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Abstract

Discretization methods for ordinary differential equations are usually not exact;

they commit an error at every step of the algorithm. All these errors combine to

form the global error, which is the error in the final result. The global error is the

subject of this thesis.

In the first half of the thesis, accuratea priori estimates of the global error are

derived. Three different approaches are followed: to combine the effects of the

errors committed at every step, to expand the global error in an asymptotic series

in the step size, and to use the theory of modified equations. The last approach,

which is often the most useful one, yields an estimate which is correct up to a

term of orderh2p, whereh denotes the step size andp the order of the numerical

method. This result is then applied to estimate the global error for the Airy equa-

tion (and related oscillators that obey the Liouville–Green approximation) and the

Emden–Fowler equation. The latter example has the interesting feature that it is

not sufficient to consider only the leading global error term, because subsequent

terms of higher order in the step size may grow faster in time.

The second half of the thesis concentrates on minimizing the global error by

varying the step size. It is argued that the correct objective function is the norm

of the global error over the entire integration interval. Specifically, theL2 norm

and theL∞ norm are studied. In the former case, Pontryagin’s Minimum Principle

converts the problem to a boundary value problem, which may be solved analyti-

cally or numerically. When theL∞ norm is used, a boundary value problem with a

complementarity condition results. Alternatively, the Exterior Penalty Method may

be employed to get a boundary value problem without complementarity condition,

which can be solved by standard numerical software. The theory is illustrated by

calculating the optimal step size for solving the Dahlquist test equation and the

Kepler problem.
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Chapter 1

Introduction

Many phenomena, like the weather, the circulation of blood through one’s body,

or the movement of the planets in the solar system, can be modelled by differen-

tial equations. Typically, these equation are so complicated that we cannot write

down the exact solution. However, we can use a numerical method to compute an

approximate solution on the computer. The computed solution will usually deviate

from the exact solution.

We will assume that we know the situation at a certain instant, and that we wish

to compute how the situation changes subsequently (this is called aninitial value

problem). This is commonly achieved bytime-stepping: starting with the known

situation, we apply some formula to calculate the state a little while later, then we

apply the formula again to find the situation still a bit later, and so on until we

have covered the whole period of interest. Of course, the formula that we apply

at every step is not exact, otherwise we would be able to find the exact solution.

The error that is committed at a particular step is called thelocal truncation error.

We will neglect round-off errors, which are caused by the fact that computers can

store numbers with only a finite precision, because these are typically small com-

pared to the truncation errors. We also neglect all other sources of errors, such as

discrepancies between the mathematical model and the reality.

So, an error is committed in the first step. In the second step, another error is

committed. However, we began the second step with a value which was slightly

wrong, because of the error committed in the first step. So, the result of the second

step is contaminated by both the error from the first step and the error from the

second step. In general, the result of some step is contaminated by the errors from

all the previous steps. The combined effect of all the local errors is called theglobal

error. The global error is the subject of this thesis.

1



CHAPTER 1. INTRODUCTION 2

The global error is the crucial quantity to study if one wants to assess the quality

of some numerical method. However, this is not so easy, as the following quote by

Lambert [58, p. 57] indicates.

The LTE [local truncation error] and the starting errors accumulate

to produce the GTE [global truncation error], but this accumulation

process is very complicated, and we cannot hope to obtain any usable

general expression for the GTE.

Therefore, we will settle for anestimatefor the global error, instead of seeking an

exact formula.

Generally, we can distinguish two classes of error estimates. Some estimates

use the information obtained during the numerical solution of the differential equa-

tion, while other estimates use the analytic solution or at least some knowledge

about it. These are calleda posterioriestimates anda priori estimates, respec-

tively. Both types have their respective strengths. If one has actually computed

some numerical solution and wants to know how far it deviates from the exact so-

lution, one probably should use ana posterioriestimate. However, for the purpose

of comparing different methods, or that of devising methods which are particularly

suited for a certain class of problems, there is often no choice but to usea priori

estimates.

Various approaches for obtaininga posterioriestimates are discussed in the

reviews by Skeel [80], Enright, Higham, Owren and Sharp [26,§4], and Calvo,

Higham, Montijano and Randez [17]. However, in this thesis, we will only con-

sidera priori estimates. The classical texts on this class of estimates include the

work of Henrici [48, 49], Gragg [34], Stetter [81], Dahlquist [24], and Hairer and

Lubich [40]. A couple of years ago, Hairer and Lubich [41, 42] made the con-

nection to the new theory of modified equations. Recent developments are due

to Viswanath [84], Moon, Szepessy, Tempone and Zouraris [69], and Iserles [54].

Indeed, the research of Iserles motivated the work described in this thesis.

Our aim in the first half of the thesis is to derive accuratea priori estimates

for the global error. The accuracy of the estimates is probed by applying them to

certain specific equations. The solutions of these equations are highly oscillatory.

We can expect that the local errors oscillate as well, so they may cancel when com-

bining to form the global error. This makes estimating the global error challenging.

The second half of the thesis illustrates another use of estimates for the global

error. Recall that a local error is committed with every step. Naturally, the step size

influences the local error, and indirectly the global error. So, we may try to keep

the error in check by choosing the step size wisely.
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Commonly,a posterioriestimates for the local error are used to choose the

step size. The idea is that an efficient method commits errors of roughly equal size

in every step; this is calledequidistribution. But actually, we want to control the

global error, not the local error. So the question becomes: how to choose the step

size such that the global error is as small as possible?

This question has been considered before. Morrison [70], Greenspan, Hafner

and Ribarǐc [35], Fujii [30], and Gear [31] show how to vary the step size in order

to minimize the global error at some given instant. Butcher [14] extends their

work to the situation where one can not only vary the step size, but also switch

from one method to another, possibly with different order. The latest addition is

the interesting paper by Moon, Szepessy, Tempone and Zouraris [68], who give a

rigorous analysis of the complexity of their algorithm.

However, the size of the global error at a single instant is not always a good

indicator for the quality of the solution, as we will show. Instead, one should look

at the global error over the whole time interval. This does make the problem rather

more complicated, and only few people have studied it from this angle. Eriksson,

Estep, Hansbo and Johnson [28] study optimal step size strategies for discontin-

uous Galerkin methods; however, these methods are rarely used to solve initial

value problems for ordinary differential equations. Lindberg [61] searches for the

strategy which minimizes the maximum of the global error. He manages to charac-

terize the optimal strategy for some equations using techniques from the calculus

of variations. Dahlquist [24] attempts to use this characterization to construct a

practical method for step size selection. Takaki, Utumi and Kawai [83] also look

at the global error over the whole time interval, but they use a rather unnatural ex-

pression for evaluating the step size strategies. As they mention in the same paper,

the root mean square value of the global error is of more interest.

In the second half of this thesis, we study the problem of determining the op-

timal step size strategy. We concentrate on two expressions for measuring the per-

formance of different strategies: the root mean square value of the global error, as

suggested by Takaki, Utumi and Kawai [83], and the maximal value of the global

error, as used by Lindberg [61]. These two objectives correspond to theL2 norm

and theL∞ norm of the global error, respectively. The resulting problem can be

viewed as an optimal control problem (this point of view is also taken by Utumi,

Takaki and Kawai).

Dikusar [25] and Gustafsson, Lundh and Söderlind [37, 38] also use Control

Theory to select the step size, but their goals differ from ours. Dikusar tries to

control thelocal error, while Gustafssonet al.want to eliminate violent oscillations

in the step size sequence by adding a closed-loop control.
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Above, we considered the problem of finding the optimal step size for solving a

given differential equation. One could also ask for an optimal method for selecting

the step size that does not use anya priori knowledge of the differential equation.

This question can posed in the framework of information-based complexity (see,

for instance, the book of Werschulz [85] for details). However, the results obtained

using this approach are not in agreement with the current practice. The work of

Moon, Szepessy, Tempone and Zouraris [68], referred to above, may be considered

as an effort to bridge this gap.

The plan of the thesis is as follows. There are two parts, each divided in three

chapters. Part I is devoted to the estimation of the global error. We start with

the standard theory on the numerical solution of ordinary differential equations in

Chapter 2. In Chapter 3, we derivea priori estimates for the global error. These

estimates are applied in Chapter 4. Part II starts with Chapter 5, in which we

discuss how to measure the performance of different step size strategies. This

chapter serves as motivation for the problems studied in the next two chapters.

Chapter 6 investigates the step size strategy which minimizes theL2 norm of the

global error, both from an analytic and a numerical point of view. Chapter 7 does

the same for theL∞ norm. Finally, Chapter 8 brings the thesis to a conclusion by

summarizing the main results and providing pointers for further research.

To end this introduction, we list the main contributions of this thesis to the field

of Numerical Analysis. To the best of the author’s knowledge, the following results

are new:

• the global error estimate of Theorem 3.4 for fixed step-size methods;

• the explicit expression for the global error in terms of modified equations, as

stated in Theorem 3.10 for general method and in Corollary 3.12 for Runge–

Kutta methods;

• the proof of Theorem 4.1, describing the global error when tracking a pe-

riodic orbit (a different proof has been given before by Cano and Sanz-

Serna [20]);

• Theorem 4.6, estimating the global errorup to orderh2p, whereh is the step

size andp the order of the method, for the Airy equations and generaliza-

tions;

• Theorem 4.8, estimating the global error for the Emden–Fowler equation and

yielding a concrete, nontrivial example where the leading global error term

does not dominate the next term;



CHAPTER 1. INTRODUCTION 5

• the characterization of the step size which minimizes theL2 norm of the

global error in Theorem 6.5;

• the numerical computation of this step size, as described in Section 6.3;

• the corresponding results for theL∞ norm in Theorem 7.5 and Section 7.3.

Parts of the material in Sections 3.3 and 4.3 were published in [72].



Part I

Estimating the global error
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Chapter 2

The numerical solution of

ordinary differential equations

The subject of this thesis is the numerical solution of initial value problems for

ordinary differential equations, i.e., problems of the form

y′ = f(t, y), y(t0) = y0 ∈ Rd. (2.1)

In this chapter, we briefly describe the standard theory of the subject in order to

set the stage for the investigation carried out in the subsequent chapters. For more

background information, the reader is referred to the text books by Iserles [53] or

Lambert [58], the book by Butcher [15], or the extensive two-volume monograph

by Hairer, Nørsett and Wanner [44, 46]. Recent developments, especially the the-

ory of modified equations, are treated in Hairer, Lubich and Wanner [43].

2.1 Basic theory

Given an initial timet0 ∈ R, a final timetf ∈ R, and a setU ⊂ Rd, the functionf

is said to beLipschitz continuousin [t0, tf ]× U if there is a numberL such that

‖f(t, y1)− f(t, y2)‖ ≤ L‖y1 − y2‖, for all t ∈ [t0, tf ], y1, y2 ∈ U, (2.2)

where‖ · ‖ denotes any vector norm onRd. If f is both continuous and Lipschitz

continuous in[t0, tf ]×U , then the differential equation (2.1) has a unique solution

(which may only be defined on a subinterval[t0, t) with t < tf ). We will always

assume that this condition is indeed met. In fact, we will even assume thatf is

sufficiently smooth to justify all manipulations that we wish to perform. This is

certainly the case iff is analytic, but in most situations less stringent requirements

will suffice.

7



§2.1 BASIC THEORY 8

Theflow mapΦtf
t0

is the function which associates to the initial valuey0 ∈ Rd

the corresponding solution value at timetf . It is defined by the relations

Φt0
t0

(y0) = y0 and d
dtΦ

t
t0(y0) = f

(
t,Φt

t0(y0)
)
. (2.3)

Since the solution of equation (2.1) is unique, the flow map enjoys the following

composition property

Φt3
t2
◦ Φt2

t1
= Φt3

t1
for all t1, t2, andt3. (2.4)

If the original differential equation (2.1) is linear, meaning that the right-hand

sidef(t, y) depends linearly ony, then the flow map is also linear. In this case, the

corresponding matrix is commonly called thefundamental matrixor theresolvent.

The derivative of the flow map is called thevariational flow. We denote it

byDΦtf
t0

. By differentiating (2.3), we find that it satisfies

DΦt0
t0

(y0) = I and d
dtDΦt

t0(y0) = ∂f
∂y

(
t,Φt

t0(y0)
)
DΦt

t0(y0). (2.5)

The variational flow determines the effect of perturbations of the differential equa-

tion, as specified in the Alekseev–Gröbner lemma below. The lemma provides a

generalization of the variations-of-constants formula for linear differential equa-

tions. A proof can be found in e.g. [44,§I.14].

Lemma 2.1 (Alekseev–Gr̈obner). Let the differential equation(2.1) and a per-

turbed equation

ỹ′ = f(t, ỹ) + f̂(t, ỹ), ỹ(t0) = y0 (2.6)

be given. The solutions of(2.1)and the perturbed equation(2.6)are connected by

ỹ(tf) = y(tf) +
∫ tf

t0

DΦtf
t0

(ỹ(t)) f̂(t, ỹ(t)) dt. (2.7)

Now suppose that we want to solve the differential equation (2.1) numerically.

An easy way is the(forward) Euler method. We partition the interval[t0, tf ] in

N subintervals of equal length. Denote the intermediate points bytk = t0 + kh,

k = 1, 2, . . . , N , whereh = (tf − t0)/N denotes the length of each of the subin-

tervals. We now approximatey(t1), the solution at timet1, by

y1 = y0 + hf(t0, y0). (2.8)

The difference between this approximation and the real solution is called thelocal

error. It is defined by

Lh(t0, y0) = y1 − y(t0 + h).
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To calculate the local error for the Euler method, we first findy′′ by differentiating

the given equation (2.1). The result can be substituted in the Taylor series ofy,

y(t0+h) = y(t0)+hf(t0, y0)+ 1
2h

2
(∂f
∂t

(t0, y0)+
∂f

∂y
(t0, y0) f(t0, y0)

)
+O(h3).

(2.9)

Together with the definition ofLh(t0, y0), we find that the local error satisfies

Lh(t0, y0) = −1
2h

2
(∂f
∂t

(t0, y0) +
∂f

∂y
(t0, y0) f(t0, y0)

)
+O(h3). (2.10)

TheO(h3) term can be found by further expanding the Taylor series (2.9).

We apply the Euler step (2.8) iteratively to obtain approximations to the solu-

tion att2, t3, . . . , tN by the recursive formula

yk+1 = yk + hf(tk, yk). (2.11)

The local errors committed in all steps accumulate to the total difference between

the numerical approximationyN and the exact solutiony(tf) at tf = tN . This

difference is called theglobal error, and its definition is

Gh(tf) = yN − y(tf) where tf = tN . (2.12)

Note that the dependence ofGh(tf) on the initial data(t0, y0) is not explicit in this

notation. For the Euler method, one can prove thatGh(tf) = O(h).
At this point we can state the goal of the first part of this thesis:We want to

obtain precise estimates for the global error. However, we first need to generalize

the above description to include other numerical methods.

A generalone-step methodhas the same form as the Euler method, except that

(2.11) is replaced by

yk+1 = Ψh(tk, yk), (2.13)

whereΨh is some functionR × Rd → Rd. As for the functionf , we assume

throughout the thesis thatΨh is sufficiently smooth.

The local error is again the difference between the numerical approximation

and the exact solution, so

Lh(t, y) = Ψh(t, y)− Φt+h
t (y). (2.14)

The global error is defined by (2.12) as before. The local and global errors are

related by the following fundamental theorem. For a proof, the reader is referred

to [44, Theorem II.3.4].

Theorem 2.2. If Lh(t, y) = O(hp+1), thenGh(tf) = O(hp).
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As indicated before, we always assume thatf is sufficiently smooth (in the above

theorem, it is enough to require thatf be Lipschitz continuous in a neighbour-

hood of the solution). This theorem leads to the following definition: a method is

said to haveorder p if Lh(t, y) = O(hp+1), and henceGh(tf) = O(hp), for all

sufficiently smoothf .

A further generalization is to considermultistep methods, which have the form

yk+ν = Ψh(tk, yk, . . . , yk+ν−1). However, we will not concern ourselves with

them in this work.

2.2 Runge–Kutta methods

An important family of one-step methods is formed by the so-calledRunge–Kutta

methods(abbreviated RK-methods). Given an integerν, denoting the number of

stages, a(ν × ν)–matrix [aij ] and two vectors[bi] and[ci] of lengthν, the corre-

sponding Runge–Kutta method is given by

ξi = f
(
tk + cih, yk + h

ν∑
j=1

aijξj

)
, i = 1, 2, . . . , ν,

yk+1 = yk + h
ν∑

i=1

biξi.

(2.15)

It is customary to collect the coefficients in an arrangement called theRK-tableau.

The tableau corresponding to general RK-method (2.15) is

c1 a11 · · · a1ν

...
...

...
...

cν aν1 · · · aνν

b1 · · · bν
For example, the Euler method (2.11) can be considered as a Runge–Kutta method

with ν = 1 stage,a11 = c1 = 0, andb1 = 0, so its RK-tableau is

0 0

1

We list below some other Runge–Kutta methods, which will be mentioned in this

thesis.

• Runge’s method(also known as the explicit midpoint rule), a second-order

method with two stages due to Carle Runge, is given by

ξ1 = f(tk, yk)
ξ2 = f(tk + 1

2h, yk + 1
2hξ1)

yk+1 = yk + hξ2

0 0 0
1/2 1/2 0

0 1

(2.16)
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• Heun’s method, a third-order method with three stages due to Karl Heun, is

given by

ξ1 = f(tk, yk)
ξ2 = f(tk + 1

3h, yk + 1
3hξ1)

ξ3 = f(tk + 2
3h, yk + 2

3hξ2)

yk+1 = yk + 1
4h(ξ1 + 3ξ3)

0 0 0 0
1/3 1/3 0 0
2/3 0 2/3 0

1/4 0 3/4

(2.17)

• Martin Kutta designed a fourth-order method with four stages which is so

popular that it is commonly calledthe standard Runge–Kutta method. It is

given by

ξ1 = f(tk, yk)
ξ2 = f(tk + 1

2h, yk + 1
2hξ1)

ξ3 = f(tk + 1
2h, yk + 1

2hξ2)
ξ4 = f(tk + h, yk + hξ3)
yk+1 = yk + 1

6h(ξ1 + 2ξ2 + 2ξ3 + ξ4)

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6
(2.18)

In principle, the local error of any Runge–Kutta method can be obtained in the

same way as we did above for the Euler method. However, the calculation soon

becomes highly cumbersome, so we need a device to keep the complexity in check.

The theory of Butcher trees, explained in the next section, is one way to achieve

this. An interesting alternative is provided by the framework of Albrecht [2], which

is also explained in Lambert [58].

2.3 Butcher trees and B-series

As a first step, we transform the nonautonomous equation (2.1) to an autonomous

equation by appendingt to the dependent variables as follows,[
y

t

]′
=

[
f(t, y)

1

]
.

So it suffices to restrict ourselves toautonomousequationsy′ = f(y).
The second device to simplify the computation is provided by the so-called

Butcher trees. To introduce them, we look again at the Taylor series of the exact

solution, cf. (2.9). In the autonomous case, the first terms of the series are

y(t+ h) = y(t) + hf + 1
2h

2f ′(f) + 1
6h

3
(
f ′′(f, f) + f ′(f ′(f))

)
+ 1

24h
4
(
f ′′′(f, f, f) + 3f ′′(f, f ′(f)) + f ′(f ′′(f, f)) + f ′(f ′(f ′(f)))

)
+O(h5). (2.19)
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Here the arguments(y(t)) of the functionf and its derivatives have been sup-

pressed, and the derivatives off are considered as multilinear operators. For in-

stance, the termf ′′(f, f ′(f)) stands for a vector whosejth component is given by

[
f ′′(f, f ′(f))

]
j

=
d∑

k=1

d∑
`=1

d∑
m=1

∂2fj

∂yk∂y`

(
y(t)

)
fk

(
y(t)

) ∂f`

∂ym

(
y(t)

)
fm

(
y(t)

)
,

(2.20)

where the subscripts denote the various components of the vectors. Terms like

the above, which appear in the Taylor expansion of the solutiony(t), are called

elementary differentials.

The idea is now to represent every elementary differential with a (rooted) tree,

a graph without cycles with one designated vertex called theroot. For instance, the

tree corresponding to (2.20) is

rJJ
r




rr (2.21)

Here, and in the rest of this thesis, the root is the vertex depicted at the bottom.

With this convention, the Taylor series (2.19) can be written as:

y(t+ h) = y(t) + hF ( r)(y) + 1
2h

2F ( rr)(y) + 1
6h

3
(
F
( rJJ

r




r)
(y) + F

( rrr)(y))
+ 1

24h
4

(
F
( r@

r r
�

r)
(y) + 3F

(
rJJ

r




rr)(y) + F

(
rrr
r)

(y) + F

(
rrJJ

r




r)
(y)

)
+O(h5).

(2.22)

It remains to formalize the above.

We define the set of trees, denoted byT, to be the smallest set with the follow-

ing properties.

• The tree with one vertex, called theunit treeand denotedr, is a member

of T;

• If the treesτ1, . . . , τn are inT, then so is the tree formed by connecting

all the roots ofτ1, . . . , τn to a new vertex, which becomes the root of the

newly formed tree. This tree is denoted[τ1, . . . , τn]. Note that some of the

τ1, . . . , τn may be equal, and that the result does not depend on the ordering,

so[τ1, τ2] = [τ2, τ1].

For example, the tree in (2.21) is inT and it is denoted[ r, [ r]].
We now define the following functions acting on the set of trees. They are also

defined recursively.
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• The number of vertices of a treeτ is called itsorder, and denotedρ(τ). Its

definition is

ρ( r) = 1 and ρ([τ1, . . . , τn]) = 1 + ρ(τ1) + · · ·+ ρ(τn).

• Thesymmetry coefficientσ(τ) is defined by

σ( r) = 1 and σ([τ1, . . . , τn]) = σ(τ1) . . . σ(τn)µ1!µ2! . . . ,

where the integersµ1, µ2, . . . count equal trees amongτ1, . . . , τn.

• Theorder productγ(τ) is defined by

γ( r) = 1 and γ([τ1, . . . , τn]) = ρ(τ)γ(τ1) . . . γ(τn).

• Given the functionf : Rd → Rd, theelementary differentialcorresponding

to a treeτ is the functionF (τ) : Rd → Rd with

F ( r)(y) = f(y), F ([τ1, . . . , τn])(y) = f (n)(y)
(
F (τ1)(y), . . . , F (τn)(y)

)
.

• Given a Runge–Kutta method (2.15), theelementary weightcorresponding

to a treeτ isϕ(τ) =
∑ν

i=1 biϕ̃i(τ), where

ϕ̃i( r) = 1 and ϕ̃i([τ1, . . . , τn]) =
ν∑

j1,...,jn=1

aij1 . . . aijnϕ̃j1(τ1) . . . ϕ̃jn(τn).

Note that for the Euler method (2.11), we haveϕ(τ) = 0 if τ 6= r. More

generally, for an explicit Runge–Kutta method withν stages, the elementary

weightϕ(τ) vanishes wheneverρ(τ) > ν.

In Table 2.1 we list all the trees of order up to 5 with the values of the functions

defined above. It is often convenient to extend the domain of definition of the above

functions with the empty tree, denoted∅. The results of evaluating the functions

on∅ can also be found in Table 2.1.

We can now write the Taylor expansion of the exact solution as

y(t+ h) = y(t) +
∑
τ∈T

hρ(τ)

σ(τ) γ(τ)
F (τ)(y(t)). (2.23)

Of course, this requiresy to be analytic, which is the case iff is analytic. But also

the numerical solution can be expanded in a Taylor series. For the Runge–Kutta

method (2.15), we find

yk+1 = yk +
∑
τ∈T

ϕ(τ)
σ(τ)

hρ(τ) F (τ)(yk). (2.24)
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ρ(τ) τ σ(τ) γ(τ) F (τ) ϕ(τ)

0 ∅ 1 1 id 1

1 r 1 1 f
∑

i bi

2 [ r] = rr 1 2 f ′f
∑

ij biaij

3 [ r, r] = rJJ
r




r

2 3 f ′′(f, f)
∑

ijk biaijaik

3 [[ r]] = rrr 1 6 f ′f ′f
∑

ijk biaijajk

4 [ r, r, r] = r@
r r

�
r

6 4 f ′′′(f, f, f)
∑

ijk` biaijaikai`

4 [[ r], r] = rJJ
r




rr 1 8 f ′′(f ′f, f)

∑
ijk` biaijaikaj`

4 [[ r, r]] = rrJJ
r




r

2 12 f ′f ′′(f, f)
∑

ijk` biaijajkaj`

4 [[[ r]]] = rrr
r

1 24 f ′f ′f ′f
∑

ijk` biaijajkak`

5 [ r, r, r, r] 24 5 f ′′′′(f, f, f, f)
∑
biaijaikai`aim

5 [[ r], r, r] 2 10 f ′′′(f ′f, f, f)
∑
biaijajkai`aim

5 [[ r, r], r] 2 15 f ′′(f ′′(f, f), f)
∑
biaijaikak`akm

5 [[[ r]], r] 1 30 f ′′(f ′f ′f, f)
∑
biaijajkak`aim

5 [[ r], [ r]] 2 20 f ′′(f ′f, f ′f)
∑
biaijajkai`a`m

5 [[ r, r, r]] 6 20 f ′f ′′′(f, f, f)
∑
biaijajkaj`ajm

5 [[[ r], r]] 1 40 f ′f ′′(f ′f, f)
∑
biaijajkaj`a`m

5 [[[ r, r]]] 2 60 f ′f ′f ′′(f, f)
∑
biaijajkak`akm

5 [[[[ r]]]] 1 120 f ′f ′f ′f ′f
∑
biaijajkak`a`m

Table 2.1: Trees, and the values of various functions defined on them.

The local error of a Runge–Kutta method can now be found by simply subtract-

ing (2.23) from (2.24). A succinct formulation of the order conditions follows:

a Runge–Kutta method has orderp if and only if its elementary weights satisfy

ϕ(τ) = 1/γ(τ) for all treesτ of orderρ(τ) ≤ p.

If we compare the Taylor series (2.23) and (2.24), we see that they have a

similar form. This motivates the following definition. AB-seriesis the formal

series

B(a, y) = a(∅)y +
∑
τ∈T

hρ(τ)

σ(τ)
a(τ)F (τ)(y), (2.25)

wherea is a functionT ∪ {∅} → R. Different normalizations are in use in the

literature. Here we follow the convention used in Butcher and Sanz-Serna [16] and

Hairer, Lubich and Wanner [43].

With the definition (2.25), we can reformulate the series (2.23) and (2.24) as

y(t + h) = B( 1
γ , y(t)) andyk+1 = B(ϕ, yk), respectively; here,1γ stands for the
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function mapping the treeτ to 1
γ(τ) .

Many operations on trees and B-series have been considered in the literature,

see e.g. Butcher [15], but we will only need theLie derivativeof a B-series as

defined in Hairer, Lubich and Wanner [43]. Recall that given a functiona on Rd,

the Lie derivative ofawith respect tof , denoted∂fa, is defined to be the derivative

of a along solutions ofy′ = f(y), so

∂fa(y0) = d
dta(y(t))

∣∣
t=0

, wherey′(t) = f(y(t)), y(0) = y0.

Mirroring this definition, we define the Lie derivative of the functionB(a, y) with

respect toB(b, y) as the B-series

B(∂ba, y0) = h d
dtB(a, y(t))

∣∣
t=0

, wherehy′(t) = B(b, y(t)), y(0) = y0. (2.26)

It turns out that there indeed exists a function∂ba : T ∪ {∅} → R such that (2.26)

is satisfied ifb(∅) = 0. Moreover, we can compute this function explicitly as

∂ba(τ) =
∑

v∈V (τ)

a(τ \ τv) b(τv). (2.27)

HereV (τ) is the set containing theρ(τ) vertices of the

v

τ \ τv

τv
treeτ . Furthermore,τv denotes the subtree ofτ havingv

as its root, andτ \ τv is whatever is left fromτ after the

subtreeτv is removed. The picture to the right illustrates

these definitions. For the trees up to order 3, the formulae

for ∂ba are

∂ba( r) = a(∅)b( r)
∂ba( rr) = a(∅)b( rr) + a( r)b( r)

∂ba
( rJJ

r




r)
= a(∅)b

( rJJ
r




r)

+ 2a( rr)b( r)
∂ba
( rrr) = a(∅)b

( rrr)+ a( r)b( rr) + a( rr)b( r).
The Lie derivative is used to compute the modified equation, which is the subject

of the next section.

2.4 Backward error analysis

There is a theory in numerical ODEs akin to the backward error analysis in nu-

merical linear algebra initiated by Wilkinson. While a forward error analysis is

concerned with the error in the solution space, backward error analysis consists of
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a study of the error in the problem space. In the context of numerical ODEs, the

development of the theory of backward error analysis is fairly recent and there-

fore not contained in older books. The reader is referred to Hairer, Lubich and

Wanner [43] for a more extensive treatment than is possible here.

More precisely, given an autonomous differential equationy′ = f(y) and a

numerical methodyk+1 = Ψh(yk), the idea is to search for amodified equation

ỹ′ = f̃h(ỹ) whose exact solution equals the numerical solution{yk} of the original

equation at the grid points{tk}. It turns out that usually the modified equation

only exists in a formal sense, so instead we are looking for an equation whose

exact solution isO(hr)–close to the numerical solution wherer is an arbitrary

positive integer. If both the right-hand sidef and the numerical methodΨh are

analytic in some neighbourhood, then there exist functionsf̃0, f̃1, . . . , f̃r−1, such

that the difference between the exact solution of

ỹ′ = f̃0(ỹ) + hf̃1(ỹ) + h2f̃2(ỹ) + · · ·+ hr−1f̃r−1(ỹ)

and the numerical solution of the original equation isỹ(tn)− yn = O(hr).
Note that the solution of the original equation is alreadyO(hp)–close to the nu-

merical solution, wherep is the order of the method. Hence, the modified equation

in fact takes the form

ỹ′ = f(ỹ) + hpf̃p(ỹ) + hp+1f̃p+1(ỹ) + · · · (2.28)

However, the series on the right-hand side does not converge in general.

Example 2.3. The results in this chapter and the next are illustrated by a running

example, which is also considered by Calvo, Murua and Sanz-Serna [19], Griffiths

and Sanz-Serna [36], and Hairer, Lubich and Wanner [42, 43]. We are seeking a

numerical solution of the scalar differential equation

y′(t) =
(
y(t)

)2
, y(0) = 1. (2.29)

The exact solution of this initial value problem isy(t) = 1/(1 − t), which has a

singularity att = 1.

Suppose that Runge’s second order method (2.16) is used to solve (2.29). Then

the modified equation is given by

ỹ′ = ỹ2 − 3
4
h2ỹ4 +

5
4
h3ỹ5 − 7

8
h4ỹ6 + · · · (2.30)

In Example 2.4, we will explain how to find this equation. Another method can be

found in [43,§IX.1].
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Figure 2.2: The exact solution ofy′ = y2 (dashed line), the result of Runge’s

method with step sizeh = 0.25 (circles), and the exact solution of the modified

equation (2.30) truncated after two, three, and four terms (solid lines marked 2, 3

and 4, respectively).

In Figure 2.2, we compare the numerical results with the exact solutions of

the original equationy′ = y2 and the modified equation (2.30). It is clear that

the latter approximates the numerical results better. However, this approximation

breaks down att = 1, reflecting the singularity in the exact solution (of course, the

numerical solution has no finite-time singularity). ♦

Let us now suppose that the numerical method can be expressed as a B-series (2.25),

sayyk+1 = Ψh(yk) = B(a, yk), as is the case for Runge–Kutta methods. Then

the modified equation (2.28) can also be written in terms of a B-series, namely as

ỹ′ = 1
hB(b, ỹ) =

∑
τ∈T

hρ(τ)−1

σ(τ)
b(τ)F (τ)(ỹ), (2.31)

but with different coefficientsb(τ). In fact, we haveb(∅) = 0 and

b(τ) = a(τ)−
ρ(τ)∑
j=2

1
j!
∂j−1

b b(τ), (2.32)

where∂j−1
b denotes the(j−1)–th iterate of the Lie derivative∂b defined in (2.26).
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The coefficients for trees up to order 3 are

b( r) = a( r)
b( rr) = a( rr)− 1

2b( r)2 = a( rr)− 1
2a( r)2

b
( rJJ

r




r)
= a

( rJJ
r




r)
− b( rr)b( r)− 1

3b( r)3 = a
( rJJ

r




r)
− a( rr)a( r) + 1

6a( r)3
b
( rrr) = a

( rrr)− b( rr)b( r)− 1
6b( r)3 = a

( rrr)− a( rr)a( r) + 1
3a( r)3.

(2.33)

Example 2.4. We return to the equationy′ = y2. The elementary differentials can

easily be computed with the definition given on page 13.

F ( r)(y) = y2, F ( rr)(y) = 2y3, F
( rJJ

r




r)
(y) = 2y4, F

( rrr)(y) = 4y4.

The corresponding elementary weights for Runge’s second order method are

ϕ( r) = 1, ϕ( rr) = 1
2 , ϕ

( rJJ
r




r)

= 1
4 , ϕ

( rrr) = 0.

We can now use (2.33) to find the B-series coefficients of the modified equation.

b( r) = 1, b( rr) = 0, b
( rJJ

r




r)
= − 1

12 , b
( rrr) = −1

6 .

Hence, the modified equation is, cf. (2.31),

ỹ′ = ỹ2 − 3
4h

2ỹ4 +O(h3).

To find the next term, we repeat this calculation for the trees of order four. The

results are

F
( r@

r r
�

r)
(y) = 0, ϕ

( r@
r r

�
r)

= 1
8 , b

( r@
r r

�
r)

= 0;

F

(
rJJ

r




rr)(y) = 4y5, ϕ

(
rJJ

r




rr) = 0, b

(
rJJ

r




rr) = 0;

F

(
rrJJ

r




r)
(y) = 4y5, ϕ

(
rrJJ

r




r)
= 0, b

(
rrJJ

r




r)
= 1

8 ;

F

(
rrr
r)

(y) = 8y5, ϕ

(
rrr
r)

= 0, b

(
rrr
r)

= 1
8 .

So, the next term is54h
3ỹ4, and the modified equation reads

ỹ′ = ỹ2 − 3
4h

2ỹ4 + 5
4h

3ỹ4 +O(h4).

This agrees with (2.30). ♦
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2.5 Variable step-size methods

In the previous sections, we divided the time interval[t0, tf ] in a number of subin-

tervals of equal length. However, almost all programs used in practice do not

space the intermediate pointstk uniformly, because it is often more efficient to

concentrate them where the problem is harder. This means that, instead of having

a constant step sizeh throughout the computation, we have a different step sizehk

at every step. The time stepping formula changes fromyk+1 = Ψh(tk, yk) to

tk+1 = tk + hk and yk+1 = Ψhk
(tk, yk).

In this context, the global error depends not on a single variableh, but on all the

step sizeshk. We still denote the global error byGh(tf), but nowh represents

the vector(h0, h1, . . . , hk−1). Theorem 2.2, which states that a local error of or-

derhp+1 implies a global error of orderhp, is still valid in the form

Lhk
(tk, yk) = O(hp+1

k ) implies Gh(tf) = O
(
hp

max

)
, (2.34)

wherehmax = maxk hk denotes the maximal step size.

For a further analysis of the variable step-size method, some knowledge on how

the step sizehk is determined is required. The idea of most programs is to try and

keep the local error, possibly normalized by dividing it by the step size, below a

certain value specified by the user. The details, which may be rather intricate, often

introduce a dependency ofhk on the size of the previous step,hk−1. However,

Stoffer and Nipp [82] prove that under some assumptionshk is asymptotically

independent ofhk−1. This suggests that we consider methods of the form

hk = εhh(tk, yk),

tk+1 = tk + hk,

yk+1 = Ψhk
(tk, yk),

(2.35)

whereεh is a reference step size, reflecting the user-specified tolerance. Further-

more, we will assume that the functionh is bounded from below, i.e., that there is

aC > 0 such thath(t, y) ≥ C for all t andy. This model is commonly used when

analysing variable step-size methods; see for instance [44,§II.8] and [43,§VIII.2].

The variable step-size method can generally not be expanded in a B-series, even

if Ψh is a Runge–Kutta method. That is, there is no coefficient functiona : T → R

such that

yk+1 = yk +
∑
τ∈T

a(τ)
σ(τ)

ε
ρ(τ)
h F (τ)(yk).
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Hence the theory of Section 2.3 is not applicable to variable step-size methods,

which complicates their analysis considerably.

The theory of Section 2.4 on backward error analysis remains valid for variable

step-size methods, in that there exists a modified equation (2.28) whose (formal)

solution coincides with the result of the numerical method, as proved by Hairer and

Stoffer [45]. Of course, formula (2.31) expressing the modified equation in terms

of the B-series of the numerical method cannot be applied.

Example 2.5. We continue with the equationy′ = y2. Again, Runge’s second

order method is employed, but now with variable step size. We suppose that the

step size is given byhk = εh(yk)−2, so that the method is indeed of the form (2.35).

This causes the step size to decrease as the singularity is approached, as illustrated

in Figure 2.3.

The modified equation can be found by using the same technique as explained

for constant step-size methods in [43,§IX.1]. We find that it is given by

ỹ′ = ỹ2 − 3
4
ε2h −

1
4
ε3hỹ

−1 +
1
8
ε4hỹ

−2 + · · · (2.36)

Its solution, and the solution of the original equation, is compared to the numerical

results in Figure 2.3. We see that the solution of the modified equation follows the

numerical results closely.

One might naively think that the modified equation (2.36) for the variable

step-size method can be deduced from the modified equation (2.30) for the con-

stant step-size equation by the substitutionh = εhỹ
−2. A comparison of (2.36)

and (2.30) shows that this is not the case. However, and this holds in general, the

term of orderεph (remember thatp stands for the order of the numerical method)

can indeed be derived in this way. ♦
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Figure 2.3: The exact solution ofy′ = y2 (dashed line), the result of Runge’s

method with step sizehk = εh(yk)−2 whereεh = 0.4 (circles), and the exact

solution of the modified equation (2.36) truncated after the fourth term (solid line).



Chapter 3

Three methods to estimate

the global error

This chapter forms the heart of the first part of the thesis. Its purpose is to find

estimates for the global errorGh(t), the difference between the result of the nu-

merical method and the exact solution. The basic ingredient of the estimates is the

local error of a method. Parts of the discussion are valid for both constant step-size

methods of the form (2.13) and variable step-size methods given by (2.35), but the

greater part assumes that the step size is kept constant.

Recall from Chapter 2 that the global error of a constant step-size method satis-

fiesGh(tf) = O(hp) if the method has orderp. We are seeking an estimatẽGh(tf)
that at least satisfies̃Gh(tf) − Gh(tf) = O(hp+1). However, considerable efforts

will be put in the quest for more precise estimators. Similarly, for variable step-size

methods, we are seeking an estimateG̃εh
(tf) with G̃εh

(tf)−Gεh
(tf) = O(εp+1

h ),
or better.

In each of the three sections in this chapter, a different line of attack will be

pursued. First, the most straightforward approach will be taken: for every step, we

compute the contribution of the local error at that step to the global error at timetf ,

and then we sum these contributions to find the global error. In Section 3.2, we

expand the global error in powers ofh, and we seek to obtain the terms in this

power series. The third approach uses the theory of backward error analysis, which

was explained in Section 2.4, to get yet another estimate for the global error.

22
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3.1 Lady Windermere’s fan

The approach described here is rather straightforward: we add the contributions

of the local errors committed at every step to find the global error. Many of the

classical text books (see, for example, Isaacson and Keller [52]) use this approach.

The usual result is a bound of the form

‖Gh(tf)‖ ≤ Chp
maxe

L(tf−t0), (3.1)

whereL is a Lipschitz constant as defined in (2.2), andC is some constant de-

pending on the size of the derivatives off . In fact, this is the standard way to prove

Theorem 2.2.

It is well known that the bound (3.1) often yields a gross overestimate of the

error. The problem is that the Lipschitz constantL often does not describe the

functionf well. Hence, the estimate can be improved if one takes a more sophisti-

cated approach, based for instance on a one-sided Lipschitz condition. Details can

be found in e.g. Hairer, Lubich and Wanner [44,§I.10], who follow Dahlquist [23],

or Iserles and S̈oderlind [55].

None of these approaches take into account that the errors committed at various

steps may (partially) cancel each other. This is why their results may still be too

pessimistic. In other words, these approaches giveboundson the global error,

while we are looking forestimates.

Below, we will derive an estimate of the global error. The idea is illustrated in

Figure 3.1. At every timetk, a local error is committed. This error is transported

along the flow of the differential equation to the end of the integration interval, and

then all the transported local errors are summed to get the global errorGh(tf). As

the local errors are quite small, the linearized flow can be used to transport them.

This gives the following error estimate.

Lemma 3.1. If a one-step method of orderp is employed, then the global error

satisfiesGh(tf) = G̃h(tf) +O(h2p
max), whereG̃h is given by

G̃h(tf) =
N−1∑
k=0

DΦtf
tk+1

(
y(tk+1)

)
Lhk

(
tk, y(tk)

)
, with tN = tf . (3.2)

Proof. We decompose the global error as suggested by Figure 3.1,

Gh(tf) = yN − Φtf
t0

(y0) =
N−1∑
k=0

Rk, whereRk = Φtf
tk+1

(yk+1)− Φtf
tk

(yk).

Note thatRk represents the local error committed attk+1, transported totf . Using

the definition of the local error (2.14) and the flow composition property (2.4), the
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Figure 3.1: The local errors committed at every step are combined to form the

global error. This picture is calledLady Windermere’s fan, after a play by Oscar

Wilde, in [44].

expression forRk can be rewritten as

Rk = Φtf
tk+1

(
Φtk+1

tk
(yk) + Lhk

(tk, yk)
)
− Φtf

tk+1

(
Φtk+1

tk
(yk)

)
.

The main theorem of calculus allows us to write this as an integral,

Rk =
∫ 1

0
DΦtf

tk+1

(
Φtk+1

tk
(yk) + ξLhk

(tk, yk)
)
Lhk

(tk, yk) dξ. (3.3)

The local error isLhk
(tk, yk) = O(hp+1

k ) because the numerical method has or-

der p. Furthermore, the smoothness off implies that the flow mapΦ is also

smooth, so

DΦtf
tk+1

(
Φtk+1

tk
(yk) + ξLhk

(tk, yk)
)

= DΦtf
tk+1

(
Φtk+1

tk
(yk)

)
+O(hp+1

k ).

Hence we can approximate the integral in (3.3) as follows.

Rk = DΦtf
tk+1

(
Φtk+1

tk
(yk)

)
Lhk

(tk, yk) +O(h2p+2
k ). (3.4)

We also haveyk = Φtk
t0

(y0) + Gh(tk) = Φtk
t0

(y0) + O(hp
max) because of The-

orem 2.2. Thus, the composition property (2.4) of the flow map implies that

Φtk+1

tk
(yk) = Φtk+1

t0
(y0) +O(hp

max). Hence, we can rewrite (3.4) as

Rk = DΦtf
tk+1

(
Φtk+1

t0
(y0)

)
Lhk

(tk, yk) +O(h2p+1
max ).
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Furthermore, using the smoothness of the numerical method, and hence of the local

error, we can write

Rk = DΦtf
tk+1

(
Φtk+1

t0
(y0)

)
Lhk

(
tk,Φ

tk
t0

(y0)
)

+O(h2p+1
max )

Finally, the global error is retrieved viaGh(tf) =
∑

k Rk, where the summation

goes overN ≤ (tf − t0)/hmax terms. This gives us (3.2).

The same argument, up to (3.4), can also be used to prove Theorem 2.2.

It should be borne in mind that the constant hidden in theO symbol in the

equationGh(tf) = G̃h(tf) +O(h2p
max) depends on the final timetf . This constant

often grows exponentially astf increases. In this case, the estimateG̃h(tf) becomes

meaningless from a certain point (see for instance Example 4.7).

Example 3.2.We return to the same example as in Chapter 2: solving the equation

y′ = y2, y(0) = 1, with Runge’s second order method. For the moment, we restrict

ourselves to the case where the step size is constant. We want to use Lemma 3.1 to

estimate the global error.

We sett0 = 0, so tf = Nh. The estimate for the global error becomes

Gh(tf) =
∑N−1

k=0 Ak +O(h4) where

Ak = DΦNh
(k+1)h

(
y((k + 1)h)

)
Lh

(
kh, y(kh)

)
.

Recall that the exact solution isy(t) = 1/(1− t). The flow and the variational flow

of the equationy′ = y2 are

Φt
s(y) =

y

1− (t− s)y
and DΦt

s(y) =
1(

1− (t− s)y
)2 . (3.5)

We also need to know the local error of Runge’s method. This can be determined

by comparing the B-series of the exact and the numerical solution, or by a straight-

forward Taylor expansion. Both methods yield

Lh(t, y) = −3
4h

3y4 − h4y5 +O(h6). (3.6)

Combining all these expressions, we find that

Ak = −
(

1− (k + 1)h
1−Nh

)2
(

3
4
h3

(
1

1− kh

)4

+ h4

(
1

1− kh

)5
)

= − 1
(1− tf)2

(
3
4
h3

(
1

1− kh

)2

− 1
2
h4

(
1

1− kh

)3
)

+O(h5). (3.7)

We now need to sum theAk. However, here we encounter a problem: the sum∑
k(1 − kh)−n cannot be expressed in elementary functions. One possible way
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Figure 3.2: The plot on the left shows the global error attf = 0.9 committed

by Runge’s method with constant step size when applied toy′ = y2 (circles),

the difference between the estimate (3.8) and the true global error (crosses), and

the difference between (3.11) and the true global error (squares). The dotted ref-

erence lines have slopes2 and 4. On the right, the global error with step size

hk = εh/y
2
k (circles) and the difference between the estimate (3.15) and the global

error (crosses) are shown. The dotted reference lines have slopes2 and3.

around this obstacle is to use the Euler–MacLaurin theorem, as will be explained

in Example 3.5. We can also use the digamma functionψ, which is defined

by ψ(x) = Γ′(x)/Γ(x), whereΓ(x) denotes Euler’s gamma function (see for in-

stance [1, Ch. 6]). In terms of the digamma function,

Gh(tf) =
N−1∑
k=0

Ak +O(h4)

= − h

(1− tf)2

(
3
4
ψ′
(

1− tf
h

+ 1
)
− 3

4
ψ′
(

1
h

+ 1
)

(3.8)

+
1
4
ψ′′
(

1− tf
h

+ 1
)
− 1

4
ψ′′
(

1
h

+ 1
))

+O(h4).

This estimate is illustrated on the left-hand side of Figure 3.2, which shows the

difference between the estimate (3.8) and the exact global error attf = 0.9 for

various values of the step sizeh. Comparison with the reference line shows that

the remainder term is indeed of orderh4. ♦
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As illustrated in the above example, it is often rather difficult to evaluate the sum-

mation in (3.2). This problem can be mitigated by converting the sum to an integral.

The Euler–MacLaurin theorem achieves this conversion. A proof of this theorem

can be found in [57,§7.7].

Theorem 3.3 (Euler–MacLaurin). Letψ be a function on[0, 1]. If ψ isC2n, then

for someξ ∈ (0, 1) we have∫ 1

0
ψ(t) dt = 1

2

(
ψ(0) + ψ(1)

)
−

n−1∑
k=1

b2k

(2k)!
(
ψ(2k−1)(1)− ψ(2k−1)(0)

)
− b2n

(2n)!
ψ(2n)(ξ), (3.9)

wherebk denote the Bernoulli numbers.

Two equivalent definitions for the Bernoulli numbers are
∞∑

k=0

bk
k!
xk =

x

ex − 1
and

n∑
k=0

(
n+ 1
k

)
bk = 0 (for n ≥ 1).

The first values areb0 = 1, b1 = −1
2 , b2 = 1

6 , b3 = 0, b4 = − 1
30 , b5 = 0, b6 = 1

42 .

In general,bk vanishes for oddk ≥ 3.

The Euler–MacLaurin theorem can readily be used if the numerical method

employs a constant step size.

Theorem 3.4. If we are using a constant step-size method of orderp to solve the

equationy′ = f(t, y), then the global error satisfiesGh(tf) = G̃h(tf) + O(h2p)
with

G̃h(tf) =
1
h

∫ tf−h

t0

ρh(t) dt+ 1
2

(
ρh(tf − h) + ρh(t0)

)
+

p−1∑
k=1

b2k

(2k)!
h2k
(
ρ
(2k−1)
h (tf − h)− ρ

(2k−1)
h (t0)

)
,

where the functionρh : [t0, tf − h] → Rd is defined by

ρh(t) = DΦtf
t+h

(
y(t+ h)

)
Lh

(
t, y(t)

)
.

Proof. Summing the Euler–MacLaurin formula (3.9) yields the following summa-

tion formula (see e.g. [57,§7.4])∫ N

0
ψ(x) dx = 1

2ψ(0) +
N−1∑
k=1

ψ(k) + 1
2ψ(N)

−
n−1∑
k=1

b2k

(2k)!
(
ψ(2k−1)(N)− ψ(2k−1)(0)

)
− b2n

(2n)!
Nψ(2n)(ξ). (3.10)
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For constant step-size methods, we havetk = t0 + kh. Hence, (3.2) takes the form

G̃h(tf) =
∑N−1

k=0 ρh(t0 + kh). The theorem follows by applying (3.10), rescaled

to the time interval[t0, tf − h].

Example 3.5. We continue Example 3.2. From (3.5) and (3.6), it follows that the

functionρh in Theorem 3.4 is given by, cf. (3.7),

ρh(t) = − 1
(1− tf)2

(
3h3

4(1− t)2
− h4

2(1− t)3

)
+O(h5).

Integrating this expression is a tedious but straightforward computation, which re-

sults in∫ tf−h

0
ρh(t) dt = − 3h3tf

4(1− tf)3
+

h4

4(1− tf)2

(
1

(1− tf)2
− 4
)

+O(h5).

Hence, we find that the global error satisfies

Gh(tf) =
1
h

∫ tf−h

t0

ρh(t) dt+ 1
2

(
ρh(tf − h) + ρh(t0)

)
+O(h4)

= − 3tf
4(1− tf)3

h2 +
5tf(2− tf)
8(1− tf)4

h3 +O(h4). (3.11)

Again, we plot the difference between the above estimate and the true global error

in the left-hand plot of Figure 3.2. This figure supports the error estimate (3.11).

Note that the estimates (3.8) and (3.11) are not identical; the difference is subsumed

in theO(h4) remainder terms. ♦

The situation is more complicated for variable step-size methods. The following

result is a straightforward application of the Euler–MacLaurin theorem, but it dis-

cards all information of orderhp+1, and retains only the leading error term, which

has orderhp.

Theorem 3.6. Suppose that we are employing a variable step-size method of the

form (2.35). If the local error isLh(t, y) = hp+1`(t, y) + O(hp+2) and the

step size functionh is bounded below, then the global error satisfies the estimate

Gεh
(tf) = εphg(tf) +O(εp+1

h ) with

g(tf) =
∫ tf

t0

h
(
t, y(t)

)p
DΦtf

t

(
y(t)

)
`
(
t, y(t)

)
dt. (3.12)

Proof. According to Lemma 3.1, the global error satisfies

Gεh
(tf) =

N−1∑
k=0

gk +O(h2p
max) with gk = DΦtf

tk+1

(
y(tk+1)

)
Lhk

(
tk, y(tk)

)
.
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We haveDΦtk+1

tk
= I+O(hk) because of the differential equation (2.5) determin-

ing the variational flow. So we can write

gk = DΦtf
tk

(
y(tk)

)
Lhk

(
tk, y(tk)

)
+O(hp+2

k )

= hp+1
k DΦtf

tk

(
y(tk)

)
`
(
tk, y(tk)

)
+O(hp+2

k ).

Now consider the sequence{tk}. It is generated by the recurrence

tk+1 = tk + hk, yk+1 = Ψhk
(tk, yk) and hk = εhh(tk, yk).

Since the method is convergent, we haveyk = y(tk)+O(εh). If the sequence{t̂k}
is defined by

t̂0 = t0 and t̂k+1 = t̂k + εhh
(
t̂k, y(t̂k)

)
, (3.13)

then t̂k = tk + O(εh). But (3.13) is the Euler method (2.11) with constant step

size εh applied to the differential equationdt
dκ = h

(
t, y(t)

)
, wheret is the de-

pendent variable andκ is the independent variable. Denoting the solution of this

equation byt(κ), we havet̂k = t(kεh) + O(εh) because the Euler method is a

convergent method. Hencegk = ψ(kεh) +O(εp+2
h ) with

ψ(κ) = h
(
t(κ), y(t(κ))

)p+1
DΦtf

t(κ)

(
y(t(κ))

)
`
(
t(κ), y(t(κ))

)
.

Going back to the global error, we have

Gεh
(tf) =

N−1∑
k=0

ψ(kεh) +O(εp+1
h ), (3.14)

sinceN = O(ε−1
h ). It follows from the Euler-MacLaurin summation formula (3.10)

with n = 1 that∫ N

0
ψ(kεh) dk = 1

2ψ(0) +
N−1∑
k=1

ψ(kεh) + 1
2ψ(Nεh) + 1

12Nh
2ψ′′(ξ),

for someξ ∈ [0, N ]. This is the (composite) trapezoid rule. We now use this to

rewrite (3.14), remembering thatψ(x) = O(εp+1
h ). This gives

Gεh
(tf) =

∫ N

0
ψ(kεh) dk +O(εp+1

h ).

Finally, changing the variable of integration fromk to t gives the estimate in the

theorem.
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Example 3.7. We return to Runge’s second-order method applied to the differen-

tial equationy′ = y2, but this time we vary the step size according tohk = εh/y
2
k

(as in Example 2.5), so we haveh(t, y) = y−2. The variational flow is given

in (3.5), and from (3.6) we havè(t, y) = −3
4y

4. Hence the integral (3.12) evalu-

ates to

g(tf) = −3
4

∫ tf

0

(
1− t

1− tf

)2

dt = −1
4

(
1

(1− tf)2
− (1− tf)

)
.

It follows from Theorem 3.6 that the global error satisfies

G(tf) = −1
4
ε2h

(
1

(1− tf)2
− (1− tf)

)
+O(ε3h). (3.15)

The accuracy of this estimate is shown in the right-hand plot of Figure 3.2.♦

Theorem 3.6 also holds if the step size happens to be constant. In that case, the

result is

Gh(tf) = hp

∫ tf

t0

DΦtf
t

(
y(t)

)
`
(
t, y(t)

)
dt+O(hp+1). (3.16)

This is also an immediate corollary of Theorem 3.4.

The estimate (3.16) for the global error is not new; Iserles [54] provides a proof

of it. In fact, the research described in this thesis was inspired by this paper.

In an earlier paper, Viswanath [84] proves the following bound on the global

error. Given anytf andε > 0, and assuming that the magnitude of the local error

is bounded above byKhp+1, the error satisfies

Gh(t) < (E(t) + ε)Khp (3.17)

for anyt ∈ [t0, tf ] and sufficiently smallh. In the framework adopted in this thesis,

Viswanath’s definition forE(t) is equivalent to

E(tf) =
∫ tf

t0

‖DΦtf
t

(
y(t)

)
‖dt.

With this definition, the bound (3.17) on the global error follows from (3.16).

Viswanath [84] uses (3.17) to prove that the global error as a function oft bounded

above by a linear function or by a constant in various situations, e.g. stable, hyper-

bolic cycles.

Differentiating (3.12) gives the following equation for the leading term of the

global error

g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) + h

(
t, y(t)

)p
`
(
t, y(t)

)
, g(t0) = 0. (3.18)

This differential equation is well known in the literature, see e.g. [44,§II.8]. In

the case of constant step size, where we haveh ≡ 1, it goes back to Henrici [48,

Thm. 3.4]. The equation (3.18) will play an essential role in Part II of this thesis.
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3.2 Asymptotic expansion

In this section, we assume that the step sizeh does not vary.

Another approach is to expand the global errorGh(t) in a power series

Gh(t) ∼ gp(t)hp + gp+1(t)hp+1 + gp+2(t)hp+2 + · · · (3.19)

As denoted by the symbol∼, this is anasymptotic expansionin the sense of

Poincaŕe, meaning that

Gh(t) =
N∑

k=p

gk(t)hk +O(hN+1) for everyN,

but the infinite series
∑∞

k=p gk(t)hk diverges in general.

Henrici [48] and Gragg [34] are among the first who rigorously analysed this

approach. We will follow the treatment of Hairer, Nørsett and Wanner [44,§II.8].

Theorem 3.8 (Gragg [34]). If we apply a convergent method with constant step

size, then the global error admits an asymptotic expansion of the form(3.19), where

the functiongk solves a differential equation of the formg′k = ∂f
∂y (t, y) gk + dk,

gk(t0) = 0, for suitably chosen functionsdk.

Proof (after [44]). Suppose that the firstr terms of the expansion have already

be found, so we know functionsgk such thatĝ(t) =
∑r

k=1 gk(t)hk satisfies

Gh(t) = ĝ(t) +O(hr+1). Note that we can always start withr = 0 andĝ(t) = 0,

becauseGh(t) = O(h) as the method is convergent. We will show how to find the

next term in the expansion (3.19), thus proving the theorem by induction.

Recall thatΨh(t, y) denotes the numerical method. Now consider another

method, defined by

Ψ̂h(t, y) = Ψh

(
t, y + ĝh(t)

)
− ĝh(t+ h). (3.20)

Application of this method yields the sequence of values{ŷn} with ŷ0 = y0 and

ŷn+1 = Ψ̂h(tn, ŷn). These values satisfŷyn = yn− ĝh(tn), as can easily be shown

by induction. Therefore, its global error is

ŷn−y(tn) =
(
ŷn−yn)+

(
yn−y(tn)

)
= −ĝh(tn)+Gh(tn) = O(hr+1). (3.21)

We conclude that the numerical method (3.20) has orderr+ 1, and that its leading

global error term isgr+1(t)hr+1, the term which we are looking for. However, the

functiongr+1 satisfies the differential equation, cf. (3.18),

g′r+1(t) = ∂f
∂y

(
t, y(t)

)
gr+1(t) + hp+1 ˆ̀(t, y(t)), gr+1(t0) = 0,
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where ˆ̀(t, y) is defined by requiring that the local error of the method (3.20) be

hp+2 ˆ̀(t, y) +O(hp+3). Hence, we can findgr+1(t) by solving this equation. This

completes the induction step.

Note that the differential equationg′k = ∂f
∂y (t, y) gk + dk, gk(t0) = 0 can easily be

solved. The variation of constants formula gives

gk(tf) =
∫ tf

t0

DΦtf
t

(
y(t)

)
dk(t) dt. (3.22)

The theorem is still valid if we use a variable step-size method, provided that the

step size is chosen according tohk = εhh(tk); in other words, it should be inde-

pendent of the current positionyk (see [44]).

Example 3.9. We return to the equationy′ = y2, solved with Runge’s second-

order method (2.16) with constant step size.

From (3.6) it follows that̀ (t, y) = −3
4y

4 and hence the differential equa-

tion (3.18) reads

g′(t) = 2y(t) g(t)− 3
4y(t)

4 =
2

1− t
g(t)− 3

4(1− t)4
, g(0) = 0.

The solution of this equation isg(t) = −3
4 t(1 − t)−3, so the global error is

−3
4h

2t(1 − t)−3 + O(h3). To find the next term, we construct the method (3.20)

with ĝ(t) = −3
4h

2t(1− t)−3. We find

Ψ̂h(t, y) = y − 3t
4(1− t)3

+ h

(
y − 3t

4(1− t)3
+

1
2
h

(
y − 3t

4(1− t)3

)2
)2

+
3(t+ h)

4(1− t− h)3
.

After some tedious algebra, we find that

Ψ̂h

(
t, y(t)

)
=

1
1− t

+
1

(1− t)2
h+

1
(1− t)3

h2

+
1

(1− t)4
h3 +

9
4(1− t)5

h4 +O(h5).

We now subtract the Taylor series fory(t+ h), which reads

y(t+h) =
1

1− t
+

1
(1− t)2

h+
1

(1− t)3
h2 +

1
(1− t)4

h3 +
1

(1− t)5
h4 +O(h5).

This gives the local error for the method̂Ψ,

Ψ̂h

(
t, y(t)

)
− y(t+ h) =

5
4(1− t)5

h4 +O(h5).
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So, the method̂Ψ indeed has order 3. We can again find the leading global error

term by solving the equation (3.18). ForΨ̂, this equation reads

g′3(t) =
2

1− t
g3(t) +

5
4(1− t)5

, g3(0) = 0.

The solution isg3(t) = 5
8 t(2− t)(1− t)−4.

We can proceed in this way to find more and more terms. However, instead of

boring the reader with the calculations, we just state the result of the computation.

Gh(t) = − 3t
4(1− t)3

h2 +
5t(2− t)
8(1− t)4

h3 − t(23t2 − 96t+ 42)
48(1− t)5

h4

− 3t(2t3 − 18t2 + 27t+ 12)
32(1− t)6

h5 +O(h6). (3.23)

This estimate is illustrated in the left-hand plot of Figure 3.3. The dotted line shows

the global error of Runge’s method. The topmost solid line shows the first term of

the estimate (3.23), the second line shows the sum of theh2 andh3 terms, and so

on. We can conclude from this picture that (3.23) is correct. ♦

The Euler–MacLaurin formula (cf. Theorem 3.3) can be proved with a similar com-

putation that considers the trapezoidal rule

yn+1 = yn + 1
2h
(
f(tn, yn) + f(tn+1, yn+1)

)
applied to the equationy′ = f(t).

Comparing Theorem 3.4 with Theorem 3.8 above, we see that the latter theo-

rem has the clear advantage that it gives the complete asymptotic expansion, while

Theorem 3.4 does not allow one to go beyond the term of orderh2p. On the other

hand, we only need to compute one integral when evaluating the estimate in The-

orem 3.4, the rest is straightforward but tedious algebra (provided that the exact

solution is known). In contradistinction, the method of Theorem 3.8 requires us to

solve a differential equation, or, equivalently, the integral (3.22), for every term in

the asymptotic expansion.

3.3 Modified equations and the global error

In this section, we describe the third approach to estimating the global error. This

approach uses the theory of backward error analysis, which was explained in Sec-

tion 2.4. A similar strategy is used by Calvo and Hairer [18], and Hairer and

Lubich [42].
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Figure 3.3: On the left, the dotted line shows the global error attf = 0.9 committed

by Runge’s method with constant step size when applied toy′ = y2. The solid

curve marked 1 shows the difference between the global error and the first term of

the estimate (3.23); in other words, it showsGh(t) + 3
4 t(1 − t)−3h2. Similarly,

the curves marked 2, 3 and 4 show the difference between the global error and the

estimate (3.23) truncated after the second, third, and fourth term, respectively. On

the right, a similar picture compares the global error of Runge’s method with step

sizehk = 1/y2
k with the estimate (3.25).
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The idea is rather simple. The Alekseev–Gröbner lemma describes the effect

of perturbing a differential equation. The modified equation allows us to view the

numerical method as a perturbation of the original differential equation. This leads

to the following theorem. For simplicity, we assume that the differential equation

is autonomous.

Theorem 3.10. Suppose that we solve the differential equationy′ = f(y) with a

variable step-size method of the form(2.35), which produces the values{yk}. If

the method has orderp, and the solutioñy(t) of the (truncated) modified equation

ỹ′ = f̃εh
(ỹ) satisfies̃y(tk) = yk +O(ε2p

h ) for all k, then

Gεh
(tf) =

∫ tf

t0

DΦtf
t

(
y(t)

)
δεh

(
y(t)

)
dt+O(ε2p

h ), (3.24)

whereδεh
(y) = f̃εh

(y)− f(y).

Of course, this theorem is also valid for constant step-size methods.

Proof. The Alekseev–Gr̈obner lemma on page 8 shows that

ỹ(tf)− y(tf) =
∫ tf

t0

DΦtf
t

(
ỹ(t)

)
δεh

(
ỹ(t)

)
dt.

The expression on the left-hand side isGεh
(tf) + O(ε2p

h ) because the solution of

the modified equation isO(ε2p
h )–close to the numerical solution. Furthermore, we

havey(t)− ỹ(t) = O(εph), since the method is of orderp. Finally, it follows from

the theory of modified equation in Section 2.4 thatδεh
(y) = O(εph). Together, this

proves (3.24).

Example 3.11. We again consider Runge’s second-order method applied to the

differential equationy′ = y2. First, we will assume that the step size is held

constant. In Example 2.3, we found that the modified equation is given by (2.30).

Hence we have

δh(y) = −3
4
h2y4 +

5
4
h3y5 − 7

8
h4y6 +O(h5).

The integral in (3.24) evaluates to

− 3tf
4(1− tf)3

h2 +
5tf(2− tf)
8(1− tf)4

h3 −
7tf(t2f − 3tf + 3)

24(1− tf)5
h4 +O(h5).

If we compare this with the estimate (3.23), which we obtained in the last section,

we see that the first two terms are correct, but the third one is not. So (3.24)

provides anO(h4)–estimate of the global error, just as the theorem states.
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Now suppose we choose the step size according tohk = 1/y2
k as in Exam-

ple 2.5. The modified equation is given in (2.36), and a similar computation as in

the constant step-size case yields

Gεh
(tf) = −

tf(t2f − 3tf + 3)
4(1− tf)2

ε2h +
tf(t3f − 4t2f + 6tf − 4)

16(1− tf)2
ε3h +O(ε4h). (3.25)

A numerical experiment was performed to check this estimate. The result, reported

on the right-hand side of Figure 3.3, indicates that the estimate is indeed correct.

♦

We know from Section 2.4, that if the numerical method can be expanded in a

B-series (as is the case for all Runge–Kutta methods), the modified equation can

also be written in terms of a B-series. Combining this with the above theorem

yields the following result.

Corollary 3.12. Suppose that a consistent numerical method with constant step

size is used, and that this method can be expanded in a B-series with coefficient

functiona : T ∪ {∅} → R. Define the functionb : T ∪ {∅} → R by b(∅) = 0 and

b(τ) = a(τ)−
ρ(τ)∑
j=2

1
j!
∂j−1

b b(τ).

If the numerical method has orderp, then the global error satisfies

Gh(tf) =
2p−1∑
k=p

hk
∑

τ∈Tk+1

b(τ)
σ(τ)

I(τ)(tf) +O(h2p),

whereI(τ)(tf) =
∫ tf

t0

DΦtf
t

(
y(t)

)
F (τ)

(
y(t)

)
dt.

(3.26)

Here,Tk denotes the set of all trees with orderk.

Proof. The modified equation is̃y′ = 1
hB(b, ỹ) with b as defined in the theorem, as

the discussion around (2.31) shows. The first term of the B-seriesB(b, ỹ) vanishes,

sinceb(∅) = 0. For the second term, we haveb( r) = a( r) = 1 (because the

method is consistent) andF ( r)(y) = f(y). Hence, we have

δh(y) = f̃h(y)− f(y) =
∞∑

k=2

∑
τ∈Tk

hk−1 b(τ)
σ(τ)

F (τ)(y).

However, we know thatb(τ) vanishes ifρ(τ) ≤ p, because the first term in the

modified equation has orderhp. We now substitute this expression in the estimate

in Theorem 3.10, and move the scalar factors out of the integral (remember that the

variational flowDΦtf
t is linear). This yields the estimate (3.24).
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The nice thing about the error estimate (3.24) is that it cleanly separates the nu-

merical method from the particular problem that we want to solve. The method

only enters the estimate via the coefficientsb(τ). On the other hand, the value of

the integralsI(τ) is completely determined by the particular differential equation

(i.e., the functionf ) under consideration. We will callI(τ) theelementary integral

associated withτ , because its role in the global error estimate (3.24) is similar to

the role of the elementary differentialF (τ)(y) in the local error.

Example 3.13. We consider again the differential equationy′ = y2 with initial

conditiony(0) = 1. An easy calculation shows that the elementary differentials are

given byF (τ)(y) = C(τ) yρ(τ)+1, whereC(τ) is a (possibly vanishing) constant

which depends on the treeτ . Hence, the elementary integrals are

I(τ)(tf) =
C(τ)
ρ

(
1

(1− tf)ρ(τ)+2
− 1

(1− tf)2

)
.

It now follows from Corollary 3.12 that the global error of every constant step-size

Runge–Kutta method of orderp is

Gh(tf) =
2p−1∑
k=p

Ckh
k

(
1

(1− tf)k+3
− 1

(1− tf)2

)
+O(h2p),

where the constantsCk depend on the coefficients of the method. This agrees with

the result for Runge’s method with constant step size which we found in Exam-

ple 3.11. ♦

The above example shows the merit of Corollary 3.12: it allows us to find the global

error ofanyRunge–Kutta method in one calculation. The disadvantage when com-

pared to the method of the previous section, is that the global error estimate is only

exact up to a term of orderh2p, while the theory of Section 3.2 allows us to find an

estimate which approximates the global error with arbitrary order.



Chapter 4

Applications of global error

estimates

This chapter contains various applications of the estimates for the global error

which were derived in the previous chapter. The first application is of a more

theoretical nature: we prove a key lemma which can be used to study the growth of

the global error when tracking a periodic orbit. The other two applications pertain

to specific classes of equations with highly oscillatory solutions. In Section 4.2, we

study the Airy equationy′′ + ty = 0, and related equations which are amenable to

Liouville–Green analysis. In Section 4.3, we look at the nonlinear Emden–Fowler

equationy′′ + tνyn = 0 in the oscillatory regime. The goal in both cases is to

obtain estimates for the global error.

4.1 Error growth in periodic orbits

Cano and Sanz-Serna [20] study the growth of the global error when the numerical

integrator is tracking a periodic orbit. Their main technical result is reproduced as

Theorem 4.1 below. They use the asymptotic expansion of the global error (cf. Sec-

tion 3.2) to prove this result. Specifically, they prove that the coefficientsgk(t) in

the expansion (3.19) are periodic under the assumptions of the theorem. Here, we

will give an alternative proof via modified equations, based on Theorem 3.10.

Theorem 4.1 (Cano and Sanz-Serna).Suppose we are solving an autonomous

differential equation of the formy′ = f(y), and that the exact solution isT–

periodic, meaning thaty(t+T ) = y(t) for all t. Assume for simplicity thatt0 = 0.

If we use a variable step-size method of the form(2.35)that has orderp, then the

38
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global error satisfies

Gεh
(NT ) =

(
N−1∑
k=0

Mk

)
Gεh

(T ) +O(ε2p
h ).

whereM is the monodromy matrix, defined byM = DΦT
0 (y0).

Proof. Let ỹ′ = f̃εh
(ỹ) be the modified equation, truncated after the term of or-

derε2p
h . Defineδεh

(y) = f̃εh
(y)− f(y). It follows from Theorem 3.10 that

Gεh
(NT ) =

∫ NT

0
DΦNT

t

(
y(t)

)
δεh

(
y(t)

)
dt+O(ε2p

h )

= DΦNT
(N−1)T

∫ (N−1)T

0
DΦ(N−1)T

t

(
y(t)

)
δεh

(
y(t)

)
dt

+
∫ NT

(N−1)T
DΦNT

t

(
y(t)

)
δεh

(
y(t)

)
dt+O(ε2p

h )

= M Gεh

(
(N − 1)T

)
+Gεh

(T ) +O(ε2p
h ).

Here, we used the composition property (2.4) and theT–periodicity of the flow.

The theorem now follows by induction onN .

Having established Theorem 4.1, Cano and Sanz-Serna [20] apply this formula to

Hamiltonian systems. They conclude that for many Hamiltonian systems general

integrators possess quadratic error growth, while energy-conserving methods and

symplectic methods only lead to linear error growth when following a periodic

orbits. A similar result holds for reversible systems.

It should be stressed that techniques from the theory of Dynamical Systems, in

particular the KAM-theory, have been successfully applied to explain the behaviour

of numerical integrators for Hamiltonian and reversible systems. Two excellent

recent references are the works of Hairer, Lubich and Wanner [43], and Moan [67].

4.2 The Airy equation and related oscillators

In this section, we study the global error of Runge–Kutta methods with constant

step size when applied to a certain class of equations of the formy′′ + η(t)y = 0,

a class which includes the (time-reversed) Airy equationy′′ + ty = 0. All these

equations have oscillatory solutions. However, we do not know this solution; we

only have the asymptotic solution ast → ∞. Nevertheless, we will be able to

derive accurate estimates for the global error.

This section builds on the work of Iserles [54], who uses the estimate (3.16) to

study the global error of Runge–Kutta, Magnus, and modified Magnus methods.
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However, this estimate gives only the leading error term of orderhp. Here, we

will apply Corollary 3.12, which enables us to find a more accurate estimate of the

global error.

We start by stating the assumptions needed to carry through the computation.

Informally, we requireη(t) to be large for larget, while its derivatives are small.

The precise requirements are as follows.

Assumption 4.2. The functionη and its derivatives satisfy the following growth

conditions ast → ∞: η → ∞, η′ = o(η) andη(`) = o(η′) for ` = 2, 3, 4, . . . .
In addition, ∫ ∞

t0

∣∣∣∣ 1
η1/4

d2

dt2

(
1
η1/4

)∣∣∣∣ dt converges. (4.1)

Note that this assumption is satisfied byη(t) = tα with α > 0 (the choiceα = 1
retrieves the Airy equation) andη(t) = log t.

We now rewrite the second-order equationy′′ + η(t)y = 0 as a system of

first-order equations,

y′ =

[
0 1

−η(t) 0

]
y. (4.2)

The asymptotic solution of this equation is given by the following result.

Theorem 4.3 (Liouville–Green approximation). If η satisfies Assumption 4.2,

then the asymptotic solution of the equation(4.2) is1

y(t) ∼ Λ(t)R(θ(t)) s0 ast→∞, (4.3)

wheres0 ∈ R2 is a vector whose value depends on the initial conditions of(4.2),

θ(t) =
∫ t
t0

√
η(s) ds, and

Λ(t) =

[(
η(t)

)−1/4 0

0
(
η(t)

)1/4

]
and R(θ) =

[
cos θ sin θ
− sin θ cos θ

]
.

The Liouville–Green approximation is also known as the WKB– or WKBJ–ap-

proximation (the letters stand for Wentzel, Kramers, Brillouin, and Jeffrey), espe-

cially among theoretical physicists. The central idea in deriving this estimate is

that, if we setv(t) = Λ(t) y(t), the differential equation (4.2) transforms to

dv
dθ

=

[
1
4η

−3/2 1
−1 −1

4η
−3/2

]
v.

1The notationf(t) ∼ g(t) means thatlimt→∞
f(t)
g(t)

= 1. Do not confuse this with the use of the

∼ symbol to indicate an asymptotic expansion in Section 3.2.
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If we neglect the±1
4η

−3/2 entries, this is the harmonic oscillator with solution

v(θ) = R(θ)s0, which corresponds to (4.3). A rigorous proof of Theorem 4.3

can be found in Olver [76,§6.3]. This proof makes clear why we need to impose

the condition (4.1); the other growth conditions in Assumption 4.2 are in fact not

necessary for Theorem 4.3 but are used to prove Theorem 4.6 later. The book by

Hinch [51], which may be more accessible, takes another approach to derive the

Liouville–Green approximation.

Example 4.4. If we takeη(t) = t in (4.2), we get the Airy equation. We plot

the solution of (4.2) with initial conditiony(0) = [ 1 0 ]> in Figure 4.1. Note

that the amplitude of the oscillations decreases, while their frequency increases.

The solution can be expressed in terms of the standard Airy functions (see e.g. [1,

§10.4]),

y1(t) = 1
231/6Γ

(
2
3

) (√
3 Ai(−t) + Bi(−t)

)
. (4.4)

For the Airy equation, the Liouville–Green approximation (4.3) reads

y1(t) ∼ t−1/4
(
s0,1 cos(2

3 t
3/2) + s0,2 sin(2

3 t
3/2)

)
. (4.5)

This estimate is also shown in Figure 4.1 with

s0 =
1
4

√
2
π

31/6Γ
(

2
3

) [√3 + 1√
3− 1

]
. (4.6)

Note that the Liouville-Green approximation, being an asymptotic approximation,

gives no information about whichs0 corresponds to a particular initial condition;

another method is required to find the corrects0 (in this case, the initial values and

asymptotic expansions of the Airy functions, listed in [1,§10.4], are used).

We see that (4.5) approximates the real solution very well fort & 5. ♦

We want to use the Liouville–Green approximation to evaluate the global error

estimate in Corollary 3.12. This estimate is reproduced below for the reader’s

convenience.

Gh(tf) =
2p−1∑
k=p

hk
∑

τ∈Tk+1

b(τ)
σ(τ)

I(τ)(tf) +O(h2p),

whereI(τ)(tf) =
∫ tf

t0

DΦtf
t

(
y(t)

)
F (τ)

(
y(t)

)
dt.

(3.26)

We first need to transform the equation (4.2) in an autonomous system by adding a

dummy variable (cf. the first paragraph of Section 2.3),
y′1 = y2,

y′2 = η(y3) y1,

y′3 = 1.

(4.7)
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Figure 4.1: The solid line shows the first component of the solution of (4.2) with

η(t) = t, while the dashed line displays the corresponding Liouville–Green ap-

proximation (4.5).

The next step is to evaluate the elementary integralsI(τ). First, we want to find

out which tree fromTk gives the dominating contribution to the error estimate in

order to save us some work.

We define theheightof a vertex to be the distance to the root, and the height of

a tree to be the maximum of the heights of its vertices. The lemma below shows

that we can bound the growth of the elementary differentials in terms of the height

of the corresponding tree.

Lemma 4.5. Suppose that Assumption 4.2 is satisfied. If the treeτ has heightm,

withm ≥ 2, then

F (τ)
(
y(t)

)
=

O
(
η(t)m/2−1/4

)
O
(
η(t)m/2+1/4

)
0

 . (4.8)

For m = 1, the same result holds except thatF3( r)(y(t)) = 1.

Proof. We start by evaluating the simplest elementary differential,

F ( r)(y) = f(y) =

 y2

−ηy1

1

 (4.9)
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wheref denotes the right-hand side of (4.7) and the argumentt is left out. Note that

from the Liouville–Green formula (4.3) we havey1 = O(η−1/4) andy2 = O(η1/4),
so we have already proved the statement of the lemma form = 1.

To tackle the casem ≥ 2, we use induction. Assume that the lemma has been

proved for all trees of height up tom− 1. If the root ofτ has degree 1, thenτ is of

the form[τ1], and the associated elementary differential is

F
( rτ1)(y) =

[∑
j

∂fi

∂yj
Fj(τ1)(y)

]
i

=

 F2(τ1)(y)
−ηF1(τ1)(y)− η′y1F3(τ1)(y)

0

 .
(4.10)

But the height ofτ1 is one less than the height ofτ = [τ1]. So we can apply the

induction hypothesis, and establish (4.8).

Now suppose that the root has degreek, with k ≥ 2. In this case,[
F
( r@

τ1 ...

�
τk
)
(y)
]
i
=

3∑
j1=1

· · ·
3∑

jk=1

∂kfi

∂yj1 . . . ∂yjk

Fj1(τ1)(y) . . . Fjk
(τk)(y).

Note that the only nonvanishing partial derivatives off of orderk are

∂kf2

∂yk
3

= −η(k)y1 and
∂kf2

∂y1∂y
k−1
3

= −η(k−1).

However,F3(τ̃)(y) = 0 unless̃τ is the unit tree (the unique tree of order 1). So, the

elementary differentialF (τ)(y) vanishes except ifτ is of the form[τ1, r, . . . , r],
or τ = [ r, r, . . . , r]. The associated elementary differentials are

F
( rQ

Q
r ...

��
r

��
τk
)
(y) =

 0
−η(k−1)F1(τk)(y)

0



F
( rQ

Q
r ...

��
r

�
�

r)
(y) =

 0
−kη(k−1)y2 − η(k)y1

0

 .
In both cases, the order estimate (4.8) holds.

Because of the above lemma, we can expect that among the trees of orderk, the

highest tree dominates the error estimate. Obviously, the height of a tree of orderk

is bounded above byk − 1. There is only one such tree; it consists of only a trunk

without any branches. We denote this tree byτ |k. For example,τ |5 is the tree

rrr
rr
.
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The next step is to calculate the elementary differentials associated toτ |k. For

k = 1, this is done in (4.9). Fork > 1, we can use the recurrence relation (4.10) to

find

F (τ |2m+1)(y) =

(−η)my2 − η′(−η)m−1y1

(−η)m+1y1

0

 =

O(ηm+1/4)
O(ηm+3/4)

0

 (4.11)

F (τ |2m+2)(y) =

 (−η)m+1y1

(−η)m+1y2 − η′(−η)my1

0

 =

O(ηm+3/4)
O(ηm+5/4)

0

 . (4.12)

Comparing with Lemma 4.5, we conclude that, among the elementary differential

associated with trees of a given order, the one associated to the branchless tree

dominates.

As noted by Orel [77], this knowledge can be used to design better methods.

In particular, if a method of orderp hasa(τ |p+1) = 0, then the leading error term

is knocked out. Therefore, methods with this property will perform better on the

differential equation (4.2) than general methods.

Note that the third component ofF (τ)(y) is always zero (except ifτ is the unit

tree). We shall henceforth drop this component; in other words, we return to the

nonautonomous formulation (4.2).

The next step is to calculate the elementary integralsI(τ |k)(y). First, assume

thatk is even. From (4.12), we deduce thatF (τ |2m) ∼ (−η)my, where we dropped

the term withη′ which iso(ηm−1/4). Furthermore, from (4.3) we can calculate the

variational flow

DΦt
s ∼ Λ(t)R

(
θ(t)− θ(s)

)
Λ−1(s). (4.13)

Putting both facts together, we can evaluate the elementary integral,

I(τ |2m)(tf) =
∫ tf

t0

DΦtf
t

(
y(t)

)
F (τ |2m)

(
y(t)

)
dt.

≈
∫ tf

t0

Λ(tf)R
(
θ(tf)− θ(t)

)
Λ−1(t) ·

(
−η(t)

)mΛ(t)R(θ(t)) s0 dt.

= (−1)m

∫ tf

t0

(
η(t)

)m dt y(tf). (4.14)

Now, assume thatk is odd. From (4.11), we deduce that

F (τ |2m+1)
(
y(t)

)
=

[
0

(
−η(t)

)m(
−η(t)

)m+1 0

]
y(t).

A similar computation as above yields

I(τ |2m+1)(tf) ≈ (−1)m

∫ tf

t0

(
η(t)

)m+1/2 dt yR(tf), (4.15)
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whereyR(t) denotes the solution with opposite phase, that is,yR(t) is the solution

of (4.2) which satisfies

yR(t) ∼ Λ(t)R
(
θ(t) + 1

2π
)
s0. (4.16)

Combining (4.14) and (4.15) into the error estimate in Corollary 3.12, we get the

following estimate for the global error.

Theorem 4.6. Suppose we are solving the differential equation(4.2)whereη sat-

isfies Assumption 4.2. If a constant step-size Runge–Kutta method of orderp is

employed, then the global error is

Gh(tf) ≈
p−1∑

m=dp/2e

(−1)m b(τ |2m+1)h
2m

∫ tf

t0

(
η(t)

)m+1/2 dt yR(tf)

+
p−1∑

m=bp/2c

(−1)m+1 b(τ |2m+2)h
2m+1

∫ tf

t0

(
η(t)

)m+1 dt y(tf) +O(h2p), (4.17)

where the B-series coefficientsb(τ) are defined in Corollary 3.12, andyR(tf) is as

defined in(4.16).

It should be noted that the remainder termO(h2p) in (4.17) is not uniform intf .

This is illustrated in the following example.

Example 4.7. As in Example 4.4, we consider the Airy equation, that is, we set

η(t) = t. The error estimate (4.17) becomes (assuming thatt0 is small)

Gh(tf) ≈
p−1∑

m=dp/2e

(−1)mb(τ |2m+1)
m+ 3

2

h2mt
m+3/2
f yR(tf)

+
p−1∑

m=bp/2c

(−1)m+1b(τ |2m+2)
m+ 2

h2m+1tm+2
f y(tf) +O(h2p).

For example, for Runge’s second order method, we havep = 2, b(τ |3) = −1
6 and

b(τ |4) = 1
8 (cf. Example 2.4), so

Gh(tf) ≈ 1
15h

2t
5/2
f yR(tf) + 1

24h
3t3f y(tf) +O(h4). (4.18)

With enough perseverance, the same result can also be derived using the method

of Section 3.2. However, the calculation is more complicated than the method

described above, and it seems impossible to derive the general estimate (4.17) with

the method of Section 3.2.
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We see from (4.18) that the global error oscillates with ever-increasing fre-

quency, like the true solution. The amplitude of the oscillations of the leading term

grows liket9/4 (remember that the amplitude of the true solution decays liket−1/4).

Theh3 term is negligible for smalltf , but it grows faster than theh2 term. Hence,

theh3 term will overtake theh2 term at some point, namely attf ≈ 64
25h

−2 (but we

will see later that this is irrelevant).

To check this estimate, we solve the Airy equation with the initial condition

y(0) =
[

1
0

]
over the time interval[0, 2000] with various step sizes. The numerical

solution is compared with the exact solution (4.4) to compute the global error. The

first component of the error is shown in Figure 4.2. The left column shows the time

interval[0, 50], and on the right the larger interval[0, 2000] is displayed.

We can see in the left-hand column that the global error oscillates, just as dis-

cussed under (4.18). The envelope of these oscillations, as predicted by the esti-

mate (4.18), is shown by the thick curve in the left-hand column in Figure 4.2. We

conclude that the estimate (4.18) describes the actual error accurately.

The right-hand column of Figure 4.2 shows a much larger time interval. Here

the oscillations of the error are compressed so heavily that the error appears as a

grey blob. The black line shows the estimate (4.18). We see that this estimate

breaks down aroundtf = 800 for h = 1/1000 andtf = 1400 for h = 1/2000.

If we look again at (4.18), we see that the amplitude of the leading error term

reaches the amplitude of the solution whentf ≈ 152/5h−4/5. Forh = 1/1000 and

h = 1/2000, this evaluates totf ≈ 742 andtf ≈ 1292, respectively. We conclude

that the estimate (4.18) ceases to be valid around the time at which the numerical

solution has become meaningless because the error is as big as the solution itself.

The reason for this break-down of the error estimate lies in theO(h4) remainder

term in (4.18), which grows faster than theh2 andh3 terms.

Therefore, the fact that theh3 term overtakes theh2 term attf ≈ 64
25h

−2 is

irrelevant, as the estimate (4.18) has already become meaningless by that time. So,

it turns out that it was not necessary to compute theh3 term, and that we could

have restricted ourselves to the leading error term. Of course, we did not know this

in advance. In the next section, we show an example where the leading term does

not dominate, and other terms in the expansion have to be calculated in order to get

an accurate approximation of the global error. ♦

Iserles [54] gives error estimates and numerical results for the standard fourth-order

method (2.18), the fourth-order Gauss–Legendre method, the Magnus method, and

the modified Magnus method, when applied to either the Airy equation or the equa-

tion (4.2) withη(t) = log(t+ 1).
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Figure 4.2: On the left, the oscillating curve shows the first component of the

global error committed by Runge’s second-order method for various step sizes,

when applied to the Airy equation. The thick curve shows the envelope of the

oscillations as predicted by (4.18). On the right, a different time scale is used. The

true error is shown in grey and the solid curve shows the error estimate (4.18).
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4.3 The Emden–Fowler equation

In this section, we study the Emden–Fowler equation. This equation can be viewed

as a nonlinear, and hence more challenging, variant of the Airy-like equations stud-

ied in the previous section. Again, the goal is to find an accurate estimate for the

global error when solving this equation. In contrast to the Airy equation, we find

that for the Emden–Fowler equation, the leading error term is sometimes domi-

nated by the second term. This shows that we cannot always be satisfied with

computing only the leading error term.

The history of the Emden–Fowler equation starts with a model of the Sun de-

rived by Lane [59]. Suppose that the Sun is a radially symmetric body of gas with

radiusR. The pressureP at a point at distancer0 of the centre is given by the

weight of the column of gas above it, soP =
∫ R
r0
gρdr whereg is the gravitational

acceleration andρ is the density (bothg andρ depend onr). The acceleration is

given byg = −dϕ
dr , whereϕ is the gravitational potential, and hencedP

dϕ = ρ.

We now assume that the gas satisfies a polytropic equation of state, meaning that

its pressure and density are related byP = Kργ , whereK andγ are empirical

constants. Substituting this indP
dϕ = ρ and solving the resulting equation using the

fact thatP = ρ = 0 at the surface of the Sun, yields

ρ =
(
γ − 1
γK

ϕ

)n

, (4.19)

wheren = 1/(γ − 1). Finally, we use that the gravitational potentialϕ is given by

∇2ϕ = −4πGρ, whereG is the gravitational constant. This reduces by spherical

symmetry tod2ϕ
dr2 + 2r−1 dϕ

dr = −4πGρ. Substituting (4.19) in this equation yields

d2ϕ

dr2
+

2
r

dϕ
dr

= −4πG
(
γ − 1
γK

ϕ

)n

.

Settingr = (4πG)−
1
2

(γ−1
γK

)−n
2 t simplifies the equation toϕ′′+2t−1ϕ′+ϕn = 0,

where the primes denote derivatives with respect tot. This equation is commonly

called the Lane–Emden equation. The substitutionϕ = t−1y reduces the Lane–

Emden equation toy′′ + t1−nyn = 0. An obvious generalization of this equation

is y′′ + tνyn = 0, or, in first-order form,

y′1 = y2 and y′2 = −tνyn
1 . (4.20)

This is the Emden–Fowler equation, named after Robert Emden and Ralph Howard

Fowler, who contributed significantly to its analysis in the beginning of the twenti-

eth century.



§4.3 THE EMDEN–FOWLER EQUATION 49

The Emden–Fowler equation has recently appeared in the study of spherical

gas clouds that cool slowly by radiation (see Meerson, Megged and Tajima [66]),

phase transition in critical adsorption in the mean-field framework (see Gnutzmann

and Ritschel [32]), and spherically symmetric space-time manifolds with constant

scalar curvature (see Goenner and Havas [33]). More applications of the Emden-

Fowler equation (including nuclear physics and the study of chemically reacting

systems) can be found in the review by Wong [86] and references therein. Note that

the choiceν = n = 1 reduces the Emden–Fowler equation to the Airy equation,

which was studied in the previous section.

From now on, we will assume thatn is an odd integer, thatn ≥ 3, and

thatν > −1
2(n+ 3). These conditions assure that oscillatory solutions exist (see

Wong [86] for details). We remark incidentally that this remains true when the re-

quirement thatn be an integer is dropped, provided we replaceyn
1 by |y1|n sgn(y1)

in (4.20), wheresgn(y1) denotes the sign ofy1. However, this destroys the analyt-

icity of the equation aty1 = 0.

Inspired by the Liouville–Green approximation discussed on page 40, we seek

a transformation which allows us to find the asymptotic solution of the Emden–

Fowler equation (see also the work of Aripov andÈshmatov [3], who do a similar

analysis in the nonoscillatory regime). From now on, we set

β =
ν

n+ 3
and λ = 1 + 2β.

The conditions onn andν imply that β > −1
2 andλ > 0. Now consider the

transformation given by

y1(t) = λ2/(n−1)t−βv1(tλ),

y2(t) = λ(n+1)/(n−1)tβv2(tλ).

This transforms the differential equation (4.20) into

v′1 = v2 + βλ−1t−λv1,

v′2 = −vn
1 − βλ−1t−λv2.

If we neglect the last term in both equations (remember thatλ > 0), we are left with

the equationsv′1 = v2 andv′2 = −vn
1 . The expressionI = 2vn+1

1 + (n+ 1)v2
2 is

an invariant of this equation, so the solutions trace the level curves ofI. However,

I is only approximately constant on solutions of the original equation.

Note that the systemv′1 = v2, v′2 = −vn
1 can be written as the single second-

order equationv′′ + vn = 0. We will denote the solution of this equation that

satisfies the initial conditionsv(0) = 0 and v′(0) = 1 by wn(t), and note for
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further reference that it is an odd, periodic function. The general solution of the

systemv′1 = v2, v′2 = −vn
1 is then given by

v1(t) = c
2/(n−1)
1 wn(c1t+ c2),

v2(t) = c
(n+1)/(n−1)
1 w′

n(c1t+ c2).

Note thatc1 determines the amplitude of the oscillations, whilec2 determines the

phase. In other words,(c1, c2) are the action-angle coordinates of the Hamiltonian

systemv′1 = v2, v′2 = −vn
1 .

It follows that the solution of the Emden–Fowler equation (4.20) is asymptoti-

cally (ast→∞) given by

y1(t) ≈ (λc1)2/(n−1)t−βwn(c1tλ + c2),

y2(t) ≈ (λc1)(n+1)/(n−1)tβw′
n(c1tλ + c2).

(4.21)

In the remainder of this section, we assume that the above asymptotic solution is

in fact exact. The numerical experiments described at the end of this section, will

show that this is a valid approximation.

The next steps are to calculate the elementary differentials and integrals. We

can then apply Corollary 3.12 to find an estimate for the global error. Unfortu-

nately, the whole computation is rather tedious. While studying the details, the

reader may want to refer to Table 4.3 on page 54, where some elementary differ-

entials and integrals for the specific caseν = 1 andn = 3 are listed.

To compute the elementary differentials, we need to convert (4.20) to a system

of autonomous equations by introducing a third variable representing time,
y′1 = y2,

y′2 = yν
3y

n
1 ,

y′3 = 1.

(4.22)

The first components of the elementary differentials satisfy the following recur-

rence relations (where the argumenty is deleted)

F1( r) = y2, F1

( rτ ) = F2(τ), F1

( r@
τ1 ...

�
τk
)

= 0 (for k ≥ 2). (4.23)

For the third component, the situation is even simpler, as we have

F3( r) = 1 and F3(τ) = 0 for all τ with ρ(τ) ≥ 2. (4.24)

Finally, for the second component, we haveF2( r) = −yν
3y

n
1 and

F2

( r@
τ1 ...

�
τk
)

= −
∑

S⊂{1,...,k}

(
(ν − |S|+ 1)|S| (n− |Sc|+ 1)|Sc|

· yν−|S|
3 y

n−|Sc|
1

∏
i∈S

F3(τi)
∏
i∈Sc

F1(τi)
)
, (4.25)
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where| · | denotes the cardinality,Sc = {1, . . . , k} \ S is the complement ofS,

and(x)n denotes the Pochhammer symbol

(x)n = x(x+ 1)(x+ 2) . . . (x+ n− 2)(x+ n− 1).

We now compare the various terms in the summation in (4.25). LetS be a nonempty

subset of{1, . . . , k} and pick an arbitraryi ∈ S. If τi is not the unit tree, then

F3(τi) vanishes, so the term in the sum corresponding toS is zero. On the other

hand, ifτi is the unit tree, then shiftingi fromS toSc results in replacing the factor

y−1
3 F3( r) = t−1 by y−1

1 F1( r) = O(t2β), disregarding the constant. In both cases,

we find that the term corresponding toS is dominated by the term corresponding

to S \ {i}. Hence, the sum in (4.25) is dominated by the term corresponding to

S = ∅, and we have

F2

( r@
τ1 ...

�
τk
)

= −(n− k + 1)ky
ν
3y

n−k
1

k∏
i=1

F1(τi) ·
(
1 +O(t−1−2β)

)
. (4.26)

After solving the recurrence relations (4.23), (4.24), and (4.26), and substituting

the approximate solution (4.21), we find that the elementary differentials are given

by

F (τ)
(
y(t)

)
=

[
C1,τ t

β(2ρ−1)w
(n+1)d−ρ+1
n (t̃)w′

n
ρ−2d(t̃) +O(tβ(2ρ−3)−1)

C2,τ t
β(2ρ+1)w

nρ−(n+1)d
n (t̃)w′

n
2d−ρ+1(t̃) +O(tβ(2ρ−1)−1)

]
.

(4.27)

Hereρ denotes the order of the treeτ , andd is the number of vertices with odd

height. Furthermore,̃t = c1t
λ + c2. We dropped the third component, because it

does not contribute to the global error. It should be noted that the constantsC1,τ

andC2,τ may vanish; in fact, the only trees for which both constants are nonzero,

are the branchless treesτ |ρ .

The growth rate of the elementary differential (4.27) is determined by the ex-

ponent oft. Note that the variabled does not enter in this exponent. The surprising

conclusion is that all trees of the same order contribute a term with the same growth

rate, independent of their shape. This is in stark contrast to the linear case treated in

the previous section, where the differential corresponding to the branchless treeτ |ρ

dominates, as discussed after Lemma 4.5.

The next step is to calculate the elementary integralI(τ). For this, we need

to multiply the above differential with the variational flow matrix and integrate the

resulting expression, cf. (3.26). To compute the variational flow, we introduce the

mapXt : R2 → R2 defined by

Xt(c1, c2) =

[
(λc1)2/(n−1)t−βwn(c1tλ + c2)

(λc1)(n+1)/(n−1)tβw′
n(c1tλ + c2)

]
. (4.28)
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SoXt maps the parameter space to the solution space at timet, cf. (4.21). It follows

that the flow map satisfiesΦt
s = Xt ◦X−1

s . Hence we can write the elementary

integral as

I(τ)(tf) = DXtf

(
y(tf)

) ∫ tf

t0

DX−1
t

(
y(t)

)
F (τ)

(
y(t)

)
dt. (4.29)

To find the integrand in the above expression, we multiply the inverse of the Jaco-

bian matrix of (4.28) with the elementary differential (4.27). The result is

DX−1
t F (τ)(y) =

 t2βρ
(
C3,τw

(n+1)(d+1)−ρ
n (w′

n)ρ−2d +O(t−λ)
)

t2βρ+λ
(
C4,τw

(n+1)(d+1)−ρ
n (w′

n)ρ−2d +O(t−λ)
) (4.30)

where the functionswn andw′
n are evaluated at̃t = c1t

λ + c2. In the calculation,

we usedw′′
n = −wn

n and the fact that2wn+1
n + (n+ 1) (w′

n)2 is a first integral.

The next step is to integrate (4.30). But consider the exponents ofwn andw′
n.

If ρ is even, then these exponents are also even and hence the integrand is nonneg-

ative. However, ifρ is odd, then the exponents ofwn andw′
n are also odd. Since

wn is odd and periodic, this implies that the integrand oscillates around zero. Thus

we can expect cancellations ifρ is odd, but not ifρ is even. We stress that this

phenomenon does not occur in the linear case, analysed in the previous section.

More precisely, we have∫ tf

0
w`

n(t)w′
n

m(t) dt =

{
C̃`mn(tf), if either ` orm is odd,

C`mntf + C̃`mn(tf), if both ` andm are even,

whereC̃`mn(t) denotes an oscillatory function with the same period aswn(t), and

C`mn is a constant. After the substitutioñt = c1t
λ + c2 and integration by parts,

we find that∫ tf

0
tkw`

n(t̃)w′
n(t̃) dt =

{
C̃k`mn(t̃f) t

k−2β
f +O(tk−2β−λ

f ), if ` orm odd,

Ck`mnt
k+1
f +O(tk+1−λ

f ), if ` andm even,

where againC̃k`mn andCk`mn denote a periodic function and a constant, respec-

tively, andt̃f = c1t
λ
f + c2.

We can use this result to integrate (4.30), which yields (under the assumption

thatt0 � tf )

∫ tf

t0

DX−1
t F (τ)(y) dt =



[
C̃5,τ (t̃f) t

2βρ+1−λ
f +O(t2βρ+1−2λ

f )
C̃6,τ (t̃f) t

2βρ+1
f +O(t2βρ+1−λ

f )

]
, if ρ odd,[

C5,τ t
2βρ+1
f +O(t2βρ+1−λ

f )
C6,τ t

2βρ+1+λ
f +O(t2βρ+1

f )

]
, if ρ even.

(4.31)
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To compute the elementary integralI(τ), we need to premultiply the above integral

with DXτ , cf. (4.29). But the expression (4.31) has an interpretation by itself. Re-

call thatXt maps the parameter space to the solution space. So the integral (4.31)

represents the error in parameter space. As the first parameter represents the ampli-

tude, or energy, we conclude that the energy error associated with the treeτ grows

ast2βρ+1 if ρ is even, and ast2βρ+1−λ if ρ is odd. The second component of (4.31)

gives the phase error.

Multiplying the Jacobian matrix of the mapXt with the integral (4.31) gives

us the elementary integrals,

I(τ)(tf) =



[
C̃7,τ (t̃f) t

2βρ+1−β
f +O(t2βρ+1−β−λ

f )
C̃8,τ (t̃f) t

2βρ+1+β
f +O(t2βρ+1+β−λ

f )

]
, if ρ odd,[

C̃7,τ (t̃f) t
2βρ+1−β+λ
f +O(t2βρ+1−β

f )
C̃8,τ (t̃f) t

2βρ+1+β+λ
f +O(t2βρ+1+β

f )

]
, if ρ even.

(4.32)

Finally, we can find an estimate for the global error by adding the contributions of

all trees, according to Corollary 3.12.

Theorem 4.8.Suppose we are solving the differential equation(4.20)wheren ≥ 3
is an odd integer andν > −1

2(n+ 3). If a constant step-size Runge–Kutta method

of orderp is employed, then the global error is

Gh(tf) ≈
p−1∑

m=dp/2e

h2m

[
C̃1

2m(t̃f) t
4βm+β+1
f

C̃2
2m(t̃f) t

4βm+3β+1
f

]

+
p−1∑

m=bp/2c

h2m+1

[
C̃1

2m+1(t̃f) t
4βm+5β+2
f

C̃2
2m+1(t̃f) t

4βm+7β+2
f

]
+O(h2p). (4.33)

HereC̃i
k denotes a periodic function,̃tf = c1t

λ
f + c2, andβ = ν/(n+ 3).

Like in Theorem 4.6, the remainder termO(h2p) in (4.33) is not uniform intf .

Furthermore, we see that the error coefficients of odd powers ofh grow faster

than the coefficients of even powers. Both remarks are illustrated in the following

example.

Example 4.9. We choose the parametersn = 3 andν = 1, so we are solving

the equationy′1 = y2, y′2 = −ty3
1. In this case, the functionwn, which solves

w′′
n + wn

n = 0 with initial conditionswn(0) = 0 andw′
n(0) = 1, can be expressed

in terms of Jacobi elliptic functions (see e.g. Neville [71]). In fact, we havew3(t) =
sd(t | 1

2). The parameter12 will be dropped from now on. As a consequence, we

can calculate the elementary integral associated with any given tree explicitly. For

the first couple of trees, this yields the results listed in Table 4.3.
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Tree Elementary differential Elementary integral

τ F (τ)(y) I(τ)(tf) =
∫ tf
t0
DΦtf

t F (τ)(y) dt

rr [
−y3

1y3

−3y2
1y2y3 − y3

1

]
=

[
O(t1/2)
O(t5/6)

] [
−128

675

√
2 c41χt

17/6
f sd′(t̃f)

256
2025

√
2 c51χt

19/6
f sd3(t̃f)

]

rJJ
r




r [

0
−6y1y

2
2y3 − 6y2

1y2

]
=

[
0

O(t7/6)

] [
− 32

135

√
2 c41χt

11/6
f sd′(t̃f)

64
405

√
2 c51χt

13/6
f sd3(t̃f)

]

rrr
[
−3y2

1y2y3 − y3
1

3y5
1y

2
3

]
=

[
O(t5/6)
O(t7/6)

] [
−208

135

√
2 c41χt

11/6
f sd′(t̃f)

416
405

√
2 c51χt

13/6
f sd3(t̃f)

]

r@
r r

�
r [

0
−6y3

2y3 − 18y1y
2
2

]
=

[
0

O(t3/2)

] [
− 4096

14553

√
2 c61t

7/2
f sd′(t̃f)

8192
43659

√
2 c71t

23/6
f sd3(t̃f)

]

rJJ
r




rr [

0
6y4

1y2y
2
3 + 3y5

1y3

]
=

[
0

O(t3/2)

] [
4096
43659

√
2 c61t

7/2
f sd′(t̃f)

− 8192
130977

√
2 c71t

23/6
f sd3(t̃f)

]

rrJJ
r




r [

−6y1y
2
2y3 − 6y2

1y2

0

]
=

[
O(t7/6)

0

] [
− 4096

43659

√
2 c61t

7/2
f sd′(t̃f)

8192
130977

√
2 c71t

23/6
f sd3(t̃f)

]

rrr
r [

3y5
1y

2
3

9y4
1y2y

2
3 + 3y5

1y3

]
=

[
O(t7/6)
O(t3/2)

] [
16384
43659

√
2 c61t

7/2
f sd′(t̃f)

− 32768
130977

√
2 c71t

23/6
f sd3(t̃f)

]

Table 4.3: Trees of order≤ 4, with their elementary differentials and integrals for

the Emden–Fowler equation (4.20) withn = 3 andν = 1. In the last column,

χ = 1
4K

∫ 4K
0 sd2(t) dt where4K is the period of the functionsd, t̃f = c1t

4/3
f + c2

wherec1 andc2 depend on the initial condition, and only the term of leading order

is displayed.
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We start with Runge’s second-order method, defined in (2.16). Substituting the

B-series coefficients of the modified equation (cf. Example 2.4) and the elementary

integrals from Table 4.3 in the estimate (3.26) of Corollary 3.12, we obtain the

following global error estimate

Gh(tf) ≈ h2

[
4
15

√
2 c41χt

11/6
f sd′(t̃f)

− 8
45

√
2 c51χt

13/6
f sd3(t̃f)

]
+ h3

[
256
6237

√
2 c61t

7/2
f sd′(t̃f)

− 512
18711

√
2 c71t

23/6
f sd3(t̃f)

]
.

(4.34)

Hereχ = 1
4K

∫ 4K
0 sd2(t) dt where4K is the period of the functionsd, and fur-

thermore,̃tf = c1t
4/3
f + c2.

As in the previous section, we perform a numerical experiment to check this

estimate. We solve the equation (4.20) withν = 1 andn = 3 with Runge’s

method (2.16). The initial condition isy(0) =
[

1
0

]
, which leads to a solution

with c1 ≈ 0.7. The numerical solution is compared to the result of the standard

fourth-order Runge–Kutta method (2.18) withh = 1/10000. According to Corol-

lary 3.12, this would give an error of about10−9, so we can consider this to be

the exact solution. The global errorGh is computed by subtracting the result of

Runge’s method from the “exact” solution. The first component of the global error

is depicted in Figure 4.4. Again, the left column shows the time interval[0, 50],
and on the right the larger interval[0, 2000] is displayed.

As we can see in the left-hand column, the estimate (4.34) describes the actual

error accurately over the interval[0, 50]. In the right-hand column, the oscillations

of the global error are again compressed to a grey blob. The dashed curve shows

the first, leading term of the estimate (4.34), and the solid curve shows the sum of

both terms. We conclude that the leadingh2 term of the estimate does not describe

the actual error correctly, but that the error is predicted accurately if theh3 term is

included. Forh = 1/1000 the latter estimate breaks down aroundtf = 1200. At

this point, theh3 term of the error estimate (4.34) and the actual solution are of

equal magnitude, so the numerical solution is meaningless beyond this point. In

this respect we are in the same situation as in the example in the previous section,

but there is a marked difference: because of the different growth rates of theh2 and

h3 terms, theh3 term overtakes theh2 term whentf is of the orderh−3/4, which

happens well before the numerical solution becomes meaningless. We conclude

that for the Emden–Fowler equation, we cannot restrict our attention to the leading

term of the global error, which can easily be computed using (3.16), because the

second term in the error expansion dominates (at least for Runge’s method). This

shows the utility of Corollary 3.12.

Another way to put it is to say that Runge’s method is essentially behaving
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Figure 4.4: On the left, the oscillating curve shows the first component of the global

error committed by Runge’s second-order method for various step sizes when ap-

plied to (4.20) withν = 1 andn = 3. The thick curve shows the envelope of the

oscillations as predicted by (4.34). On the right, a different time scale is used. The

true error is shown is grey, the dashed curve shows the first, leading term of the

error estimate (4.34), and the solid curve shows the sum of both terms.
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as a third-order method for large enoughtf . To check this, we compare Runge’s

method with Heun’s third-order method, given in (2.17). A similar calculation as

for Runge’s method, based on Theorem 4.8, yields the following estimate for the

global error committed by Heun’s method,

Eh(tf) ≈ h3

[
− 512

35721

√
2 c61t

7/2 sd′(t̃f)
1024

107163

√
2 c71t

23/6 sd3(t̃f)

]
+ h4

[
50208
229635

√
2 c61t

5/2 sd′(t̃f)

− 60416
688905

√
2 c71t

17/6 sd3(t̃f)

]

+ h5

[
557056

34543665

√
2 c81χt

25/6 sd′(t̃f)

− 1114112
103630995

√
2 c91χt

9/2 sd3(t̃f)

]
. (4.35)

The actual error and the above estimate, for step sizeh = 1/2000, are displayed in

the second row of Figure 4.5. We see that the error estimate (4.35) again provides

an excellent description of the actual error. When the second row in Figure 4.5 is

compared with the first row, which corresponds to Runge’s second order method

discussed before, the difference in order clearly shows for small values oftf (see

the left-hand column). For larger values oftf however (cf. the right-hand column),

Runge’s method behaves essentially as a third-order method and we see indeed that

the difference between the two methods is much smaller.

The bottom row of Figure 4.5 shows a specially tuned method. Remember that

for the linear oscillator (4.2), which was studied in Section 4.2, the contribution

of the branchless treeτ |k to the global error dominates the contribution of the other

trees of the same order. This is not the case for the Emden–Fowler oscillator (4.20).

However, if we study the elementary integralsI(τ) in Table 4.3 carefully, we see

that they are scalar multiples of each other. Indeed, we have

4I
( r@

r r
�

r)
(tf) = −12I

(
rJJ

r




rr)(tf) = 12I
(

rrJJ
r




r)

(tf) = −3I
(

rrr
r)

(tf).

Therefore, bearing in mind the factorσ(τ) in Corollary 3.12, theh3 term in the

global error estimate (4.33) will be killed for a third-order method with

b
( r@

r r
�

r)
− 2b

(
rJJ

r




rr)+ b

(
rrJJ

r




r)
− 8b

(
rrr
r)

= 0. (4.36)

According to the theory of backward error analysis of ODEs, discussed in Sec-

tion 2.4, a method has order three if

b( r) = 1 and b( rr) = b
( rJJ

r




r)
= b
( rrr) = 0.

Together, these are five conditions. An explicit 3-stage Runge–Kutta method has

six free parameters, so there is some hope that we can find such a method satisfying
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Figure 4.5: The first component of the global error committed by Runge’s

method (2.16), Heun’s method (2.17), and the specially tuned third-order

method (4.37), all with step sizeh = 1/2000, together with their respective error

estimates (4.34), (4.35), and (4.38). The lines in the plots have the same meaning

as in Figure 4.4.
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these five conditions. Indeed, it turns out that there exists a one-parameter family

of these methods. A particular instance is given by

ξ1 = f(tk, yk)
ξ2 = f(tk + h, yk + hξ1)

ξ3 = f(tk + 3
2h, yk + 9

4hξ1 −
3
4hξ2)

yk+1 = yk + 7
18hξ1 + 5

6hξ2 −
2
9hξ3

0 0 0 0
1 1 0 0

3/2 9/4 −3/4 0

7/18 5/6 −2/9

(4.37)

Note that the last stage of this method evaluatesf att = tk+ 3
2h, which lies outside

the interval[tk, tk+1]. In fact, all 3-stage, third order Runge–Kutta methods satis-

fying (4.36) do this. This is generally a bad idea because it may cause instability,

but the numerical results indicate that it does not matter in this case.

If we use Theorem 4.8 to compute the estimate for the global error of this

method, we find

Gh(tf) ≈ h4

[
− 5008

25515

√
2 c61t

5/2 sd′(t̃f)
10016
76545

√
2 c71t

17/6 sd3(t̃f)

]
+ h5

[
− 78848

1279395

√
2 c81χt

25/6 sd′(t̃f)
157696
3838185

√
2 c91χt

9/2 sd3(t̃f)

]
.

(4.38)

Theh3 term has disappeared, which is indeed how we designed the method. This

estimate, together with the actual error committed by (4.37), is displayed in the

bottom row of Figure 4.5. We see that the global error of this method is much

smaller than that of Heun’s method, though both methods are of third order. The

other thing to note is that the error estimate (4.38) is not as accurate as the cor-

responding estimates for the other methods, even though it does predict the right

order of magnitude.

The reader should keep in mind that thelocal error of the method (4.37) is

still O(h4), as for all third-order methods. In fact, the B-series coefficient func-

tion a of the method (4.37) satisfies

a
( r@

r r
�

r)
= 1

3 , a

(
rJJ

r




rr) = 2, a
(

rrJJ
r




r)

= 2, a
(

rrr
r)

= 0.

So the local error of this method is (cf. Section 2.3)

B
(
a− 1

γ , y
)

= h4

[
−1

8y
5
1y

2
3 − 1

4y1y
2
2y3 − 1

4y
2
1y2

3
8y

4
1y2y

2
3 + 1

4y
5
1y3 + 1

6y
3
2y3 + 1

2y1y
2
2

]
+O(h5).

It is only when the individual local errors are combined to form the global error,

that something special happens with the method (4.37). While for a general third-

order method, the leading global error term is of the orderh3 [ t7/2
f t

23/6
f ]>, this

term disappears for the method (4.37). There is still anh3 contribution to the

global error, but it is only of the orderh3 [ t13/6
f t

3/2
f ]>; this is the remainder term

in (4.29). ♦
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Minimizing the global error
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Chapter 5

Formulation of

the optimization problem

In the second part of this thesis, as in the first part, we study the numerical solution

of the initial value problem

y′ = f(t, y), y(t0) = y0 ∈ Rd. (2.1)

We are considering one-step methods with variable step size of the form described

in Section 2.5, namely
hk = εhh(tk, yk),

tk+1 = tk + hk,

yk+1 = Ψhk
(tk, yk).

(2.35)

In the first part, we derived estimates for the global error committed by such meth-

ods. The global error is defined by

Gh(tf) = yN − y(tf) where tf = tN . (2.12)

Recall thatεh is the reference step size, reflecting the user-specified tolerance. We

assume thatεh is small, so all results are only valid in the limitεh → 0.

Now, we switch from observing to controlling. Specifically, we try to vary the

step size in such a way, that the global error is as small as possible. This yields an

optimization problem: how to choose the step size sequence in order to minimize

the global error?

The aim of this chapter is to formulate this optimization problem precisely; the

next two chapters are about solving the problem. In particular, we need to describe

the objective function: exactly which quantity do we want to minimize? First, we

take the most straightforward choice, namely the error at the end of integration

61



§5.1 MINIMIZING THE FINAL ERROR 62

interval. However, as we will see in Section 5.1, this yields unsatisfactory results.

The next attempt takes the error at every instanttk into account. Unfortunately, this

approach also has its shortcomings. Finally, in Section 5.3, we consider the global

error as a function defined on the whole time interval, instead of only at the inter-

mediate pointstk. We then minimize the norm of this function, yielding an optimal

control problem. We conclude that this formulation is the most appropriate, and

we will return to it in the next two chapters.

5.1 Minimizing the final error

The most obvious choice for the objective is to minimize‖Gh(tf)‖, the Euclidean

norm of the global error at the end of the integration interval, subject to the require-

ment that a certain numbers of steps, sayN , be used. This requirement needs to

be stipulated, as otherwise the error can be made arbitrarily small by taking a very

large number of tiny steps. The optimization problem can be formulated as follows

minimize
h

‖Gh(tf)‖ subject to tN = tf . (5.1)

Recall from Section 2.5 thath ∈ RN is the vector containing the step sizes

h0, h1, . . . ,hN−1. So (5.1) is anN -dimensional optimization problem.

Morrison [70] appears to be the first one who considered this problem. Green-

span, Hafner and Ribarič [35] did some further investigations, and Gear [31] con-

sidered the cased > 1. Fujii [30] extended the analysis to multistep methods,

while Butcher [14] considered methods that vary both the step size and the order.

Also relevant is the work of Utumi, Takaki and Kawai [83], to which we will return

in Section 5.3.

In the simplest case, when we are solving Dahlquist’s test equationy′ = βy,

this works fine. We can prove that the optimal strategy is to use constant step size.

Theorem 5.1. Suppose that we are solving the equationy′ = βy with β ∈ R. If

we are using the Euler method, then the solution of the optimization problem(5.1)

is given byhk = tf/N .

Proof. For this equation, the Euler method isyk+1 = (1 + βhk)yk. Assume that

the initial condition is given byy(0) = y0. We have, by the algebraic-geometric

mean inequality,

yN =

(
N−1∏
k=0

(1 + βhk)

)
y0 ≤

(
1 +

βtf
N

)N

y0. (5.2)



§5.1 MINIMIZING THE FINAL ERROR 63

The inequality1+x < ex shows that the right-hand side of (5.1) is strictly smaller

thany(tf) = y0 eβtf . Therefore, the difference betweenyN andy(tf) is minimized

if we have equality in (5.1), which happens when thehk are all equal.

The same result holds if we minimize the leading term of the global error instead

of minimizing the global error. This was already proved by Morrison [70]. The

work of Greenspan, Hafner and Ribarič [35] implies that this can be generalized to

any Runge–Kutta method.

However, problems arise when we study slightly more complicated equations.

Generally, there are many step-size vectorsh such thatGh(tf) = 0, suggesting that

‖Gh(tf)‖ is not a good choice for the objective function. The following example

elaborates on this.

Example 5.2. The Lotka–Volterra equation, a simple model for the growth of ani-

mal species, reads1

u′ = u(v − 2) and v′ = v(1− u). (5.3)

The solutions of this equation are periodic for strictly positiveu andv (except at

the equilibrium point). If we take the initial valuesu(0) = 3 andv(0) = 2, then

the period ist∗ ≈ 4.956 (see Figure 5.1).

Suppose we are using the Euler method (2.11) to solve this differential equa-

tion. Consider the carefully chosen step size sequence

h0 = 3.83287 . . . , h1 = 0.50531 . . . , h2 = 0.61785 . . . . (5.4)

If we take three steps of lengthsh0, h1 andh2 respectively, then we return to the

point (u0, v0), as shown in Figure 5.1. Furthermore,t3 = h0 + h1 + h2 = t∗.

We conclude thatu3 = u(t3) andv3 = v(t3), so the global error att3 is zero.

Hence, (5.4) is a solution for the optimization problem (5.1) withN = 3 and

tf = t∗. Even worse, for anyN ≥ 3, a solution for (5.1) is given by taking three

steps according to (5.4) and then takingN − 3 steps of length zero. Of course,

the numerical solution is ridiculously far from the exact solution, even though the

objective function is zero. ♦

We conclude that, in general, it is not sufficient to look only at the global error

committed at the end point. We need to replace (5.1) by another formulation.

1We have chosen the constants 2 and 1 arbitrarily.
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Figure 5.1: The exact solution of the Lotka–Volterra equation (5.3) with initial

valuesu(0) = 3 andv(0) = 2 (left) and the numerical solution produced by the

Euler method with three steps, whose lengths are given by (5.4).

5.2 Minimizing the error at all intermediate points

The example in the previous section shows that we cannot consider only the error

at the end point. The next step is to take the global error at all the pointstk with

k = 1, . . . , N into account. We can formulate this as the following optimization

problem,

minimize
h

N∑
k=1

‖Gh(tk)‖ subject to tN = tf . (5.5)

Of course, different formulations are also possible. For instance, we may replace

the sum in (5.5) by the sum of squared errors instead, or by a weighted sum.

Preliminary numerical experiments indicate that the optimization problem (5.5)

is rather hard to solve whenN is about a hundred or more. However, there is a

more fundamental problem with the formulation (5.5), as will become apparent in

the following example.

Example 5.3. Consider a unit mass particle moving in the double-well potential

V (q) = 1
24q

2(3q2+2q−9). The motion of this particle is governed by the equations

q′ = p and p′ = −V ′(q) = 1
2q(q + 3

2)(q − 1), (5.6)

whereq stands for the position andp denotes the momentum. The initial conditions

areq(0) = 1.290908997 andp(0) = −0.9206021281.
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Figure 5.2: The solid curves show the exact solution of (5.6), while the crosses

connected by the dotted lines show the numerical results of the Euler method with

step sizes given by (5.7).

Suppose we solve the equation (5.6) with the Euler method, and that we take

twenty-one steps: ten short steps, followed by one very long step, and finally ten

more short steps. Specifically, we take

h0 = · · · = h9 = 0.03, h10 = 3, and h11 = · · · = h20 = 0.03. (5.7)

The numerical results and the exact solution are shown in Figure 5.2. The picture

shows that the numerical results (the crosses) are fairly close to the exact solu-

tion (the solid line). Hence, the global errorGh is fairly small at the intermediate

pointstk, and the same goes for the objective function in (5.5). However, the nu-

merical solution is far worse than this suggests, because it does not approximate

the exact solution well in the middle of the integration interval. ♦

The conclusion from the above example must be that the optimization problem (5.5)

is not a good model either. We need to consider not only the error at the end pointtf ,

as in (5.1), or at the intermediate pointstk, as in (5.5), but throughout the whole

interval[t0, tf ].
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5.3 Formulation as an optimal control problem

In this section, we minimize the global error over the whole integration interval.

Our objective function is thus‖Gh‖, where‖ · ‖ denotes some norm of the func-

tionGh. In particular, we will consider in Chapter 6 theL2 norm

‖Gh‖2 =
(∫ tf

t0

‖Gh(t)‖2 dt
)1/2

,

and in Chapter 7 the maximum norm

‖Gh‖∞ = max
t∈[t0,tf ]

‖Gh(t)‖.

This implies that we are now considering the global error as a function defined on

the whole interval[t0, tf ]. We will explain below how to interpretGh(t) whent is

not one of the grid pointstk.

We also embed the step sizehk in a continuous functionh(t). So, we suppose

that the numerical method has the form (2.35). However, we will assume that the

step size is given byhk = εhh(tk) instead ofhk = εhh(tk, yk). The latter expres-

sion may appear to be more general, but in fact, all possible step size strategies for

a given initial value problem can be written in the formhk = εhh(tk).
Two things need to be specified before we can give a complete formulation of

the optimization problem, namely, how to formulate the constraint that the number

of steps be fixed, and how exactly to interpretGh(t) at everyt ∈ [t0, tf ].
Definet(κ) to be the solution ofdt

dκ = h(t) with initial condition t(0) = t0.

It was shown in the proof of Theorem 3.6 thattk = t(kεh) + O(εh). Neglecting

the remainder term, we conclude that the integration interval[t0, tf ] is traversed in

N steps ift(Nεh) = tf . However, the differential equation fort(κ) can easily be

solved by separation of variables. The result is that the conditiont(Nεh) = tf is

equivalent to
∫ tf
t0

1
h(t) dt = Nεh.

Having conceded an error of orderεh in the definition of the constraint, we can

allow for a similar error in the objective function. Thus, we can restrict ourselves to

the leading term of the global error. As before, we will denote this term byεphg(t),
wherep is the order of the numerical method. At the end of Section 3.1, we found

thatg(t) satisfies the differential equationg′ = ∂f
∂y g + hp`, cf. (3.18), if the local

error of the numerical method isLh(t, y) = hp+1`(t, y) +O(hp+2).
Summarizing, the minimization problem that we want to solve, is

minimize
h

‖εphg‖ subject to
∫ tf

t0

1
h(t)

dt = Nεh

where g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) + h(t)p `

(
t, y(t)

)
, g(t0) = 0.
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We can remove the constant factorεph in the objective function, because mini-

mizing ‖εphg‖ is equivalent to minimizing‖g‖. Furthermore, we can assume that

Nεh = tf − t0 (with this normalization,εh denotes the average step size). Indeed,

if h∗(t) is the solution of the above minimization problem whenNεh = tf − t0,

then the solution for another value ofεh is given by tf−t0
Nεh

h∗(t). This reduces the

problem to

minimize
h

‖g‖ subject to
∫ tf

t0

1
h(t)

dt = tf − t0

where g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) + h(t)p `

(
t, y(t)

)
, g(t0) = 0.

(5.8)

Optimal Control Theory studies problems of this form, where one is minimizing a

functional of some function (hereg), which is determined via a differential equa-

tion by another function (hereh), which one is allowed to vary. Sections 6.1 and 7.1

give a short introduction to this field. The remainder of Chapters 6 and 7 are about

the solution of (5.8), if the norm in the objective function is either theL2 or the

maximum norm.

The structure of the discussion in this part of the thesis is outlined in Figure 5.3,

showing how we leap back and forth between the continuous and the discrete points

of view. We start with some differential equation, which has a continuous solution.

This solution is approximated by a discrete process, the numerical method. The

numerical method commits some error,Gh(tk), which is then embedded in the

continuous functiong(t). This function is used to formulate the optimal control

problem (5.8). In Chapters 6 and 7, we will see that this problem can be converted

to a two-point boundary value problem. Finally, we use collocation to discretize

the problem, so that we can solve it on a computer. This gives us an approximation

to the optimal step size strategy.



§5.3 FORMULATION AS AN OPTIMAL CONTROL PROBLEM 68

cf. (6.13) or (7.13)
Numerical solution

yn+1 = Ψh(tn, yn)
Numerical method

minh ‖g‖
Optimal control problem

y′ = f(t, y)
Differential equation

Gh(tn)
Global error

g′ = Df g + hp`

Boundary value problem

Continuous Discrete

ODE for global error

via COLNEW

Figure 5.3: Overview of the structure of Part II of this thesis. The last two boxes

will be treated in Chapters 6 and 7.



Chapter 6

Minimizing the error

in the L2 norm

In this chapter, we want to minimize the global error measured in theL2 norm.

Specifically, we want to solve the optimization problem (5.8), where the norm in

the objective function is theL2 norm. So, the problem under consideration is

minimize
h

∫ tf

t0

‖g(t)‖2 dt subject to
∫ tf

t0

1
h(t)

dt = tf − t0

where g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) + h(t)p `

(
t, y(t)

)
, g(t0) = 0.

(6.1)

The values of∂f
∂y

(
t, y(t)

)
and`

(
t, y(t)

)
are given; they depend on the differential

equation being solved and the employed numerical method, respectively.

Problems of this sort are studied in Optimal Control Theory, so we start in Sec-

tion 6.1 with an introduction to this theory, concentrating on the parts which we

need in the remainder of the chapter. Then, in Section 6.2, we apply this theory

to the optimal control problem (6.1). This leads to the main result of the chapter,

Theorem 6.5, which states a boundary value problem equivalent to (6.1). Unfor-

tunately, the boundary value problem can rarely be solved analytically, so in the

final section we discuss how to treat it numerically. We illustrate the procedure by

applying it to two differential equations, namely the trivial equationy′ = ky and

the Kepler problem.

69
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6.1 Optimal control problems

This section gives a short introduction to Optimal Control Theory. All results in

this section are well known and treated in many books, including the very readable

text book by Macki and Strauss [62], and the monographs by Cesari [22] and Lee

and Markus [60], which cover the subject in more depth.

In Control Theory, one studies dynamical systems of the form1

x′(t) = f̂
(
t, x(t), u(t)

)
, x(t0) = x0.

Here,x(t) denotes thestateof the system at a certain timet. The problem is to

choose the functionu, so that a certain goal is reached. For instance, one can ask

to steer the state to a given target. We callu thecontrolvariable.

For example, consider a ship which has to be brought to some port. The

statex(t) models the current velocity and the direction that the ship is facing, while

the controlu(t) models the direction of the rudder and the thrust of the engine. We

want to find a controlu, such that the ship is at rest at a certain position in the

harbour at a given time. Navigational problems of this sort were originally studied

by Zermelo [87].

In general, there are many controls which reach the required target. This free-

dom can be used to achieve a secondary goal. In the above example with the ship,

we can ask for the fuel consumption to be as small as possible. In general, we are

considering problems of the form

minimize
u∈U

∫ tf

t0

f̂0

(
t, x(t), u(t)

)
dt subject to x(tf) ∈ T

where x′(t) = f̂
(
t, x(t), u(t)

)
, x(t0) = x0.

(6.2)

The functionf̂0 models the objective, and the setT denotes the target that we want

to reach. The setU of admissible controls will be specified later. We will denote

the integral
∫ tf
t0
f̂0

(
t, x(t), u(t)

)
dt by J .

Note that the problem (6.1), which is being studied in this chapter, is almost of

the form (6.2), if we take the global errorg(t) as the state of the system, and the

step sizeh(t) as the control variable. Only the constraint
∫ tf
t0

1
h(t) dt = 1 does not

fit. Fortunately, there is a standard trick which converts (6.1) to the form (6.2): an

extra variablek(t) is introduced to keep track of the integral
∫

1
h(t) dt. So, instead

1We denote the right-hand side witĥf instead of the customaryf to avoid confusion with the

differential equation (2.1) being solved by the numerical method.
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of (6.1), we consider the problem

minimize
h

∫ tf

t0

‖g(t)‖2 dt subject to k(tf) = tf − t0

where g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) + h(t)p `

(
t, y(t)

)
, g(t0) = 0,

k′(t) =
1
h(t)

, k(t0) = 0.

(6.3)

The problem (6.3) is indeed in the standard form (6.2), with the state being the

pair (g, k). The target setT consists of all states withk = tf − t0.

Optimal Control Theory studies problems of the form (6.2) and their gener-

alizations, like the problem (7.3) treated in the next chapter. The basic questions

are the same as in other disciplines of Optimization Theory. On the theoretical

side, we want to have existence theorems, telling us that under certain conditions

the problem (6.2) has a solution. However, these existence theorems are typically

nonconstructive, so we cannot use them to find a solution. Therefore, we are also

seeking necessary and sufficient conditions for a pair(x, u) to be a solution of the

optimal control problem (6.2).

Before we turn to these questions, we need to discuss some technical details.

We assume that the function̂f is continuously differentiable, that the function̂f0

is continuous, and that the target setT is a smooth manifold. There are various

possibilities to define the setU of admissible control functions, with more or less

generality. For our purposes, it is best to takeU to be the set of measurable func-

tions (the example in Section 7.2 shows that we cannot requireu to be smooth). If

u is a measurable function, and the statex is an absolutely continuous function2

satisfying the equationx′ = f̂(t, x, u) for almost allt,3 then the pair(x, u) is

called anadmissible pair. The optimal control problem (6.2) asks for an admissi-

ble pair which minimizes the objectiveJ =
∫ tf
t0
f̂0

(
t, x(t), u(t)

)
dt among all the

admissible pairs. Such a pair is called aoptimal pair.

The controlu determines the statex via the equationx′ = f̂(t, x, u), and

hence, indirectly, the objectiveJ . If the mappingu 7→ J is a lower semi-continuous

function with a compact domain, then the optimal control problem (6.2) has a so-

lution. Many existence theorems in Optimal Control Theory can be thought of as

a consequence of this basic fact. A typical representative is the following.

2A functionx is absolutely continuouson an intervalI if for all ε > 0 there exists aδ > 0 such

that
∑

i |x(βi)− x(αi)| ≤ ε whenever(α1, β1), . . . ,(αN , βN ) are disjoint subintervals ofI whose

total length is at mostδ. An absolutely continuous function has a derivative almost everywhere.
3A condition, depending on a variablet, is said to hold foralmost all t, if the set where the

condition doesnot hold has measure zero. We will often use the abbreviationa.a. for almost all.
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Theorem 6.1. If there is at least one admissible pair, if all admissible pairs(x, u)
satisfya prioribounds‖x(t)‖ ≤ xmax, ‖u(t)‖ ≤ umax, for all t, and if the set

{(y0, y) | y0 ≥ f̂0(t, x, u) andy = f̂(t, x, u) for some admissibleu}

is convex for all(t, x), then there exists an optimal pair for the optimal control

problem(6.2).

This theorem is stated and proved by Berkovitz [10, Ch. III, Thm. 5.1].

Theorem 6.1 guarantees the existence of an optimal pair, but does not tell us

how to find it. For this, we need Pontryagin’s Minimum Principle, which gives a

necessary condition for an admissible pair to be optimal.

Theorem 6.2 (Pontryagin’s Minimum Principle). Consider the problem(6.2).

Suppose that the setU of admissible controls has the form

U = {u | u is measurable andu(t) ∈ Û for a.a.t}, (6.4)

for some set̂U . If (x, u) is an optimal pair for(6.2), then there exist aλ0 ≥ 0 and

an absolutely continuous functionλ, not both zero, such that

d
dtλ(t) = −∂H

∂x
for a.a.t, and (6.5)

λ(tf) is orthogonal toT at x(tf), and (6.6)

H
(
t, x(t), u(t), λ0, λ(t)

)
= min

v∈Û
H
(
t, x(t), v, λ0, λ(t)

)
for a.a.t, and (6.7)

H
(
t, x(t), u(t), λ0, λ(t)

)
= −

∫ t

t0

λ(s)> ∂f̂
∂t

(
s, x(s), u(s)

)
ds, (6.8)

where theHamiltonianH is defined byH = λ0f̂0 + λ>f̂ .

This result is called the Minimum Principle because of equation (6.7), which says

that the optimal control at almost any time is the control which minimizes the

Hamiltonian. A proof is given by Lee and Markus [60,§5.1].

The HamiltonianH is said to beregular if the minimizerv ∈ Û in (6.7) is

unique. In this case, the conclusion in Theorem 6.2 can be simplified considerably.

Theorem 6.3. Suppose that all assumptions of Theorem 6.2 are satisfied. If fur-

thermore the Hamiltonian is regular, then the optimal controlu is continuous, and

both the statex and the costateλ areC1. Hence, the conditions(6.5)and(6.7)are

satisfied for allt.

Proof. Jacobson, Lele, and Speyer [56] prove (in a more general setting) that the

optimal control is continuous (see also Theorem 7.3). The other conclusions of the

theorem follow by Remark 2 in [22,§4.2C].
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The above theorems give only anecessarycondition for optimality. However, un-

der some extra assumptions, it is also asufficientcondition. The following theorem,

due to Lee and Markus [60,§5.2], gives the details.

Theorem 6.4. Suppose that the optimal control problem has the form

minimize
u∈U

∫ tf

t0

f̂0

(
t, x(t)

)
+ ĥ0

(
t, u(t)

)
dt subject to x(tf) ∈ T

where x′(t) = A(t)x(t) + ĥ
(
u(t), t

)
, x(t0) = x0.

(6.9)

Suppose furthermore thatU has the form(6.4), the target setT is convex, and the

functionf̂0 is convex inx for all t. If (x, u) is an admissible pair and there exist a

λ0 ≥ 0 and an absolutely continuous functionλ, not both zero, which satisfy the

conditions(6.5), (6.6), (6.7), and (6.8) of Pontryagin’s Minimum Principle, then

(x, u) is an optimal pair.

Optimal Control Theory is closely connected to the Calculus of Variations. Most

variational problems can be considered as optimal control problems, and vice

versa, as described by Hestenes [50].

An alternative approach is to use techniques from Dynamic Programming. This

field was originally conceived by Bellman [9] as an effective computational method

for dealing with optimal decision making in discrete time processes. The theory

was later extended to continuous time via a limiting process. The basic idea is the

Principle of Optimality, which says that from any point on an optimal trajectory,

the remaining trajectory is optimal for the corresponding problem initiated at that

point. This leads to the definition of thevalue function, which associates to a

time t and a statex, the cost incurred by an optimal pair for the problem initiated

at that point. This value function satisfies a partial differential equation, called the

Bellman equation. By solving this equation, one can find the value function, and

subsequently the optimal control. A popular reference for Dynamic Programming

is the two-volume work by Bertsekas [12].

The Dynamic Programming approach might be considered quite natural for

the problem at hand, as the limiting process for going from discrete time to con-

tinuous time reflects the limit where the step size of the numerical method goes

to zero. Nevertheless, it seems that using Pontryagin’s Minimum Principle is the

more fruitful approach, because the Bellman equation is a complicated partial dif-

ferential equation. For this reason, we abandon the Dynamic Programming point

of view.
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6.2 Analytic treatment

In this section, we apply the theory of the preceding section to the optimal control

problem (6.1), which asks for the step sizeh(t) that minimizes theL2 norm of the

global error. This follows a suggestion in the appendix of a paper by Utumi, Takaki

and Kazai [83].

We found in the previous section that (6.1) is equivalent to (6.3), which is in the

standard form (6.2). The first question under consideration is whether the existence

of an optimal pair can be guaranteed. If we could establish ana priori bound on

the step size functionh, sayh(t) ≤ hmax for all t, then this would imply a bound

on the global errorg(t). Indeed, the solution of the differential equation forg is

(cf. Theorem 3.6)

g(t) =
∫ t

t0

h
(
s, y(s)

)p
DΦt

s

(
y(s)

)
`
(
s, y(s)

)
ds,

and both the variational flow matrixDΦ and the local error̀(t, y) are bounded.

In this case, the existence of an optimal pair would follow from Theorem 6.1.

However, there seems to be no reason to assume ana priori bound on the step size.

In fact, as we will see after the forthcoming Theorem 6.5, the optimal step size is

unbounded ast approaches the final timetf . For this reason, we are unable to make

any claims on the existence of a solution to the optimal control problem (6.3).

We now turn to the second theorem mentioned in the previous section, namely

Pontryagin’s Minimum Principle (Theorem 6.2). Letγ ∈ Rd andκ ∈ R denote

the adjoint variables ofg andk, respectively. Then the Hamiltonian is

H(t, g, k, h, λ0, γ, κ) = λ0‖g‖2+γ>
(∂f
∂y

(
t, y(t)

)
g+hp`

(
t, y(t)

))
+
κ

h
. (6.10)

Hence the adjoint variables evolve according to

γ′(t) = −∂H
∂g

= −
(∂f
∂y

(
t, y(t)

))>
γ(t)− 2λ0 g(t) and κ′(t) = −∂H

∂k
= 0;

(6.11)

this is equation (6.5) from Theorem 6.2. Furthermore, equation (6.6) from the

same theorem readsγ(tf) = 0. Finally, the actual minimum principle, i.e. (6.7),

states that the step sizehminimizes the Hamiltonian (6.10). If bothκ and the inner

productγ>` are positive, then the minimum for the Hamiltonian is attained when

h =
(

κ

pγ>`

)1/(p+1)

.

Furthermore, this minimizer is unique, so the Hamiltonian is regular and Theo-

rem 6.3 applies. This implies that the optimal controlh is continuous, and that
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the differential equations (6.11) are valid for allt. It follows thatκ is a constant

function. If we now setκ0 = (κ/p)1/(p+1), then the above formula forh reads

h = κ0(γ>`)−1/(p+1). On the other hand, ifγ>` ≤ 0 thenH is a decreasing

function ofh, so the Hamiltonian has no minimum and condition (6.7) can never

be satisfied.

Summarizing, Pontryagin’s Maximum Principle implies that if(g, k, h) is a

solution to the optimal control problem (6.3), then there exist a continuously dif-

ferentiable functionγ : R → Rd and constantsλ0 andκ0, such that

g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) + h(t)p `

(
t, y(t)

)
, g(t0) = 0,

k′(t) =
1
h(t)

, k(t0) = 0, k(tf) = tf − t0,

γ′(t) = −
(

∂f
∂y

(
t, y(t)

))>
γ(t)− 2λ0 g(t), γ(tf) = 0,

h(t) = κ0

(
γ(t)>`(t, y(t))

)−1/(p+1)
and γ(t)>`

(
t, y(t)

)
> 0.

(6.12)

We now simplify the system (6.12) by exploiting its scaling symmetries. Note that

if (g, k, h, γ, λ0, κ0) is a solution, then so is(g, k, h, αγ, αλ0, α
1/(p+1)κ0). Hence,

we can assume thatλ0 = 1. If we neglect the constraintk(tf) = tf − t0 for the

moment, then we can find another scaling symmetry, namely

(g, k, h, γ, λ0, κ0) 7→ (αpg, α−1k, αh, αpγ, λ0, α
−p/(p+1)κ0).

So, as long as we neglect the constraintk(tf) = tf − t0, we can assume without

long of generality thatκ0 = 1. This also decouples the equation fork(t) from the

other differential equations. After we found a solution(g, γ), we reintroduce the

equation fork(tf). We can now use the freedom inκ0 to scale the step size and

thus ensure that the constraintk(tf) = tf − t0 is satisfied.

Finally, note that the system (6.3) satisfies the conditions in Theorem 6.4.

Hence, the necessary conditions from Pontryagin’s Minimum Principle are in fact

also sufficient conditions. We summarize our results in the following theorem.

Theorem 6.5.Consider the optimal control problem(6.1). If (g∗, h∗) is an optimal

pair for (6.1), then there exist continuously differentiable functionsg, γ : R → Rd

that solve the following two-point boundary value problem,

g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) +

(
γ(t)>`(t, y(t))

)−p/(p+1)
`
(
t, y(t)

)
, g(t0) = 0,

γ′(t) = −
(

∂f
∂y

(
t, y(t)

))>
γ(t)− 2g(t), γ(tf) = 0,

(6.13)

and for some value ofκ0, the pairs(g∗, h∗) and(g, γ) are connected by

g∗(t) = κp
0g(t) and h∗(t) = κ0

(
γ(t)>`(t, y(t))

)−1/(p+1)
. (6.14)
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Furthermore, the following condition is satisfied, ensuring that the fractional power

in (6.13)is well-defined,

γ(t)>`
(
t, y(t)

)
> 0 for all t < tf . (6.15)

Conversely, if a pair(g, γ) satisfies(6.13)and (6.15), then there is a constantκ0

such that(g∗, h∗) as defined in(6.14)is an optimal pair for(6.1).

The differential equation (6.13) implies thatγ(t) → 0 ast→ tf . Hence, by (6.14),

the step sizeh(t) becomes unbounded ast approaches the final timetf . This may

be surprising at first sight, but it should be borne in mind that notwithstanding

the unboundedness ofh(t), the integration interval[t0, tf ] is traversed in a finite

number of steps becauseh(t) satisfies the constraint
∫ tf
t0

1
h(t) dt = tf − t0.

Furthermore, (6.14) implies that the expression(
h∗(t)

)p+1
γ(t)>`

(
t, y(t)

)
(6.16)

is constant. Recall that the local error ishp+1(t) `(t, y(t)), so we can interpret

the above expression as a weighted local error. The condition that this weighted

local error be constant is reminiscent ofequidistribution. This term refers to the

idea that, when solving a differential equation numerically, an efficient method

commits an equal error in every subinterval (or subdomain, for partial differential

equations). With other words, the error is distributed equally over the subintervals.

Eriksson, Estep, Hansbo and Johnson [27, 28] describe this idea in great detail.

A similar computation can be carried out for the more general case in which

we are minimizing theLs norm of the global error, withs ∈ (1,∞), meaning that

the optimal control problem (6.1) is replaced by

minimize
h

∫ tf

t0

‖g(t)‖s dt subject to
∫ tf

t0

1
h(t)

dt = tf − t0

where g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) + h(t)p `

(
t, y(t)

)
, g(t0) = 0.

(6.17)

The cases = 1 needs to be excluded, as the objective function fails to be continu-

ously differentiable whens = 1. Theorem 6.5 still holds for (6.17) withs ∈ (1,∞)
if the boundary value problem (6.13) is replaced by

g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) +

(
γ(t)>`(t, y(t))

)−p/(p+1)
`
(
t, y(t)

)
, g(t0) = 0,

γ′(t) = −
(

∂f
∂y

(
t, y(t)

))>
γ(t)− s‖g(t)‖s−2g(t), γ(tf) = 0.

(6.18)

For the rest of the chapter however, we consider only the special cases = 2.

Unfortunately, the boundary value problem (6.13) is quite hard to solve analyt-

ically. Even determining the optimal step size for the simple equationy′ = ky is a

problem, as the following example shows.
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Example 6.6. Suppose that we are solving the differential equationy′ = ky with

k ∈ R \ {0}. We takey(0) = 1 as initial condition, so the exact solution is

y(t) = ekt.

The leading local error term of any Runge–Kutta method applied to this equa-

tion is proportional tohp+1y, wherep is the order of the method. We can assume

without loss of generality that the constant of proportionality is one. In that case,

`(t, y) = y and the boundary value problem (6.13) reads

g′(t) = kg(t) +
(
ektγ(t)

)−p/(p+1)
, g(0) = 0,

γ′(t) = −kγ(t)− 2g(t), γ(tf) = 0.
(6.19)

These equations can be simplified in various ways. For instance, the substitution

g(t) = k|k|−(2p+2)/(2p+1) e−s g̃(s),

γ(t) = |k|−(2p+2)/(2p+1) e−s γ̃(s)p+1,

t =
2p+ 1
kp

s,

transforms the problem (6.19) in

pg̃′(s) = (3p+ 1) g̃(s) + (2p+ 1) γ̃(s)−p, g̃(0) = 0,

pγ̃′(s) = −γ̃(s)− 4p+2
p+1 γ̃(s)

−p g̃(s), γ̃
( kptf

2p+1

)
= 0.

Compared to (6.19), we got rid of the fractional power, and we removed the depen-

dency of the differential equation on the parameterk. Furthermore, the transformed

system is autonomous, so we can write it as a single equation if we considerg̃ to

be a function of̃γ,

dg̃
dγ̃

= −(p+ 1)
(3p+ 1)γ̃pg̃ + 2p+ 1

(4p+ 2)g̃ + γ̃p+1
. (6.20)

Unfortunately, neither (6.20) nor the original system (6.19) can be solved analyti-

cally. So, in the next section, we investigate the numerical solution of the boundary

value problem (6.13). We then return to the system (6.19) in Example 6.7.♦

6.3 Numerical treatment

In this section, we describe how the boundary value problem (6.13), and hence the

optimal control problem (6.1), can be solved numerically. Below, we give a very

short introduction to the numerical solution of boundary value problems. More

information can be found in the extensive literature that covers this field, which

includes the book by Ascher and Petzold [6].



§6.3 NUMERICAL TREATMENT 78

It was mentioned in Section 2.1 that initial value problems for ordinary differ-

ential equations have a unique solution if the right-hand side is differentiable. This

is no longer true for a boundary value problem like (6.13), which may have zero

or multiple solutions. This reflects the lack of an existence result for the optimal

control problem (6.1).

With this warning in mind, we proceed with the numerical solution of (6.13).

The basic numerical methods for boundary value problems are shooting and finite

difference methods. Ashooting methodfor (6.13) starts from a guess forγ(t0),
and then uses any numerical method for initial value problems to solve the differ-

ential equation. In general, the solution will not satisfy the end-point condition

γ(tf) = 0, so we correct our guess forγ(t0) and try again, until we find a solution

with γ(tf) = 0. The shooting method has the disadvantage that it is not very ro-

bust, because it might take a long time (or even forever) before it hits the correct

guess forγ(t0).
A finite difference methoddivides the time interval[t0, tf ] in a number of subin-

tervals. At each of the intermediate pointst1, . . . , tN−1, the derivatives occurring

in the boundary value problem (6.13) are replaced by a finite difference formula.

Together with the boundary conditions, this yields a large system of equations,

which is subsequently solved to get a numerical solution to the boundary value

problem. Solving the system of equations is feasible because of its band structure,

but this method is more difficult to implement than a shooting method.

Both the shooting and the finite difference method can be extended. Here, we

choose to use acollocation method, an extension of the finite difference method,

because of the availability of an excellent implementation which performs well in

practice. The idea behind collocation methods is to approximate the solution in

every subinterval[tk, tk+1] by a polynomial of some fixed degreed, and to require

that the polynomial satisfy the differential equation atd predetermined points in

the subinterval and that all the polynomials in the different subintervals fit together

to form a continuous function satisfying the boundary conditions.

We use the COLNEW code by Bader and Ascher [7], which is a newer version

of the COLSYS code by Ascher, Christiansen, and Russell [4, 5]. This program

performs collocation at the five Gauss–Legendre points. The resulting collocation

equations are solved with the damped Newton method. The program then esti-

mates the error of the numerical solution, and compares it with the tolerance level

requested by the user. If the estimated error exceeds the tolerance level, then the

program determines a new subdivision of the interval[t0, tf ], either by halving the

subintervals in the previous iteration or by redistributing the intermediate pointstk

so that they concentrate in the regions where the error estimate is high, and an-
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other iteration is started. Otherwise, the solution is accepted and returned to the

user. The COLNEW code differs from the COLSYS code by using another basis to

represent the solution, which speeds up the solution of the linearized system.

There is one remaining detail that needs to be taken care of, namely, the frac-

tional power in (6.13). If the inner productγ(t)>`
(
t, y(t)

)
is negative for somet,

then raising it to a fractional power results in a complex number for the step size,

which does not make any sense. Theorem 6.5 guarantees us that, if there is a so-

lution to the optimal control problem (6.1), the boundary value problem (6.13) has

a solution for which the inner product is never negative, cf. (6.15). Nevertheless,

it is quite possible that one of the iterates produced by the COLNEW program vi-

olates the condition (6.15). This would lead to complex numbers and terminate

the iteration process, unless we make some special arrangement to circumvent the

problem.

Here, we employ the following trick to overcome this difficulty. Denoting

the inner productγ(t)>`
(
t, y(t)

)
by x, we replace the inner product in (6.13)

byψσ(x), whereψσ denotes a family of real functions that satisfies

ψσ(x) > 0 for all x ∈ R and ψσ(x) = x for all x ≥ σ > 0. (6.21)

The first condition ensures thatψσ(x) can be raised to a fractional power without

problems, while the second condition implies that the introduction of the function

ψσ in (6.13) has no effect as long as the inner productx is larger than the cut-

off parameterσ. However, we know thatx is strictly positive on(t0, tf) for the

solution that we are looking for. Hence, we may expect that for small but strictly

positive values ofσ, the solution of the new boundary value problem

g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) +

(
ψσ

(
γ(t)>`(t, y(t))

))−p/(p+1)
`
(
t, y(t)

)
, g(t0) = 0,

γ′(t) = −
(

∂f
∂y

(
t, y(t)

))>
γ(t)− 2g(t), γ(tf) = 0,

(6.22)

is close to the solution of the original boundary value problem (6.13). On the other

hand, ifσ is chosen too small, then the bad scaling may cause numerical problems.

For the two examples in this section, the precise choice ofσ is not very important.

However, the choice of the parameters is a more delicate issue for the examples in

Section 7.3.

ψσ(x)

(σ,σ)

Specifically, we defineψσ by

ψσ(x) =


σ2

2σ − x
, if x < σ,

x, if x ≥ σ.
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This function, which is depicted on the right, is continuously differentiable and

possesses the required property (6.21).

Example 6.7. In Example 6.6 in the previous section, we sought the optimal step

size for solving the equationy′ = ky with k ∈ R \ {0} and initial condition

y(0) = 1. The corresponding boundary value problem was found to be (6.19),

but we could not solve this problem analytically. Here, we discuss its numerical

solution.

We consider the Euler method (2.11) for solving the equationy′ = ky. The

Euler method has orderp = 1 and local error̀ (t, y) = −1
2k

2y, cf. (2.10). Hence,

the boundary value problem (6.22) reads

g′(t) = kg(t)− 1
2k

2ekt
(
ψσ

(
−1

2k
2ektγ(t)

))−1/2
, g(0) = 0,

γ′(t) = −kγ(t)− 2g(t), γ(tf) = 0,
(6.23)

We use COLNEW to solve this boundary value problem, pickingtf = 1, k = −2,

andσ = 10−3. COLNEW also needs an initial guess for the solution to start the

iteration. Lacking much inspiration, we provide as initial guessg(t) ≡ 0 and

γ(t) = `
(
t, y(t)

)
, which ensures that the condition`>γ > 0 in Theorem 6.5 is

satisfied.

This results in the numerical solution shown in the left-hand plot in Figure 6.1.

The corresponding step size function can be retrieved using (6.14), which for this

example reads

h(t) = κ0

(
−1

2k
2ektγ(t)

)−1/2
.

The constantκ0 is determined by the requirement
∫ tf
0

1
h(t) dt = tf . In our case, we

find κ0 ≈ 0.5082, and the resulting step size function is also plotted in Figure 6.1.

For comparison, the optimal step size whenk = 2 is also displayed in this figure.

The picture shows that the step size is an increasing function, and that it be-

comes very large ast approaches the end of the integration interval; in fact,h(t)
is unbounded ast → tf for the original problem (6.13). Nevertheless, the global

errorg(t) remains bounded.

The following informal argument explains why the step size increases ast

grows. Any error committed at some instantt∗ contaminates the numerical solu-

tion over the interval[t∗, tf ]. Thus, it is important to avoid early errors, since they

cause contamination over a long time interval. On the other hand, an error com-

mitted near the end of the integration interval increases the objective
∫ tf
t0
|g(t)|dt

only slightly, so one should not worry too much about taking large steps near the

final time tf . It pays therefore to concentrate one’s efforts at the beginning of the

integration interval.
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Figure 6.1: On the left, the solution of (6.23) withtf = 1, k = −2, andσ = 10−3.

On the right, the corresponding step size function, and the optimal step size func-

tion whenk = 2.

When interpreting the above results, it should be borne in mind that the step

size sequence is given byhk = εhh(tk), whereh is the function depicted in Fig-

ure 6.1. The differential equation (3.18) describing the dynamics of the global

error is only valid in the limitεh → 0. In this limit, the global error at timet is

εphg(t) + O(εp+1
h ). In particular, one cannot take the step size sequence given by

hk = h(tk) and expect the global error to beg(t); this amounts to takingεh = 1
and violates the condition thatεh be sufficiently small.

To determine the effect of the cut-off parameterσ, we repeat the numerical

simulation withσ = 10−6 instead ofσ = 10−3. The results are nearly identical,

except whent is very close to the end of the interval. Indeed, the functionψσ acts

as the identity unless its argument is less thanσ. Forσ = 10−3, this happens only

in the tiny interval(0.998, 1). In conclusion, we can be confident that the solution

of (6.22), which includes the cut-off functionψσ, with σ around10−6 or 10−3 does

not differ markedly from the solution of (6.13).

In the next chapter, specifically in Example 7.7 and Figure 7.3, the above results

for theL2-optimal step size are compared to other step size strategies, including

theL∞-optimal step size. ♦

The above example concerns a very simple equation. Next, we consider a more

complicated example, namely the Kepler two-body problem.
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Example 6.8. The dynamics of a particle moving in the gravitational field of an-

other particle of unit mass, fixed at the origin, is given by

r′′(t) = − 1
‖r(t)‖3

r(t). (6.24)

Here,r(t) ∈ R3 is the position of the moving particle,‖ · ‖ denotes the Euclidean

norm, and we assume that the units are chosen such that the universal gravitational

constantG equals one.

In fact, the particle will stay in a plane containing the origin, so we may assume

without loss of generality thatr(t) =
(
y1(t), y2(t), 0

)
. If we sety3 = y′1 and

y4 = y′2, then the equation (6.24) is equivalent to the following system of first-

order equations,
y′1(t) = y3(t),

y′2(t) = y4(t),

y′3(t) = − y1(t)(
y1(t)2 + y2(t)2

)3/2
,

y′4(t) = − y2(t)(
y1(t)2 + y2(t)2

)3/2
.

(6.25)

To complete the formulation of the problem, we pick the following initial condi-

tions,

y1(0) = 2, y2(0) = 0, y3(0) = 0, y4(0) = 1
2 . (6.26)

With these initial conditions, the particle describes an ellipse around the origin with

eccentricity1
2 , as depicted in Figure 6.2. The time to complete one revolution is

T ≈ 9.674.

We want to solve the problem (6.25) with initial conditions 6.26 numerically.

We first assume that the Euler method (2.11) is employed. The local error commit-

ted by the Euler method is, cf. (2.10),

`(t, y) = −1
2Df(y) f(y) =

1
2


y1r

−3

y2r
−3

y3r
−3 − 3y1(y1y3 + y2y4)r−5

y4r
−3 − 3y2(y1y3 + y2y4)r−5

 , (6.27)

wherer =
√
y2
1 + y2

2 denotes the distance to the origin.
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Figure 6.2: The orbit of a satellite in a gravitational field, as described by (6.25).

The cross indicates the initial condition (6.26), and the circle at the origin repre-

sents the massive object generating the gravitational field.

Hence, the boundary value problem (6.22) reads

g′1 = g3 + 1
2hy1r

−3, g1(0) = 0,

g′2 = g4 + 1
2hy2r

−3, g2(0) = 0,

g′3 = (3y2
1r

−5 − r−3)g1 + 3y1y2r
−5g2

+ 1
2h
(
y3r

−3 − 3y1(y1y3 + y2y4)r−5
)
, g1(0) = 0,

g′4 = 3y1y2r
−5g1 + (3y2

2r
−5 − r−3)g2

+ 1
2h
(
y4r

−3 − 3y2(y1y3 + y2y4)r−5
)
, g2(0) = 0,

γ′1 = −2g1 − (3y2
1r

−5 − r−3)γ3 − 3y1y2r
−5γ4, γ1(tf) = 0,

γ′2 = −2g2 − 3y1y2r
−5γ3 − (3y2

2r
−5 − r−3)γ4, γ2(tf) = 0,

γ′3 = −2g3 − γ1, γ3(tf) = 0,

γ′4 = −2g4 − γ2, γ4(tf) = 0,

whereh =
(
ψσ(y1r

−6γ1 + y2r
−6γ2 − 1

2y3γ3 − 1
2y4γ4)

)−1/2
.

(6.28)

The current example differs from the previous one in that we do not have an an-

alytic expression for the solution of the differential equation (6.25). Hence, we

first need to solve (6.25) numerically. We use the DOP853 code for this task.

This routine, described by Hairer, Nørsett and Wanner [44], implements an ex-

plicit eighth-order Runge–Kutta method due to Dormand and Prince [79]. We run

this code with the stringent tolerance requirement of10−10, and we use its dense

output routine to sample the solution with a frequency of1000. These samples are

stored in a table.
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We can now use COLNEW to solve the boundary value problem (6.28). When-

ever the solution of the Kepler problem (6.25) at a certain time is required, we look

it up in the table of samples constructed before, using cubic interpolation if nec-

essary. We track the satellite over three revolutions, so we taketf = 3T . As in

the previous example, we setσ = 10−3, and we use as initial guessg(t) ≡ 0 and

γ(t) = `
(
t, y(t)

)
. Finally, the tolerance level for COLNEW is set to a modest10−3,

which is quite enough for graphical purposes. The resulting solution is plotted in

Figure 6.3.

We see that the step size in one period is different from the step size at the

corresponding time in another period. In fact, 54% of the steps are taken while

traversing the first revolution around the origin. The corresponding percentages

for the second and third revolution are 37% and 9% respectively. The reason is

the same as in Example 6.7: errors committed at the beginning of the integration

interval contaminate the numerical solution over a longer time interval.

Figure 6.3 shows that, apart from the increasing trend, the step size decreases

aroundt = 1
2T , t = 11

2T , andt = 21
2T . These times correspond to the left-

most point of the ellipse in Figure 6.2, where the satellite is closest to the origin.

Equation (6.27) shows that the local error is large whenr is small. It is thus not

surprising that the optimal strategy is to take smaller steps when the satellite is

close to the origin.

We next consider a variant of the Euler method (2.11), given by

yk+1 = yk + hkf
(
tk, (yk)1, (yk)2, (yk+1)3, (yk+1)4

)
, (6.29)

where(yk)i denotes theith component of the four-dimensional vectoryk, andf

refers to the right-hand side of the Kepler equation (6.25). This method is called

thesymplectic Eulermethod. The reason for this name is that (6.29) is very sim-

ilar to the standard Euler method, but it possesses a property which the Euler

method misses, namely symplecticity. A method is said to besymplecticif the

time-stepping mapΨh satisfies(DΨh)−1 J DΨh = J with J =
[

0 −I
I 0

]
, whereI

denotes the identity matrix of dimension12d, whenever the method is applied to a

Hamiltonian differential equation, i.e., an equation of the formy′ = J−1∇H(y)
with H : Rd → R. The Kepler equation (6.25) is Hamiltonian with

H(y) = − 1√
y2
1 + y2

2

+ 1
2y

2
3 + 1

2y
2
4.

The flow Φ of a Hamiltonian equation satisfies(DΦ)−1 J DΦ = J , so it may

be expected that symplectic methods perform well when applied to Hamiltonian

equations. Indeed, as was mentioned in Section 4.1, the global error of symplectic
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Figure 6.3: The top picture shows the optimal step size (that is, the step size which

minimizes theL2 norm of the global error) when solving the Kepler problem (6.25)

with the standard Euler method (2.11). The middle picture is identical, except that

a different vertical scaling is used. The bottom picture shows the norm of the global

error when the optimal step size is used.
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methods accumulates more slowly than the error of other methods. More informa-

tion can be found in [20, 43, 67] to which the text of§4.1 refers.

The local error of the symplectic Euler method, when applied to the Kepler

problem, is given by

`(t, y) =
1
2


−y1r

−3

−y2r
−3

y3r
−3 − 3y1(y1y3 + y2y4)r−5

y4r
−3 − 3y2(y1y3 + y2y4)r−5

 . (6.30)

If we compare this with the local error of the standard Euler method, cf. (6.27), we

find that it differs very little: only the sign of the first two components of`(t, y) is

reversed.

The optimal step size for the symplectic Euler method can be determined in the

same way as we did before for the standard Euler method. The results are shown

in Figure 6.4. The difference with Figure 6.3 is great, even though the local errors

of the standard and the symplectic Euler method are almost the same, showing

the importance of using a symplectic method. The global error committed by the

symplectic Euler method is far smaller, and the optimal step size function does not

vary as wildly. Other features do not change: the step size still shows an increasing

trend, and it drops when the satellite approaches the origin.

We return to the Kepler problem in Example 7.8 in the next Chapter. There

we compare the step size strategy which we discussed here, with other step size

strategies (see Figures 7.4 and 7.6). ♦
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Figure 6.4: The optimal step size and the corresponding error when solving the

Kepler problem with thesymplecticEuler method (6.29).



Chapter 7

Minimizing the maximal error

In the previous chapter, we minimized the global error as measured in theL2 norm.

In this chapter, we consider theL∞ norm. In other words, we want to find the

step size functionh for which the maximum of the norm of the global error over

the whole time interval is minimized. This leads to the following optimal control

problem,

minimize
h

max
t∈[t0,tf ]

‖g(t)‖2 subject to
∫ tf

t0

1
h(t)

dt = tf − t0

where g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) + h(t)p `

(
t, y(t)

)
, g(t0) = 0.

(7.1)

Note that we use the Euclidean norm forg(t) ∈ Rd and theL∞ norm for the

functiong.

The theory of Section 6.1 is not immediately applicable to this problem because

of the form of the objective function. This problem may be resolved by considering

theL∞ norm as the limit of theLs norm ass → ∞. So, we could consider (7.1)

as the limit of the problem (6.17) ass → ∞. The results of Baron and Ishii [8]

imply that the minimal value of the objective function‖g‖s of (6.17) converges

to the minimal value of the objective function‖g‖∞ of (7.1). However, there is

no guarantee that the optimal pair(g, h) of (6.17) converges to an optimal pair

of (7.1). Another problem is that it is not clear how to interpret the boundary value

problem (6.18) associated with (6.17) in the limits→∞.

Here, we take a different approach to avoid these problems. Following Lind-

berg [61], we replace (7.1) by the problem

minimize
h

∫ tf

t0

1
h(t)

dt subject to ‖g(t)‖ ≤ 1 for all t ∈ [t0, tf ]

where g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) + h(t)p `

(
t, y(t)

)
, g(t0) = 0.

(7.2)

88



§7.1 STATE-CONSTRAINED OPTIMAL CONTROL PROBLEMS 89

In words, instead of minimizing the maximal error using a fixed number of steps,

we minimize the number of steps subject to a bound on the global error. A moment

of reflection shows that the optimal pairs(g, h) of (7.1) and (7.2) coincide up to

a rescaling (recall that the differential equationg′ = ∂f
∂y g + hp` is invariant under

the scaling(g, h) 7→ (αpg, αh)).
The theory of Section 6.1 cannot be applied to the optimal control problem (7.2)

either, even though the objective function has the right form, because of the con-

straint‖g(t)‖ ≤ 1. Fortunately, the theory can be extended to take this constraint

into account. This generalization is described in Section 7.1. Again, we find that

we can convert the optimal control problem to an equivalent boundary value prob-

lem. In parallel with the previous chapter, Section 7.2 describes the analytic solu-

tion of this boundary value problem, and Section 7.3 its numerical solution. The

examples in this chapter are also the same as those considered in the previous chap-

ter, namely the equationy′ = ky and the Kepler problem.

7.1 State-constrained optimal control problems

In Section 6.1, we studied optimal control problems of the form

minimize
u∈U

∫ tf

t0

f̂0

(
t, x(t), u(t)

)
dt subject to x(tf) ∈ T

where x′(t) = f̂
(
t, x(t), u(t)

)
, x(t0) = x0,

(6.2)

where the setU of admissible controls is of the form

U = {u | u is measurable andu(t) ∈ Û for a.a.t}, (6.4)

for some set̂U . The setÛ allows us to place constraints on the control variable.

However, the problem (7.2) being studied in this chapter includes a constraint on

the global errorg, which plays the role of a state variable. So we need to con-

sider a generalization of (6.2) that includes state constraints. Specifically, we study

optimal control problems of the form

minimize
u

∫ tf

t0

f̂0

(
t, x(t), u(t)

)
dt

subject to b
(
t, x(t)

)
≥ 0 for all t ∈ [t0, tf ]

where x′(t) = f̂
(
t, x(t), u(t)

)
, x(t0) = x0.

(7.3)

As in the previous chapter, we assume that the functionsf̂0 andf̂ are continuously

differentiable with respect to all their arguments. Furthermore, the functionb defin-

ing the constraint is assumed to beC2. A pair (x, u) is calledadmissibleif x is
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an absolutely continuous function,u is a measurable function, and the inequality

constraint and differential equation in (7.3) are satisfied. Anoptimal pair is a pair

which minimizes the objective function over all admissible pairs.

The problem (7.2) is indeed of this form, withg acting as the state variablex

andh as the control variableu, while b(t, x) = 1 − ‖x‖2 (the square is needed to

ensure smoothness atx = 0).

Obviously, the problem (7.3) can be generalized further. We will not discuss

this here, as it is not needed to solve the problem (7.2). Instead, we refer to the

excellent survey by Hartl, Sethi, and Vickson [47], which mentions the forthcom-

ing Theorems 7.1–7.4 in a more general setting, and also provides the interested

reader with additional background and references in state-constrained optimal con-

trol theory.

For any timet ∈ [t0, tf ], the inequalityb
(
t, x(t)

)
≥ 0 describes a closed subset

of state space. A statex(t) satisfying the inequality can lie either in the interior or

on the boundary of this subset. This leads to the following definitions. Fix a trajec-

tory x : [t0, tf ] → Rd. We call a subinterval(t1, t2) ⊂ [t0, tf ] an interior interval

if b
(
t, x(t)

)
> 0 for all t ∈ (t1, t2). Similarly, a subinterval[t1, t2] ⊂ [t0, tf ] is a

boundary intervalif b
(
t, x(t)

)
= 0 for all t ∈ [t1, t2]. An instantt∗ is called an

entry timeif there is an interior interval ending att = t∗ and a boundary interval

starting att = t∗. The termexit timedescribes the opposite situation, where the

state exits the boundary att = t∗. If x(t) is in the interior for allt in a neighbour-

hood of a certain instantt∗, while x(t∗) lies on the boundary, thent = t∗ is called

a contact time(in this case, the trajectory only touches the boundary). The term

junction timeis used to refer to entry times, exit times, and contact times taken

together.

Given an optimal control problem without state constraints, Theorem 6.1 guar-

antees the existence of a solution to this problem under certain conditions. A simi-

lar existence result holds for problems with state constraints.

Theorem 7.1 (Filippov–Cesari Theorem).Consider the optimal control prob-

lem (7.3). If there exists at least one admissible pair, if for certain constants

xmax andumax all admissible pairs(x, u) satisfy the bounds‖x(t)‖ ≤ xmax and

‖u(t)‖ ≤ umax for all t, and if the set

{(y0, y) | y0 ≥ f̂0(t, x, u) andy = f̂(t, x, u) for some admissibleu}

is convex for all(t, x), then there exists an optimal pair(x, u) for (7.3).

A proof of this theorem is given by Cesari [22].
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Let us now turn to the Pontryagin Minimum Principle (Theorem 6.2), which

gives a necessary condition for optimality. An analogous result for the state-

constrained optimal control problem (7.3) is as follows.

Theorem 7.2. Suppose that(x, u) is an optimal pair for(7.3). Assume thatu is

right-continuous with left-hand limits and thatx has only finitely many junction

times. Then there exist a constantλ0 ≥ 0, a piecewise absolutely continuous

functionλ : [t0, tf ] → Rd, a piecewise continuous functionµ : [t0, tf ] → R, a

numberηf , and a numberη(τi) for every pointτi of discontinuity ofλ, such that(
λ0, λ(t), µ(t), ηf , η(τ1), η(τ2), . . .

)
6= 0 for all t and

dλ
dt

= −∂H
∂x

− µ
∂b

∂x
for a.a.t, and (7.4)

µ(t) ≥ 0 andµ(t) b
(
t, x(t)

)
= 0 for a.a.t, and (7.5)

H
(
t, x(t), u(t), λ0, λ(t)

)
= min

v
H
(
t, x(t), v, λ0, λ(t)

)
for a.a.t, (7.6)

where theHamiltonianH is defined byH = λ0f̂0 + λ>f̂ . Furthermore, at any

junction timeτ , the dual variableλ might be discontinuous, in which case the

following jump condition is satisfied

lim
t↓τ

λ(t)− lim
t↑τ

λ(t) = −η(τ) ∂b
∂x

with η(τ) ≥ 0. (7.7)

Finally, at the terminal timetf , we have

λ(tf) = ηf

∂b

∂x
with ηf ≥ 0 and ηfb

(
tf , x(tf)

)
= 0. (7.8)

According to [47], the above theorem has been proved (in a more general setting)

by Maurer [63].

We see that the minimum principle (6.7) from the last chapter, where we stud-

ied optimal control problemwithoutstate constraints, carries over unchanged when

a state constraint is added. However, the state constraint does lead to an additional

multiplier, namelyµ, which influences the dynamics of the costateλ via (7.4).

Condition (7.5) is a complementarity condition, which says that either the state

constraint is satisfied strictly and the multiplierµ vanishes, or the state is on the

boundary of the allowed region, in which caseµ may take any positive value.

A further complication is that the costate may exhibit jumps, cf. (7.7). The

next theorem rules out this possibility in certain cases. As in Section 6.1, we call

the HamiltonianH regular if the minimizerv ∈ Û in (7.6) is unique. The state

constraintb
(
t, x(t)

)
≥ 0 is said to be offirst order if

∂b
∂x(t, x) ∂f̂

∂u(t, x, u) 6= 0. (7.9)
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This condition is equivalent to requiring that the time derivative ofb
(
t, x(t)

)
de-

pends on the controlu.

Theorem 7.3. Suppose that(x, u) is an optimal pair for(7.3). If the Hamilto-

nian H is regular, thenx is C1 and u is continuous. If, furthermore, the state

constraint is of first order at a junction timeτ , then the costateλ as defined in

Theorem 7.2 is continuous atτ andη(τ) = 0.

This result is due to Jacobson, Lele and Speyer [56,§5.2 and§6].

Contrary to the case where no state constraints are present (cf. Theorem 6.3),

the costateλ need not be differentiable, even if the Hamiltonian is regular, because

the multiplierµ is not continuous is general. In fact, the next section contains an

example in whichµ is not continuous andλ is not differentiable (see (7.21) and

Figure 7.1).

In Section 7.3, where we are seeking a numerical solution, we follow a different

approach. We introduce a penalty parameterν > 0 and replace the problem (7.3)

by the unconstrained optimal control problem

minimize
u

∫ tf

t0

f̂0

(
t, x(t), u(t)

)
+ ν
(
b(t, x(t))

)
+

dt

where x′(t) = f̂
(
t, x(t), u(t)

)
, x(t0) = x0,

(7.10)

where the notation( · )+ is defined by(a)+ = 0 if a ≤ 0 and(a)+ = a if a ≥ 0.

This approach is called theexterior penaltyapproach: those parts of the trajectory

that lie outside the region{x ∈ Rd : b(x, t) ≥ 0} are penalized by the extra term

in the objective function.

The parameterν determines the weight of this penalty term. Asν grows larger,

violations of the state constraint are penalized more heavily. Intuitively speaking,

any violation is penalized infinitely heavily in the limitν → ∞, so in this limit,

the optimal pair(x, u) will not violate the constraintb(t, x) ≥ 0 and thus also be

a solution to the state-constrained problem (7.3). This idea is substantiated by the

following theorem, which is due to Okamura [75].

Theorem 7.4. Let {νk} be an unbounded increasing sequence of real numbers.

Suppose that for everyk, the unconstrained problem(7.10) with ν = νk has a

piecewise continuous optimal controluk. If the sequence{uk} converges in the

L1 norm, then the limit is an optimal control for the constrained problem(7.3).

We conclude this section by repeating that more information on state-constrained

optimal control theory can be found in the survey article by Hartl, Sethi, and Vick-

son [47] and references therein.
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7.2 Analytic treatment

We return to the problem of choosing the step size function of a numerical in-

tegrator in such a way that the maximal global error is as small as possible. In

the introduction to this chapter, we formulated this as the minimax problem (7.1),

which is equivalent to the state-constrained optimal control problem (7.2). In the

previous section, we briefly described the theory on problems of this kind. Now, we

apply this theory on the problem (7.2). This gives a characterization of the optimal

step size function (see Theorem 7.5). We then apply this result to the differential

equationy′ = ky. In contrast to theL2 case (cf. Example 6.6), we can solve the

boundary value problem. The result is that the optimal step size is given by (7.21).

We recall that the problem (7.2) is of the form (7.3), if we identify the errorg

as the state variablex and the step sizeh as the controlu. The state constraint is

1− ‖g‖2 ≥ 0.

As in theL2 case, treated in the Chapter 6, we cannot guarantee the existence

of an optimal step size function. Theorem 7.1 does not apply, as we do not have

a priori bounds on the optimal pair. The usual generalizations of this existence

result do not apply either. However, we will see in Examples 7.6 and 7.8 that the

optimal step size function for the Dahlquist test equation and the Kepler problem

are bounded, in contrast to theL2 case where the optimal step size is unbounded as

t→ tf (as remarked immediately after Theorem 6.5). So, it might still be possible

that some proof of ana priori bound on the optimal step size function will be

found, thus establishing the existence of a solution of (7.2).

Next, we turn to the minimum principle, stated in Theorem 7.2. We again

denote the adjoint variable ofg by γ. The Hamiltonian is given by

H(t, g, h, λ0, γ) =
λ0

h
+ γ>

(∂f
∂y

(
t, y(t)

)
g + hp`

(
t, y(t)

))
. (7.11)

Condition (7.6) says that the optimal control minimizes the above Hamiltonian.

If γ>` is either negative or zero, thenH does not have a minimum, and condi-

tion (7.6) cannot be satisfied. Thus,γ>` has to be positive, in which case the

minimum is attained at

h =
(

λ0

pγ>`

)1/(p+1)

.

We write this ash = κ0(γ>`)−1/(p+1) with κ0 = (λ0/p)1/(p+1). This mini-

mum is unique, so the Hamiltonian (7.11) is regular and thus Theorem 7.3 implies

that the optimal controlh is continuous. Furthermore, the costateλ is continu-

ous at a junction timeτ if the state constraint is first order which is the case if

g(τ)>`
(
τ, y(τ)

)
6= 0, cf. (7.9).
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The dynamics of the costate is given by (7.4), which for the problem under

consideration reads

γ′(t) = −
(∂f
∂y

(
t, y(t)

))>
γ(t) + 2µ(t) g(t).

The multiplierµ(t), introduced in the above equation, is nonnegative and it van-

ishes whenever the strict inequality|g(t)| < 1 holds, cf. (7.5).

The terminal condition (7.8) reads

γ(tf) = −2ηfg(tf) with ηf ≥ 0 and ηf

(
1− |g(tf)|2

)
= 0.

The complementarity condition means that eitherηf = 0 or 1 − |g(tf)|2 = 0.

However, we can prove that the latter equality holds. Indeed, suppose that(g, h) is

an optimal pair. If|g(tf)| < 1, then, by continuity, there exists anε > 0 such that

|g(t)| < 1 for all t ∈ [tf − ε, tf ]. Let δ > 0 be sufficiently small. We define a new

step size function̂h by

ĥ(t) =

h(t), if t ≤ tf − ε,

h(t) + δ, if t > tf − ε,

and denote the corresponding global error byĝ. We haveĝ = g for t < tf − ε.

Furthermore, the constraint|ĝ(t)| ≤ 1 will still be satisfied inside[tf − ε, tf ] if δ

is small enough. Thus, the constraint|ĝ(t)| ≤ 1 is satisfied for allt ∈ [t0, tf ], so

(ĝ, ĥ) is an admissible pair. However, sinceδ is positive, we have∫ tf

t0

1

ĥ(t)
dt <

∫ tf

t0

1
h(t)

dt.

This is in contradiction with the optimality of(g, h). We conclude that an optimal

pair necessarily satisfies|g(tf)| = 1. This condition automatically implies that

ηf

(
1− |g(tf)|2

)
= 0.

We summarize the above discussion in the following theorem. The reader may

want to compare it to the analogous result for theL2 case, Theorem 6.5.

Theorem 7.5. Consider the optimal control problem(7.1), and let(g∗, h∗) be an

optimal pair, such thatg∗(τ)>`
(
τ, y(τ)

)
6= 0 at all junction timesτ . Then there

exist piecewise absolutely continuous functionsg, γ : [t0, tf ] → R, which for some

value ofκ0 are related to(g∗, h∗) by

g∗(t) = κp
0g(t) and h∗(t) = κ0

(
γ(t)>`(t, y(t))

)−1/(p+1)
. (7.12)

The functionsg andγ satisfy the following differential equation

g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) +

(
γ(t)>`(t, y(t))

)−p/(p+1)
`
(
t, y(t)

)
,

γ′(t) = −
(

∂f
∂y

(
t, y(t)

))>
γ(t)− 2µ(t) g(t),

(7.13)
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with boundary conditions

g(t0) = 0, |g(tf)| = 1, and γ(tf) = −2ηfg(tf). (7.14)

where the multiplierηf is nonnegative, andµ : [t0, tf ] → R is a piecewise contin-

uous function satisfying the complementarity condition

either

{
µ(t) = 0
|g(t)| ≤ 1

}
or

{
µ(t) ≥ 0
|g(t)| = 1

}
. (7.15)

Furthermore, the following condition is satisfied, ensuring that the fractional power

in (7.13)is well-defined,

γ(t)>`
(
t, y(t)

)
> 0 for all t < tf . (7.16)

Lindberg [61] obtains very similar results in the specific case that the local error

is proportional toy(p+1)(t) and the underlying differential equation is either linear

and autonomous (i.e.,f(t, y) = Ay for some matrixA) or scalar (i.e.,d = 1).

As in the previous chapter, we can interpret (7.13) as requiring the equidistri-

bution of the weighted local error(
h∗(t)

)p+1
γ(t)>`

(
t, y(t)

)
.

Example 7.6. In Examples 6.6 and 6.7, we considered the differential equation

y′ = ky with k ∈ R \ {0} and initial conditiony(0) = 1. We solved the boundary

value problem of Theorem 6.5, which determines the step size function that mini-

mizes theL2 norm of the global error. In this example, we apply Theorem 7.5 and

determine the step size function that minimizes the maximal global error.

The exact solution is given byy(t) = ekt. If we use a Runge–Kutta method to

solve the equation, then the leading local error term is proportional tohp+1y. The

boundary value problem (7.13), (7.14) has the scaling symmetry

(`, g, γ, µ, ηf) 7→ (αp`, g, αγ, αµ, αηf). (7.17)

So, we can assume without loss of generality that the constant of proportionality

is one. This implies that̀
(
t, y(t)

)
= y(t), which is positive, and thus, by (7.16),

we haveγ(t) > 0 for all t < tf . Hence, the boundary value problem (7.13), (7.14)

reduces to

g′(t) = kg(t) + ekt/(p+1)
(
γ(t)

)−p/(p+1)
, g(0) = 0, |g(tf)| = 1,

γ′(t) = −kγ(t)− 2µ(t) g(t), γ(tf) = 0.
(7.18)
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Solving the differential equation forg yields

g(t) =
∫ t

0
exp

(
kt− kps

p+ 1

)(
γ(s)

)−p/(p+1) ds. (7.19)

The integrand is positive, sog(t) > 0 for all t > t0. Hence,g(t)`
(
t, y(t)

)
is

positive, so the state constraint is of first order and the global errorg is C1 by

Theorem 7.3. Furthermore, the terminal condition|g(tf)| = 1 is equivalent to

g(tf) = 1.

Let t∗ denote the first instantt at whichg(t) = 1. Then(0, t∗) is an interior

interval, soµ vanishes on this interval by the complementarity condition (7.15).

Hence, the costateγ satisfiesγ′ = −kγ on (0, t∗), soγ(t) = γ0e−kt for t ∈ [0, t∗]
whereγ0 = γ(0). Substituting this in (7.19) reveals that

g(t) = γ
−p/(p+1)
0 tekt for t ∈ [0, t∗]. (7.20)

This function is increasing ifkt > −1 and decreasing ifkt < −1. Furthermore,

the conditiong(t∗) = 1 implies thatγ0 =
(
tfektf

)(p+1)/p
.

Suppose thatt∗ = tf . Theng(t) < 1 for t < tf andg(tf) = 1, sog′(tf) ≥ 0,

which implies thatktf ≥ −1. If, on the other hand,t∗ is strictly smaller thantf ,

theng′(t∗) = 0 sinceg is a continuously differentiable function having a maximum

at t∗, and hencekt∗ = −1. We conclude thatt∗ = tf if k is positive ortf ≤ −1/k
and thatt∗ = −1/k otherwise.

In the caset∗ = tf , equation (7.20) is valid on the whole interval[0, tf ] and we

have constructed a solution to the boundary value problem of Theorem 7.5.

Now assume thatt∗ = −1/k < tf . Suppose that the interval[t∗, tf ] con-

tains an interior interval, say[t1, t2]. We can now reason as above. Inside this

interval, the multiplierµ vanishes. Henceγ satisfiesγ′ = −kγ, therefore we

haveγ(t) = C1e−kt for someC1, and finallyg(t) = C2tekt for some positive

constantC2. However, we already found out that this is a decreasing function

on [t∗, tf ], sog(t2) < g(t1) = 1. If t2 < tf , then the interior interval[t1, t2] is

followed by a boundary interval, but this would require thatg(t2) = 1. On the

other hand, ift2 = tf , theng(t2) < 1 is in contradiction with the terminal condi-

tion g(tf) = 1. We conclude that[t∗, tf ] contains no interior interval, sog(t) = 1
for all t ∈ [t∗, tf ]. It now follows from (7.18) thatγ(t) = (−k)−(p+1)/pekt/p and

µ(t) = p+1
p

(
− 1

kekt
)1/p

for t ∈ (t∗, tf ]. Note thatk is negative in this case, so the

fractional power is well-defined and the multiplierµ is indeed positive.
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Figure 7.1: The functions (7.21) fork = −2, tf = 1, andp = 1.

Summarizing, the unique solution of (7.13)–(7.16) is

g(t) =

 t
t∗

ek(t−t∗), if t ≤ t∗,

1, if t > t∗,

γ(t) =


(
t∗ekt∗

)(p+1)/pe−kt, if t ≤ t∗,

t
(p+1)/p
∗ ekt/p, if t > t∗,

h(t) =


(
t∗ekt∗

)−1/p
, if t ≤ t∗,(

t∗ekt
)−1/p

, if t > t∗,

µ(t) =

0, if t ≤ t∗,
p+1

p (t∗ekt)1/p, if t > t∗,

wheret∗ =

tf , if k > 0 or k < −1/tf ,

−1/k, otherwise.

(7.21)

The same solution can be derived from the results of Lindberg [61].

We show the above solution withk = −2, tf = 1, andp = 1 in Figure 7.1.

Note that the global errorg is continuously differentiable, while bothγ andh are

only continuous and the multiplierµ makes a jump att = 1
2 . This is in agreement

with Theorem 7.3.

In Example 7.7 in the next section, we compare the above strategy with the

strategy found in the previous chapter. ♦
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Of course, not all equations are as simple asy′ = ky, and the boundary value

problem of Theorem 7.5 cannot always be solved analytically. The alternative is to

solve it numerically. This is the subject of the next section.

7.3 Numerical treatment

In this section, we want to find a numerical solution to the problem (7.1), or the

equivalent problem (7.2), which asks for the step size function that minimizes the

maximal error. This complements Section 7.2, where we solve the problem analyt-

ically, but also Section 6.3, where the objective is to minimize theL2 norm of the

global error over the interval[t0, tf ].
Oberle and Grimm [73, 74], Pesch [78], and Maurer, Büskens and Feich-

tinger [64] solve state-constrained optimal control problems by converting them

to a boundary value problem with Theorem 7.2. In our case, the boundary value

problem is given by (7.13)–(7.16). This problem is then solved by multiple shoot-

ing. The obvious difficulty in this approach is the implementation of the comple-

mentarity condition (7.15). The authors cited at the beginning of this paragraph all

assume that the number and type of junction times in the interval[t0, tf ] is known

and that only the precise instant at which the solution shifts from one alternative

in (7.15) to the other, needs to be determined. Unfortunately, this knowledge is not

available for the problem under consideration. Indeed, Example 7.8 shows that the

number of interior intervals depends subtly on the numerical method being used to

solve the differential equation. Therefore, we have to find an alternative algorithm

for solving the boundary value problem.

Consider the exterior penalty approach introduced at the end of Section 7.1.

This approach replaces the problem (7.2) by

minimize
h

∫ tf

t0

1
h(t)

+ ν
(
‖g(t)‖2 − 1

)
+

dt

where g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) + h(t)p `

(
t, y(t)

)
, g(t0) = 0.

(7.22)

Recall that the notation( · )+ is defined by(x)+ = 0 if x ≤ 0 and(x)+ = x if

x ≥ 0. The optimal control problem (7.22) does not contain any state constraints,

just like the problem (6.1) being considered in the previous chapter, so we can use

the same method as in the previous chapter to solve (7.22). We apply Theorem 6.2

to convert (7.22) to a boundary value problem. The Hamiltonian is

λ0

(1
h

+ ν
(
|g|2 − 1

)
+

)
+ γ>

(
∂f
∂y

(
t, y(t)

)
g + hp`

(
t, y(t)

))
,
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where we introduced the costateγ ∈ Rd. The evolution of the costate is given by

γ′(t) = −
(

∂f
∂y

(
t, y(t)

))>
γ(t)− 2λ0ν H

(
|g(t)|2 − 1

)
g(t),

whereH( · ) denotes the Heaviside function,1 defined by

H(x) =

0, if x < 0,

1, if x ≥ 0.

Assuming that the inner productγ>`
(
t, y(t)

)
is positive, the Hamiltonian is mini-

mized when

h =

(
λ0

pγ>`
(
t, y(t)

))1/(p+1)

,

Furthermore, the Hamiltonian is regular, so any optimal control will be continuous

by Theorem 6.3. Hence, Theorem 7.4 states that if the problem (7.22) has a se-

quence of optimal step size functions which converges asν →∞, then the limit of

this sequence solves the original problem (7.2).

Finally, we can use a scaling symmetry to setλ0 = p. This results in the

following boundary value problem,

g′(t) = ∂f
∂y

(
t, y(t)

)
g(t) +

(
ψσ

(
γ(t)>`(t, y(t))

))−p/(p+1)
`
(
t, y(t)

)
, g(t0) = 0,

γ′(t) = −
(

∂f
∂y

(
t, y(t)

))>
γ(t)− 2νpH

(
|g(t)|2 − 1

)
g(t), γ(tf) = 0.

(7.23)

As in Section 6.3, we introduce the functionψσ, which is defined on page 79, to

circumvent any problems with the fractional power whenγ>` becomes negative.

Note the similarity with the boundary value problem (6.22), which yields the opti-

mal step size function in theL2 norm.

As in the previous chapter, we use the COLNEW routine to solve the prob-

lem (7.23). Ideally, we would like to use a high value for the penalty parameterν

in (7.23), since we want to find the solution asν → ∞. However, COLNEW is

unable to solve (7.23) for high values ofν, unless the initial guess for the solution

is accurate. This suggests the use ofcontinuation: start with a modest value ofν,

sayν = 1, use the solution as an initial guess for a slightly larger value ofν, and

repeat until the desired value ofν is reached.

Further details are described in the two examples which make up the rest of

this chapter. As in Section 6.3, we first study the Dahlquist test equationy′ = ky,

before turning to the Kepler system.

1Hopefully, the reader will not confuseH( · ) denoting the Heaviside function withH denoting

the Hamiltonian.
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Figure 7.2: The numerical solution of the boundary value problem (7.23) forν = 1,

ν = 10, ν = 100 (dashed lines), andν = 106 (solid line). The values of the other

parameters arek = −2 andtf = 1.

Example 7.7. In Example 6.6, we tried to find the step size functionh which

minimizes theL2 norm of the global error when solving the equationy′ = ky,

y(0) = 1, with k ∈ R \ {0} using the Euler method. That attempt was unsuccess-

ful, as we were not able to solve the boundary value problem (6.19) analytically,

but we did find a numerical solution in Example 6.7. However, if we replace the

L2 norm by theL∞ norm, the problem can be solved analytically, as described in

Example 7.6. We now complete this series of examples by finding theL∞-optimal

step size numerically.

We havey(t) = ekt, `(t, y) = −1
2k

2y, ∂f
∂y = k, andp = 1, so the boundary

value problem (7.23) reads

g′(t) = kg(t)− 1
2k

2ekt
(
ψσ

(
−1

2k
2ektγ(t))

))−1/2
, g(t0) = 0,

γ′(t) = −kγ(t)− 2ν H
(
|g(t)|2 − 1

)
g(t), γ(tf) = 0.

(7.24)

We use the same parameters as in the previous examples, namelyk = −2, tf = 1,

andσ = 10−3. Furthermore, we provide the following initial guess for the solution

to COLNEW: g(t) ≡ 0 andγ(t) = `
(
t, y(t)

)
. It turns out that the program is not

able to find a solution whenν = 106, so we start withν = 1 and use continuation,

multiplying ν by a factor10 at every step. The result is shown in Figure 7.2.

The plot suggests that the solution converges (in theL1 norm) asν → ∞.

When comparing the limit with the analytic solution (7.21), depicted in Figure 7.1,



§7.3 NUMERICAL TREATMENT 101

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

t

h
constant h
constant l
L

2
 optimum

L
∞

 optimum

0 0.2 0.4 0.6 0.8 1
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

t
g

Figure 7.3: Comparison of different step size strategies for solving the equation

y′ = −2y with the Euler method. The strategies are: constant step size (dotted

line), constant local error (dash-dotted line),L2-optimal step size (dashed line),

andL∞-optimal step size (solid line). The left-hand plot shows how the step size

varies over time, and the right-hand plot depicts the global error.

it should be kept in mind that the analytic solution was derived under the assump-

tion `(t, y) = y. However, for the Euler method, we have`(t, y) = −1
2k

2y. So, we

have to apply the scaling symmetry (7.17) when comparing the solutions. Apart

from this scaling, the analytic and numerical solution agree. ♦

To place these results in perspective, we contrast four different step size strategies

to solve the equationy′ = ky with the Euler method. All strategies use the same

number of steps in order to produce a fair comparison. Specifically, we enforce the

normalization condition
∫ 1
0

1
h(t) dt = 1. Figure 7.3 shows plots of the step size and

the global error against time for all four strategies.

1. The simplest method, which barely qualifies to be called a strategy, is to use

the same step size throughout the integration interval. The normalization

implies thath ≡ 1. Furthermore, the global error satisfiesg′ = ∂f
∂y g + hp`,

cf. (3.18). For the Euler method applied toy′ = ky, this differential equation

reduces tog′ = kg − 1
2k

2ekth. Solving this equation yields that the global

error isg(t) = −1
2k

2tekt.

2. Another strategy is to choose the step size so thatLh(t, y)/h, the local error

per unit step, is kept constant. A lot of numerical software in practical use
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is based on this idea. If we neglect higher order terms and use the approxi-

mationLh(t, y) ≈ hp+1`(t, y), then we find that the step size is proportional

to
(
`(t, y)

)−p
. In the present situation, we find thath(t) = Ce−kt. The

normalization condition implies that the proportionality constantC equals

−k/(e−kt − 1). Finally, the global error committed by this strategy is given

by g(t) = 1
2Ck(1− ekt).

3. In the previous chapter, we considered choosing the step size so that‖g‖2,

the global error in theL2 norm, is minimized. The step size that achieves

this was calculated in Example 6.7.

4. In this chapter, the maximum global error was minimized. Example 7.6 gives

an explicit formula for the resulting step size and global error, namely (7.21).

The step size chosen by these four strategies and the resulting global error are de-

picted in Figure 7.3. In this figure, the dotted, dash-dotted, dashed, and solid lines

correspond to strategies 1, 2, 3, and 4, respectively. The right-hand graph shows

that theL2-optimal strategy has indeed the smallest error in theL2 norm, while the

L∞-optimal strategy has the smallest value ofmaxt |g(t)|, thus corroborating our

computations.

Example 7.8. In the final example in this thesis, we return to the Kepler prob-

lem (6.24). This equation was also studied in Example 6.8, where the objective

was to minimize‖g‖2 for the standard Euler method (2.11) and the symplectic

Euler method (6.29). The results can be found in Figures 6.3 and 6.4.

Here, we seek to find the step size that minimizes the maximal global error by

solving the boundary value problem (7.23). We substitute the local error of the

standard Euler method for the Kepler problem, which is given by (6.27). As in

Example 6.8 in the previous chapter, we need to solve the Kepler problem numeri-

cally. We then use COLNEW to solve the resulting boundary value problem.

The parameters for the Kepler problem are the same as in Example 6.8: the

initial condition isy(0) = (2, 0, 0, 1
2) and the integration interval is[0, 3T ], where

T ≈ 9.674 denotes the time for one revolution.

The parametersν andσ have to be chosen carefully, as the boundary value

problem (7.23) is not an easy problem to solve numerically. We start withν = 1
10

andσ = 1, and use continuation. At every iteration, we doubleν, we halveσ,

and we call COLNEW with the previous solution as first guess. We stop after the

thirtiest call of COLNEW, whenν ≈ 5 · 107 andσ ≈ 2 · 10−9. The result of

this computation is depicted in Figure 7.4. This figure shows also the other three

strategies discussed above.
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Figure 7.4: The top two plots show (on a different scale) four different step size

strategies for the Kepler problem with the (standard) Euler method: constant step

size (dotted line), constant local error (dash-dotted line),L2-optimal step size

(dashed line), andL∞-optimal step size (solid line). The bottom plot shows the

corresponding global error.
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Figure 7.4 clearly shows that keeping the step size constant results in the largest

error. The second strategy (constant local error) entails taking small steps around

t = 1
2T , t = 11

2T , andt = 21
2T , when the satellite is closest to the origin, and

larger steps in between (see also Figure 7.5). This results in a smaller global error

(with the same number of steps). TheL2-optimal strategy also decreases the step

size when the satellite approaches the origin, but it adds a tendency to increase

the step size throughout the integration interval. This leads to a further decrease

in the global error. Finally, consider theL∞-optimal strategy. It is very similar

to theL2-optimal strategy up tot = 21
2T , where the global error achieves its

maximum. Aftert = 21
2T , theL∞-optimal strategy takes even bigger steps than

theL2-optimal strategy, because it only needs to keep the global error under the

maximum achieved aroundt = 21
2T . This freedom is used to take slightly smaller

steps beforet = 21
2T . In fact, theL∞-optimal strategy takes 55%, 39%, and 6%

of the steps in the first, second and third period respectively. The corresponding

percentages for theL2-optimal strategy are 54%, 37%, and 9%, whereas the other

two strategies take the same number of steps in each of the three periods.

Budd, Leimkuhler and Piggott [13] note that the Kepler equation (6.25) is in-

variant under the rescaling

(t, y1, y2, y3, y4) 7→ (αt, α2/3y1, α
−1/3y2, α

2/3y3, α
−1/3y4).

They argue that the choice of step size should reflect this scaling invariance, which

leads them to take the step size proportional tor3/2. This strategy is almost the

same as keeping the local error constant (see Figure 7.5), and the resulting global

error differs by only a few percent.

We repeat the calculation for the symplectic Euler method (6.29), which was

introduced at the end of the previous chapter. The boundary value problem is

the same as for the standard Euler method, except that the local error (6.27) is

replaced by (6.30). Now, the computation is even more sensitive to the choice of

the parameters, especially the penalty parameterν. In fact, COLNEW is unable

to solve the boundary value problem at the twenty-fourth call, whenν ≈ 8 · 105:

more and more collocation points are added by the program, until it runs out of

memory. Hence, we take the result of the twenty-third call as theL∞ optimum.

Surprisingly, it is counterproductive to multiplyν by 3
2 (instead of2) at every

iteration; in that case, COLNEW gives up atν ≈ 6 · 103. Other multiplicative

factors are also not effective.

The solid curves in Figure 7.6 show theL∞-optimal step size and the resulting

global error. The bottom plot shows that there are three boundary intervals around

t = 1
2T , t = 11

2T , andt = 21
2T , where the norm of the global error reaches its



§7.3 NUMERICAL TREATMENT 105

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

r

h

constant l
L

2
 optimum

L
∞

 optimum

scale invariant

Figure 7.5: This plot shows the step sizeh as a function ofr =
√
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four different strategies: constant local error (thick grey line),L2-optimal step size

(dotted line),L∞-optimal step size (solid black line), and the scale-invariant choice

h = r3/2 of Budd, Leimkuhler and Piggott [13] (dashed line).

maximum. This maximum is also reached attf , the end point of the integration

interval. In contrast, the optimal solution for the (standard) Euler method has no

boundary intervals; the norm of the global error only touches the maximum around

t = 21
2T (see Figure 7.4).

Figure 7.6 also shows the three other strategies. Again, it is obvious that the

symplectic Euler method behaves differently from the standard Euler method. We

see that the simple strategy of keeping the step size constant is doing remarkably

well, whereas varying the step size to keep the local error per step constant is

disastrous: the norm of the global error peaks above 100 aroundt = 21
2T . This

should not come as a surprise, as it is well known that symplectic methods do not

perform well when combined with standard automatic step size selection strategies

(see for instance [43,§VIII.1]). Finally, theL2-optimal step size strategy computed

in Example 6.8 behaves similarly to theL∞-optimal strategy. ♦
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Figure 7.6: Four different step size strategies and the corresponding global error

for the Kepler problem with thesymplecticEuler method. The strategies are the

same as in Figure 7.4.



Chapter 8

Conclusions and pointers

for further research

In this chapter, the main results of the thesis are summarized. Furthermore, we

specify how these results can be used in practice, and we pose some questions that

might form a basis for future research.

The chapter is divided in two sections. The first section refers to Part I of the

thesis, where we derived estimates for the global error of a numerical method for

solving ordinary differential equations. The second section contains the conclu-

sions of Part II on the minimization of the global error.

8.1 Estimating the global error

In Chapter 3, we described three methods for derivinga priori estimates for the

global error committed by a discretization method for solving ordinary differential

equations.

Using Lady Windermere’s fan (cf. Figure 3.1), we found an expression for the

global error with a remainder term of orderh2p, if a constant step-size method

is used (cf. Theorem 3.4). The corresponding expression for variable step-size

methods is given in Theorem 3.6. Unfortunately, this expression has a remainder

term of orderεp+1
h while the global error is of orderεph, so Theorem 3.6 gives only

the leading term of the global error.

Another possibility is provided by Theorem 3.8 due to Gragg, which states that

the global error has an asymptotic expansion. Every term in this asymptotic expan-

sion can be found by solving a differential equation, in which the previous term in

the expansion appears as a source term. This approach works for all methods with

step size rules of the formhk = εhh(tk).
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The third approach uses the theory of modified equations. Theorem 3.10 gives

an estimate for the global error with a remainder term of orderε2p
h , if the modified

equation is known. If we are using a Runge–Kutta method with fixed step size, we

can write this estimate as a linear combination of so-called elementary integrals

(cf. Corollary 3.12). The coefficients in this linear combination depend on the

coefficients of the Runge–Kutta method.

The second approach has the clear advantage that we can find an estimate for

the global error with a remainder term of arbitrary order, at least in theory. How-

ever, in practice it may prove hard to solve the differential equations yielding the

terms in the asymptotic expansion. In contrast, the estimate obtained using modi-

fied equations is only valid for Runge–Kutta methods and up to orderh2p, but it is

easier to evaluate as the examples show. The first approach does not seem very use-

ful for constant step-size methods, but it still yields an estimate for general variable

step-size methods, unlike the other two approaches.

There are two obvious deficiencies in the theory developed in Chapter 3. Firstly,

we did not find an accurate estimate for variable-step size methods. Secondly, we

only gave the order of the remainder term in the estimates, but we did not give any

bounds. A resolution of either of these issues would be very welcome.

It would also be useful to extend the global error estimates to other methods.

Cano and Sanz-Serna [21] explain how to use Gragg’s asymptotic expansion for

multistep methods. Similarly, the modified equations approach could be gener-

alized using the theory of modified equation for multistep method developed by

Hairer [39]. One could also look for estimates for Lie group methods (Berland and

Owren [11] describe the corresponding modified equations) or methods for partial

differential equations (see De Frutos and Sanz-Serna [29] for a generalization of

Theorem 3.6 in this context).

We can use the estimates derived in Chapter 3 to analyse existing methods and

to develop methods that perform especially well when applied to a certain class of

problems. Chapter 4 describes applications along these lines. We first proved a

theorem describing the accumulation of the global error when tracking a periodic

orbit. Next, we considered two families of equations with oscillatory behaviour,

namely Airy-like equations of the formy′′ + η(t)y = 0 and the Emden–Fowler

equationy′′ + tνyn = 0. There is no closed-form expression for the exact solution

of these equations. Nevertheless, we can still find an estimate for the global error

via the modified-equations approach by using the asymptotic solution ast → ∞.

Both the remainder term of orderh2p in the estimate and the difference between

the asymptotic and the exact solution of the differential equation cause the estimate

for the global error to deviate from the actual global error. We did not find a
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bound on this deviation. Consequently, we cannot predict with confidence in what

time range the estimates are valid, but the experiments show that the estimates

are very accurate over a long interval. The estimates show that the error of most

Runge–Kutta methods grows at the same rate, but that some methods (like (4.37)

for the Emden–Fowler equation) accumulate error at a slower rate. Further research

is required to answer questions like whether this only happens for these specific

equation, or whether a similar phenomenon happens for a more general class of

equations.

8.2 Minimizing the global error

The aim in the second part of the thesis is to make the global error as small as

possible by varying the step size of the numerical method in a particular way. But

precisely what do we mean with a “small error”? We argued in Chapter 5 that the

solution given by a numerical method may be of low quality even though it is close

to the exact solution at the final point of the integration interval, or even at all the

grid points. This suggests considering the global error as a continuous function of

time, and minimizing the norm of this function over the entire integration interval.

But which norm should be used? We did not answer this question, because the

correct answer probably depends on the specific application. However, in the re-

mainder of the thesis, we concentrated on the two most natural norms, namely the

L2 andL∞ norms. These are also the norms suggested in the literature.

This choice for the objective turns the problem of determining the optimal step

size into an optimal control problem (with state constraints, if theL∞ norm is

used). We used Pontryagin’s Minimum Principle to characterize the optimal step

size as the solution of a boundary value problem in Theorems 6.5 and 7.5 for the

L2 andL∞ norm respectively. The result for theL2 norm has the counterintu-

itive implication that the optimal step size becomes unbounded as we approach the

end of the integration interval. On the other hand, we had to assume a technical

condition (namely that the state constraint is of first order) to derive the result for

theL∞ norm. No interpretation of this condition was given; we hope that future

work will enable us to do so. Another deficiency is that we were unable to prove

the existence of an optimal step size, but we did hint at a possible strategy: it suf-

fices to obtain ana priori bound for the optimal step size (for theL2 norm, this

requires a rescaling to eliminate the unboundedness at the end of the integration

interval). Note that in fact routines for solving ordinary differential equations of-

ten include an upper bound for the step size. We also found an interesting parallel

between the solution of the optimal control problem and the idea of equidistribu-
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tion, as described by Eriksson, Estep, Hansbo and Johnson [27, 28]. It is probably

worthwhile to explore this connection further.

Generally, the boundary value problem cannot be solved analytically, so we

have to find recourse in a numerical method. The boundary value problem for

theL2 norm is of standard form, and the currently available software can solve

it. However, the problem for theL∞ norm includes a complementarity condition,

rendering it in nonstandard form, so we used a different approach. We went back

to the optimal control problem, and solved it with an exterior penalty method. The

resulting method does manage to solve the examples that we considered, but it is

not very robust. It would probably be better to solve the boundary value problem

with the complementary condition. This can probably be done with a method based

on collocation. If such an algorithm is developed, it would not only be useful to

compute the optimal step size, but also for solving other state-constrained optimal

control problem.

The step size selection algorithm is an important part of practical codes for

solving ordinary differential equations. It is natural to ask oneself how the results

obtained in this thesis can be used to improve the current mechanisms for choosing

the step size. The numerical algorithms for determining the optimal step size,

which are developed in Sections 6.3 and 7.3, cannot be implemented straight away

in a numerical integrator because they are based ona priori estimates of the global

error. Specifically, the estimates require the exact solution to be known. Of course,

they may be replaced bya posterioriestimates, for instance by using the numerical

solution instead of the exact solution. But the resulting algorithm will be slow,

since it entails the solution of a boundary value problem (albeit at a low precision),

which is far more costly than the solution of the original initial value problem.

Nevertheless, the algorithms from Sections 6.3 and 7.3 might provide a basis on

which a practical method may be built.

However, the main application envisaged for the results of the second part of

the thesis is in the analysis of the error control mechanisms that are being used in

practice. We can compare the step size that is chosen by these practical methods

with the optimal step size. This will allow us to assess the quality of the current

algorithms for selecting the step size. A first step in this direction would be to

calculate the optimal step size for a wide variety of test problems, for instance

those in the Bari test set [65], and to compare the results with the step size used by

various numerical integrators. One may well be able to distinguish broad classes

of problems for which the current methods are fairly bad or near-optimal, and use

this knowledge to improve the current methods.
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