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Abstract. Wide classes of nonlinear mathematical physics equatioesdascribed that
admit order reduction through the use of the Crocco transition, with a first-order partial
derivative taken as a new independent variable and a sewoled-partial derivative taken
as the new dependent variable. Associated Backlund tansfions are constructed for
evolution equations of general form (special cases of whiehBurgers, Korteweg—de Vries,
and many other nonlinear equations of mathematical physidse results obtained are used
for order reduction and constructing exact solutions ofrbgigihamics equations (Navier—
Stokes, Euler, and boundary layer). A number of new intdgrabnlinear equations, inclusive
of the generalized Calogero equation, are considered.
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1. Preliminary remarks

The Crocco transformation is used in hydrodynamics for cadpthe order of the plane
boundary-layer equations [1-3]. It is a transformation hich a first-order partial derivative
taken as a new independent variable and a second-ordeal miativative taken as the new
dependent variable. So far, using the Crocco transformdtis been limited solely to the
theory of boundary layer.

The present paper reveals that the domain of applicatiameo€trocco transformation is
much broader. It can be successfully used for reducing tiieraf wide classes of nonlinear
equations with mixed derivatives and constructing Bae#liransformations for evolution
equations of arbitrary order and quite general form, speaies of which include Burgers and
Korteweg—de Vries type equations as well as many other neatiequations of mathematical
physics. The Backlund transformations obtained with thec€o transformation may, in turn,
be used for constructing new integrable nonlinear equstidixamples of the generalized
Calogero equation and a number of other integrable nonliseeond-, third-, and fourth-
order equations are considered. A generalization of thedrtransformation to the case of
three independent variables is given.

It is noteworthy that various Backlund transformationd émeir applications to specific
equations of mathematical physics can be found, for exarip]d8—14].

In the present paper, the teimiegrable equatiompplies to nonlinear partial differential
equations that admit solution in terms of quadratures aitgwlis to linear differential or linear
integral equations.

2. Nonlinear equations that admit order reduction with the Crocco transformation

Consider theath-order nonlinear equation with a mixed derivative
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1°. General property: iti(t, z) is a solution to equatiofi{1), then the function
1 /
@[b(t)w(t) =@ (1)], alt) #0, )

where ¢(t) is an arbitrary function, is also a solution to equatibh (#).a(t) = 0, then
u = u(t,x) + ¢(t) is another solution td {1).

)
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2°. Denote
ou 0%u
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Dividing (I) by u., = ®, differentiating with respect te, and taking into account}(3), we
obtain

% - “i;i(f” +atyn + b(t) = B%F(t’n’ q)’q)mq’)' ) (@)
Let us pass ir{4) from the old variables to the Crocco vagisibl
t, z, u=u(t,x) = t,n, ®=>(tn), (5)
wherern and® are defined by[{3). The derivatives are transformed as fastlow
9 _omo _ 0 0 0 o0 ,oma _ 0 0
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As a result, equatiofi{4), and hence the original equéfihnqteduced to thén — 1)st-order

equation
alt)yn+bt) o1 91 0P o 29
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The higher derivatives are calculated by the formulas
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Given a solution to the original equatidn (1), formuld@s (8fide a solution to equation](6)
in parametric form.
Let ® = &(¢,7n) be a solution to equatiohl(6). Then, in view bf (3), the fuoiti(Z, x)
satisfies the equation

Ugpy = P(t, uy), (7)

which can be treated as an ordinary differential equatianvith parametet. The general
solution to equatiori{7) may be written in parametric form as

T ds T sds
- / Fiog He0. u= / Hi U0, (®)

wherep(t) (t) are arbitrary functions ang}, is an arbitrary constant. Since the derivation
of (6) is based on differentiatingl(1), one of the arbitramgdtions in solution{8) is redundant.
In order to remove this redundancy, it suffices to substi@jento (I). However, it more
convenient to take advantage of the solution propétty (8)rante that solutior{8) must also
possess this property. In view of this, the general solutiatie original equatiori{1) can be
rewritten in the parametric form

T = /n: —(I)((:’SS) +o(t), u= /n: —;(253) + %[b(t)go(t) — (p;(t)L (9)

wherey(t) is an arbitrary function.

k=3,...,n.

Example 1 (generalized Calogero equatiofjth F' = f(t, us)uz. + g(t, u,), which
corresponds to the nonlinear second-order equation
Uty = [f(t,uz) — a(t)u — b(t)x|uge + g(t, uz), (10)
passing to the Crocco variablés (8), (3) leads to the firdeoequation
a)n+odt) o1 0 g(t,n)
) otd  0On F(tm) + o |’
which becomes linear with the substitutién=1/.
In the special case af(t) = —1, b(t) = 0, f(t,u,) = 0, andg(t, uy) = g(us), €quation
(@0) reduces to the Calogero equation, which was considefd®, 16] (see also [3, p. 433—

434)).
Example 2 (equation arising in gravitation theoffhe nonlinear third-order equation

Utee = kuummm 3

which is cross-disciplinary between projective geomeng gravitation theory [16, 17], can
be reduced, by integrating with respectido the form

Uty = kUUgy — %kwi + (1), (11)

wherey(t) is an arbitrary function. Equation{L1) is a special casejobgion [ID), and hence
can be reduced to a linear first-order equation.
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Example 3 (Navier—Stokes and Euler equatiors).unsteady three-dimensional flow
of a viscous incompressible fluid may be described by the é&tagitokes and continuity
equations

oV, av, av, ov,
ot Vg Ve, TV
1 0%V, 9%V, 0%V,
—_EV"P“LV(&C? 57 T ) n=1,23 (12

ovy  0Va 0V

ox + dy + 0z
where z, y, and z are Cartesian coordinates,time, V1, V5, and V3 the fluid velocity
componentsP pressure, ang the fluid density; alsov,1P = 0P/0z, VoP = 0P/0y,
andV3P = 9P/dz. Equations[(T2) are obtained under the assumption thatuikefdrces
are potential and included into pressure. In the degeneese ofv = 0, equations[(12)
become the Euler equations for an ideal (inviscid) fluid.

The equations of motion of a viscous incompressible flUi@),(admit exact three-

dimensional solutions of the form

207
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wherep(t) ands(t) are arbitrary functions of time andu = (¢, ) satisfies the nonlinear
third-order equation

9%u Pu 1 (5)u)2 O3y

gtox o2 "2 \ox) = Vaws PO (13
which is a special case of equati@h (1) wittt) = 1, b(t) = 0, andF = vugqq + suZ +p(t).
The Crocco transformatiohl(5) brindgs {13) to the nonlinezosid-order equation
o® 4 5 0P , 0%
- 1 Hl— = P2 —
which can be rewritten in the form of a nonlinear equationariwective thermal conduction
with a parabolic, Poiseuille-type velocity profile:
ov L, v o (1 0V 1
Rl ¥ D—=v— | —— U=_.
g Tl el =vg <c1>2 an>’ 0
It should be noted that in the special case of inviscid fluig=(0), the original nonlinear
equation[(IB) is reducible to the linear first-order padiéferential equation(14), which can
be solved by the method of characteristics.
Example 4 (system of hydrodynamic-type equatiofgnsider the system of equations

(14)

9%u 9%u ou\? A3y ou

oo g (%) = Vg Taltg, Tol), (15)
Ov Ov ou 8%v

E-‘—U%—’U% —Vw, (16)

which describes several classes of exact solutions to theN&tokes equations in two and
three dimensions [3, 18-20]. The nonlinear equation (1%dependent of and can be
treated separately. Although linear in equation [(16) involves the functiom, which is
governed by equatiof (IL5).
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The Crocco transformatiohl(5) brings systéml (154-(16) &oftim

0 0P , 020

bl 9% P4+ P2 17
5 + (0 +q77+p)a77 m+q)®+v Tk (17
v 9 v 5 0%

v a 22l 18
5 T +q77+p)a77 v (18)

Here and henceforth, the argument¢f) andq(t) are omitted for brevity. Equation (IL8)
was obtained using the representation of the mixed derivati, obtained from[(I5).
Equation[[IB) has exact solutions of the form

v=An+ Bd+C, (19)

whereA = A(t), B = B(t), andC = C(t) are unknown functions determined from an
appropriate system of ordinary differential equationsisTact can be proved by substituting
(@9) into [18) and taking into accouni{(17).

Formula [I9) allows one to arrive at the following importaesult with regard to
solutions of the original equatioh{16). Let= u(¢,z) be a solution to equatioh (IL5). Then
equation[(I) admits the solution

8%u

ou
— A’ - -
U_At+AQ+A6:C+B€)x2’ (20)
whereA = A(t) andB = B(t) satisfy the ordinary differential equations
A+ AL+ (p+¢)A=0, (21)
B; +¢B =0. (22)

The general solution t§ (22) B = C exp (— / qdt ), whereC is an arbitrary constant.

Listed below are some exact solutions to equatiod (15) semtable in terms of
elementary functions and suitable for finding exact sohgido equation[(16) using
formulas [20).

1°. Generalized separable solution rationatin

6v
x+a(t)’
wherea = «a(t) andg = 3(t) are arbitrary functions.

u=—oy(t) + Bt)[z + a(t)] - q=—48, p= 05 +306%

2°. Generalized separable solution exponentialin
/

u=a(t)e " +p5t), p=0, ¢g= X _ off — oy,
(6%

wherea = «(t) ands = ((t) are arbitrary functions and is an arbitrary constant. By
choosing periodic functions agt) andj3(t), one obtains time-periodic solutions.

3°. Multiplicative separable solution periodicin
u=at)sin(cx + C1), «t)=Csrexp |:—I/O'2t + /q(t) dt] ,

p = —o2a?(t), q=q(t)is an arbitrary function

where(Cy, Cy, ando are arbitrary constants. By settig¢t) = vo? + o, (t) with periodic
©(t), one obtains a periodic solution in botrandt.
More complicated solutions to equatién{15) can be foun@@j.|
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3. Some generalizations

Consider the nonlinearth-order equation
c(t)urs + [a(t)u + b(t)x]uzs + d(t) (ugtise — Uttizg) = F(t, g, U, - . ., ul™), (23)
which becomeg (1) fot(¢t) = 1 andd(t) = 0.

1°. General property: ifi(¢, z) is a solution to equatiof (23), then the function

w=ult, z +¢(t) +¥(t),

wherep = ¢(t) andy = ¢(t) are related byi(¢t)v; —a(t)y = c(t)p} —b(t)e (either function
can be chosen arbitrarily), is also a solutionfd (23).

2°. Let us divide[(Z2B) by, differentiate the resulting equation with respectt@nd
then pass to the Crocco variablgk (B), (3) to obtain(the 1)st-order equation
a(t)n + b(t) 91 91 0P o 29

Example. In the special case af = 3, a(t) = b(t) = ¢(t) = 0, d(t) = 1, and
F = [f(uzz)]z, (Z3) is a general boundary layer equation for a non-Newtofiuid [3], with
u being the stream function. By the Crocco transformafidnt{i¥ equation can be reduced
to the second-order equatig®; = ®2[f(®)],,, which can be linearized by the substitution
U=1/0if f(P)=1/2.

Remark.Equation [[2B) can be generalized by adding the argumgnts ., JE™ | with
J = UppUize — UizUzzz, 10 the functionF.

4. Using the Crocco transformation for constructing RF-pars and Backlund
transformations

Consider a fairly generaith-order evolution equation
ug + [a(t)u + b(t)x]uy = F(t, ug, Uge, Uzzas - - - ul™). (24)

General property: ifi(¢, z) is a solution to equatio (24), then the function
u=u(t,z+y(t) +C,
where C' is an arbitrary constant angl = (¢) satisfies the linear ordinary differential
equationy; — b(t)y + Ca(t) = 0, is also a solution td(24).
Differentiating [24) with respect te yields an(n + 1)st-order equation with a mixed
derivative of the form[{1):

0
%F(tauwaummauwwwa- 7uén)) (25)

By passing in[(25) front, x, v to the Crocco variable§](5), we one arrives at titie-order
equation
a(t)yn+2b(t) 01 9 a1 02 0P o290
—_———— t bt =—===—=F(t,n,®,0—,..., —— | .(26
5 Sig AT HHE ST = S F (0 @05 S ) (26)
Equations[(24) and (26) are linked by the Backlund tramsédion
ug + [a(t)u + b(t)zln = F(t,n,®,®,,..., 00" 2),

Uy =1, Ugy = o.

Ui + [a(t)u + b(t)x]ure = —a(t)u® — b(t)u, +

(27)
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Remark.Sometimes, it is convenient to rewrife [26) in the form
0? 1
2 _ —
Uy = [a(t)n” + b(t)n]¥y — [3a(t)n + 2b(t)|¥ = —8—772F, V=3
Example 1.The unnormalized Burgers equation
Uy + autty, = By (28)

is a special case of (P4) with(t) = a = const,b(t) = 0, andF' = fu,, = [P. By the
Backlund transformatio (27), equatién]28) can be reduce

®y — an’*®, + 3an® = BO*P,,,.
Example 2The nonlinear second-order equation

J(t, ug)

xTrx

us + [a(t)u + b(t)z|u, = + g(t,uz) (29)

is a special case df(P4). The Backlund transformafioh (2@yices[(29) to the equation
Ba(tynp+2b(t) 0 1 91 & [f(tn)
o ot & s g | o I

which becomes linear after substitutifig= 1/.
Example 3The unnormalized Burgers Korteweg—de Vries equation

U + Uty = Plzrs (30)
is a special case of (R4)t) = const,b(t) = 0, andF' = fug,, = 3P9P,. The Backlund
transformation[(27) reducds {30) to the equation

oy — an’*®, + 3an® = SO (®D,),,,
which, after submittingd = 6'/2, becomes

0: — a6, + 6and = 56°/26,,,.

Example 4.The nonlinear third-order equation

L, Uy
U + auu, = i ,Bu )umm (31)
uZIXE

can be reduced, using the Backlund transformatlod (27h wit) = 0 and FF =
ft ug)ug g, = f(t,n)@ 2@, followed by substitutingd = 1/, to the linear equation

v, — anQ\I/n = 3an¥ = [f(t,n)Vy]yy-
Example 5The linear third-order equation
Ut = QUggy + Buzz (32)

is a special case df (R4) with = augyy + fuzs = o Phi®, + P, a(t) = 0, andb(t) = 0.
By applying to [32) the Backlund transformatidn27) andritsubstitutingdb = 1/¥, one
arrives at the nonlinear equation

Uy = a(U30,),, + BT 2T,),. (33)
The special cases df (83) with = 0, 3 # 0 andB = 0, o # 0 were copnsidered in [21]
and [3], respectively.
Example 6.The linear fourth-order equatian = au,... is reduced, using the same

transformation as in the preceding example and substitdtia: #'/2, to the nonlinear fourth-
order equation

+ [a(t)n® + b(t)n]

0, = ab*/? (91/297777)7777 :
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Remark Equation[(26) remains unchanged if the spu -+ q(t)z -+ s(t), with arbitrary
functionsp(t), q(t), ands(t), is added to the right-hand side €f{24) and that of the first

equation in[(2F7).
Corollary. If equation [(24) is integrable for some right-hand sidethen the equation
with the more complicated right-hand side+ p(t)u + ¢(t)z + s(t) is also integrable.
Example 1. Since the Burgers equatian + auu, = bu,, iS integrable, the more
complicated equation

ut + auty = bug, + p(t)u + q(t)x + s(t)

is also integrable.
Example 2.Likewise, since the Korteweg—de Vries equation+ auu, = bug., iS
integrable, the more complicated equation

U + autly = by, + p(t)u + q(t)x + s(t)
is also integrable.

5. Extension of the Crocco transformation to the case of thre independent variables.
Application to unsteady boundary-layer equations

Transformation[(b) can be extended to the cases of more @mdigmt variables. In particular,
it can be shown that the Crocco transformation

t,z,y, u=ut,z,y) = t,z,n &=(t,z,n), where n=u,, &=1u,, (34)
reduces the order of theth-order equation
[a(t, z)u + b(t, 2)yluyy + c1(t, 2)ury + c2(t, 2)uay + di(t, ) (uytiry — wrty,)
+ do(t, ) (UyUgy — Uzlyy) = F (T, 2, Uy, Uyy, - - - ,ué")). (35)
Example.Consider the Prandtl system
U + Uy + VUy = VUuyy + f(E, ), (36)
Uy + Uy =0,

which describes a flat unsteady boundary layer with presgradient (. andv the fluid
velocity components) [1-3]. Equations{36) can be redudsd,ntroducing a stream
functionw such that: = w, andv = —w,, to a single third-order equation [1, 3]:

Wy + WyWey — WaWyy = VWyyy + f(L, 2). (37)

This equation is a special case [of(35) (up to the obviousnéargu = w).
Dividing (37) byw,, followed by differentiating with respect tpand passing from z,
y, w to the Crocco variables z, n = wy, ® = wy,, one arrives at the second-order equation

0d o0d 0d , 0%®
which is reduced, with the substitutidn= 1/, to the nonlinear heat equation
ov ov ov 0 (1 0V
— — L) —=v—|—=—)- 39
o "o TGN =g, (qﬂ‘an) (39)

Remark.In the steady-state case witiot = 0 and f (¢, z) = 0, equation[(3B) reduces
to one considered in [1, 3].
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1°. In the special cas¢(t,z) = f(t), equation[(39) admits an exact solution of the
special form

V=267, =a-n+ [ef0dn T

Hence we arrive at the integrable equation

oz 0 1 07
o =va (72¢): o)

which can be reduced to the linear heat equation [3, 21].

2°. In the more general cagét, z) = f(t)x + g(t), we have solutions of the special
form

w=zmﬂ,5=wmww@mwm,7=/w%Ma

wherep = ¢(t), ¥ = ¥(t), andd = 6(t) are determined by the linear system of ordinary
differential equations

ertfY=0, ¢Y;+¢=0, 0,+gyp=0.
As a result, we arrive at an integrable equatfon (40).
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