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Here we describe various classes of functional equations and functional-differential equations that
can be solved by differentiating with respect to a parameter or independent variables. Some of the
functional and functional-differential equations in question arise in constructing exact solutions to
nonlinear partial differential equations with the method of Lie groups [1-3] and the methods of
generalized and functional separation of variables [3-5].

1. Reduction of functional equations to a partial differential
equation by differentiating with respect to a parameter

1.1. Classes of functional equations in question. Method description
We will consider functional equations of the form

w(z,y) = 0(x,y, ayw(p(z,y, a), ¥(z,y, a)), 1)

wherez andy are independent variables, = w(z,y) is the unknown functiong = 0(z,y, a),
v = ¢(x,y,a), andy = ¥(z,y,a) are prescribed functions, amads a free parameter that can take
any values (from a certain interval). We assume that the relations

G(x,y,ao) =1, Qp(xvyya()) =, w(miyaa@) =Yy (2)

hold true for a specific value of the parametes; ag, which means that the functional equation (1)
is satisfied identically at = ao.

Let us expand (1) into a power series in the parametrthe pointzg taking relations (2) into
account and let us divide the resulting expression byig. Then let us take the limit as— ag to
obtain a first-order linear partial differential equation far

o ow o ow .
@a(xiy)i +wa(x1y)7+9a(l‘iy)w :01 (3)
Ox oy
where the following notation is used:
oz ) = 2P oz )= OV o) = 2
@a(xiy) - 8& a:a()’ zﬁa(x’y) - 8@ a:ao’ aa(xiy) - aa a:ao.

In order to solve equation (3), one should consider the corresponding characteristic system of
equations

de —_ dy _  dw @
palz,y)  Yoly) Oz y)w’
Suppose
ul(x,y) = C]_, ’U,z(il', y,’U)) = CZ (5)
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are independent integrals of the characteristic system (4). Then the general solution of equation (3)
is expressed as

up(, y, w) = F (ui(z, y)), 6)
whereF'(z) is an arbitrary function.

Equation (6) should be solved far and the resulting expression should then be substituted
into the original equation (1) for verification, since redundant solutions could arise. Situations are
possible where the solution to the partial differential equation (3) does not satisfy the functional
equation (1) at all; see example 3 below.

Remark 1. Equation (3) can be obtained from (1) by differentiating with respegtftslowed
by settinga = ao.

Remark 2. Itis convenientto take the secondintegralin (5) to be linear, iso thatuy(z, y, w) =
&(x, y)w, and then rewrite formula (6) to solve far.

Remark 3. Although the solutions obtained by the differentiation method must be smooth, one
can easily verify, given an explicit form of the solution, that they are also suitable as continuous
solutions.

Remark 4. Some functional equations of the form (1) are treated in the book [6].

1.2. Examples of the solution of functional equations by the differentiation with
respect to a parameter

Example 1. Self-similar solutions, which are common in mathematical physics [1-3], can be
defined as solutions invariant under scaling transformations, i.e., those satisfying the functional
equation

w(z, t) = d*w(@mz, at), )
wherek, m, n are some given constants amds a positive number.

Equation (7) is satisfied identically at= 1. Differentiating (7) with respect te and then setting
a =1, one arrives at the first-order partial differential equation

ow ow
— +nt— + =0.
mT o nt Y kw=0 (8)
First integrals of the corresponding characteristic system of ordinary differential equations,
dv _dt __dw
mz nt  kw’

are expressed as
ot =y, R = Oy,

providedn # 0. Therefore the general solution of the partial differential equation (8) has the form
w(z, t) =t */"F(), 2=zt ©)
whereF'(z) is an arbitrary function. One can verify by straightforward substitution that expression (9)
is a solution to the functional equation in question (7).
Example 2. Consider the functional equation

w(z, t) = a*w(a™z, t +bIna), (10)

wherek, m, b are some given constants and an arbitrary positive number.
Equation (10) is satisfied identically at= 1. Differentiating (10) with respect te and then
settinga = 1, one arrives at the first-order partial differential equation
ow ow

T b2 kw =0, 11
Mo o T Y (11)
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The corresponding characteristic system of ordinary differential equations,
de _dt _ dw
mzr b kw
admits the first integrals
xexptmt/b) =C1,  wexplt/b) = Cy.
Therefore the general solution of the partial differential equation (11) has the form
w(x,t) = expEkt/b)F(z), =z =xexptmt/b), (12)
where F'(z) is an arbitrary function. By straightforward substitution, one can verify that expres-
sion (12) is a solution to the functional equation (10).
Remark 5. A solution of the form (12) is called a limit self-similar solution [3].
Example 3. Now consider the functional equation
w(z,t) = akw(x +(1-a)t, a”t), (13)
whereqa is any positive number andis some constant.
Equation (13) is satisfied identically at= 1. Differentiating (13) with respect te and then
settinga = 1, one arrives at the first-order partial differential equation

ow ow
—t— +nt— +kw =0.
t o nt ot kw=0 (14)
The corresponding characteristic system
_dw_dt__dw
t  nt  kw

has the first integrals
t+nx =C1, wtk/™ = Co.
Therefore the general solution of the partial differential equation (14) has the form
w(z,t) =t F/ " Fna +1), (15)
whereF'(z) is an arbitrary function.
Let us substitute expression (15) into the original equation (13). On cancelling*dtf one
obtains
F(nx +t) = F(nx + ot), c=(1-an+a". (16)
If F(z)# const, it follows that = 1, or
Q-a;n+a™ =1 17)
Since (16) must hold for any > 0, relation (17) must also hold for amy> 0. This is only possible
for a single value of:,
n=1 (18)
In this case, the solution to equation (13) is given by (see (15)avithl)
w(z, t) =t FF(x +1),
whereF'(z) is an arbitrary function.

If n # 1, equation (13) admits only a degenerate solutiofy,t) = Ct™*/", whereC is an
arbitrary constant; this solution correspondgite const in (16).

o0 Exercises for Section 1.
1. Solve the functional equatian(z, t) = w(x +a), t +ak), wherek and)\ are some constants aads an arbitrary constant.

2. Solve the functional equation(z, t) = a®w(z +bIna,t +In a), whereb andk are some constants ands any positive
number.

3. What conditions must the functiogga), ¥1(a), 12(a) satisfy in order that the functional equation
w(z,y) = pla)w(Pi(a)z, Y2(a)y)
admit solutions for all positive values af?

4. For which values of the constaritsandn does the functional equatian(x, t) = a”w(a™z, t + a — 1) admit solutions for
all positivea?
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2. Reduction of functional equations to ordinary differential
equations by differentiating with respect to independent variables

2.1. Preliminary remarks

1°. There are a number of cases where some arguments may be eliminated from the functional
equation under consideration by differentiating with respect to its independent variables. The

equation is thus reduced to an ordinary differential equation. The resulting solution should then be
substituted into the original equation in order to “remove” redundant constants of integration that

may arise due to differentiation.

2°. In some cases, the differentiation with respect to independent variables should be combined
with the multiplication (division) of the equation and its consequences by appropriate functions.
Sometimes it may be useful to take the logarithm of the equation or/and its differential consequences.

3°. Sometimes the differentiation of the functional equation in question with respect to independent
variables allows the elimination of some arguments and the reduction of the equation to a simpler
functional equation whose solution is known.

4°. In some cases, the differentiation of the functional equation in question with respect to inde-
pendent variables allows the elimination of some arguments and the reduction of the equation to a
simpler functional-differential equation (see Subsection 3.3).

2.2. Examples of the solution of functional equations by the differentiation with
respect to independent variables

Example 4. Consider Pexider’s equation [6]

f(@)+g(y) = Wz +y). (19)

Here, f(z), g(y), andh(z) are unknown functions.
Differentiating the functional equation (19) with respect:tandy, one arrives at the ordinary
differential equatiorh’/, (z) = 0 (wherez = z +y), whose solution is a linear function,

h(z) =az +b. (20)
Substituting this expression into (19) yields
f(@) +g(y) = ax +ay +b.
On separating the variables, one finds the functijpasdg,
fx)=ax+b+ec,
9(y) = ay —c.

Thus, the solution to Pexider’'s equation is given by formulas (20) and (21), whéreandc are
arbitrary constants.

(21)

Example 5. Consider the nonlinear equation

f@+y) = f@)+ fY) +af(@)f@y), azO. (22)

It arises in probability theory in the cage= 1.
Differentiating the equation with respectitcaandy, one obtains

f2.(2) = afy (@) f, W), (23)

wherez = x +y. Let us take the logarithm of (23) and differentiate the resulting equation with
respect tar andy to obtain the ordinary differential equation

[In f2L(N2. = (24)
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Integrating (24) twice with respect toyields
f1.(2) = Crexp(C22), (25)
where(C; andC5 are arbitrary constants. On substituting (25) into (23), one arrives at the equation
CrexplCa(x +y)] = afy(2)f,(v),

which admits separation of variables. Integrating yields

G

f(z) = Aexp(Csz) + B, A=+t
Cz a

On substituting (26) into the original equation (22), one finds that—B = 1/a andC5, = 3 is any
number. Thus, one obtains the desired solution

. (26)

flx)= %(eﬁm - l).

=& Exercises for Section 2.

. Solve Cauchy’s exponential equatigt + y) = f(z)f(y). Hint: first take the logarithm of the equation.
. Solve Cauchy’s power equatigi{zy) = f(x)f(y)-

. Solve Lobachevsky’s functional equatigite: + 3) f(x — y) = f2(x).

A W N P

. Solve the functional equatiof{x + y)g(z — ay) = h(z), whereq is a given number.

5. Solve the functional equatiof{z + y) = a®¥ g(z)h(y), wherea is a given positive number. Hint: first take the logarithm
of the equation.

6. Solve the generalized d’Alembert equatifity +x) + fo(y — ) = g(x)g2(y). Hint: first pass to the new variablés x +y,
n=y-—x

3. Solution of Some Functional-Differential Equations by
Differentiation

3.1. Classes of functional-differential equations in question. Method description
Consider functional-differential equations of the form

J1(®)g1(y) + fa(z)g2(y) + - - - + fr(x)gr(y) = O, (27)

where the functionalg;(«) andg;(xz) are prescribed and have the form, respectively,

fj(x) = Fj (1’1901180/1190/1/: sy Pny 90;,! LPZ),
9iW) =G (Y, V1, LYY - o, U )

The functionsy; = ¢;(x) andvy; = ¢;(y), dependent on different arguments, are to be found.
Here, for simplicity, an equation involving second derivatives is considered; in the general case, the
right-hand sides of relations (28) will contain higher-order derivativgs; 6f ¢, (x) andy; = 1;(y).

Below we describe a procedure for constructing solutions to functional-differential equations
(27)—(28) by the differentiation method. It involves three successive stages.

(28)

1°. Assume thay # 0. We divide equation (27) by, and differentiate with respect tp This
results in a similar equation but with fewer terms:
F@)32) + F2(0)2(y) + -+ + Fra(@)Gialy) = O,
fi@) = fi@), 9;) =19;)/ gk W),
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We continue the above procedure until we obtain a separable two-term equation

Fu@)gi(y) + Fa()G2(y) = 0. (29)

Three cases must be considered.
Nondegenerate caséf (z)|+|f2(x)|£0 and|g1(y)|+[g2(y)|#0. Then equation (29) is equivalent
to the ordinary differential equations

A@)+CR) =0, Chily) - Galy) = 0,
where(C' is an arbitrary constant. The equatioﬁs: 0 andg; = 0 correspond to the limit case
C =o0.
Two degenerate cases
fi@)=0, foa)=0 = Gialy) areany;
1) =0, G(y) =0 = fia(z) areany.
2°. The solutions of the two-term equation (29) should be substituted into the original functional-

differential equation (27) to “remove” redundant constants of integration [these arise because equa-
tion (29) is obtained from (27) by differentiation].

3°. The casgy, = 0 should be treated separately (since we divided the equatign By the first
stage). Likewise, we have to study all other cases where the functionals by which the intermediate
functional-differential equations were divided vanish.

Remark 6. Functional-differential equations of the form (27) play an important role in the
method of generalized separation of variables for the nonlinear PDEs [3-5].

3.2. Example of the solution of a functional-differential equation by differentiation

Below we demonstrate with a specific example how functional-differential equations of the form
(27) arise and how they can be solved.

Example 6. The two-dimensional stationary equations of motion of a viscous incompressible
fluid are reduced to a single fourth-order nonlinear equation for the stream function

ow 0 _ ow 0 Pw  *w

a—ya—x(Aw) %@(Aw) = vAAw, Aw = 2 + 97 (30)
We seek exact separable solutions of equation (30) in the form
w = f(z) +g(y). 31)
Substituting (31) into (30) yields a functional-differential equation of the form (27):
Gyl rae = eGyyy = Ve + Vyyyy- (32)
Differentiating (32) with respect to andy, we obtain
Gy rawe = FaeGyyyy = O (33)

If fr #0 andg,, # 0, we separate the variables in (33) to obtain the ordinary differential
equations

frawe = Clze (34)

gg@///yy = nglj/y' (35)

which have different solutions depending on the value of the integration coidstant
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Integrating the constant-coefficient linear ordinary differential equations (34)—(35) followed by
substituting the resulting solutions into the functional-differential equation (32), we finally arrive at
three different solutions for the cagé> 0:

f(@)=Cre™ +Coy + Cs,  g(y) = vAz;
fl@) = Cre™ +vha, g(y) = Cre™ —vAy + C3;
f(x) = Cle_)\x - vz, g(y) = CzeAy vy + Cj,

whereCy, C5, C3, and X are arbitrary constants (for details and other solutions to the equation in
question, see [3, 4]).

3.3. Solution of some functional equations with a composite argument
1°. The functional equation

S@) + Ru(x)Qu(y) +- - + Ru(z)Qn(y) =0, where y = o(x) + (1), (36)

can be reduced, by differentiation with respectrtoto a functional-differential equation in two
variablesr andy of the form (27).

2°. Consider a functional equation of the form

S1(t)Ra(x) +- - - + S () Ry () + ha(2)Qu(y) +- - - + hn(2)Qn(y) =0, where y =o(x) +9(1).

(37)
Assume thaf?,, () £0. We divide equation (37) bR,,.(x) and differentiate with respect to This
results in an equation,

2n
Si(t)Ra(x) + -+ + Sppoa(t) Ren-a(2) + > Fil2)Gi(2) =0,
=1
with fewer functionsS;(¢t). Proceeding likewise, all functions;(¢) can eventually be eliminated
resulting in a functional-differential equation in two variables of the form (27).

Remark 7. Functional equations of the form (36) and (37) play an important role in the method
of functional separation of variables for the nonlinear PDEs [3-5]. Solutions to a number of specific
functional equations of this form and their application to nonlinear PDEs can be found in [3].

oo Exercises for Section 3.

1. Find generalized separable solutions of the nonlinear first-order partial differential equ@tkmwfj + f(x). Hint: look
for solutions in the formw = ¢(z)0(y) + (x).

2. Find generalized separable solutions of the nonlinear heat equatiena(ww,)s + b. Hint: look for solutions in the
formw = f(t)0(z) + g(t).

3. Find generalized separable solutions of the nonhomogeneous Mongér@\equatiomuiy —Wapwyy = f(x)y”. Hint:
look for solutions in the formw = ¢(z)0(y) + ¥ (z).

4. Solve the functional equation
() +g(x) + (x)Qy) + R(y) =0,  where y==z+¢,
where the functiong'(¢), g(z), h(z), Q(y), and R(y) are assumed unknown.

5. Solve the functional equation

f@®) +g(@x)QW) + h(x)R(y) =0,  where y =z +t.
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