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Method of Model Solutions in the Theory of Linear
Integral Equations
1. Preliminary Remarks. Test and Model Solutions
Consider a linear equation, which we briefly write out in the form

L [y(x)] = f (x), (1)

whereL is a linear (integral) operator,y(x) is an unknown function, andf (x) is a known function.
We first define arbitrarily a test solution

y0 = y0(x,λ), (2)

which depends on an auxiliary parameterλ (it is assumed that the operatorL is independent ofλ
andy0 � const). By means of Eq. (1) we define the right-hand side that corresponds to the test
solution (2):

f0(x,λ) = L [y0(x,λ)].

Let us multiply Eq. (1), fory = y0 andf = f0, by some functionϕ(λ) and integrate the resulting
relation with respect toλ over an interval [a, b]. We finally obtain

L [yϕ(x)] = fϕ(x), (3)

where

yϕ(x) =
∫ b

a

y0(x,λ)ϕ(λ) dλ, fϕ(x) =
∫ b

a

f0(x,λ)ϕ(λ) dλ. (4)

Here and in what follows we suppose all integrals to be convergent.
It follows from formulas (3) and (4) that, for the right-hand sidef = fϕ(x), the functiony = yϕ(x)

is a solution of the original equation (1). Since the choice of the functionϕ(λ) (as well as of the
integration interval) is arbitrary, the functionfϕ(x) can be arbitrary in principle. Here the main
problem is how to choose a functionϕ(λ) to obtain a given functionfϕ(x). This problem can be
solved if we can find a test solution such that the right-hand side of Eq. (1) is the kernel of a known
inverse integral transform (we denote such a test solution byY (x,λ) and call it amodel solution).

2. Description of the Method
Indeed, letP be an invertible integral transform that takes each functionf (x) to the corresponding
transformF (λ) by the rule

F (λ) = P{f (x)}. (5)

Assume that the inverse transformP−1 has the kernelψ(x,λ) and acts as follows:

P−1{F (λ)} = f (x), P−1{F (λ)} ≡
∫ b

a

F (λ)ψ(x,λ) dλ. (6)

The limits of integrationa andb and the integration path in (6) may well lie in the complex plane.
Suppose that we succeeded in finding a model solutionY (x,λ) of the auxiliary problem for

Eq. (1) whose right-hand side is the kernel of the inverse transformP−1:

L [Y (x,λ)] = ψ(x,λ). (7)
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Let us multiply Eq. (7) byF (λ) and integrate with respect toλ within the same limits that stand in
the inverse transform (6). Taking into account the fact that the operatorL is independent ofλ and
applying the relationP−1 {F (λ)} = f (x), we obtain

L
[∫ b

a

Y (x,λ)F (λ) dλ
]

= f (x).

Therefore, the solution of Eq. (1) for an arbitrary functionf (x) on the right-hand side is expressed
via a solution of the simpler auxiliary equation (7) by the formula

y(x) =
∫ b

a

Y (x,λ)F (λ) dλ, (8)

whereF (λ) is the transform (5) of the functionf (x).
For the right-hand side of the auxiliary equation (7) we can take, for instance, exponential, power-

law, and trigonometric function, which are the kernels of the Laplace, Mellin, and sine and cosine
Fourier transforms (up to a constant factor). Sometimes it is rather easy to find a model solution
by means of the method of indeterminate coefficients (by prescribing its structure). Afterwards, to
construct a solution of the equation with arbitrary right-hand side, we can apply formulas written
out below in Sections 3–5.

3. Model Solution in the Case of an Exponential Right-Hand Side
Assume that we have found a model solutionY = Y (x,λ) that corresponds to the exponential
right-hand side:

L [Y (x,λ)] = eλx. (9)

Consider two cases:

1◦. Equations on the semiaxis,0 ≤ x < ∞. Let f̃ (p) be the Laplace transform of the functionf (x):

f̃ (p) = L{f (x)}, L{f (x)} ≡
∫ ∞

0
f (x)e−px dx. (10)

The solution of Eq. (1) for an arbitrary right-hand sidef (x) can be expressed via the solution of the
simpler auxiliary equation with exponential right-hand side (9) forλ = p by the formula

y(x) =
1

2πi

∫ c+i∞

c−i∞
Y (x,p)f̃ (p) dp. (11)

2◦. Equations on the entire axis,−∞ < x <∞. Let f̃ (u) the Fourier transform of the functionf (x):

f̃ (u) = F{f (x)}, F{f (x)} ≡
1√
2π

∫ ∞

−∞
f (x)e−iux dx. (12)

The solution of Eq. (1) for an arbitrary right-hand sidef (x) can be expressed via the solution of the
simpler auxiliary equation with exponential right-hand side (9) forλ = iu by the formula

y(x) =
1√
2π

∫ ∞

−∞
Y (x, iu)f̃ (u) du. (13)

In the calculation of the integrals on the right-hand sides in (11) and (13), methods of the theory of
functions of a complex variable are applied, including the Jordan lemma and the Cauchy residue
theorem.

Remark 1. The structure of a model solutionY (x,λ) can differ from that of the kernel of the
Laplace or Fourier inversion formula.

Remark 2. When applying the method under consideration, the left-hand side of Eq. (1) need
not be known (the equation can be integral, differential, functional, etc.) if a particular solution of
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this equation is known for the exponential right-hand side. Here only the most general information is
important, namely, that the equation is linear, and its left-hand side is independent of the parameterλ.

Remark 3. The above method can be used in the solution of linear integral (differential, integro-
differential, and functional) equations with composed argument of the unknown function.

Example 1. Consider the following Volterra equation of the second kind with difference kernel:

y(x) +
∫ ∞

x
K(x − t)y(t) dt = f (x). (14)

This equation cannot be solved by direct application of the Laplace transform because the convolution theorem cannot be
used here.

In accordance with the method of model solutions, we consider the auxiliary equation with exponential right-hand side

Y (x,p) +
∫ ∞

x
K(x − t)Y (t,p) dt = epx (λ = p). (15)

We seek a solution of the linear integral equation with exponential right-hand side (15) in the formY (x,p) = kepz by
the method of indeterminate coefficients. Then we obtain

Y (x,p) =
1

1 + K̃(−p)
epx, K̃(−p) =

∫ ∞

0
K(−z)epz dz. (16)

This, by means of formula (11), yields a solution of Eq. (12) for an arbitrary right-hand side,

y(x) =
1

2πi

∫ c+i∞

c−i∞

f̃ (p)

1 + K̃(−p)
epx dp, (17)

wheref̃ (p) is the Laplace transform (10) of the functionf (x).

Example 2. Consider the integral equation

Ay(x) +
∫ ∞

−∞
Q(x + t)eβty(t) dt = f (x), (18)

whereQ = Q(z) andf (x) are arbitrary functions andA andβ are arbitrary constants satisfying some constraints.
In order to find the model solution that corresponds to the equation with the exponential right-hand side

AY (x,p) +
∫ ∞

−∞
Q(x + t)eβtY (t,p) dt = epx (λ = p).

let us proceed as follows.
For clarity, instead of the original equation (18) we write

L [y(x)] = f (x). (19)

For a test solution, we take the exponential function
y0 = epx. (20)

On substituting (20) into the left-hand side of Eq. (19), after some algebraic manipulations we obtain

L [epx] = Aepx + q(p)e−(p+β)x, where q(p) =
∫ ∞

−∞
Q(z)e(p+β)z dz. (21)

The right-hand side of (21) can be regarded as a functional equation for the kernelepx of the inverse Laplace transform. To
solve it, we replacep by −p − β in Eq. (19). We finally obtain

L [e−(p+β)x] = Ae−(p+β)x + q(−p − β)epx. (22)

Let us multiply Eq. (21) byA and Eq. (22) by−q(p) and add the resulting relations. This yields

L [Aepx − q(p)e−(p+β)x] = [A2 − q(p)q(−p − β)]epx. (23)

On dividing Eq. (23) by the constantA2 − q(p)q(−p − β), we obtain the original model solution

Y (x,p) =
Aepx − q(p)e−(p+β)x

A2 − q(p)q(−p − β)
, L [Y (x,p)] = epx. (24)

Since here−∞ < x < ∞, one must setp = iu and use the formulas from Section 3. Then the solution of Eq. (18) for an
arbitrary functionf (x) can be represented in the form

y(x) =
1√
2π

∫ ∞

−∞
Y (x, iu)f̃ (u) du, f̃ (u) =

∫ ∞

−∞
f (x)e−iux dx. (25)
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4. Model Solution in the Case of a Power-Law Right-Hand Side
Suppose that we have succeeded in finding a model solutionY = Y (x, s) that corresponds to a
power-law right-hand side of the equation:

L [Y (x, s)] = x−s, λ = −s. (26)

Let f̂ (s) be the Mellin transform of the functionf (x):

f̂ (s) = M{f (x)}, M{f (x)} ≡
∫ ∞

0
f (x)xs−1 dx. (27)

The solution of Eq. (1) for an arbitrary right-hand sidef (x) can be expressed via the solution of the
simpler auxiliary equation with power-law right-hand side (26) by the formula

y(x) =
1

2πi

∫ c+i∞

c−i∞
Y (x, s)f̂ (s) ds. (28)

In the calculation of the corresponding integrals on the right-hand side of formula (28), one can
use tables of inverse Mellin transforms, as well as methods of the theory of functions of a complex
variable, including the Jordan lemma and the Cauchy residue theorem.

Example 3. Consider the equation

y(x) +
∫ x

0

1
x

K
( t

x

)
y(t) dt = f (x). (29)

In accordance with the method of model solutions, we consider the following auxiliary equation with power-law right-hand
side:

y(x) +
∫ x

0

1
x

K
( t

x

)
y(t) dt = x−s . (30)

Its solution has the form

Y (x, s) =
1

1 + B(s)
x−s , B(s) =

∫ 1

0
K(t)t−s dt. (31)

This, by means of formula (28), yields the solution of Eq. (29) for an arbitrary right-hand side:

y(x) =
1

2πi

∫ c+i∞

c−i∞

f̂ (s)

1 + B(s)
x−s ds, (32)

wheref̂ (s) is the Mellin transform (27) of the functionf (x).

5. Model Solution in the Case of a Sine-Shaped Right-Hand Side
Suppose that we have succeeded in finding a model solutionY = Y (x,u) that corresponds to the
sine on the right-hand side:

L [Y (x,u)] = sin(ux), λ = u. (33)

Let f̌s(u) be the asymmetric sine Fourier transform of the functionf (x):

f̌s(u) = Fs{f (x)}, Fs{f (x)} ≡
∫ ∞

0
f (x) sin(ux) dx.

The solution of Eq. (1) for an arbitrary right-hand sidef (x) can be expressed via the solution of the
simpler auxiliary equation with sine-shape right-hand side (33) by the formula

y(x) =
2
π

∫ ∞

0
Y (x,u)f̌s(u) du.
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