
A framework for solving functional equations with neural networks

Lars Kindermann1 Achim Lewandowski2 Peter Protzel2

kindermann@reglos.de lewandowski@alewand.de peter.protzel@e-technik.tu-chemnitz.de
www.reglos.de/kindermann www.alewand.de www.infotech.tu-chemnitz.de/~proaut

1RIKEN Brain Science Institute, Lab for Mathematical Neuroscience
Wako-Shi, Saitama 351-0198, Japan

2Dept. of Electrical Engineering and Information Technology
Chemnitz University of Technology, 09107 Chemnitz, Germany

Abstract
In his „essay towards a calculus of functions“ from 1815
Charles Babbage introduced a branch of mathematics
now known as the theory of functional equations [1]. But
since then finding specific solutions for a given functional
equation remained a hard task in many cases. For one of
his examples, the now famous „Babbage equation“
ϕ(ϕ(x))=x, which solutions ϕ are called „the roots of
identity“ and the more general equation ϕ(ϕ(x))=f(x)
which defines kind of a „square root“ of some given func-
tion f, we have previously shown that this type of equation
can be solved approximately by neural networks with a
special topology and learning rule. Here we extend that
method towards a wider range of functional equations
which can be mapped in similar ways to neural networks
too. The method is demonstrated on - but not limited to -
multilayer perceptrons. We present a first sketch of this
ideas here on some important equations.

1 Introduction
Functional equations are a relatively unpopular area of
mathematics. This is not due to a lack of importance: Ex-
tending linear algebra which deals with linear functions,
functional algebra covers a much more general domain.
Usually dynamical systems are described by differential
equations in a continuous time domain. For discrete time
systems on the other hand, the dynamics is defined by a
difference equation or an iterated map. Constructing a
trajectory or determining other properties of the system
requires dealing with functional equations.
Contrary to differential calculus or linear algebra, func-
tional equations are rarely employed to solve practical
problems. This may be due to the technical difficulties of
the functional calculus. Functional equations are often
very hard to handle. For many of them mathematics has
not yet determined a general solution, even the questions
of existence and uniqueness are not solved.
One of the simplest functional equations possible is

, which expresses the direct extension of
the concept of square roots of a number towards the cal-
culus of functions: The function is something like a
square root of the function , also often called iterative
root or functional root of .
A 2001 survey paper on functional equations states:

„...one should not expect results on iterative roots in a
general situation. In fact, even roots of polynomials are
not described. Even worse: we do not know whether eve-
ry complex cubic polynomial has a square root...“ [3]
Facing an engineering problem which required solutions
of this type of equation, we have successfully developed
methods to solve this equation at least numerically with
the aid of neural networks. [4]
That work inspired us to compile more neural network
solutions for similar mathematical problems, providing a
common framework for mapping functional equations to
neural networks.

2 Neural Networks as Building Blocks
Here we present some examples of functional equations
and a network topology which will „solve“ them.
We will use this terminology: expresses a real number
or some n-dimensional vector of real numbers. is a
known function, denotes an unknown function, the
desired solution of the equation in question. is a given
constant. In the figures circles will represent nonlinear,
usually sigmoid neurons while squares symbolize linear
transfer functions.
Apart from the case where explicit functions are given as
a formula, practical applications often relay on measure-
ments or sampled data. If the known function is given
only implicitly as input - output data pairs defined by a ta-
ble of values, the training set in neural network
terminology, solving a functional equation containing
becomes part of a regression problem: There may be
noise or errors in this data and one has to deal with prob-
lems like generalization and overfitting. Neural networks
have proven to be highly successful in this context and
lots of methods are available, which then naturally com-
bine with the functional equation capability described
here to provide practical solutions for specific applica-
tions.

2.1 The Inverse of a Function

This equation is solved by the inverse of the given func-
tion: . Finding an inverse with neural networks
is a well known procedure. The most simple technique is

ϕ ϕ x()() f x()=

ϕ
f

f

x
f x()

ϕ x()
c

f

x f x(),()
f

ϕ f x()() x=

ϕ f 1–=

In: Neural Information Processing, ICONIP2001
Proceedings, Fudan University Press, Shanghai
2001, Vol 2, pp. 1075-1078.

just exchanging inputs and targets of the training set.
But also several analytic methods have been de-
scribed to invert a ready trained net by calculating the
weights directly. [5] This provides a basic procedure
for several of the following examples.

2.2 Schröder’s Equation

The Schröder equation [6] represents the eigenvalue
problem of functional calculus. It is one of the most
important functional equations and useful for lineari-
zation of various other functional equations. [2]
We suggest two methods for addressing this with neu-
ral networks. The first can be used when it is known
that the desired solution is a bijective mapping and
possesses an inverse: Then the equation can be writ-
ten as

and be mapped to this neural network structure.

Figure 1: This network as a whole represents , but
only the second part is trained by backpropagation. The
constant is mapped to a weight which is kept constant.
During the training the right subnet is concurrently inverted
and the result is transferred to the left part which finally - if
the process converges - approximates the sought solution

.

The other method we propose here represents each
side of an equation as a separate networks, which are
trained alternately towards the output of each other
and corresponding parts are linked by weight sharing.
The part which represents has to be trained in ad-
vance. The principle is the same as described in sec-
tion 2.7.

2.3 Abel’s Equation

The Abel equation is another very basic equation of
functional calculus. It also represents some way to
linearize other more complicated problems [2]. This
equation can be handled similar to the previous one
just by mapping to a fixed bias instead of the weight

between the two subnets which is kept fix at the value
1 now.

Figure 2: For the Abel equation the constant is represented
as a fixed bias.

2.4 Iterative Roots

Iterative roots belong to the group of iterative func-
tional equations. They represent the inverse problem
of iteration and have applications in dynamical sys-
tems, chaos and modelling of industrial processes.
They can be easily mapped to a multilayer network
which consists of two identical subnets in a row. The
only problem is to train the whole net to approximate

 and keep all the weights in both subnets identi-
cal. This can be achieved by different training meth-
ods based on backpropagation e.g. weight sharing or
adding penalty terms for regularization [7].
.

Figure 3: The whole network approximates , and - if
kept identical by weight sharing - each subnet approximates
the iterative root of .

2.5 Babbage Equation

This special case of 2.4 with is the famous
Babbage equation. Charles Babbage was a pioneer in
the area of functional equations. In his „Essay to-
wards the calculus of functions“ from 1815 [1] he pre-
sented several functional equations together with
some solutions. The (many) solutions are called the
„roots of identity“, corresponding to the „roots of uni-
ty“ in the complex number domain.

ϕ f x()() cϕ x()=

ϕ

f x() ϕ 1– cϕ x()()=

invert

ϕ ϕ 1–

x

ϕ x()

f x()c

train

f
f x()

c

ϕ

f x()

ϕ f x()() ϕ x() c+=

c

bias=c

invert

ϕ ϕ 1–

x

ϕ x()

f x()1

f

ϕ ϕ x()() f x()=

f x()

ϕ ϕ

x

ϕ x()

f x()

f

share
weights

f x()

f

ϕ ϕ x()() x=

f x() x=

ϕ

2.6 Fractional iteration
More general, the fractional iterate of a function
is defined by the equation

Figure 4: This multilayer network computes the fractional
iterates of its target function.

Training methods based on backpropagation with
weight sharing or penalty terms for regularization and
direct 2nd order gradient descend have been devel-
oped by us which can compute up to the 10th root of
a given function. [7]

2.7 Commuting Functions

This equation expresses the fact that the order of two
functions may be interchanged without changing the
output.

Figure 5: The equation is expressed as two networks which
are trained to deliver identical results by using the output of
each as the target of the other. The networks are pre-
trained to the function and then kept fix, the net-
works are trainable but forced to stay equal by some weight
sharing mechanism.

This shows that there may be many solutions to a giv-
en functional equation, sometimes even depending on
an arbitrary function. So this network alone will find
just one arbitrary solution. However, combined with

other knowledge, perhaps some another functional
equation, a unique solution may be constructed.

2.8 Periodic Equation

This equation is solved by every periodic function
with period . Thus it is not very interesting in itself,
but in a context with other equations it provides a
method for defining periodic behaviour. Notice that
there is no known function present in this equation.

Figure 6: These coupled networks should converge to some
periodic functions when „trained“. The bias determines
the period.

2.9 Gamma like functions

For integer this equation defines , for real a
known solution is Euler’s Gamma function , but
there are other solutions possible. The network struc-
ture is only slightly different from above.

2.10 Feigenbaums Equation

This equation plays an important rule in the theory of
quadratic mappings and renormalization theory of dy-
namical systems [8].

Figure 7: A network for finding solutions of the Feigen-
baum equation.

2.11 Systems of Equations
From the examples above one should get an idea how
to construct neural networks which correspond to a

fm n⁄

ϕn x() fm x()=

ϕ f1 n⁄=

x

ϕm fm n⁄=

f x()

1 m n

f

ϕ f x()() f ϕ x()()=

ϕ f x()()

f ϕ x()()

x

x

ϕ

ϕ

f

f

weight
sharing

outputs
targets

ϕ x()

f
f x() ϕ

ϕ x() ϕ x c+()=

c

x

x

ϕ x()

ϕ x c+()

outputs
targets

weight
sharing

c
bias

ϕ

ϕ

c

xϕ x() ϕ x 1+()=

x x! x
Γ x()

cϕ x() ϕ ϕ cx()()=

ϕ ϕ cx()()x

cϕ x()

c

c

ϕ x()

x

outputs
targets

ϕ

weight
sharing

ϕ

ϕ

functional equation. Sometimes several functional
equations are used to describe a problem. If they all
contain the sought function , then mapping them
to different networks and training them all together
(alternatively) while matching the subnets by
weight sharing can find a solution to this combined
problem.

2.12 Existence and Uniqueness
Not every functional equation posesses a solution.
And if it has, it may not be unique. Many solutions de-
pend on an arbitrary function. [2] If something about
the desired solution is known there is a trick to in-
crease the probability that the network will come up
with this one: Instead of initializing the weights with
random values, pretraining with a function similar to
the expected one can help to drive the learning proc-
ess towards that direction. [7]

3 Conclusions
This paper shows how to address functional equations
with neural methods, some of them have been proven
to deliver successful results, other have yet to be ver-
ified. Some future work will be devoted to them.
Most interesting is that these questions go beyond the
traditional use of neural networks in function approx-
imation and classification, where the questions asked
to the net are from the same domain as the available
training data. They perform merely interpolation and
extrapolation. If one had more or better data, the prob-
lem would diminish. These applications presented
here on the other hand use neural networks to answer
questions of a completely different kind and on a
higer level of abstractness. They can be regarded as a
kind of knowledge extraction from the pure data
where the solutions may give insight in otherwise
hidden processes underlying the observable data. This
holds definitely true in dynamical systems, which are
a mayor driving force for the renaissance of function-
al equations within the last few years.
This neural network framework presented here may
provide valuable tools for the application of function-
al equations in science and technology as other nu-
merical methods are rare. A method based on solving

fractional iterations for modelling metal strip profiles
in steel rolling mills has recently been patented by a
mayor company and is used in industrial production
now. [4]

4 References
An extensive compilation of references mainly on it-
erative roots but also other functional equations to-
gether with many links for direct download of papers
or abstracts can be found at our website:
http://www.reglos.com/kindermann/ffx.html

[1] C. Babbage, An Essay towards the Calculus of
Functions. Philosophical transaction of the Royal
Society London 105: 389-424, 1815

[2] M. Kuczma, B. Choczewski, R. Ger, Iterative
Functional Equations. Cambridge University
Press, Cambridge, 1990

[3] K. Baron, W. Jarczyk, Recent results on function-
al equations in a single variable, perspectives and
open problems. Aequationes Math. 61: 1-48,
2001

[4] L. Kindermann, Computing Iterative Roots with
Neural Networks. Proceedings of the Fifth Intl.
Conf. on Neural Information Processing,
ICONIP’98 Vol. 2: 713-715, 1998

[5] J. Kindermann & A. Linden, Inversion of neural
networks by gradient descent. Parallel Comput-
ing, 14(3): 277-286, 1990

[6] E. Schröder, Über Iterierte Funktionen. Math.
Ann. 3: 296-322, 1871

[7] L. Kindermann, A. Lewandowski, P. Protzel, A
Comparison of Different Neural Methods for
Solving Iterative Roots. Proc. Seventh Int'l Conf.
on Neural Information Processing, ICONIP'2000,
Vol2: 565-569, 2000

[8] K.M. Brigs, T.W. Dixon, G. Szekeres, Analytic
solutions of the Cvitanovic-Feigenbaum and Fei-
genbaum-Kadanoff-Shenker equations. Interna-
tional Journal of Bifurcation and Chaos, Vol. 8,
No. 2: 347-357, 1998

ϕ x()

ϕ

ϕ

