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Here we describe various classes of functional equations and functional-differential equations that
can be solved by differentiating with respect to a parameter or independent variables. Some of the
functional and functional-differential equations in question arise in constructing exact solutions to
nonlinear partial differential equations with the method of Lie groups [1–3] and the methods of
generalized and functional separation of variables [3–5].

1. Reduction of functional equations to a partial differential
equation by differentiating with respect to a parameter

1.1. Classes of functional equations in question. Method description

We will consider functional equations of the form

w(x,y) = θ(x,y,a)w
(
ϕ(x,y,a),ψ(x,y,a)

)
, (1)

wherex and y are independent variables,w = w(x,y) is the unknown function,θ = θ(x,y,a),
ϕ = ϕ(x,y,a), andψ = ψ(x,y,a) are prescribed functions, anda is a free parameter that can take
any values (from a certain interval). We assume that the relations

θ(x,y,a0) = 1, ϕ(x,y,a0) = x, ψ(x,y,a0) = y (2)

hold true for a specific value of the parameter,a = a0, which means that the functional equation (1)
is satisfied identically ata = a0.

Let us expand (1) into a power series in the parametera at the pointa0 taking relations (2) into
account and let us divide the resulting expression bya − a0. Then let us take the limit asa → a0 to
obtain a first-order linear partial differential equation forw:

ϕ◦a(x,y)
∂w

∂x
+ ψ◦a(x,y)

∂w

∂y
+ θ◦a(x,y)w = 0, (3)

where the following notation is used:

ϕ◦a(x,y) =
∂ϕ

∂a

∣∣∣
a=a0

, ψ◦a(x,y) =
∂ψ

∂a

∣∣∣
a=a0

, θ◦a(x,y) =
∂θ

∂a

∣∣∣
a=a0

.

In order to solve equation (3), one should consider the corresponding characteristic system of
equations

dx

ϕ◦a(x,y)
=

dy

ψ◦a(x,y)
= −

dw

θ◦a(x,y)w
. (4)

Suppose
u1(x,y) = C1, u2(x,y,w) = C2 (5)
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are independent integrals of the characteristic system (4). Then the general solution of equation (3)
is expressed as

u2(x,y,w) = F
(
u1(x,y)

)
, (6)

whereF (z) is an arbitrary function.
Equation (6) should be solved forw and the resulting expression should then be substituted

into the original equation (1) for verification, since redundant solutions could arise. Situations are
possible where the solution to the partial differential equation (3) does not satisfy the functional
equation (1) at all; see example 3 below.

Remark 1. Equation (3) can be obtained from (1) by differentiating with respect toa followed
by settinga = a0.

Remark 2. It is convenient to take the second integral in (5) to be linear inw, so thatu2(x,y,w)=
ξ(x,y)w, and then rewrite formula (6) to solve forw.

Remark 3. Although the solutions obtained by the differentiation method must be smooth, one
can easily verify, given an explicit form of the solution, that they are also suitable as continuous
solutions.

Remark 4. Some functional equations of the form (1) are treated in the book [6].

1.2. Examples of the solution of functional equations by the differentiation with
respect to a parameter

Example 1. Self-similar solutions, which are common in mathematical physics [1–3], can be
defined as solutions invariant under scaling transformations, i.e., those satisfying the functional
equation

w(x, t) = akw(amx,ant), (7)

wherek, m, n are some given constants anda is a positive number.
Equation (7) is satisfied identically ata = 1. Differentiating (7) with respect toa and then setting

a = 1, one arrives at the first-order partial differential equation

mx
∂w

∂x
+ nt

∂w

∂t
+ kw = 0. (8)

First integrals of the corresponding characteristic system of ordinary differential equations,

dx

mx
=

dt

nt
= −

dw

kw
,

are expressed as
xt−m/n = C1, tk/nw = C2,

providedn ≠ 0. Therefore the general solution of the partial differential equation (8) has the form

w(x, t) = t−k/nF (z), z = xt−m/n, (9)

whereF (z) is an arbitrary function. One can verify by straightforward substitution that expression (9)
is a solution to the functional equation in question (7).

Example 2. Consider the functional equation

w(x, t) = akw(amx, t + b ln a), (10)

wherek, m, b are some given constants anda is an arbitrary positive number.
Equation (10) is satisfied identically ata = 1. Differentiating (10) with respect toa and then

settinga = 1, one arrives at the first-order partial differential equation

mx
∂w

∂x
+ b

∂w

∂t
+ kw = 0. (11)
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The corresponding characteristic system of ordinary differential equations,
dx

mx
=

dt

b
= −

dw

kw
admits the first integrals

x exp(−mt/b) = C1, w exp(kt/b) = C2.

Therefore the general solution of the partial differential equation (11) has the form

w(x, t) = exp(−kt/b)F (z), z = x exp(−mt/b), (12)

whereF (z) is an arbitrary function. By straightforward substitution, one can verify that expres-
sion (12) is a solution to the functional equation (10).

Remark 5. A solution of the form (12) is called a limit self-similar solution [3].

Example 3. Now consider the functional equation

w(x, t) = akw
(
x + (1 − a)t, ant

)
, (13)

wherea is any positive number andn is some constant.
Equation (13) is satisfied identically ata = 1. Differentiating (13) with respect toa and then

settinga = 1, one arrives at the first-order partial differential equation

−t
∂w

∂x
+ nt

∂w

∂t
+ kw = 0. (14)

The corresponding characteristic system

−
dx

t
=

dt

nt
= −

dw

kw
has the first integrals

t + nx = C1, wtk/n = C2.

Therefore the general solution of the partial differential equation (14) has the form

w(x, t) = t−k/nF (nx + t), (15)

whereF (z) is an arbitrary function.
Let us substitute expression (15) into the original equation (13). On cancelling outt−k/n, one

obtains
F (nx + t) = F (nx + σt), σ = (1 − a)n + an. (16)

If F (z) ≠ const, it follows thatσ = 1, or

(1 − a)n + an = 1. (17)

Since (16) must hold for anya > 0, relation (17) must also hold for anya > 0. This is only possible
for a single value ofn,

n = 1. (18)

In this case, the solution to equation (13) is given by (see (15) withn = 1)

w(x, t) = t−kF (x + t),

whereF (z) is an arbitrary function.
If n ≠ 1, equation (13) admits only a degenerate solution,w(x, t) = Ct−k/n, whereC is an

arbitrary constant; this solution corresponds toF = const in (16).

S Exercises for Section 1.
1. Solve the functional equationw(x, t) = w(x+aλ, t+ak), wherek andλ are some constants anda is an arbitrary constant.

2. Solve the functional equationw(x, t) = akw(x + b ln a, t + ln a), whereb andk are some constants anda is any positive
number.

3. What conditions must the functionsϕ(a), ψ1(a), ψ2(a) satisfy in order that the functional equation

w(x,y) = ϕ(a)w
(
ψ1(a)x,ψ2(a)y

)

admit solutions for all positive values ofa?

4. For which values of the constantsk andn does the functional equationw(x, t) = akw(anx, t + a − 1) admit solutions for
all positivea?
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2. Reduction of functional equations to ordinary differential
equations by differentiating with respect to independent variables

2.1. Preliminary remarks

1◦. There are a number of cases where some arguments may be eliminated from the functional
equation under consideration by differentiating with respect to its independent variables. The
equation is thus reduced to an ordinary differential equation. The resulting solution should then be
substituted into the original equation in order to “remove” redundant constants of integration that
may arise due to differentiation.

2◦. In some cases, the differentiation with respect to independent variables should be combined
with the multiplication (division) of the equation and its consequences by appropriate functions.
Sometimes it may be useful to take the logarithm of the equation or/and its differential consequences.

3◦. Sometimes the differentiation of the functional equation in question with respect to independent
variables allows the elimination of some arguments and the reduction of the equation to a simpler
functional equation whose solution is known.

4◦. In some cases, the differentiation of the functional equation in question with respect to inde-
pendent variables allows the elimination of some arguments and the reduction of the equation to a
simpler functional-differential equation (see Subsection 3.3).

2.2. Examples of the solution of functional equations by the differentiation with
respect to independent variables

Example 4. Consider Pexider’s equation [6]

f (x) + g(y) = h(x + y). (19)

Here,f (x), g(y), andh(z) are unknown functions.
Differentiating the functional equation (19) with respect tox andy, one arrives at the ordinary

differential equationh′′zz(z) = 0 (wherez = x + y), whose solution is a linear function,

h(z) = az + b. (20)

Substituting this expression into (19) yields

f (x) + g(y) = ax + ay + b.

On separating the variables, one finds the functionsf andg,

f (x) = ax + b + c,

g(y) = ay − c.
(21)

Thus, the solution to Pexider’s equation is given by formulas (20) and (21), wherea, b, andc are
arbitrary constants.

Example 5. Consider the nonlinear equation

f (x + y) = f (x) + f (y) + af (x)f (y), a ≠ 0. (22)

It arises in probability theory in the casea = −1.
Differentiating the equation with respect tox andy, one obtains

f ′′zz(z) = af ′x(x)f ′y(y), (23)

wherez = x + y. Let us take the logarithm of (23) and differentiate the resulting equation with
respect tox andy to obtain the ordinary differential equation

[ln f ′′zz(z)]′′zz = 0 (24)
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Integrating (24) twice with respect toz yields

f ′′zz(z) = C1 exp(C2z), (25)

whereC1 andC2 are arbitrary constants. On substituting (25) into (23), one arrives at the equation

C1 exp[C2(x + y)] = af ′x(x)f ′y(y),

which admits separation of variables. Integrating yields

f (x) = A exp(C2x) + B, A = ± 1
C2

√
C1

a
. (26)

On substituting (26) into the original equation (22), one finds thatA = −B = 1/a andC2 = β is any
number. Thus, one obtains the desired solution

f (x) =
1
a

(
eβx − 1

)
.

S Exercises for Section 2.
1. Solve Cauchy’s exponential equationf (x + y) = f (x)f (y). Hint: first take the logarithm of the equation.

2. Solve Cauchy’s power equationf (xy) = f (x)f (y).

3. Solve Lobachevsky’s functional equationf (x + y)f (x − y) = f2(x).

4. Solve the functional equationf (x + y)g(x − ay) = h(x), wherea is a given number.

5. Solve the functional equationf (x + y) = axyg(x)h(y), wherea is a given positive number. Hint: first take the logarithm
of the equation.

6. Solve the generalized d’Alembert equationf1(y +x)+f2(y −x) = g(x)g2(y). Hint: first pass to the new variablesξ = x+y,
η = y − x.

3. Solution of Some Functional-Differential Equations by
Differentiation

3.1. Classes of functional-differential equations in question. Method description

Consider functional-differential equations of the form

f1(x)g1(y) + f2(x)g2(y) + · · · + fk(x)gk(y) = 0, (27)

where the functionalsfi(x) andgj(x) are prescribed and have the form, respectively,

fj(x) ≡ Fj

(
x,ϕ1,ϕ′1,ϕ′′1 , . . . ,ϕn,ϕ′n,ϕ′′n

)
,

gj(y) ≡ Gj

(
y,ψ1,ψ′1,ψ′′1 , . . . ,ψm,ψ′m,ψ′′m

)
.

(28)

The functionsϕi = ϕi(x) and ψj = ψj(y), dependent on different arguments, are to be found.
Here, for simplicity, an equation involving second derivatives is considered; in the general case, the
right-hand sides of relations (28) will contain higher-order derivatives ofϕi = ϕi(x) andψj = ψj(y).

Below we describe a procedure for constructing solutions to functional-differential equations
(27)–(28) by the differentiation method. It involves three successive stages.

1◦. Assume thatgk � 0. We divide equation (27) bygk and differentiate with respect toy. This
results in a similar equation but with fewer terms:

f̃1(x)g̃1(y) + f̃2(x)g̃2(y) + · · · + f̃k−1(x)g̃k−1(y) = 0,

f̃j(x) = fj(x), g̃j(y) = [gj(y)/gk(y)]′y.
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We continue the above procedure until we obtain a separable two-term equation

f̂1(x)ĝ1(y) + f̂2(x)ĝ2(y) = 0. (29)

Three cases must be considered.
Nondegenerate case: |f̂1(x)|+ |f̂2(x)|�0 and|ĝ1(y)|+ |ĝ2(y)|�0. Then equation (29) is equivalent

to the ordinary differential equations

f̂1(x) + Cf̂2(x) = 0, Cĝ1(y) − ĝ2(y) = 0,

whereC is an arbitrary constant. The equationsf̂2 = 0 and ĝ1 = 0 correspond to the limit case
C = ∞.

Two degenerate cases:

f̂1(x) ≡ 0, f̂2(x) ≡ 0 =⇒ ĝ1,2(y) are any;

ĝ1(y) ≡ 0, ĝ2(y) ≡ 0 =⇒ f̂1,2(x) are any.

2◦. The solutions of the two-term equation (29) should be substituted into the original functional-
differential equation (27) to “remove” redundant constants of integration [these arise because equa-
tion (29) is obtained from (27) by differentiation].

3◦. The casegk ≡ 0 should be treated separately (since we divided the equation bygk at the first
stage). Likewise, we have to study all other cases where the functionals by which the intermediate
functional-differential equations were divided vanish.

Remark 6. Functional-differential equations of the form (27) play an important role in the
method of generalized separation of variables for the nonlinear PDEs [3–5].

3.2. Example of the solution of a functional-differential equation by differentiation

Below we demonstrate with a specific example how functional-differential equations of the form
(27) arise and how they can be solved.

Example 6. The two-dimensional stationary equations of motion of a viscous incompressible
fluid are reduced to a single fourth-order nonlinear equation for the stream function

∂w

∂y

∂

∂x
(∆w) −

∂w

∂x

∂

∂y
(∆w) = ν∆∆w, ∆w =

∂2w

∂x2 +
∂2w

∂y2 . (30)

We seek exact separable solutions of equation (30) in the form

w = f (x) + g(y). (31)

Substituting (31) into (30) yields a functional-differential equation of the form (27):

g′yf ′′′xxx − f ′xg′′′yyy = νf ′′′′xxxx + νg′′′′yyyy. (32)

Differentiating (32) with respect tox andy, we obtain

g′′yyf ′′′′xxxx − f ′′xxg′′′′yyyy = 0. (33)

If f ′′xx � 0 and g′′yy � 0, we separate the variables in (33) to obtain the ordinary differential
equations

f ′′′′xxxx = Cf ′′xx, (34)

g′′′′yyyy = Cg′′yy, (35)

which have different solutions depending on the value of the integration constantC.
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Integrating the constant-coefficient linear ordinary differential equations (34)–(35) followed by
substituting the resulting solutions into the functional-differential equation (32), we finally arrive at
three different solutions for the caseC > 0:

f (x) = C1e
−λy + C2y + C3, g(y) = νλx;

f (x) = C1e
−λx + νλx, g(y) = C2e

−λy − νλy + C3;

f (x) = C1e
−λx − νλx, g(y) = C2e

λy − νλy + C3,

whereC1, C2, C3, andλ are arbitrary constants (for details and other solutions to the equation in
question, see [3, 4]).

3.3. Solution of some functional equations with a composite argument

1◦. The functional equation

S(t) + R1(x)Q1(y) + · · · + Rn(x)Qn(y) = 0, where y = ϕ(x) + ψ(t), (36)

can be reduced, by differentiation with respect tox, to a functional-differential equation in two
variablesx andy of the form (27).

2◦. Consider a functional equation of the form

S1(t)R1(x) + · · · + Sm(t)Rm(x) + h1(x)Q1(y) + · · · + hn(x)Qn(y) = 0, where y = ϕ(x) + ψ(t).
(37)

Assume thatRm(x)� 0. We divide equation (37) byRm(x) and differentiate with respect tox. This
results in an equation,

S1(t)R̄1(x) + · · · + Sm−1(t)R̄m−1(x) +
2n∑

i=1

Fi(x)Gi(z) = 0,

with fewer functionsSi(t). Proceeding likewise, all functionsSi(t) can eventually be eliminated
resulting in a functional-differential equation in two variables of the form (27).

Remark 7. Functional equations of the form (36) and (37) play an important role in the method
of functional separation of variables for the nonlinear PDEs [3–5]. Solutions to a number of specific
functional equations of this form and their application to nonlinear PDEs can be found in [3].

S Exercises for Section 3.
1. Find generalized separable solutions of the nonlinear first-order partial differential equationwx = aw2

y + f (x). Hint: look
for solutions in the formw = ϕ(x)θ(y) + ψ(x).

2. Find generalized separable solutions of the nonlinear heat equationwt = a(wwx)x + b. Hint: look for solutions in the
form w = f (t)θ(x) + g(t).

3. Find generalized separable solutions of the nonhomogeneous Monge–Ampère equationw2
xy − wxxwyy = f (x)yk. Hint:

look for solutions in the formw = ϕ(x)θ(y) + ψ(x).

4. Solve the functional equation

f (t) + g(x) + h(x)Q(y) + R(y) = 0, where y = x + t,

where the functionsf (t), g(x), h(x), Q(y), andR(y) are assumed unknown.

5. Solve the functional equation

f (t) + g(x)Q(y) + h(x)R(y) = 0, where y = x + t.
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