion in Power Series ... 1411
25.2.13 Representation in the Form of Infinite Products 1411
25.2.14 Euler and de Moivre Formulas. Relationship with Hyperbolic
Functions .. 1411
25.3 Inverse Trigonometric Functions .. 1411
25.3.1 Definitions of Inverse Trigonometric Functions 1411
25.3.2 Simplest Formulas .. 1412
25.3.3 Some Properties .. 1412
25.3.4 Relations between Inverse Trigonometric Functions 1413
25.3.5 Addition and Subtraction of Inverse Trigonometric Functions 1413
25.3.6 Differentiation Formulas ... 1414
25.3.7 Integration Formulas .. 1414
25.3.8 Expansion in Power Series ... 1414
25.4 Hyperbolic Functions ... 1414
25.4.1 Definitions of Hyperbolic Functions 1414
25.4.2 Simplest Relations ... 1415
25.4.3 Relations between Hyperbolic Functions of Single Argument (x ≥ 0) 1415
25.4.4 Addition and Subtraction of Hyperbolic Functions 1415
25.4.5 Products of Hyperbolic Functions .. 1415
25.4.6 Powers of Hyperbolic Functions .. 1416
25.4.7 Addition Formulas ... 1416
25.4.8 Hyperbolic Functions of Multiple Argument 1416
25.4.9 Hyperbolic Functions of Half Argument 1417
25.4.10 Differentiation Formulas ... 1417
25.4.11 Integration Formulas .. 1417
25.4.12 Expansion in Power Series .. 1417
25.4.13 Representation in the Form of Infinite Products 1417
25.4.14 Relationship with Trigonometric Functions 1418
25.5 Inverse Hyperbolic Functions .. 1418
25.5.1 Definitions of Inverse Hyperbolic Functions 1418
25.5.2 Simplest Relations ... 1418
25.5.3 Relations between Inverse Hyperbolic Functions 1418
25.5.4 Addition and Subtraction of Inverse Hyperbolic Functions 1418
25.5.5 Differentiation Formulas ... 1419
25.5.6 Integration Formulas .. 1419
25.5.7 Expansion in Power Series .. 1419
26 Finite Sums and Infinite Series ... 1421
26.1 Finite Numerical Sums ... 1421
26.1.1 Progressions ... 1421
26.1.2 Sums of Powers of Natural Numbers Having the Form Σ k^m 1421
26.1.3 Alternating Sums of Powers of Natural Numbers, Σ (-1)^k k^m 1422
26.1.4 Other Sums Containing Integers ... 1422
26.1.5 Sums Containing Binomial Coefficients 1422
26.1.6 Other Numerical Sums .. 1423
26.2 Finite Functional Sums ... 1424
26.2.1 Sums Involving Hyperbolic Functions 1424
26.2.2 Sums Involving Trigonometric Functions 1425
26.3 Infinite Numerical Series .. 1426
26.3.1 Progressions ... 1426
26.3.2 Other Numerical Series .. 1426
26.4 Infinite Functional Series ... 1428
 26.4.1 Power Series .. 1428
 26.4.2 Trigonometric Series in One Variable Involving Sine 1429
 26.4.3 Trigonometric Series in One Variable Involving Cosine 1431
 26.4.4 Trigonometric Series in Two Variables 1433

27 Indefinite and Definite Integrals 1435
 27.1 Indefinite Integrals .. 1435
 27.1.1 Integrals Involving Rational Functions 1435
 27.1.2 Integrals Involving Irrational Functions 1439
 27.1.3 Integrals Involving Exponential Functions 1442
 27.1.4 Integrals Involving Hyperbolic Functions 1443
 27.1.5 Integrals Involving Logarithmic Functions 1446
 27.1.6 Integrals Involving Trigonometric Functions 1447
 27.1.7 Integrals Involving Inverse Trigonometric Functions 1451
 27.2 Definite Integrals ... 1452
 27.2.1 Integrals Involving Power-Law Functions 1452
 27.2.2 Integrals Involving Exponential Functions 1455
 27.2.3 Integrals Involving Hyperbolic Functions 1456
 27.2.4 Integrals Involving Logarithmic Functions 1457
 27.2.5 Integrals Involving Trigonometric Functions 1457
 27.2.6 Integrals Involving Bessel Functions 1460

28 Integral Transforms 1463
 28.1 Tables of Laplace Transforms 1463
 28.1.1 General Formulas .. 1463
 28.1.2 Expressions with Power-Law Functions 1465
 28.1.3 Expressions with Exponential Functions 1465
 28.1.4 Expressions with Hyperbolic Functions 1466
 28.1.5 Expressions with Logarithmic Functions 1467
 28.1.6 Expressions with Trigonometric Functions 1467
 28.1.7 Expressions with Special Functions 1469
 28.2 Tables of Inverse Laplace Transforms 1470
 28.2.1 General Formulas .. 1470
 28.2.2 Expressions with Rational Functions 1472
 28.2.3 Expressions with Square Roots 1476
 28.2.4 Expressions with Arbitrary Powers 1477
 28.2.5 Expressions with Exponential Functions 1478
 28.2.6 Expressions with Hyperbolic Functions 1479
 28.2.7 Expressions with Logarithmic Functions 1480
 28.2.8 Expressions with Trigonometric Functions 1481
 28.2.9 Expressions with Special Functions 1481
 28.3 Tables of Fourier Cosine Transforms 1482
 28.3.1 General Formulas .. 1482
 28.3.2 Expressions with Power-Law Functions 1482
 28.3.3 Expressions with Exponential Functions 1483
 28.3.4 Expressions with Hyperbolic Functions 1484
 28.3.5 Expressions with Logarithmic Functions 1485
 28.3.6 Expressions with Trigonometric Functions 1485
 28.3.7 Expressions with Special Functions 1486
28.4 Tables of Fourier Sine Transforms ... 1488
 28.4.1 General Formulas .. 1488
 28.4.2 Expressions with Power-Law Functions 1488
 28.4.3 Expressions with Exponential Functions 1489
 28.4.4 Expressions with Hyperbolic Functions 1489
 28.4.5 Expressions with Logarithmic Functions 1490
 28.4.6 Expressions with Trigonometric Functions 1490
 28.4.7 Expressions with Special Functions 1492

29 Curvilinear Coordinates, Vectors, Operators, and Differential Relations 1495
 29.1 Arbitrary Curvilinear Coordinate Systems 1495
 29.1.1 General Nonorthogonal Curvilinear Coordinates 1495
 29.1.2 General Orthogonal Curvilinear Coordinates 1497
 29.2 Cartesian, Cylindrical, and Spherical Coordinate Systems 1498
 29.2.1 Cartesian Coordinates ... 1498
 29.2.2 Cylindrical Coordinates .. 1499
 29.2.3 Spherical Coordinates .. 1500
 29.3 Other Special Orthogonal Coordinates 1502
 29.3.1 Coordinates of a Prolate Ellipsoid of Revolution 1502
 29.3.2 Coordinates of an Oblate Ellipsoid of Revolution 1503
 29.3.3 Coordinates of an Elliptic Cylinder 1504
 29.3.4 Conical Coordinates .. 1505
 29.3.5 Parabolic Cylinder Coordinates 1506
 29.3.6 Parabolic Coordinates ... 1506
 29.3.7 Bicylindrical Coordinates 1507
 29.3.8 Bipolar Coordinates (in Space) 1507
 29.3.9 Toroidal Coordinates ... 1508

30 Special Functions and Their Properties 1509
 30.1 Some Coefficients, Symbols, and Numbers 1509
 30.1.1 Binomial Coefficients ... 1509
 30.1.2 Pochhammer Symbol .. 1510
 30.1.3 Bernoulli Numbers .. 1510
 30.1.4 Euler Numbers ... 1511
 30.2 Error Functions, Exponential and Logarithmic Integrals 1512
 30.2.1 Error Function and Complementary Error Function 1512
 30.2.2 Exponential Integral .. 1512
 30.2.3 Logarithmic Integral .. 1513
 30.3 Sine Integral and Cosine Integral, Fresnel Integrals 1514
 30.3.1 Sine Integral ... 1514
 30.3.2 Cosine Integral .. 1515
 30.3.3 Fresnel Integrals ... 1515
 30.4 Gamma Function, Psi Function, and Beta Function 1516
 30.4.1 Gamma Function ... 1516
 30.4.2 Psi Function (Digamma Function) 1517
 30.4.3 Beta Function .. 1518
 30.5 Incomplete Gamma and Beta Functions 1519
 30.5.1 Incomplete Gamma Function 1519
 30.5.2 Incomplete Beta Function 1520
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.6</td>
<td>Bessel Functions (Cylindrical Functions)</td>
<td>1520</td>
</tr>
<tr>
<td>30.6.1</td>
<td>Definitions and Basic Formulas</td>
<td>1520</td>
</tr>
<tr>
<td>30.6.2</td>
<td>Integral Representations and Asymptotic Expansions</td>
<td>1522</td>
</tr>
<tr>
<td>30.6.3</td>
<td>Zeros and Orthogonality Properties of Bessel Functions</td>
<td>1524</td>
</tr>
<tr>
<td>30.6.4</td>
<td>Hankel Functions (Bessel Functions of the Third Kind)</td>
<td>1525</td>
</tr>
<tr>
<td>30.7</td>
<td>Modified Bessel Functions</td>
<td>1526</td>
</tr>
<tr>
<td>30.7.1</td>
<td>Definitions. Basic Formulas</td>
<td>1526</td>
</tr>
<tr>
<td>30.7.2</td>
<td>Integral Representations and Asymptotic Expansions</td>
<td>1528</td>
</tr>
<tr>
<td>30.8</td>
<td>Airy Functions</td>
<td>1529</td>
</tr>
<tr>
<td>30.8.1</td>
<td>Definition and Basic Formulas</td>
<td>1529</td>
</tr>
<tr>
<td>30.8.2</td>
<td>Power Series and Asymptotic Expansions</td>
<td>1529</td>
</tr>
<tr>
<td>30.9</td>
<td>Degenerate Hypergeometric Functions (Kummer Functions)</td>
<td>1530</td>
</tr>
<tr>
<td>30.9.1</td>
<td>Definitions and Basic Formulas</td>
<td>1530</td>
</tr>
<tr>
<td>30.9.2</td>
<td>Integral Representations and Asymptotic Expansions</td>
<td>1533</td>
</tr>
<tr>
<td>30.9.3</td>
<td>Whittaker Functions</td>
<td>1534</td>
</tr>
<tr>
<td>30.10</td>
<td>Hypergeometric Functions</td>
<td>1534</td>
</tr>
<tr>
<td>30.10.1</td>
<td>Various Representations of the Hypergeometric Function</td>
<td>1534</td>
</tr>
<tr>
<td>30.10.2</td>
<td>Basic Properties</td>
<td>1536</td>
</tr>
<tr>
<td>30.11</td>
<td>Legendre Polynomials, Legendre Functions, and Associated Legendre Functions</td>
<td>1536</td>
</tr>
<tr>
<td>30.11.1</td>
<td>Legendre Polynomials and Legendre Functions</td>
<td>1536</td>
</tr>
<tr>
<td>30.11.2</td>
<td>Associated Legendre Functions with Integer Indices and Real Argument</td>
<td>1539</td>
</tr>
<tr>
<td>30.11.3</td>
<td>Associated Legendre Functions. General Case</td>
<td>1539</td>
</tr>
<tr>
<td>30.12</td>
<td>Parabolic Cylinder Functions</td>
<td>1542</td>
</tr>
<tr>
<td>30.12.1</td>
<td>Definitions. Basic Formulas</td>
<td>1542</td>
</tr>
<tr>
<td>30.12.2</td>
<td>Integral Representations, Asymptotic Expansions, and Linear Relations</td>
<td>1543</td>
</tr>
<tr>
<td>30.13</td>
<td>Elliptic Integrals</td>
<td>1544</td>
</tr>
<tr>
<td>30.13.1</td>
<td>Complete Elliptic Integrals</td>
<td>1544</td>
</tr>
<tr>
<td>30.13.2</td>
<td>Incomplete Elliptic Integrals (Elliptic Integrals)</td>
<td>1545</td>
</tr>
<tr>
<td>30.14</td>
<td>Elliptic Functions</td>
<td>1547</td>
</tr>
<tr>
<td>30.14.1</td>
<td>Jacobi Elliptic Functions</td>
<td>1547</td>
</tr>
<tr>
<td>30.14.2</td>
<td>Weierstrass Elliptic Function</td>
<td>1551</td>
</tr>
<tr>
<td>30.15</td>
<td>Jacobi Theta Functions</td>
<td>1553</td>
</tr>
<tr>
<td>30.15.1</td>
<td>Series Representation of the Jacobi Theta Functions. Simplest Properties</td>
<td>1553</td>
</tr>
<tr>
<td>30.15.2</td>
<td>Various Relations and Formulas. Connection with Jacobi Elliptic Functions</td>
<td>1554</td>
</tr>
<tr>
<td>30.16</td>
<td>Mathieu Functions and Modified Mathieu Functions</td>
<td>1555</td>
</tr>
<tr>
<td>30.16.1</td>
<td>Mathieu Functions</td>
<td>1555</td>
</tr>
<tr>
<td>30.16.2</td>
<td>Modified Mathieu Functions</td>
<td>1557</td>
</tr>
<tr>
<td>30.17</td>
<td>Orthogonal Polynomials</td>
<td>1557</td>
</tr>
<tr>
<td>30.17.1</td>
<td>Laguerre Polynomials and Generalized Laguerre Polynomials</td>
<td>1558</td>
</tr>
<tr>
<td>30.17.2</td>
<td>Chebyshev Polynomials and Functions</td>
<td>1559</td>
</tr>
<tr>
<td>30.17.3</td>
<td>Hermite Polynomials</td>
<td>1561</td>
</tr>
<tr>
<td>30.17.4</td>
<td>Jacobi Polynomials and Gegenbauer Polynomials</td>
<td>1563</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>30.18</td>
<td>Nonorthogonal Polynomials</td>
<td>1564</td>
</tr>
<tr>
<td>30.18.1</td>
<td>Bernoulli Polynomials</td>
<td>1564</td>
</tr>
<tr>
<td>30.18.2</td>
<td>Euler Polynomials</td>
<td>1565</td>
</tr>
</tbody>
</table>

References 1569

Index 1587