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Abstract. We suggest a group approach to research
of functional-differential equations based on a search
of symmetries of underdetermined differential equa-
tions by methods of classical and modern group anal-
ysis.

During the 20th century almost all types of dif-
ferential equations were investigated by methods
of group analysis. However the symmetry approach
leaves aside practical significant and important class
of functional differential equations (FDEs). For ex-
ample, this class includes differential-delay equa-
tions, in particular, equations with lag. There exist
a few equations, integrated in a closed form. Their
number does not exceed several tens. Although
some attempts to use a symmetry and to extend
the methods of group analysis on the class of func-
tional differential equations were undertaken.

A.N. Sharkovsky and G.P. Pelyukh [9, 10] con-
sidered FDEs with arguments related by transfor-
mations that generate a finite group or an infi-
nite group with finit factor group, e.g., containing
functions y(x) and y(−x) and their derivatives.
Evidently, the re-notation y(x) = y1(x), y(−x) =
y2(x) and replacement of the argument x → −x
transform a given equation in a system of two ordi-
nary equations with respect to y1(x), y2(x). How-
ever capabilities of this method are restricted not
only by the requirement on the finiteness for the
group of transformations of arguments (or its fac-
tor group), but also by the requirement on the ab-
sence of invariance of given equation with respect
to this group.

Some preliminary researches on applications of
methods of group analysis to FDEs are given in pa-
pers of V.P. Petukhov [11, 12], although any gen-
eral approach was not found. The main problem
arises: how to consider variables with a functional
arbitrariness, and consequently, how to extend the
operator to such variables. The ambiguity of the
interpretation generates a set of approaches that as

a rule, essentially depend on a type of functional
relation between variables.

Therefore in our researches we replace a study
of FDEs by a study of underdetermined equations
[3, 5], supposing, for example that y(ϕ(x)) = w(x).
The reduction of FDE to a system consisting of
an underdetermined differential equation (for ex-
ample, with two unknown functions) and one or
more functional equations allows to abstract from
these relations and to concentrate on symmetries
of the resulting generalized differential equation.

Underdetermined differential equations were co-
nsidered, by I.M. Andersen [1], G.N. Yakovenko,
V.I. Legenky [6], and V.I. Elkin [2] and othes. How-
ever, Andersen considered these equations as an
example of the applications of the classical group
analysis and the theory of Lie-Bäcklund groups.
The others mathematicians treated only control pro-
blems and ”superfluous” variables was components
of a control vector and had no functional relation
with basic unknown functions. In particular,
V.I. Legenky pointed out that group analysis of
underdetermined equations is ineffective since ad-
missible operators have a functional arbitrariness
(equations admit an infinite Lie algebra), induced
not by real symmetries, but by the underdetermi-
nation of the equation. In fact, in this case the
algebra turns out to be ”empty”, i.e. we did not
succeed in simplification of the equation by the use
of algebra.

However in the FDEs case, unknown variables
are of the same type and are connected by some al-
gebraic (not differential) relations. The inclusion of
these additional relations leads to vanishing of the
underdetermination. Therefore the functional ar-
bitrariness which exists in general does not reduce
efficiency of methods of the group analysis.

Using well known principle of factorization [3,
8], generalized differential equation can be re-
duced to a system of simpler equations embedded
in each other. Let us consider the generalized dif-
ferential equation of the nth order

F
(
x, y, y′, . . . , y(n), w, w′, . . . w(n)

)
= 0. (1)
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Theorem 1. The generalized differential equa-
tion (1) is factorized up to the system

z1 =G1

(
x, y, y′, . . . , y(k1), w, w′, . . . , w(s1)

)
,

z2 =G2

(
x, y, y′, . . . , y(k2), w, w′, . . . , w(s2)

)
,

H
(
x, zi, z

′
i, . . . , z

(n−σi)
i

)
= 0, i=1, 2,

where σi = max{ki, si}, i = 1, 2, if and only if it
admits the (nonlocal) operator X = Φ∂y + Ψ∂w

with coordinates satisfying the system of equations
in total derivatives

n−1∑
m=0

{
Dm

x [Φ]
∂zi

∂y(m)
+Dm

x [Ψ]
∂zi

∂w(m)

}
= 0, i=1, 2,

and the functions z1 and z2 are distinct lowest
invariants of this operator, differing from the uni-
versal invariant I0 = x.

Remark 1. Note, that the invariants z1 and
z2 are distinct if the only function Ψ for such
Ψ(x, z1, z2) = 0 is the zero function.

Remark 2. The initial equation can be written
also by one lowest invariant z 6= f(x). In this case
the resulting system consists of two equations.

It is known that the group approach is not effec-
tive for first order ordinary differential equations.
However a special structure of generalized differen-
tial equations (the presence one more independent
variable) enables to receive essential results using
the same algorithm both for high order equations
and for first order ones. In particular, the univer-
sal principle of factorization allows to reduce first
order generalized differential equation up to either
an ordinary differential equation of the first order
or to a functional equation [4].

Example 1. The generalized first order differ-
ential equation

y′ +G(x)w′ + f(x)y + g(x)w + h(x) = 0,

where g(x) = G′(x) + f(x)G(x), admits the in-
finitesimal operator

X = G(x)∂y − ∂w

and factors up to the system{
z′ + f(x)z + h(x) = 0,
z = y +G(x)w.

For any function g(x) and G(x) 6≡ 0 the equation
admits the point operator

X = exp
[
−

∫
f(x)dx

]
∂y+

+ exp
[
−

∫
g(x)
G(x)

dx

]
∂w,

and if w(x) = y(τ(x)), g(x) = τ ′(x)G(x)f(τ(x))
then the given equation is reduced to the functional
equation{

z(x) +G(x)z(τ(x)) + h(x) = 0,
z(x) = y′ + f(x)y.

The main concern of the paper is the study
of second order generalized differential equations.
Therefore further statements will be formulated for
this class equations though all reasonings can be
extended to any order equations.

Example 2. The second order generalized dif-
ferential equation

y′′ = Cw′
2 + (ψ1y + ψ2)y′ + (χ1w + χ2)w′+

+ 1
2 (ψ1

′ + ψ1α− ψ1ψ2)y2+

+ (α′ + α2 − ψ2α)y + h(x,w), (2)

where ψ1, ψ2, χ1, χ2, α are enough smooth functions
of x , C ∈ R, admits the exponential nonlocal op-
erator (ENO)

X = exp
[∫

(ψ1y + α)dx
]
∂y+

+ exp
[
−

∫
χ2w

′ + h2w

2Cw′ + χ2w + χ3
dx

]
∂w,

if 2Cw′ + χ1w + χ2 6= 0. Except for the universal
invariant x, this operator has two lowest invari-
ants, namely two differential invariants of the first
order. By using these invariant whereby the initial
equation (2) is factorized up to the system

z1 = y′ − 1
2ψ1y

2 − αy,

z2 = Cw′
2 + χ1ww

′ + χ2w
′ + h,

z1
′ = (ψ2 − α)z1 + z2,

(3)

in which the ”external” equation is a generalized
differential equation of the first order.

In some cases the existence of an additional
functional differential relation between unknown func-
tions can essentially simplify the system which
the initial equation is reduced to. For example,
the inheriting of the functional differential relation
by invariants of the admissible operator is possible.
Thus, the number of equations of the system re-
sulting from the factorization can be considerably
reduced.

Example 3. If we assume, that in the equa-
tion (3) the unknown functions y and w are con-
nected by the functional relation w(x) = y(τ(x)),
τ ′ 6= 0, and also C = 0, χ1 = 0, χ2 = (τ ′)−1

and h = − 1
2ψ1(τ(x))w2 −α(τ(x))w then the same

functional relation z2(x) = z1(τ(x)) holds between
the invariants. Therefore the system (3), resulting
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from the factorization of the equation

y′′ = (ψ1y + ψ2)y′ + (τ ′)−1w′+

+ 1
2 (ψ1

′ + ψ1α− ψ1ψ2)y2+

+ (α′ + α2 − ψ2α)y − 1
2ψ1(τ)w2 − α(τ)w,

will contain redundant conditions and it can be
written as {

z = y′ − 1
2ψ1y

2 − αy,
z′ = (ψ2 − α)z + z(τ).

In the example the ”external” equation is FDE of
the first order. Thus, the problem of finding the
second order FDE was in essentially reduced to the
sequential search of solutions of the first order FDE
and the first order ordinary differential equation
(Riccati equation).

Indeed, in the above example we reduced the
order of the equation, using one invariant due to
the specific form of the equation. However it may
occur, that an admissible operator has one first or-
der differential invariant and one universal invari-
ant x on a manifold. Then, by Remark 2 to The-
orem 1, the initial equation is factorized up to a
system of two equations. This means that the ”ex-
ternal” equation is a first order ordinary differential
equation. Solved this equation we lower the order
of the initial equation by one. We note that this
type of factorization is independent of functional-
differential relation between the unknown functions
y and w.

Example 4. Let us consider the generalized
differential equation

y′′=Cy′2+(ψ1y−Cψ2w+ψ3)y′+ψ2w
′+H1w+H0,

C ∈ R\{0}, ψ1, ψ2, ψ3 are smooth functions of x,
ψ2 6= 0, and H1 and H0 are follows

H0 = − 1
C2α1

2

{
α2 exp(Cy)+

+
[
C(ψ1y + ψ3) + ψ1

]
(Cα3 + α1

′)α1+
+

[
C(ψ1

′y + ψ3
′) + ψ1

′]α1
2 + C

(
α1
′′α1+

+Cα1
′α3 + Cα1α3

′ + C2α3
2
)}
,

H1 =
ψ2α1

′ + ψ2
′α1 + Cψ2α3

α1
,

where αi = αi(x), i = 1, 3, α1 6= 0. By applying
the classical algorithm of the solution of the direct
problem, we find a family of admissible point oper-
ators in canonical form

X̂ =
(
η1 − ξy′

)
∂y +

(
η2 − ξw′

)
∂w,

and its coordinates are such that

ξ = α1,
η1 = g exp(Cy) + α3,

η2 =
1
ψ2

[
(g exp(Cy) + α3)Cψ2w −N−

−(H1w +H0)α1

]
,

where

N =
1
α1

{[
(ψ1y + ψ3)α1g + α1

′g−

− α1g
′ + Cgα3

]
exp(Cy) + (ψ1y + ψ3)α1α3+

+ α1
′α3 − α1α3

′ + Cα3
2
}
,

g = g(x). For any function g (the case g ≡ 0 is
not excluded) basis of invariants of this operator
consists of two functions: the universal invariant
x and one differential invariant. Therefore the in-
vestigated equation is factorized up to the system

z =
1

C2α1 exp(Cy)

[
C2α1(y′ − ψ2w)+

+ Cψ1α1y+(ψ1+Cψ3)α1+C(Cα3+α1
′),

z′ +
α1
′ + Cα3

α1
z +

α2

C2α1
2

=0.

The second equation contains only one dependent
variable z and is the first order linear differential
equation (with respect to this variable) which is
always solvable.

We note that the admissible Lie algebra L is
infinite-dimensional and L = L∞

⊕
L1, where L∞

and L1 are determined by the operators

X̂1 =
(
α3 − α1y

′)∂y +

{
1

ψ2α1

[
α1α3

′ − α1
′α3−

− Cα3
2 + (Cψ2w − ψ1y − ψ3)α1α3

]
−

− (H1w +H0)α1

ψ2
− α1w

′

}
∂w,

and

X̂∞ = g exp(Cy)∂y +
[
(Cψ2w − ψ1y − ψ3)α1g−

− α1
′g + α1g

′ − Cgα3

]
exp(Cy)
ψ2α1

∂w.

The factorization resulting by application of the
operator X̂1 was given above. In contrast to X̂1

the basis of invariants of the second operator X̂∞
consists of three invariants: two universal and one
differential invariants. The system which the initial
equation is reduced to takes the form

z1 =
Cgy′ + g′

Cg exp(Cy)
,

z2 =
1

C2ψ2α1g exp(Cy)

[
ψ1α1g + C2α3g−

− Cα1g
′ + Cα1

′g +

+ Cα1g(ψ1y − Cψ2w + ψ3)
]
,

z1
′ + ψ2z2

′ +
Cψ2α3 + ψ2α1

′ + ψ2
′α1

α1
z1+

+
Cα3 + α1

′

α1
z2 +

α2

C2α1
2

= 0.
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It must be emphasized that the substitution z =
z1 +ψ2z2 reduces once again the initial equation to
the ordinary differential equation of the first order
resulting with use of the operator X̂1.

The examples considered above demonstrate,
that a key role in a reduction of generalized differ-
ential equations is played not by admissible opera-
tors but by the structure of the set of its invariants
[7]. As a rule, to find invariants of an admissible
operator, we need to consider the invariance con-
dition on a manifold determined by a generalized
differential equation. Having several higher deriva-
tives, we can express only one derivative from the
equation. Therefore there are situations where the
admissible operator has no differential invariants
which order is less than the order of the equation)
on the manifold, and consequently it is ineffective
for factorization. Thus, we need to solve the prob-
lem of the number and the structure of invariants
of an admissible operator depending on a type of a
generalized differential equation. In addition, spec-
ification of the class of operators under condition of
the availability of a factorization results to the con-
dition for a type of the initial equation and allows
to solve the inverse problem.

Theorem 2. In order that the canonical in-
finitesimal operator

X̂ =
[
η1(x, y, w)− ξ(x, y, w)y′

]
∂y+[

η2(x, y, w)− ξ(x, y, w)w′
]
∂w, (4)

admitted by the second order generalized differen-
tial equation

y′′ = F (x, y, w, y′w′, w′′), (5)

has differential invariants of the first order, it is
necessary, that any of two conditions is fulfilled:

1) ξ 6= 0 and the equation is linear with respect
to the higher derivative of w, i.e.

F = f1w
′′ + f2, Fw′′ 6= 0,

fi = fi(x, y, w, y′, w′), i = 1, 2, (6)

or

F = g1w
′ + g2, Fw′ 6= 0,
gi = gi(x, y, w, y′), i = 1, 2. (7)

2) ξ = 0.

Remark. We note that the condition (7) is
sufficient for the class of equations

y′′ = F (x, y, w, y′, w′),

if the following relation holds:

η1g1x + (2η1 − ξy′)y′g1y + η2y
′g1w+

+
[
η1x + (η1y − ξx)y′ − ξyy

′2
]
y′g1y′ − η2g1

2+

+ (η1 − ξy′)(g1y′g2 − g1g2y′ − g2w)+

+
(
η1x + η2wy

′ + ξyy
′2

)
g1 − ξg1g2 = 0. (8)

As mentioned above, both the existence of dif-
ferential invariants and the dimension of the basis
of invariants of the admissible operator are impor-
tant because the structure of the system, which the
initial equation is reduced to, depends on these spe-
cial features.

In the case that the coordinate of the operator
(4) ξ = 0, the basis of invariants consists of two
universal invariants (one invariant is J0 = x) and
one differential invariant of the first order.

If the equation is of the form (7), and the con-
dition (8) is fulfilled, the dimension of the basis
of invariants of the operator (4) equals two: one
invariant of the zero order J0 = x and one differ-
ential invariant of the first order. This case is of
particular interest since the generalized differential
equation (7) is reduced to a first order differential
equation under factorization. If the structure of the
given equation satisfies the condition (7) then the
basis of invariants contains one universal invariant
J0 = x and no more than two differential invariants
of the first order.

Theorem 3. In order that the canonical in-
finitesimal operator (4), admitted by the equation
(5), which coordinate ξ 6= 0, has two distinct first
order differential invariants, it is necessary and suf-
ficient that the right-hand side of the equation (5)
is of the form (6), and the function f1 and f2
satisfy the relation

f1 =
η1 − ξy′

η2 − ξw′
,

f1f2y′ + f2w′ − 2D(f1)
∣∣
y′′=f1w′′+f2

= 0.

The considerable restrictions on the structure of
invariants of point operators lead to the considera-
tion of ENOs. In fact these operators has invariants
of any type as opposed to point operators. Hence
the extension of the considered class of operators
enables to factorized more general FDEs classes.

We note that the algorithm for search of ad-
missible ENO has more complex structure. The
general form of ENO is

X = exp
(∫

ζ1dx

)
∂y + exp

(∫
ζ2dx

)
∂w, (9)

where ζ1 and ζ2 can depend on x, y, w and their
any order derivatives. For a simplicity of further
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reasonings we considered in more detail the case
ζ1 = ζ1(x, y, w, y′, w′), ζ2 = ζ2(x, y, w, y′, w′) (see
Example 2).

Let us set up the defining equation for the gen-
eralized differential equation of the second order

y′′ = F (x, y, w, y′w′, w′′) (10)

and the operator (9). Using well known algorithm,
we receive the relation

ζ1x + y′ζ1y + w′ζ1w + Fζ1y′ + w′′ζ1w′+

+ ζ1
2 − ζ1Fy′ − Fy −

[
(ζ2x + y′ζ2y+

+ w′ζ2w + Fζ2y′ + w′′ζ2w′ + ζ2
2)Fw′′+

+ Fw′ζ2 + Fw

]
exp

{∫
(ζ2 − ζ1)dx

}
= 0. (11)

Under splitting of the equation (11) we need to take
into consideration the structure of the nonlocal fac-
tor exp

{∫
(ζ2 − ζ1)dx

}
. If the integrand is a total

derivative of a function then further reasonings are
similar to construction of defining system for point
operator. In the other case, if the integrand is not
a total derivative, then at first we need to split the
equation (11) by the nonlocal variable. Basis of in-
variants of admissible operator, which was found in
the second case, can be chosen so that each invari-
ant depends on x, y, y′ or x,w,w′. The structure
of invariants reflects on the type of factorization of
the equation (10).

Theorem 4. The equation (10) is factorized
up to the system u = J1

1 (x, y, y′),
v = J2

1 (x,w,w′),
G(x, u, v, u′, v′) = 0,

where
∂J1

1 (x, y, y′)
∂y′

6= 0,
∂J2

1 (x,w,w′)
∂w′

6= 0, if

and only if it admits the operator (9), which the
structural components ζ1 and ζ2 satisfy the sys-
tem

ζ1x + y′ζ1y + Fζ1y′ + (ζ1 − Fy′)ζ1 − Fy = 0,
Fw′′ζ2x + Fw′′w′ζ2w + Fw′′w′′ζ2w′+

+ (Fw′ + Fw′′ζ2)ζ2 + Fw = 0.

In this case invariants turn out to be function
inheriting the functional relation between y and
w , consequently the initial equation is reduced to
a system of first order FDE and first order ordinary
differential equation (see Example 3).

Thus we suggested a new effective method of
FDEs reduction allowing to extend the group ap-
proach to a new class of objects and increase a num-
ber of equations, which solutions can be written in
a closed form.

Unfortunately the small volume of the article
does not allow to include in the paper proves of the
given statements.
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