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Abstract. Wide classes of nonlinear mathematical physics equations are described that
admit order reduction through the use of the Crocco transformation, with a first-order partial
derivative taken as a new independent variable and a second-order partial derivative taken
as the new dependent variable. Associated Bäcklund transformations are constructed for
evolution equations of general form (special cases of whichare Burgers, Korteweg–de Vries,
and many other nonlinear equations of mathematical physics). The results obtained are used
for order reduction and constructing exact solutions of hydrodynamics equations (Navier–
Stokes, Euler, and boundary layer). A number of new integrable nonlinear equations, inclusive
of the generalized Calogero equation, are considered.
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1. Preliminary remarks

The Crocco transformation is used in hydrodynamics for reducing the order of the plane
boundary-layer equations [1–3]. It is a transformation in which a first-order partial derivative
taken as a new independent variable and a second-order partial derivative taken as the new
dependent variable. So far, using the Crocco transformation has been limited solely to the
theory of boundary layer.

The present paper reveals that the domain of application of the Crocco transformation is
much broader. It can be successfully used for reducing the order of wide classes of nonlinear
equations with mixed derivatives and constructing Bäcklund transformations for evolution
equations of arbitrary order and quite general form, special cases of which include Burgers and
Korteweg–de Vries type equations as well as many other nonlinear equations of mathematical
physics. The Bäcklund transformations obtained with the Crocco transformation may, in turn,
be used for constructing new integrable nonlinear equations. Examples of the generalized
Calogero equation and a number of other integrable nonlinear second-, third-, and fourth-
order equations are considered. A generalization of the Crocco transformation to the case of
three independent variables is given.

It is noteworthy that various Bäcklund transformations and their applications to specific
equations of mathematical physics can be found, for example, in [3–14].

In the present paper, the termintegrable equationapplies to nonlinear partial differential
equations that admit solution in terms of quadratures or solutions to linear differential or linear
integral equations.

2. Nonlinear equations that admit order reduction with the Crocco transformation

Consider thenth-order nonlinear equation with a mixed derivative

∂2u

∂t∂x
+ [a(t)u+ b(t)x]

∂2u

∂x2
= F

(
t,
∂u

∂x
,
∂2u

∂x2
,
∂3u

∂x3
, . . . ,

∂nu

∂xn

)
. (1)

1◦. General property: if̃u(t, x) is a solution to equation (1), then the function

u = ũ(t, x+ ϕ(t)) +
1

a(t)
[b(t)ϕ(t) − ϕ′

t(t)], a(t) 6≡ 0, (2)

whereϕ(t) is an arbitrary function, is also a solution to equation (1).If a(t) ≡ 0, then
u = ũ(t, x) + ϕ(t) is another solution to (1).

2◦. Denote

η =
∂u

∂x
, Φ =

∂2u

∂x2
. (3)

Dividing (1) by uxx = Φ, differentiating with respect tox, and taking into account (3), we
obtain

Φt

Φ
−
utxΦx

Φ2
+ a(t)η + b(t) =

∂

∂x

F (t, η,Φ,Φx, . . . ,Φ
(n−2)
x )

Φ
. (4)

Let us pass in (4) from the old variables to the Crocco variables:

t, x, u = u(t, x) =⇒ t, η, Φ = Φ(t, η), (5)

whereη andΦ are defined by (3). The derivatives are transformed as follows:

∂

∂x
=
∂η

∂x

∂

∂η
= uxx

∂

∂η
= Φ

∂

∂η
,

∂

∂t
=

∂

∂t
+
∂η

∂t

∂

∂η
=

∂

∂t
+ utx

∂

∂η
.
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As a result, equation (4), and hence the original equation (1), is reduced to the(n−1)st-order
equation

a(t)η + b(t)

Φ
−
∂

∂t

1

Φ
=

∂

∂η

[
1

Φ
F

(
t, η,Φ,Φ

∂Φ

∂η
, . . . ,

∂n−2Φ

∂xn−2

)]
. (6)

The higher derivatives are calculated by the formulas

∂ku

∂xk
=
∂k−2Φ

∂xk−2
= Φ

∂

∂η

∂k−3Φ

∂xk−3
,

∂

∂x
= Φ

∂

∂η
, k = 3, . . . , n.

Given a solution to the original equation (1), formulas (3) define a solution to equation (6)
in parametric form.

Let Φ = Φ(t, η) be a solution to equation (6). Then, in view of (3), the functionu(t, x)
satisfies the equation

uxx = Φ(t, ux), (7)

which can be treated as an ordinary differential equation inx with parametert. The general
solution to equation (7) may be written in parametric form as

x =

∫ η

η0

ds

Φ(t, s)
+ ϕ(t), u =

∫ η

η0

s ds

Φ(t, s)
+ ψ(t), (8)

whereϕ(t) ψ(t) are arbitrary functions andη0 is an arbitrary constant. Since the derivation
of (6) is based on differentiating (1), one of the arbitrary functions in solution (8) is redundant.
In order to remove this redundancy, it suffices to substitute(8) into (1). However, it more
convenient to take advantage of the solution property (2) and note that solution (8) must also
possess this property. In view of this, the general solutionto the original equation (1) can be
rewritten in the parametric form

x =

∫ η

η0

ds

Φ(t, s)
+ ϕ(t), u =

∫ η

η0

s ds

Φ(t, s)
+

1

a(t)
[b(t)ϕ(t) − ϕ′

t(t)], (9)

whereϕ(t) is an arbitrary function.

Example 1 (generalized Calogero equation).With F = f(t, ux)uxx + g(t, ux), which
corresponds to the nonlinear second-order equation

utx = [f(t, ux) − a(t)u− b(t)x]uxx + g(t, ux), (10)

passing to the Crocco variables (5), (3) leads to the first-order equation

a(t)η + b(t)

Φ
−
∂

∂t

1

Φ
=

∂

∂η

[
f(t, η) +

g(t, η)

Φ

]
,

which becomes linear with the substitutionΦ = 1/Ψ.
In the special case ofa(t) = −1, b(t) = 0, f(t, ux) = 0, andg(t, ux) = g(ux), equation

(10) reduces to the Calogero equation, which was consideredin [15, 16] (see also [3, p. 433–
434]).

Example 2 (equation arising in gravitation theory).The nonlinear third-order equation

utxx = kuuxxx,

which is cross-disciplinary between projective geometry and gravitation theory [16, 17], can
be reduced, by integrating with respect tox, to the form

utx = kuuxx − 1
2kw

2
x + ψ(t), (11)

whereψ(t) is an arbitrary function. Equation (11) is a special case of equation (10), and hence
can be reduced to a linear first-order equation.
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Example 3 (Navier–Stokes and Euler equations).An unsteady three-dimensional flow
of a viscous incompressible fluid may be described by the Navier–Stokes and continuity
equations

∂Vn

∂t
+ V1

∂Vn

∂x
+ V2

∂Vn

∂y
+ V3

∂Vn

∂z

= −
1

ρ
∇nP + ν

(
∂2Vn

∂x2
+
∂2Vn

∂y2
+
∂2Vn

∂z2

)
, n = 1, 2, 3,

∂V1

∂x
+
∂V2

∂y
+
∂V3

∂z
= 0,

(12)

where x, y, and z are Cartesian coordinates,t time, V1, V2, and V3 the fluid velocity
components,P pressure, andρ the fluid density; also∇1P = ∂P/∂x, ∇2P = ∂P/∂y,
and∇3P = ∂P/∂z. Equations (12) are obtained under the assumption that the bulk forces
are potential and included into pressure. In the degeneratecase ofν = 0, equations (12)
become the Euler equations for an ideal (inviscid) fluid.

The equations of motion of a viscous incompressible fluid, (12), admit exact three-
dimensional solutions of the form

V1 = u, V2 = −
1

2
y
∂u

∂x
, V3 = −

1

2
z
∂u

∂x
,

P

ρ
=

1

4
p(t)(y2 + z2) + s(t) −

1

2
u2 + ν

∂u

∂x
−

∫
∂u

∂t
dx,

wherep(t) ands(t) are arbitrary functions of timet, andu = u(t, x) satisfies the nonlinear
third-order equation

∂2u

∂t∂x
+ u

∂2u

∂x2
−

1

2

(
∂u

∂x

)2

= ν
∂3u

∂x3
+ p(t), (13)

which is a special case of equation (1) witha(t) = 1, b(t) = 0, andF = νuxxx + 1
2u

2
x +p(t).

The Crocco transformation (5) brings (13) to the nonlinear second-order equation

∂Φ

∂t
+ [12η

2 + p(t)]
∂Φ

∂η
= νΦ2 ∂

2Φ

∂η2
, (14)

which can be rewritten in the form of a nonlinear equation of convective thermal conduction
with a parabolic, Poiseuille-type velocity profile:

∂Ψ

∂t
+ [12η

2 + p(t)]
∂Ψ

∂η
= ν

∂

∂η

(
1

Φ2

∂Ψ

∂η

)
, Ψ =

1

Φ
.

It should be noted that in the special case of inviscid fluid (ν = 0), the original nonlinear
equation (13) is reducible to the linear first-order partialdifferential equation (14), which can
be solved by the method of characteristics.

Example 4 (system of hydrodynamic-type equations).Consider the system of equations

∂2u

∂t∂x
+ u

∂2u

∂x2
−

(
∂u

∂x

)2

= ν
∂3u

∂x3
+ q(t)

∂u

∂x
+ p(t), (15)

∂v

∂t
+ u

∂v

∂x
− v

∂u

∂x
= ν

∂2v

∂x2
, (16)

which describes several classes of exact solutions to the Navier–Stokes equations in two and
three dimensions [3, 18–20]. The nonlinear equation (15) isindependent ofv and can be
treated separately. Although linear inv, equation (16) involves the functionu, which is
governed by equation (15).
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The Crocco transformation (5) brings system (15)–(16) to the form

∂Φ

∂t
+ (η2 + qη + p)

∂Φ

∂η
= (η + q)Φ + νΦ2 ∂

2Φ

∂η2
, (17)

∂v

∂t
+ (η2 + qη + p)

∂v

∂η
= ηv + νΦ2 ∂

2v

∂η2
. (18)

Here and henceforth, the arguments ofp(t) andq(t) are omitted for brevity. Equation (18)
was obtained using the representation of the mixed derivativeutx obtained from (15).

Equation (18) has exact solutions of the form

v = Aη +BΦ + C, (19)

whereA = A(t), B = B(t), andC = C(t) are unknown functions determined from an
appropriate system of ordinary differential equations. This fact can be proved by substituting
(19) into (18) and taking into account (17).

Formula (19) allows one to arrive at the following importantresult with regard to
solutions of the original equation (16). Letu = u(t, x) be a solution to equation (15). Then
equation (16) admits the solution

v = A′

t +Aq +A
∂u

∂x
+B

∂2u

∂x2
, (20)

whereA = A(t) andB = B(t) satisfy the ordinary differential equations

A′′

tt + qA′

t + (p+ q′t)A = 0, (21)

B′

t + qB = 0. (22)

The general solution to (22) isB = C1 exp

(
−

∫
q dt

)
, whereC1 is an arbitrary constant.

Listed below are some exact solutions to equation (15) representable in terms of
elementary functions and suitable for finding exact solutions to equation (16) using
formulas (20).

1◦. Generalized separable solution rational inx:

u = −α′

t(t) + β(t)[x + α(t)] −
6ν

x+ α(t)
, q = −4β, p = β′

t + 3β2,

whereα = α(t) andβ = β(t) are arbitrary functions.

2◦. Generalized separable solution exponential inx:

u = α(t)e−σx + β(t), p = 0, q =
α′

t

α
− σβ − σ2ν,

whereα = α(t) andβ = β(t) are arbitrary functions andσ is an arbitrary constant. By
choosing periodic functions asα(t) andβ(t), one obtains time-periodic solutions.

3◦. Multiplicative separable solution periodic inx:

u = α(t) sin(σx + C1), α(t) = C2 exp

[
−νσ2t+

∫
q(t) dt

]
,

p = −σ2α2(t), q = q(t) is an arbitrary function,

whereC1, C2, andσ are arbitrary constants. By settingq(t) = νσ2 + ϕ′

t(t) with periodic
ϕ(t), one obtains a periodic solution in bothx andt.

More complicated solutions to equation (15) can be found in [20].
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3. Some generalizations

Consider the nonlinearnth-order equation

c(t)utx + [a(t)u+ b(t)x]uxx + d(t)(uxutx − utuxx) = F (t, ux, uxx, . . . , u
(n)
x ), (23)

which becomes (1) forc(t) = 1 andd(t) = 0.

1◦. General property: if̃u(t, x) is a solution to equation (23), then the function

u = ũ(t, x+ ϕ(t)) + ψ(t),

whereϕ = ϕ(t) andψ = ψ(t) are related byd(t)ψ′

t−a(t)ψ = c(t)ϕ′

t−b(t)ϕ (either function
can be chosen arbitrarily), is also a solution to (23).

2◦. Let us divide (23) byuxx, differentiate the resulting equation with respect tox, and
then pass to the Crocco variables (5), (3) to obtain the(n− 1)st-order equation

a(t)η + b(t)

Φ
− [d(t)η + c(t)]

∂

∂t

1

Φ
=

∂

∂η

[
1

Φ
F

(
t, η,Φ,Φ

∂Φ

∂η
, . . . ,

∂n−2Φ

∂xn−2

)]
.

Example. In the special case ofn = 3, a(t) = b(t) = c(t) = 0, d(t) = 1, and
F = [f(uxx)]x, (23) is a general boundary layer equation for a non-Newtonian fluid [3], with
u being the stream function. By the Crocco transformation (5), this equation can be reduced
to the second-order equationηΦt = Φ2[f(Φ)]ηη, which can be linearized by the substitution
Ψ = 1/Φ if f(Φ) = 1/Φ.

Remark.Equation (23) can be generalized by adding the argumentsJx, . . . ,J (m)
x , with

J = uxxutxx − utxuxxx, to the functionF .

4. Using the Crocco transformation for constructing RF-pairs and Bäcklund
transformations

Consider a fairly generalnth-order evolution equation

ut + [a(t)u + b(t)x]ux = F (t, ux, uxx, uxxx, . . . , u
(n)
x ). (24)

General property: if̃u(t, x) is a solution to equation (24), then the function

u = ũ(t, x+ ψ(t)) + C,

whereC is an arbitrary constant andψ = ψ(t) satisfies the linear ordinary differential
equationψ′

t − b(t)ψ + Ca(t) = 0, is also a solution to (24).
Differentiating (24) with respect tox yields an(n + 1)st-order equation with a mixed

derivative of the form (1):

utx + [a(t)u + b(t)x]uxx = −a(t)u2
x − b(t)ux +

∂

∂x
F (t, ux, uxx, uxxx, . . . , u

(n)
x ). (25)

By passing in (25) fromt, x, u to the Crocco variables (5), we one arrives at thenth-order
equation

3a(t)η + 2b(t)

Φ
−
∂

∂t

1

Φ
+[a(t)η2 +b(t)η]

∂

∂η

1

Φ
=

∂2

∂η2
F

(
t, η,Φ,Φ

∂Φ

∂η
, . . . ,

∂n−2Φ

∂xn−2

)
.(26)

Equations (24) and (26) are linked by the Bäcklund transformation

ut + [a(t)u + b(t)x]η = F (t, η,Φ,Φx, . . . ,Φ
(n−2)
x ),

ux = η, uxx = Φ.
(27)
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Remark.Sometimes, it is convenient to rewrite (26) in the form

Ψt − [a(t)η2 + b(t)η]Ψη − [3a(t)η + 2b(t)]Ψ = −
∂2

∂η2
F, Ψ =

1

Φ
.

Example 1.The unnormalized Burgers equation

ut + auux = βuxx (28)

is a special case of (24) witha(t) = a = const,b(t) = 0, andF = βuxx = βΦ. By the
Bäcklund transformation (27), equation (28) can be reduced to

Φt − aη2Φη + 3aηΦ = βΦ2Φηη.

Example 2.The nonlinear second-order equation

ut + [a(t)u + b(t)x]ux =
f(t, ux)

uxx
+ g(t, ux) (29)

is a special case of (24). The Bäcklund transformation (27)reduces (29) to the equation

3a(t)η + 2b(t)

Φ
−
∂

∂t

1

Φ
+ [a(t)η2 + b(t)η]

∂

∂η

1

Φ
=

∂2

∂η2

[
f(t, η)

Φ
+ g(t, η)

]
,

which becomes linear after substitutingΦ = 1/Ψ.
Example 3.The unnormalized Burgers Korteweg–de Vries equation

ut + auux = βuxxx (30)

is a special case of (24)a(t) = const,b(t) = 0, andF = βuxxx = βΦΦη. The Bäcklund
transformation (27) reduces (30) to the equation

Φt − aη2Φη + 3aηΦ = βΦ2(ΦΦη)ηη,

which, after submittingΦ = θ1/2, becomes

θt − aη2θη + 6aηθ = βθ3/2θηηη.

Example 4.The nonlinear third-order equation

ut + auux =
f(t, ux)

u3
xx

uxxx (31)

can be reduced, using the Bäcklund transformation (27) with b(t) ≡ 0 and F =
f(t, ux)u−3

xxuxxx = f(t, η)Φ−2Φη followed by substitutingΦ = 1/Ψ, to the linear equation

Ψt − aη2Ψη − 3aηΨ = [f(t, η)Ψη]ηη.

Example 5.The linear third-order equation

ut = αuxxx + βuxx (32)

is a special case of (24) withF = αuxxx + βuxx = α PhiΦη + βΦ, a(t) ≡ 0, andb(t) ≡ 0.
By applying to (32) the Bäcklund transformation (27) and then substitutingΦ = 1/Ψ, one
arrives at the nonlinear equation

Ψt = α(Ψ−3Ψη)ηη + β(Ψ−2Ψη)η. (33)

The special cases of (33) withα = 0, β 6= 0 andβ = 0, α 6= 0 were copnsidered in [21]
and [3], respectively.

Example 6.The linear fourth-order equationut = αuxxxx is reduced, using the same
transformation as in the preceding example and substitutingΦ = θ1/2, to the nonlinear fourth-
order equation

θt = αθ3/2(θ1/2θηη)ηη.
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Remark.Equation (26) remains unchanged if the sump(t)u+q(t)x+s(t), with arbitrary
functionsp(t), q(t), ands(t), is added to the right-hand side of (24) and that of the first
equation in (27).

Corollary. If equation (24) is integrable for some right-hand sideF , then the equation
with the more complicated right-hand sideF + p(t)u + q(t)x+ s(t) is also integrable.

Example 1. Since the Burgers equationut + auux = buxx is integrable, the more
complicated equation

ut + auux = buxx + p(t)u+ q(t)x + s(t)

is also integrable.
Example 2. Likewise, since the Korteweg–de Vries equationut + auux = buxxx is

integrable, the more complicated equation

ut + auux = buxxx + p(t)u + q(t)x+ s(t)

is also integrable.

5. Extension of the Crocco transformation to the case of three independent variables.
Application to unsteady boundary-layer equations

Transformation (5) can be extended to the cases of more independent variables. In particular,
it can be shown that the Crocco transformation

t, x, y, u = u(t, x, y) =⇒ t, x, η, Φ = Φ(t, x, η), where η = uy, Φ = uyy, (34)

reduces the order of thenth-order equation

[a(t, x)u + b(t, x)y]uyy + c1(t, x)uty + c2(t, x)uxy + d1(t, x)(uyuty − utuyy)

+ d2(t, x)(uyuxy − uxuyy) = F (t, x, uy, uyy, . . . , u
(n)
y ). (35)

Example.Consider the Prandtl system

ut + uux + vuy = νuyy + f(t, x),

ux + vy = 0,
(36)

which describes a flat unsteady boundary layer with pressuregradient (u and v the fluid
velocity components) [1–3]. Equations (36) can be reduced,by introducing a stream
functionw such thatu = wy andv = −wx, to a single third-order equation [1, 3]:

wty + wywxy − wxwyy = νwyyy + f(t, x). (37)

This equation is a special case of (35) (up to the obvious renamingu ⇄ w).
Dividing (37) bywyy followed by differentiating with respect toy and passing fromt, x,

y, w to the Crocco variablest, x, η = wy, Φ = wyy, one arrives at the second-order equation

∂Φ

∂t
+ η

∂Φ

∂x
+ f(t, x)

∂Φ

∂η
= νΦ2 ∂

2Φ

∂η2
, (38)

which is reduced, with the substitutionΦ = 1/Ψ, to the nonlinear heat equation

∂Ψ

∂t
+ η

∂Ψ

∂x
+ f(t, x)

∂Ψ

∂η
= ν

∂

∂η

(
1

Ψ2

∂Ψ

∂η

)
. (39)

Remark.In the steady-state case with∂/∂t = 0 andf(t, x) = 0, equation (38) reduces
to one considered in [1, 3].
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1◦. In the special casef(t, x) = f(t), equation (39) admits an exact solution of the
special form

Ψ = Z(ξ, τ), ξ = x− ηt+

∫
tf(t) dt, τ =

1

3
t3.

Hence we arrive at the integrable equation

∂Z

∂τ
= ν

∂

∂ξ

(
1

Z2

∂Z

∂ξ

)
, (40)

which can be reduced to the linear heat equation [3, 21].

2◦. In the more general casef(t, x) = f(t)x + g(t), we have solutions of the special
form

Ψ = Z(ξ, τ), ξ = ϕ(t)x + ψ(t)η + θ(t), τ =

∫
ψ2(t) dt,

whereϕ = ϕ(t), ψ = ψ(t), andθ = θ(t) are determined by the linear system of ordinary
differential equations

ϕ′

t + fψ = 0, ψ′

t + ϕ = 0, θ′t + gψ = 0.

As a result, we arrive at an integrable equation (40).
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[5] Miura R M (ed) 1975Bäcklund Transformations(Berlin: Springer-Verlag)
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