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Abstract

The present subject, Maple and standing waves, can be considered as a blend of
physics, mathematics, and computer science that has led to powerful methods for
solving many complex problems in science and engineering. Consequently, the sub-
ject can be considered from the point of view of a physicist and a mathematician,
for creating a mathematical model of a physical problem and a method for solving
the problem; of a computer scientist, for implementing it in Maple or modifying
it for its optimal operation. The present article can be divided in two parts, the
description of Maple; and standing waves with Maple. The material of the present
paper can be used in several undergraduate and graduate courses, as well as for
solving new research problems.

1 Introduction to Maple

Many problems in various branches of science and engineering often require cum-
bersome analytic computations, that are difficult and in many cases impossible to
perform by hand. The need to perform extensive analytic computations for those
problems has led to the idea of using a computer as a tool.

The first two articles describing analytic calculations performed with the aid of
a computer were published in 1953, see Calmet and van Hulzen (1983). In the
early 70’s, systems of analytic computations (SAC), or computer algebra systems
(CAS), began to appear. Computer algebra systems are computational interactive
programs that facilitate symbolic mathematics. The first popular systems were Re-
duce, Derive, and Macsyma, which are still available. Macsyma is one of the oldest
and most mature systems. It was developed at the Massachusetts Institute of Tech-
nology (MIT) but practically its evolution has stopped. But a free software version
of Macsyma, Maxima, is actively being maintained. To the present day, more than
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100 computer algebra systems have been developed. All these systems can be con-
ventionally subdivided into two classes, specialized and general-purpose computer
algebra systems, see Akritas (1989), Calmet and van Hulzen (1983), and Grosheva
and Efimov (1988).

In the present work, we consider the general-purpose computer algebra system
Maple. This system is one of the most popular powerful reliable systems being
used worldwide by research mathematicians, scientists, engineers, and students.
The computer algebra system Maple was developed at the University of Waterloo,
in the 1980’s, see Char et al. (1990) and Geddes et al. (1992). Maple includes a
rich set of functions that makes it comparable to the Macsyma in symbolic power,
see Grosheva and Efimov (1988). Maple incorporates many of the best features of
other systems developed in the late 1960s. It is written in C language and has been
ported to many operating systems. With the realization of symbolic, numeric, and
graphic calculus, Maple becomes the most powerful tool for students, professors,
scientists, and engineers.

In Sections 1–5, we present the brief description of computer algebra system Maple,
considering different areas of mathematics (e.g., differential, integral, and vector
calculus, 2D and 3D graphic visualization, solutions of equations). In Sections 6 and
7, we describe standing waves in strings and fluids applying Maple. Research in the
theory of waves leads to the consideration of a linear hyperbolic partial differential
equation, called the wave equation. The wave equation is a fundamental equation
and one of many equations which admit periodic solutions and describe a number
of physical phenomena that are observed in many situations and different media.
In Section 6 we consider the mathematical description of standing waves that can
be observed in infinite and fixed strings, and in Section 7 we consider nonlinear
standing waves in fluids. Applying the perturbation theory, Lagrangian formulation
of the problem, and Maple, we show the construction of high order asymptotic
solutions to a nonlinear system of partial differential equations and their graphic
illustrations.

1.1 Basic features of Maple

◦ Fast symbolic and numerical computation, and interactive visualization;
◦ easy to use, help can be found within the program or on the Internet;
◦ extensibility; accessible to large numbers of students and researchers;
◦ available for almost all operating systems;
◦ powerful programming language, intuitive syntax, easy debugging;
◦ extensive library of mathematical functions and specialized packages;
◦ two forms of interactive interfaces: a command-line and a graphic environment;
◦ free resources (Maple Application Center), collaborative character of development
(Maple Community);
◦ understandable, open-source software development path.
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1.2 Design of Maple

◦ Maple consists of three parts: the interface, the kernel (basic computational en-
gine), and the library.

◦ The interface and the kernel form a smaller part of the system, which has been
written in the programming language C; they are loaded when a Maple session
is started. The interface handles input of mathematical expressions and display
of expressions, plots functions, and supports other user communication with the
system. The medium of the interface is the Maple worksheet. The kernel interprets
the user input and carries out the basic algebraic operations, and deals with storage
management.

◦ The library consists of two parts: the basic library and additional packages. The
basic library includes many functions in which resides most of the mathematical
knowledge of Maple and that has been coded in the Maple language.

◦ Maple Language is a high-level programming language, well-structured, compre-
hensible. It supports a large collection of data structures or Maple objects (functions,
sequences, sets, lists, arrays, tables, matrices, vectors, etc.) and operations on these
objects (type-testing, selection, composition, etc.). The Maple procedures in the li-
brary are available in readable form. The library can be complemented with locally
developed programs and packages.

1.3 Basic rules

◦ Basic arithmetical operators: + - * / ^ .

◦ Logical operators: and, or, xor, implies, not. Relational operators: <, <=,
>, >=, =, <>.

◦ A variable, is a combination of letters, digits, or the underline symbol ( ), begin-
ning with a letter, e.g., var, a12 new.

◦ Abbreviations for the longer Maple functions or any expressions: alias, e.g.
alias(H=Heaviside); diff(H(t),t); to remove this alias, alias(H=H);

◦ Maple is case sensitive: there is a difference between lower-case and upper-case
letters, e.g. evalf(Pi) and evalf(pi).

◦ Various reserved keywords, symbols, names, and functions: these words cannot
be used as variable names, e.g., operator keywords, additional language keywords,
global names that start with ( ) (see ?reserved, ?ininames, ?inifncs, ?names).
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◦ The assignment/unassignment operators: a variable can be “free” (with no as-
signed value) or assigned any value (symbolic, numeric) by the assignment operators
a:=b or assign(a=b). To unassign (clear) an assigned variable: x:=’x’, evaln(x),
or unassign(’x’).

◦ The difference between the operators (:=) and (=): the operator var:=expr is used
to assign expr to the variable var, and the operator A=B — to indicate equality (not
assignment) between the left- and the right-hand sides (see ?rhs), Equation:=A=B;
Equation; rhs(Equation); lhs(Equation);

◦ Statements (we denote stat), are input instructions from the keyboard that are
executed by Maple (e.g. break, by, do, end, for, if, proc, restart, return, save).

◦ The new worksheet (or the new problem) it is best to begin with the statement
restart for cleaning Maple’s memory. All examples and problems in the paper
assume that they begin with restart.

◦ The statement separators: semicolon (;) and colon (:). The result of the statement
will be displayed with semicolon (;), and it will not be displayed if followed by a
colon (:), compare plot(sin(x), x=0..Pi); and plot(sin(x), x=0..Pi):

◦ An expression (expr) is a valid statement, and is formed as a combination of
constants, variables, operators and functions.

◦ Data types: every expression is represented as a tree structure in which each node
(and leaf) has a particular data type. For the analysis of any node and branch, the
functions type, whattype, nops, op can be used.

◦ A boolean expression (bexpr) is formed with the logical operators and the relational
operators.

◦ An equation (Eq) is represented using the binary operator =, and has two operands,
the left-hand-side lhs and the right-hand side rhs.

◦ Inequalities (Ineq) are represented using the relational operators and has two
operands, the left-hand-side lhs and the right-hand side rhs.

◦ A string is a sequence of characters having no value other than itself, cannot be
assigned to, and will always evaluate to itself. x := "string";, and sqrt(x); is
an invalid function. Names and strings, can be used with convert and printf.

◦ If you get no response or an incorrect response, you may have entered or executed
the statement incorrectly. Do correct the statement or interrupt the computation
(the stop button in the Tool Bar menu).

◦ Types of brackets: parentheses (expr) — grouping, (x+9)*3, the function ar-
guments, sin(x); square brackets [expr] — lists, [a,b,c,d], vectors, matrices,
arrays; curly brackets {expr} — sets, {a,b,c,d}.
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◦ Types of quotes: forward-quotes ’expr’ — to delay evaluation of expression,
’x+9+1’, to clear variables, x:=’x’; back-quotes ‘expr‘ — to form a symbol or
a name, ‘the name:=7‘;k:=5; print(‘the value of k is‘,k); double-quotes
"expr" — to create strings, a single " — to delimit strings.

◦ Comments can be included with the sharp sign # and all characters following it
up the end of a line.

◦ Maple source code can be viewed for most of the functions (package functions):
interface(verboseproc=2);readlib(map);readlib(‘plots/arrow‘);

◦ Help system: Maple contains a complete online help system. You can use: ?name,
help(name), or the Help menu, or by highlighting a function and then pressing F1
(in Maple ≥ 9).

◦ Maple worksheets: Maple worksheets are files that document a working process
and organize it as a collection of expandable groups (see ?worksheet, ?shortcut).

◦ Palettes can be used for building or editing mathematical expressions without
remembering the Maple syntax (View->Palettes->ShowAllPalettes).

◦ The Maplet User Interface (available in Maple ≥ 8) consists of Maplet applications
that are collections of windows, dialogs, actions (see ?Maplets).

◦ Packages: in addition to the standard library functions, a number of specialized
functions are available in various packages (subpackages) (see ?index[package]).
A package (subpackage) function can be loaded in the form (see ?with):

with(package); function(arguments);
with(package[subpackage]); function(arguments);

◦ Previous results (during a session) can be used with symbols % (the last result),
%% (the next-to-last result), %%...%, k times, (the kth previous result).

◦ First steps: we type the Maple function to the right of the prompt symbol >,
and at the end of the command we place a semicolon, and then press Enter (or
Shift+Enter to continue the function on the next line). Maple evaluates, displays
the result, and inserts a new prompt.

1.4 Numerical evaluation

◦ Maple gives an exact answer to arithmetic expressions with integers and reduces
fractions. When the result is an irrational number, the output has unevaluated form.

◦Most computers represent both integer and floating point numbers internally using
the binary number system. Maple represents the numbers in the decimal number
system using a user-specified precision.
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◦ Numerical approximations: global and local changing a user-specified precision,
respectively, with the environment variable Digits (see ?Digits, ?environment)
and with the function evalf(expr,n).

1.5 Predefined constants and functions

◦ Types of numbers: integers, fractions, floating-point numbers, complex numbers,
e.g. {-55,5/6,3.4,-2.3e4,Float(23,-45),3-4*I,Complex(2/3,3)}.

◦ Predefined constants: symbols for definitions of commonly used mathematical con-
stants (e.g., true,gamma,infinity,Pi,I,exp(1)), see ?ininame, ?constants.

◦ Active and inert functions: the active functions (beginning with a lower-case letter)
is used for computing; the inert functions (beginning with a capital letter) is used
for showing steps in solving process (e.g., diff, Diff, int, Int, limit, Limit).

◦ Library (predefined) functions and user-defined functions. Predefined functions:
most of the well known functions are predefined by Maple and they are known
to some Maple functions (e.g., diff, evalc, evalf, expand). Numerous special
functions are defined.

◦ Elementary trascendental functions: the exponential and logarithmic functions,
the trigonometric and hyperbolic functions and their inverses,

exp(x); ln(x); log[b](x); log10(x); sin(x); cos(x);
tan(x); cot(x); sec(x); csc(x); sinh(x); cosh(x);
tanh(x); coth(x); sech(x); csch(x);arcsin(x);arccos(x);
arctan(x); arccot(x); arcsec(x); arccsc(x); arcsinh(x);
arccosh(x); arctanh(x); arccoth(x); arcsech(x); arccsch(x);

◦ Other useful functions: max/min, maximum/minimum values of a sequence of real
values; round, floor, ceil, trunc, frac, converting real numbers to nearby in-
tegers, and the fractional part or real numbers.

1.6 Expressions: evaluation and simplification

◦ Evaluation:

subs(x=a, expr); eval(expr, x=a);
subs(x=a, y=b, expr); eval(expr, {x=a, y=b});
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◦ Univariate, multivariate polynomials, and polynomials over a number ring and a
field, see ?polynomials.

◦ Manipulation with polynomials: extract polynomial coefficients, coeff, coeffs,
lcoeff, tcoeff; determine the degree and the lowest degree of a polynomial,
degree, ldegree; group the coefficients of like terms together, collect; perform ex-
act polynomial division, divide; find exact roots of an univariate polynomial over
an algebraic number field, roots; sort a polynomial, sort; test for polynomials,
type[polynom],

coeff(p,x,n); coeffs(p,x); lcoeff(p,x); tcoeff(p,x);
degree(p,x); ldegree(p,x); collect(p,x); divide(p,q);
roots(p, x); sort(p, x); type(p, polynom);

I Define the univariate polynomial y = anx
n + · · ·+ a1x+ a0 (n = 1, . . . , 10):

n:=10;
y:=add(a||i*x^i,i=0..n); y:=add(cat(a,i)*x^i,i=0..n);
y:=a0+add(cat(a,i)*x^i,i=1..n); y:=a0+sum(’cat(a,i)*x^i’,’i’=1..n);
y:=convert([’a||i*x^i’$’i’=0..n],‘+‘);
a:=array(0..n); S:=a[0];
for i from 1 to n do S:=S + a[i]*x^i; od: y:=S;

◦ Algebraic simplification: factorize over an algebraic number field, factor; dis-
tribute products over sums, expand; combine terms into a single term, combine;
evaluate in an algebraic number field, evala, eval; extract the numerator and
the denominator of an expression, numer, denom; apply simplification rules to ex-
pressions, simplify; find factored normal form, normal; pattern matching, match;
extension of the domain of computation for many functions, frontend; change the
form of an expression, convert; manipulations of large expressions, map, manipula-
tions with trigonometric expressions, simplify, combine, testeq,

factor(expr); expand(expr); combine(expr); evala(expr);
numer(expr); denom(f); simplify(expr); normal(expr);
match(expr=pattern,var,’s’); frontend(expr,var);
convert(expr,form,var); map(function,expr);
simplify(expr,trig); combine(expr,trig); testeq(expr1=expr2);

f := (x^3+2*x^2-x-2)/(x^3+x^2-4*x-4); F:=(x+y+1)^3*(x+3*y+3)^2;
factor(numer(f)); factor(denom(f)); simplify(f);
convert(f,parfrac,x); B:=collect(F,x); C:=map(factor,B);
assume(x>0, y>0); expand([ln(x*y), ln(x^y), (x*y)^z]);
assume(t>0); combine([exp(t)*exp(p), t^p*t^q, ln(t)+ln(p)]);
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2 Functions and procedures

2.1 Definition, evaluation, and composition of functions

◦ User-defined functions: a function in general form name(args)=expr is defined as
a functional operator (see ?->). For instance, the functions of one or many variables
f(x) =expr, f(x1, . . . , xn) =expr, the vector functions of one or many variables
f(x) = (x1, . . . , xn), f(x1, . . . , xn) = 〈f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)〉 are defined
as follows:

f:=x -> expr; f:=(x1,...,xn) -> expr; f:=x -> [x1,...,xn];
f:=(x1,...,xn) -> [f1(x1,...,xn),...,fn(x1,...,xn)];

◦ Alternative definitions of functions: with the function unapply (that converts an
expression to a function) and with the function proc (that defines a procedure),

f := unapply(expr, x); f := proc(x) expr end;

◦ Evaluation of functions:

f(a); subs(x=a, f(x)); eval(f(x),x=a);
f(a, b); subs(x=a, y=b, f(x, y)); eval(f(x, y),{x=a, y=b});

◦ Composition operator: @, e.g. the function compositions (f1 ◦ f2 ◦ · · · ◦ fn)(x) or
(f ◦ f ◦ · · · ◦ f)(x), n-times,

(f1 @ f2 @f3 @ ... @fn)(x); (f @@ n)(x);

I Graph the real roots of the equation x3 + (a− 3)3x2− a2x+ a3 = 0 for a ∈ [0, 1]:

Sol := [solve(x^3 +(a-3)^3*x^2 -a^2*x +a^3 =0, x)];
for i from 1 to 3 do R || i := unapply(Sol[i], a):

print(plot(R || i(a), a = 0..1, numpoints=500)); od:

I Define the vector function f(x, y) = 〈cos(x2 − y2), sin(x2 − y2)〉 and calculate
f(1, 2), f(π,−π):

f:=(x,y)->[cos(x^2-y^2),sin(x^2-y^2)]; evalf(f(1,2)); f(Pi,-Pi);

8



I For the functions f(x) = x2 and g(x) = x + sinx calculate the function compo-
sitions (f ◦ g ◦ f)(x) and (f ◦ f ◦ f ◦ f)(x):

f := x -> x^2; g := x -> x+sin(x);
f(g(f(x))); (f@g@f)(x); f(f(f(f(x)))); (f@@4)(x);

2.2 Piecewise continuous functions

◦ Piecewise continuous functions can be defined with piecewise or as a procedure
with the control statement if:

f:=x -> piecewise(cond1,expr1,expr2);
g:=x -> piecewise(cond1,expr1,cond2,expr2,expr3);
f:=proc(x) if cond1 then expr1 else expr2 fi: end:
g:=proc(x) if cond1 then expr1 elif cond2 then expr2

else expr3 fi: end:

I Define and graph the function g(x) =


0, |x| > 1

1− x, 0 ≤ x ≤ 1

1 + x, −1 ≤ x ≤ 0

, x ∈ [−3, 3]:

g:=x->piecewise(x>=-1 and x <=0,1+x,x>=0 and x<=1,1-x,0);
plot(g(x), x=-3..3);
g := proc(x) if x >= -1 and x <= 0 then 1+x

elif x >= 0 and x <= 1 then 1-x
else 0 fi: end;

plot(g, -3..3);

2.3 Procedures

◦ A procedure (see ?procedure) is a block of statements which one needs to use
repeatedly. A procedure can be used to define functions, matrices, graphs, etc.,

proc(args) local v1; global v2; options opts; stats; end proc;

where args is a sequence of arguments, v1 and v2 are the names of local and global
variables, opts are special options (see ?options), and stats are statements that
are realized inside the procedure.
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◦ Recursive procedures which calls itself until a condition is satisfied are defined with
the option remember:

I Calculate the first 3000 Fibonacci numbers and the computation time, where
F (n) = F (n− 1) + F (n− 2), F (0) = 0, F (1) = 1:

Fib := proc(n::integer) option remember;
if n<=1 then n else Fib(n-1) +Fib(n-2) fi; end;

NF:=NULL: for i from 10 to 40 do NF:=NF, Fib(i); od: NF:=[NF];
ti := time(): Fib(3000); tt := time()-ti;

2.4 Control structures

◦ In Maple language there are essentially the two control structures: the selection
structure if and the repetition structure for:

if cond1 then expr1 else expr2 fi;
if cond1 then expr1 elif cond2 then expr2 else expr3 fi;
for i from i_ini by step to i_last do stats od;
for i from i_ini by step to i_last while cond1 do stats od;

where cond1, cond2 are conditions, expr1, expr2 are expressions, stats are state-
ments, i, i ini, i last are the loop variable and the initial and the last values
of i. These operators can be nested. The operators break, next, while inside the
loop are used for breaking out of a loop, to proceed directly to the next iteration,
or for an additional condition.

I Define the function double factorial for any integer n: n!! = n(n − 2)(n −
4) · · · (4)(2) if n is even, and n!! = n(n− 1)(n− 3) · · · (3)(1) if n is odd:

N1 := 20; N2 := 41;
DF := proc(N) local P, i1, i; P := 1;

if modp(n, 2) =0 then i1:=2 else i1:=1 fi:
for i from i1 by 2 to N do P:=P*i; od: end:

printf(" %7.0f!! = %20.0f", N1, DF(N1));
printf(" %7.0f!! = %20.0f", N2, DF(N2));

2.5 Basic objects and operations

◦ Basic objects or data structures, sequences, lists, sets, tables, arrays, vectors,
matrices, are used for representing more complicated data.
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Sequence1 := expr1, expr2, expr3, ..., exprn;
Sequence2 := seq(f(i), i=a..b);
List1 := [Sequence1]; Set1 := {Sequence1};
Table1 := table([expr1 = A1,..., exprN = AN]);
Array1 := array(n..m);
Vec1 := array(1..n, [al, al, ..., an]);
Vec2 := Vector(<a1,a2,a3,...,an>);
Mat1 := array(1..n,1..m,[[a11,...,alm],...,[an1,...,anm]]);
with(linalg): Mat2 := matrix(n, m, [a11, a12, ..., anm]]);
Mat_3:=Matrix(<<a11,a21,a31>|<a12,a22,a32>|<a13,a23,a33>>);
Mat4 := Matrix([[a11,a12],[a21,a22],[a31,a32]]);

◦ Sequences, lists, sets: are groups of expressions. Maple preserves the order and
repetition in sequences and lists and does not preserves in sets. The order in sets
can change during a Maple session. A table is a group of expressions represented in
tabular form. Each entry has an index (an integer or any arbitrary expression) and
a value (see ?table). An array is a table with integer range of indices (see ?array).
In Maple arrays can be of any dimension (depending of computer memory). A
vector is a one-dimensional array with integer positive range of indices (see ?vector,
?Vector). A matrix is a two-dimensional array with integer positive range of indices
(see ?matrix, ?Matrix):

Seq1 := x, y, z, a, b, c;
List1 := [1,sin(x),cos(x),sin(2*x),cos(2*x),sin(3*x),cos(3*x)];
Set1 := {x, y, z}; Arr1:= array(-1..3);
Arr2 := array(1..4, [1, 2, 3, 4]); Arr3 := array([1, 2, 3, 4]);

◦ Basic operations with objects.

◦ Create the empty structures, NULL, :=, [ ]:

Seq1 := NULL; List1 := [ ]; List_2 := NULL; Set1 := {};
Tab1 := table(); Array1 := array(-10..10);
Vec1 := vector(10); Matrix1 := matrix(10, 10);

◦ Concatenate two structures, ||, op, [ ], cat:

Seq3 := Seq1 || Seq2; Seq3 := cat(Seq1, Seq2);
List 3 := [op(List1, List2)];

◦ Extract an i’th element from a structure, [ ], op, select, has:

List1[i]; op(i, List1); Array1[i, j];
op(i, Set1); select(has, Set1, element);
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◦ Determine the number of elements in a structure, nops:

nops(List1); nops(Set1);

◦ Create a substructure, op, [ ]:

List2 := [op(n1..n2, List1)]; List2 := List1[n1..n2];

where n1 ≤ n2 ≤ n and n is a number of elements of List1.

◦ Determine total structure inside the other structure, op, evalm, print:

op(List1); evalm(Matrix1); print(Array1);

◦ Replace the i’th element of a structure, :=, [ ], subsop, subs, evalm:

List1[i] := val; subsop(i=val, List1);
A1 := subs(A[i,j]=a+b, evalm(A));

◦ Insert an element or some elements into a structure, [ ], op:

List2:=[op(List1), A1]; List2:=[A1, op(List1)];
List3:=[op(n1..n2,List1), A1, A2, A3, A4, op(List2)];

◦ Create a structure according to a formula or with some properties (e.g., symmetric,
identity, diagonal, sparse), seq, matrix, vector, array:

List1 := [seq(f(i), i = n..m)];
Matrix1 := matrix(2, 2, (i,j) -> i+j);
Vector1 := vector(2, i -> i^2);

◦ The union and intersection of sets, removing elements of sets, the sum, difference,
multiplication, division, scalar multiplication of matrices, union, intersect, minus,
remove,has, evalm, &*:

Set3 := Set1 union Set2; Set3 := Set1 intersect Set2;
Set3 := Set1 minus Set2; Set2 := remove(has, Set1, A1);
Mat3 := evalm(M1 &* M2);

◦ Apply a function to each element of a structure, map:

Set2 := map(func, Set1);

I Observe the function behavior y(x) = cos(6(x− a sinx)), x ∈ [−π, π], a ∈ (1
2 ,

3
2):

with(plots): y := x -> cos(6*(x-a*sin(x))); G:=NULL; N:=20;
for i from 0 to N do a:=1/2+i/N; G:=G,plot(y(x),x=-Pi..Pi); od:
G := [G]: display(G, insequence=true);
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3 Graphic visualization

3.1 Simple graphs and various options

◦ Graphs of real values of expr or the functions f(x), f(x, y), x ∈ [x1, x2], (x, y) ∈
[x1, x2]× [y1, y2]:

f:=expr; plot(f, x1..x2, opts);
f:=x->expr; plot(f(x), x= x1..x2, opts);
f:=(x,y)->expr; plot3d(f(x,y),x=x1..x2, y=y1..y2, opts);

◦ All the graphs can be drawn with various versions of plot and the package
plots. The function plot has various forms (e.g., logplot, odeplot, plot3d, etc.)
and various optional arguments which define the final figure (see ?plot[options],
?plot3d[options]), e.g., light setting, legends, axis control, titles, gridlines, real-
time rotation of 3D graphs, wide variety of coordinate systems, etc.

g := x -> exp(-(x-3)^2*cos(Pi*x)^2);
plot(g(x), x=0..6, tickmarks=[4, 4], title=‘Graph of g(x)‘);
plot(tan(x), x=-2*Pi..2*Pi, y=-4..4, discont=true);
Points := [[1,2],[2,3],[3,5],[4,7],[5,11],[6,13],[7,17],[8,19]];
plot(Points, style = point); plot(Points, style = line);

◦ The global options for 2D and 3D graphs can be introduced with setoptions,
setoptions3d (see ?plots):

with(plots);
setoptions(axes=boxed, title=‘graph of f(x)‘);
setoptions3d(axes=normal, title=‘graph of g(x, y)‘);

3.2 Multiple graphs

◦ A list or a set of functions in the same figure:

plot([f1(x), f2(x), ..., fn(x)], x= a..b, options);
plot({f1(x), f2(x), ..., fn(x)}, x= a..b, options);

f := x -> sin(x)/x; g := x -> cos(x)/x;
plot([f(x),g(x)], x=0..10*Pi, y=-1..2, linestyle=[SOLID,DOT],

color=[red, blue]);
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◦ Merging various saved graphic structures (display/display3d, plots):

with(plots);
f := x -> abs(sin(x)); g := x -> -cos(x);
G1 := plot(f(x), x=-Pi..Pi): G2 := plot(g(x), x=-Pi..Pi):
display({G1, G2}, title= "f(x) and g(x)");

3.3 Text in Graphs

◦ Drawing text strings on 2D and 3D graphs:

textplot([[x1, y1, String1], ..., [xn, yn, Stringn]], opts);
textplot3d([[x1,y1,z1,String1],...,[xn,yn,zn,Stringn]],opts);

with(plots): f := x -> 4*x^3 + 6*x^2 -9*x +2;
G21 := plot([f(x), D(f)(x), (D@@2)(f)(x)], x=-3..3):
G22 := textplot([1.2, 100, "f(x) and their derivatives"],

font=[HELVETICA, BOLD, 13], color=plum): display([G21, G22]);

3.4 Special graphs

◦ Coordinate lines:

with(plots): conformal(z, z=z1..z2, opts):
coordplot(coordsystem, [xrange, yrange], opts);

I Graph f(x) = x sin(1/x) and g(x) =
x2 − x+ 1
x2 + x− 1

together with the corresponding

coordinate lines:

with(plots): A := 4: f := x -> sin(1/x)*x;
G1:=plot(f(x), x=-Pi/2..Pi/2, color=blue, thickness=3):
M1:=conformal(z, z=-A-I..A+I, grid=[20,10], color=grey):
display([G1,M1]);

◦ Bounded regions (see ?plot[options], inequal):

plot(f(x), x=a..b, filled=true);
with(plots): inequal(ineqs, x=a..b, y=c..d, opts);
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I Graph the region that satisfy the inequality 2x− 2y > 1:

with(plots): Inequal := x -> 2*x-2*y>1;
A:=(color=blue); B:=(color=grey); C:=(color=green, thickness=10);
inequal(Inequal(x), x=-2..2, y=-2..2,

optionsfeasible=A, optionsexcluded=B, optionsopen=C);

◦ Logarithmic graphs:

with(plots): logplot(f,range,opts);
semilogplot(f,range,opts); loglogplot(f,range,opts);

with(plots); with(stats): al := stats[random, normald](20);
Points := [seq([0.2*i, exp(0.1*i)+0.1*al[i]], i=1..20)];
G1 := logplot(Points, style=point, color=red):
G2 := logplot(x+sin(x), x=0.5..3, style=line, color=green):
display({G1, G2});

◦ 2D and 3D parametric curves:

plot([x(t), y(t), t = t1..t2], horzl, vert, opts);
with(plots); spacecurve([x(t),y(t),z(t)],t=t1..t2,opts);

plot([t^2*sin(t), t^3*cos(t), t=-10*Pi..10*Pi], axes=boxed);
with(plots):x:=t->-1/2*cos(3*t);y:=t->-1/4*sin(3*t);z:=t->1/7*t;
spacecurve([x(t),y(t),z(t)],t=0..10*Pi,numpoints=400);

◦ Tubes and knots around 3D parametric curve:

with(plots): tubeplot([x(t),y(t),z(t)],t=t1..t2,
radius=r,tubepoints=m,numpoints=n,opts);

with(plots): tubeplot([2*sin(t),cos(t)-sin(2*t),cos(2*t)],t=0..2*Pi,
axes=boxed,radius=0.25,numpoints=100,scaling=constrained);

◦ Conformal transformation z =f(Z) on a rectangular region and the Riemann
sphere:

with(plots): f := z-> (5*z-1)/(5*z+1); z1 :=-1-2*I; z2 :=1+2*I;
conformal(f(z),z=z1..z2,-5-5*I..5+5*I,grid=[25,25],numxy=[140,140]);
conformal3d(cos(z)-sin(z), z=0-2*I..2*Pi+2*I, color=white,

grid=[20, 20], orientation=[17, 111]);
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◦ A density plot of f(x, y), (x, y) ∈ [x1, x2]× [y1, y2]:

with(plots): densityplot(f(x,y),x=x1..x2,y=y1..y2,opts);

I Construct the density plot of f(x, y) = xe−x
2−y2 , (x, y) ∈ [−2, 2] × [−2, 2], with

color gradient and the corresponding legend:

with(plots):
A:=colorstyle=HUE,style=patchnogrid,numpoints=5000,axes=boxed;
G1:=densityplot((x,y)->x*exp(-x^2-y^2),-2..2,-2..2, A):
G2:=densityplot((x,y)->0.2*y, 3..3.5,-2..2, A): G3:=textplot(

[seq([3.8,-1.95+i/8*3.9,sprintf("%.1f",-0.4+i/10)],i=0..8)]):
display({G1, G2, G3}, scaling=constrained);

3.5 Level curves and surfaces

◦ Level curves and surfaces, graphs of implicit functions:

with(plots): contourplot(f(x,y), x=x1..x2, y=y1..y2,opts);
contourplot3d(f(x,y,z),x=x1..x2,y=y1..y2, opts);
implicitplot(f(x, y)=c, x=x1..x2,y=y1..y2,opts);
implicitplot3d(f(x,y,z)=c,x=x1..x2,y=y1..y2,z=z1..z2,opts);

I Graph h(x, y) =
x− y

x2 + y2
and some level curves (−2,−4,−6):

with(plots): h:=(x,y)->(x-y)/(x^2+y^2); R:=-4..4; C:=[-2,-4,-6];
plot3d(h(x,y),x=R,y=R,grid=[20,20],orientation=[15,67]);
contourplot(h(x,y),x=R,y=R,grid=[50,50],axes=boxed,contours=C);

3.6 Surfaces in the space

◦ Surface parametrization, x = x(u, v), y = y(u, v), z = z(u, v), implicit equation,
f(x, y, z) = c:

with(plots):
plot3d([x(u,v),y(u,v),z(u,v)],u=u1..u2,v=v1..v2,opts);
implicitplot3d(f(x,y,z)=c,x=x1..x2,y=y1..y2,z=z1..z2,opts);
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I Graph the ellipsoid
x2

16
+
y2

4
+ z2=1:

with(plots):
x:=(u,v)->3*cos(u)*cos(v);y:=(u,v)->2*cos(u)*sin(v);
z:=(u,v)->sin(u);
plot3d([x(u,v),y(u,v),z(u,v)],u=-Pi/2..Pi/2,

v=-Pi..Pi,axes=boxed, scaling=constrained, orientation=[58,60]);

3.7 Arrays and points in the space

with(plots): pointplot(points, opts);
pointplot3d(points,opts); matrixplot(matrix,opts);

I Graph the points (0, 4, 2), (0, 3, 2), (0,−1, 1), (0, 3, 1), (0,−5, 0), (0,−1, 0):

with(plots):
pointplot3d({[0,4,2],[0,3,2],[0,-1,1],[0,3,1],[0,-5,0],[0,-1,0]},

axes=boxed,symbol=circle,symbolsize=20,color=green);

3.8 Various coordinate systems

◦ Curves in polar coordinates:

plot([r(t),theta(t),t=t1..t2],coords=polar,opts);
with(plots):polarplot([r(t),phi(t),phi=phi1..phi2],opts);

I Lissajous curves are defined by the parametric equations x(t) = sin(nt), y(t) =
cos(mt), t ∈ [0, 2π], where (n,m) are different coprimes. Observe the forms of the
Lissajous curves for various (n,m):

with(plots):
G:=[seq(plot([sin(ithprime(i)*t),cos(ithprime(i+1)*t),t=0..2*Pi],

scaling=constrained),i=1..10)]:
display(G,insequence=true);
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◦ Surfaces in cylindrical and spherical coordinates:

with(plots): Rtheta:=theta1..theta2; Rr:=r1..r2;
cylinderplot(f(r,theta), theta=Rtheta,r=Rr,opts);
cylinderplot([r(theta),theta,r],theta=Rtheta,r=Rr,opts);
sphereplot(f(z,r),z=z1..z2,r=Rr,opts);
sphereplot([z(theta),theta,z],z=z1..z2,theta=Rtheta,opts);

3.9 Vector fields

with(plots):
fieldplot([f(x,y),g(x,y)],x=x1..x2,y=y1..y2,opts);
gradplot(f(x,y),x=x1..x2,y=y1..y2,opts);
fieldplot3d([f(x,y,z),g(x,y,z),h(x,y,z)],

x=x1..x2,y=y1..y2,z=z1..z2,opts);
gradplot3d(f(x,y,z),x=x1..x2,y=y1..y2,z=z1..z2,opts);

with(plots): Rx=-5..5; Ry=-4*Pi..4*Pi;
contourplot(x*cos(y)+4*x-sin(y),x=Rx,y=Ry,grid=[50,50]);
fieldplot([x*sin(y)+cos(y),cos(y)+4], x=Rx, y=Ry,

grid=[30,30],arrows=slim,color=x);
fieldplot3d([x-20*y+20*z,x-4*y+20*z,x-4*y+20*z],x=-4..4,

y=-8..8,z=-8..8,grid=[9,9,9],arrows=thick,scaling=constrained);

3.10 Animations

with(plots): animatecurve(f(x), x=a..b, opts);
animate(f(x,t), x=a..b, t=t1..t2, opts);
animate3d(f(x,y,t), x=a..b, y=c..d, t=t1..t2, opts);
display([G1, G2, ..., GN], insequence=true);
display3d([G1, G2, ..., GN], insequence=true);

I Observe the Lissajous curves in polar coordinates:

with(plots):
animatecurve([sin(7*x),cos(11*x),x=0..2*Pi],coords=polar,

numpoints=300, frames=300, color=blue, thickness=3);
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4 Solving equations

4.1 Exact solutions

◦ Exact solutions of algebraic equations or systems of equations, solve; represen-
tations for roots of equations, RootOf, allvalues; isolating a subexpression to left
side of an equation,

solve(Eq, var); solve({Eq1, Eq2}, {var1, var2});
RootOf(expr, x); allvalues(expr, opts); isolate(eqn, expr);

I Find exact solutions of 3x + 11 = 5, cos2 x − cosx − 1 = 0. Solve the equation

V = πr2h for h. Find the inverse function of f(x) =
2x− 3
1− 5x

:

solve(3*x+11=5,x); solve(cos(x)^2-cos(x)-1=0,x);
solve(v=Pi*r^2/h, h); isolate(v=Pi*r^2/h, h);
F_inv := unapply(solve(y=(2*x-3)/(1-5*x), x), y); F_inv(x);

4.2 Numerical approximations

◦ Numerical solutions of algebraic and trascendental equations:

evalf(solve(Eq, var)); fsolve(Eq, var, opts);
fsolve(Eq, var=a..b, opts); fsolve(Eq, var, complex);

I Approximate the values of x that satisfy the equation x5 − 2x2 = 1 − x. Find a
numerical approximation to the solution of the equation sinx = x/2 for x ∈ (0, π]:

map(evalf,[solve(x^5-2*x^2=1-x, x)]);
fsolve(sin(x)=x/2, x=0..Pi, avoid={x=0});

4.3 Analytical approximations

◦ In Maple there is no single function for finding approximate analytical solutions
to equations, so various methods can be applied or developed new methods.
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I Find approximate analytical solutions to the equation F (x; ε) = 0, where F is a
real function of x and a small parameter ε. According to the regular perturbation
theory, the equation F (x; 0) = 0 has a solution x0 and the solution of the perturbed
equation is near x0 and can be represented as a power series of ε. For instance, solve
the equation x2 − ax+ ε = 0, |ε| � 1. If ε = 0, the roots are x01 = 0 and x02 = a.
If ε→ 0, we have X1(ε) → 0, X2(ε) → a. If |ε| � 1, the roots are:

Xk = x0k + εx1k + · · ·+ εixik + · · · , k = 1, 2, i = 2, 3, . . . ,

where xik are the unknown coefficients to be determined. Substituting the series
Xk into the original equation and matching the coefficients of like powers of ε, we
arrive at the system of algebraic equations for the i th approximation, which can be
solved for xik:

RegPertPoly := proc(Expr, var, param)
global Sers: local i, j, Expr1, X, y, k, m:
y := var[0]; Expr1:= collect(Expr(y), param);
X[0] := [solve(coeff(Expr1, param, 0), var[0])];
k := nops(X[0]);
for j from 1 to k do y[j] := X[0][j];
for i from 1 to n do
y[j]:=y[j]+param^i*var[i]; Expr1:=Expr(y[j]);
X[i]:=solve(coeff(Expr1, param, i), var[i]);
y[j]:=X[0][j] + add(X[m]*param^m, m=1..i); od:

Sers := sort(convert(y, list)): od:
RETURN(Sers): end:

n:=5; Eq:=x->x^2-a*x+epsilon; RegPertPoly(Eq,x,epsilon);

4.4 Differential equations

◦ In Maple there exists a large set of functions to solve (analytically, numerically,
graphically) ordinary and partial differential equations or systems of differential
equations.

◦ Exact solutions to ordinary differential equations (see ?dsolve): find closed form
solutions for a single ODE or a system of ODEs, solve ODEs or a system of them
with given initial conditions, find formal power series solutions to a homogeneous
linear ODE with polynomial coefficients, find series solutions to ODEs problems,
find solutions using integral transforms, etc.

dsolve(ODE,y(x),opts); dsolve({ODEs},{funcs});
dsolve({ODEs,ICs},{funcs},opts);
dsolve(ODE,y(x),’formal_series’,’coeffs’=coeff_type);
dsolve({ODEs,ICs},{funcs},’series’);
dsolve({ODEs,ICs}, {funcs}, method=transform, opts);

20



◦ Explicit, implicit forms of the exact solutions, graphs of solutions:

Sol_Exp := dsolve(diff(y(t),t)+t^2/y(t)=0, y(t));
Sol_Imp := dsolve(diff(y(t),t)+t^2/y(t)=0, y(t), implicit);
with(plots): G := subs({y(t)=y}, lhs(Sol_Imp));
Gs:= seq(subs(_C1=i, G), i=-5..5);
contourplot({Gs}, t=-5..5, y=-10..10, color=blue);

◦ ODE classification and solution methods suggestion (?DEtools, ?odeadvisor):
e.g. separation of variables, homogeneous equations, series solutions, exact equa-
tions, linear equations, etc.

with(DEtools): ODE1 := diff(y(t),t)=y(t)*sin(t)^2/(1-y(t));
Sol_ex:=dsolve(ODE1,y(t)); Sol_Imp:=dsolve(ODE1,y(t),implicit);
odeadvisor(ODE1); Sol_sep:=separablesol(ODE1, y(t));
ODE2 := (t^2-y(t)*t)*diff(y(t),t)+y(t)^2=0; odeadvisor(ODE2);
Sol1 := dsolve(ODE2, y(t)); Sol2 := genhomosol(ODE2, y(t));
Sol_ser:= dsolve(ODE1,y(t),’series’);

◦ Higher order ODE: exact and numerical solutions, and their graphs

with(plots): setoptions(scaling=constrained,numpoints=200);
ODE:=diff(x(t),t$2)-diff(x(t),t)+(t-1)*x(t)=0;
ICs:=D(x)(0)=0,x(0)=1; Sol_ex := dsolve({ODE,ICs}, x(t));
Sol_num:=dsolve({EDO,ICs}, x(t), numeric);
G :=array(1..3);
G[1]:=odeplot(Sol_num, [t, x(t)],0..10,color=blue):
G[2]:=plot(rhs(Sol_ex), t=0..10, color=red):
G[3]:=odeplot(Sol_num,[x(t),diff(x(t),t)],0..10,color=magenta):
display(G);

◦ Systems of ODEs: exact solutions, laplace transforms, etc.

with(DEtools): with(inttrans): ODE_s1:={D(x)(t)=-2*x(t)+5*y(t),
D(y)(t)=4*x(t)-3*y(t)}; Sol_s1:=dsolve(ODE_s1, {x(t),y(t)});
A1 := array([[-2,5],[4,-3]]); matrixDE(A1,t); ODE_s2 :=

{diff(x(t),t)=-y(t)+cos(2*t),diff(y(t),t)=5*x(t)+2*sin(2*t)};
Eq1:=laplace(ODE_s2,t,p); Eq2:=subs({x(0)=2,y(0)=0},Eq1);
Eq3:=solve(Eq2,{laplace(x(t),t,p),laplace(y(t),t,p)});
Sol_sys2:=invlaplace(Eq3,p,t); assign(Sol_s2):
plot([x(t),y(t)],t=-3..3);

◦ Numerical and graphic solutions to ordinary differential equations: find numerical
solutions to ODEs problems, dsolve[numeric], graphs or animations of 2D and
3D solution curves obtained from the numerical solution, odeplot, phaseportraits
for a system of first order differential equations or a single higher order differen-
tial equation with initial conditions, phaseportrait, vector fields for autonomous
systems of first order differential equations, DEplot, etc.

21



with(plots); with(DEtools);
dsolve({ODEs}, numeric, {funcs}, opts);
dsolve(numeric, {funcs}, procopts, opts);
NS := dsolve({ODEs},numeric,{funcs},opts);
odeplot(NS, {funcs}, range, opts);
phaseportrait({ODEs}, {funcs}, range, {ICs}, opts);
DEplot({ODEs}, {funcs}, trange, opts);

with(linalg): with(DEtools): with(plots): with(student):
A:=array([[1,3],[-2,1]]): eigenvectors(A); matrixDE(A,t);
ODE_sys:=equate(array([[diff(x(t),t)],[diff(y(t),t)]]),

A &* array([[x(t)],[y(t)]]));
Sol_sys:=dsolve(ODE_sys,{x(t),y(t)}); assign(Sol_sys);
Curves:= {seq(seq(subs({_C1=i,_C2=j},[x(t),y(t),t=-3..3]),

i=-3..3),j=-3..3)}:
G1:=plot(Curves,view=[-10..10,-10..10],color=blue,axes=boxed):
unassign(’x’,’y’);
G2:=DEplot(ODE_sys,[x(t),y(t)],t=-3..3,x=-10..10,

y=-10..10,color=red):
display({G1, G2});

I Construct a phaseportrait of the second-order dynamical system

v̇ = −νv + εu[δ1 + 1
4 −

1
2φ1P (u, v) + 1

4φ2P (u, v)2],

u̇ = −νu+ εv[−δ1 + 1
4 + 1

2φ1P (u, v)− 1
4φ2P (u, v)2],

that describes the nonlinear motion of a fluid under conditions of subharmonic
resonance and has been obtained by Shingareva (1995) applying averaging trans-
formations with Maple. Here P (u, v) = u2 + v2, ν is the fluid viscosity, ε is the
small parameter, φ1 and φ2 are, respectively, the second and the fourth corrections
to the nonlinear frequency, δ1 is the off-resonance parameter. For different regions
where there exists a stable solution, we will have the corresponding phaseportraits,
for instance:

with(plots): with(DEtools):
delta_1:=-1/2: phi_1:=1; phi_2:=1; nu:=0.005; epsilon:=0.1;
Ec1:=D(v)(t)=-nu*v(t)+epsilon*u(t)*(delta_1 + 1/4

-phi_1/2*(u(t)^2+v(t)^2)+phi_2/4*(u(t)^2+v(t)^2)^2);
Ec2:=D(u)(t)=-nu*u(t)+epsilon*v(t)*(-delta_1 + 1/4

+phi_1/2*(u(t)^2+v(t)^2)-phi_2/4*(u(t)^2+v(t)^2)^2);
Ecs:=[Ec1, Ec2]; CI :=[[0,0,1.1033],[0,0,-1.1033],[0,1.1055,0],

[0,-1.1055,0],[0,0,1.613],[0,0,-1.613]]; var := [v(t), u(t)];
Opts:=arrows=medium,dirgrid=[20,20],stepsize=0.1,thickness=2,

linecolour=blue, color=green;
phaseportrait(Ecs, var, t=-48..400, CI, Opts);
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◦ Analytical solutions to partial differential equations: find analytical solutions for a
partial differential equation (PDE) and systems of PDEs, pdsolve, declare functions
and derivatives on the screen for a simple, compact display, declare, split into cases
and sequentially decouple a system of differential equations, casesplit, determine
under what conditions it is possible to obtain a complete solution through separation
of variables, separability, etc.

with(PDEtools); declare({funcs}; ON; pdsolve(PDE,f,HINT,build);
pdsolve({PDEs},{fs},HINT);casesplit({PDEs});separability(PDE,f);

where HINT=arg are some hints, with build can be constructed an explicit expres-
sion for the indeterminate function f.

I Find a general solution to the wave equation utt = c2uxx:

with(PDEtools); declare(u(x,t)); ON;
pde:=diff(u(x,t),t$2)=c^2*diff(u(x,t),x$2);
casesplit(pde); separability(pde,u(x,t)); pdsolve(pde,build);

◦ Numerical and graphic solutions to PDEs (see ?pdsolve[numeric]): find numer-
ical solutions to PDE or a system of PDEs. The solution obtained is represented as
a module (similar to a procedure) which can be used for obtaining visualizations
(plot,plot3d, animate, animate3d) and numerical values (value)

with(PDEtools): pdsolve({PDEs},{ICsBCs},numeric,{vars},opts);
Sol:=pdsolve({PDEs},{ICsBCs},numeric,{vars},opts);
Sol:-animate(var,t=t0..t1,x=x0..x1);Sol:-plot3d(var,t=t0..t1);
Num_vals := Sol :- value(); Num_vals(num1, num2);

where ICsBCs are initial and boundary conditions, vars are dependent variables.

I Solve (numerically and graphically) the initial boundary value problem for the
wave equation in the domain D = {0 < x < 1, 0 < t <∞}: utt = 1

100uxx, u(0, t) = 0,
u(1, t) = 0, u(x, 0) = 0, ut(x, 0) = sin(2πx):

with(VectorCalculus): with(plots): with(PDEtools):
Eq:={diff(u(x,t),t$2)-0.01*Laplacian(u(x,t),’cartesian’[x])=0};
BC:={u(0,t)=0,u(1,t)=0}; IC:={D[2](u)(x,0)=sin(2*Pi*x),u(x,0)=0};
Opts:=spacestep=1/100, timestep=1/100;
Sol:=pdsolve(Eq, IC union BC, numeric, u(x,t), Opts);
Sol:-animate(u(x,t),t=0..5*Pi,x=0..1,frames=30,numpoints=100,

thickness=3,color=blue);
Sol:-plot3d(u(x,t),t=0..5*Pi,shading=zhue,axes=boxed); Sol:-value();
Num_vals := Sol:-value(); Num_vals(1/2, Pi);
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5 Calculus problems

◦ A lot of calculus functions are contained in the packages student, Student,
Student[Calculus1], VectorCalculus. The package Student contains functions
covering the basic material of a single-variable calculus course, and with the package
VectorCalculus can be performed multivariate and vector calculus operations.

5.1 Differential and Integral calculus

◦ The limit of f(x) when x tends to x0, the derivatives of f(x) with respect to x:

limit(f(x), x=x_0); diff(f(x), x); Diff(f(x), x); D(f)(x);
diff(f(x), x$n); Diff(f(x), x$n); (D@@n)(f)(x);

I Graph f(x)=
x3 − 9x
x3 − x

, x ∈ [−2, 2], and evaluate lim
x→0

f(x), lim
x→±1

f(x):

f:=x->(x^3-9*x)/(x^3-x); plot(f(x),x=-2..2,-100..100,discont=true);
limit(f(x), x=0); limit(f(x), x=1); limit(f(x), x=-1);

I Let f(x) = x3−4x2 +8x−2. Calculate f ′(x), f ′(7
3), find the value of x for which

f ′(x) = 10:

f:=x->x^3-4*x^2+8*x-2; D(f)(x); D(f)(7/3); solve(D(f)(x)=10,x);

◦ Integral calculus: construction of Riemann sums, leftbox, rightbox, leftsum,
rightsum; evaluation of indefinite and definite integrals, int, Int, changevar,
intparts, value; approximations of definite integrals, simpson, trapezoid, etc.

with(student); with(Student); with(Student[Calculus1]);
leftbox(f(x), x=a..b, opts); rightbox(f(x), x=a..b, opts);
leftsum(f(x), x=a..b,n); rightsum(f(x), x=a..b, n);
int(f(x), x); int(f(x), x=a..b, opts); I1 := Int(f(x), x);
changevar(f(x)=u, I1); intparts(I1, u); value(I1);
simpson(f(x), x=a..b, n); trapezoid(f(x), x=a..b, n);

I Evaluate the indefinite and definite integrals:

f :=x->exp(-x)*cos(x); I1:=int(f(x),x=0..sqrt(Pi)); evalf(I1);
F:=x->exp(2*x)*sin(2*x); factor(int(F(x),x));
evalf(int(cos(4*x)*exp(-4*x^2),x=-2*Pi..2*Pi));
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5.2 Series

◦ Manipulation of power series: calculation of power series sums, sum; the environ-
ment variable Order; generalized series expansion, series; the Taylor polynomi-
als, convert,polynom; Taylor and Maclaurin series expansion, taylor; multivariate
Taylor series expansion, mtaylor; a coefficient in the (multivariate) Taylor series,
coeftayl; formal power series package, powerseries; multiplicative inverse of a
formal power series, inverse; multiplication of power series, multiply, etc,

sum(f(i),i); sum(f(i),i=a..b); Order; series(f(x),x=a,n);
convert(ser,polynom);taylor(expr,x=a,n);taylor(expr,x=0,n);
mtaylor(expr, vars, n); coeftayl(expr, eqn, k);
with(powseries): inverse(expr); multiply(ser1, ser2);

I Calculate the series sum
∞∑
n=1

1
2n2 + 9n+ 10

,
∞∑
n=1

xkn,
10000∑
n=1

cosn
n

:

sum(1/(2*n^2+9*n+10), n=1..infinity); sum(x^(k*n), n=1..infinity);
Ser := n -> cos(n)/n; Points := [seq([i,Ser(i)],i=7000..10000)]:
plot(Points,style=POINT,color=blue,symbol=circle,symbolsize=10);
evalf(sum(Ser(i), i=1..10000));

◦ There is no single function in Maple for finding an expansion of a function in
terms of a set of complete functions, or one of the simplest class of the Fourier
expansions, an expansion in terms of the trigonometric functions 1, cos(x), sin(x),
cos(2x), sin(2x), . . ., or their complex equivalents φn = e−inx (n = 0,±1,±2, . . .),
which are complete and orthogonal on the interval (−π, π) (or any interval of length
2π).

I Approximate the square wave waveform of period 2π:

h := Heaviside(t-Pi); plot(h, t=0..2*Pi, scaling=constrained);
A := i -> 1/Pi*int(h*cos(i*t), t=0..2*Pi);
B := i -> 1/Pi*int(h*sin(i*t), t=0..2*Pi);
A0:= 1/(2*Pi)*int(h, t=0..2*Pi);
F := n -> evalf(A0+sum(B(i)*sin(i*t), i=1..n));
plot(F(30), t=0..2*Pi, scaling=constrained,color=blue);

5.3 Multivariate calculus

◦ Numerous functions for performing multivariate calculus are contained in the
packages VectorCalculus, linalg, LinearAlgebra: multivariate functions, ->; par-
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tial differentiation, diff, Diff; multiple integrals, Doubleint, Tripleint; itera-
tive integrals, int; relative extrema, extrema; vector calculus, Gradient, Nabla,
Laplacian, VectorField, Diverge, Curl, DotProduct, etc.,

with(student); with(VectorCalculus); with(linalg);
with(LinearAlgebra); f := (x,y) -> expr;
D(f); D[i](f); D[i,j](f); D[i](D[j,i](f));
diff(f(x1,...,xn),x1,...,xn); diff(f(x1,...,xn), x1$n);
int(...int(int(f, x1), x2)..., xn); extrema(expr,cond,vars);
value(Doubleint(f(x,y), x=x1..x2, y=y1..y2));
value(Tripleint(f(x,y,z),x=x1..x2, y=y1..y2, z=z1..z2));
Gradient(expr,[x,y]);Nabla(expr,[x,y]);Laplacian(expr,[x,y]);
VF := VectorField(<x,y>, coordsys); Diverge(VF); Curl(VF);
DotProduct(<x,y>, <x,y>); <x,y> . <x,y>;

I Let f(x, y, z) = −(xy)2 i+cos2(xyz) j+sin2 z k. Find curl f , div f , ∆(div f),
grad(∆(div f)):

with(VectorCalculus): SetCoordinates(’cartesian’[x,y,z]);
f := VectorField(<-(x*y)^2, cos(x*y*z)^2, sin(z)^2>);
curl_f := map(factor, Curl(f));
div_f := combine(Divergence(f));
lap_div_f := combine(Laplacian(div_f));
grad_lap_div_f := map(simplify, Gradient(lap_div_f));

6 Standing waves in strings

6.1 Statement of the problem

◦ We consider a string that is initially stretched between two points with the equi-
librium position of the string lying along the x-axis. After the string is plucked,
let u(x, t) be the displacement of the string at position x and time t. We use the
following assumptions: uniform string, planar vibrations, uniform tension, no other
external forces, small vibrations.

◦ The partial derivatives represent the vertical velocity — ut(x, t), acceleration of
the point on the string at position x — utt(x, t), the slope of the string at position
x — ux(x, t), the concavity of the string at position x — uxx(x, t).

I The following problem is an example of an initial boundary value problem for
the wave equation in domain D = {0 < x < L, 0 < t <∞}, utt = 4uxx, u(0, t) = 0,
u(L, t) = 0, u(x, 0) = cos(x), ut(x, 0) = 1:
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with(plots):
n := 2: L := 1: c := 2: N := 300:
u:=(x,t)->(A*cos(n*Pi*c*t/L)+B*sin(n*Pi*c*t/L))*sin(n*Pi*x/L);
Eq1:=u(x,0)=cos(x); Eq2:=evala(subs(t=0,diff(u(x,t),t)))=1;
S1:=solve({Eq1,Eq2},{A,B}); u:=unapply(subs(S1,u(x,t)),x,t);
N:=24: animate(u(x,t),x=-Pi..Pi,t=0..2,frames=N);

◦ If f(z) is any nonconstant twice differentiable function, then u(x, t) = f(x − ct)
and u(x, t) = f(x + ct) are travelling wave solutions of the wave equation and the
parameter c (c2 = T/ρ) is the speed at which any travelling wave will propagate
along the string:

with(plots): N:=300: u1:=(x,t)->cos(x-2*t); u2:=(x,t)->cos(x+2*t);
A:=array(1..2): A[1]:=animate(u1(x,t),x=0..4*Pi,t=1..10,frames=N):
A[2]:=animate(u2(x,t),x=Pi/2..9*Pi/2,t=1..10,frames=N, color=blue):
display(A);

6.2 Solutions of the wave equation

◦ The general solution of the wave equation can be obtained as follows:

with(PDEtools); declare(u(x,t)); ON;
pde :=diff(u(x,t), t$2)=c^2*diff(u(x,t), x$2);
casesplit(pde); separability(pde, u(x,t));
pdsolve(pde, build);

◦ The d’Alembert solution of the wave equation is based on the observation that the
general solution could be decomposed into the sum of two travelling waves (each
travelling with speed c in opposite directions) and can be obtained (for infinite
string) as follows:

u:=(x,t)->F(x-c*t)+G(x+ c*t); Ec1:=u(x,0)=f(x);
Ec2 :=(unapply(diff(u(x, t), t), x, t))(x, 0)=g(x);
Ec21:=value(map(Int,subs(x=s,factor(Ec2/c)),s=0..x));
Sol:= solve({Ec1, Ec21}, {F(x), G(x)});
F1 := unapply(op(1,Sol),x); G1:=unapply(op(2,Sol),x);
u := combine(F1(x-c*t) + G1(x+c*t));

◦ Standing waves solution. Another approach for solving the wave equation involves
decomposing the solution u(x, t) into the sum of standing waves. Function

u(x, t) =


(C1 + C2x)(C3 + C4t),(
C1e

rx/c+C2e
−rx/c) (

C3e
rt+C4e

−rt) ,
(C1 cos(rx/c)+C2 sin(rx/c)) (C3 cos(rt)+C4 sin(rt)) ,

describes all possible standing waves which are the solutions of the waves equation.
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I Construct standing wave solutions to the wave equation utt = 9uxx:

with(plots): setoptions(axes=boxed,scaling=constrained,
thickness=3,tickmarks=[3,3]);

N:=100: c:=3: r:=2: G:=array(1..3);
C[1,1] := 1: C[1,2]:= -1: C[1,3] := 1: C[1,4]:=-1:
C[2,1] := exp(x):C[2,2]:=exp(-x): C[2,3]:= 1/20: C[2,4]:=1:
C[3,1] := cos(x):C[3,2] := 0: C[3,3] := 1: C[3,4] := 1:
u[1]:=(x,t)->(C[1,1]+C[1,2]*x)*(C[1,3] + C[1,4]*t);
u[2]:=(x,t)->(C[2,1]*exp(r*x/c)+C[2,2]*exp(-r*x/c))*

(C[2,3]*exp(r*t) + C[2,4]*exp(-r*t));
u[3]:=(x,t)->(C[3,1]*cos(r*x/c)+C[3,2]*sin(r*x/c))*

(C[3,3]*cos(r*t) +C[3,4]*sin(r*t));
G[1]:=animate(u[1](x,t),x=-10..10,t=0..10,frames=N,color=blue):
G[2]:=animate(u[2](x,t),x=-1..1,t=0..2,frames=N,color=green):
G[3]:=animate(u[3](x,t),x=-Pi..Pi,t=0..10,frames=N,color=plum):
display(G);

6.3 Standing waves in a fix string

◦ In particular applications, only a small subset of these solutions may be physically
realistic. As a particular application, we obtain the standing waves for a string of
finite length L in which both ends of the string are fixed, utt = 4uxx, u(0, t) = 0,
u(1, t) = 0, u(x, 0) = sin(πx), ut(x, t) = 0, D = {0 < x < 1, t > 0}:

with(plots): setoptions(axes=boxed, scaling=constrained,
thickness=3, tickmarks=[3,3]);

n := 2: L := 1: c := 2: N := 300: omega := n*Pi*c/L:
u := (x,t)->(A*cos(omega*t)+B*sin(omega*t))*sin(n*Pi*x/L);
Eq1:=u(x,0)=sin(Pi*x); Eq2:=evala(eval(diff(u(x,t),t),t=0))=0;
Sol:=solve({Eq1,Eq2},{A,B}); u:=unapply(eval(u(x,t),Sol),x,t);
G1 := animate(u(x, t),x=0..L,t=0..2,frames=N,color=blue):
G2 := plot(0, x=0..L, color=green,linestyle=DOT):
display([G1, G2]);

6.4 Superposition of standing waves and Fourier series

◦ We show that the boundary value problem for a fix string utt = c2uxx, 0<x<L,
t>0, u(0, t)=0, u(L, t)=0 has the property that the superposition of two solutions
U(x, t) = Au1(x, t) +Bu2(x, t) is a solution of the problem:

with(PDEtools): Ec1:=diff(u1(x,t),t$2)=c^2*diff(u1(x,t),x$2);
u1(0, t) := 0; u1(L, t) := 0; declare(Ec1); Ec1;
Ec2 := diff(u2(x, t), t$2) = c^2*diff(u2(x, t), x$2);
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u2(0, t) := 0; u2(L, t) := 0; declare(Ec2); Ec2;
U := A*u1(x, t)+ B*u2(x, t); EDP := diff(U, t$2);
EDP := combine(factor(subs({Ec1, Ec2}, EDP)), diff);
Diff(U, t$2) = Diff(int(int(EDP, x), x), x);
eval(U, x=0); eval(U, x=L);

◦ In modern mathematics, a Fourier Analysis is an important result and show that
there exists an expansion of a function in terms of a set of complete functions.
Following the Fourier theory, we solve the initial boundary value problem that
describes the movement of a fix string, utt = 1

16π2uxx, 0 < x < 0.5, t > 0, u(0, t) = 0,
u(0.5, t) = 0, u(x, 0) = 0, ut(x, 0) = sin(4πx):

with(plots): L := 0.5; c := 1/(4*Pi); M := 10;
f := x -> 0; g := x -> sin(4*Pi*x);
an := proc(n) option remember;

2/L*evalf(int(f(x)*sin(n*Pi*x/L), x=0..L)); end;
bn := proc(n) option remember;

evalf(2/L*evalf(int(g(x)*sin(n*Pi*x/L), x=0..L))); end;
un := proc(x, t, n) (an(n)*cos(n*Pi*c*t/L)

+bn(n)/(c*n*Pi/L)*sin(n*Pi*c*t/L))*sin(n*Pi*x/L); end;
AprF:=proc(x, t) evalf(add(un(x, t, k), k=1..M)); end;
plot(AprF(x,0.5), x=0..L, color=blue, thickness=3);

7 Standing waves in fluids

7.1 Statement of the problem

◦ The classical two-dimensional standing wave problem consists of solving the Euler
equations for a one- or two-layer fluid with free boundary conditions (free fluid
surface). The assumption is made that the flow is irrotational. The boundary value
problem needs to be solved in a flow domain, for example, D = {0 ≤ x ≤ L,−h ≤
y ≤ η(x, t)} for the surface elevation η(x, t) and the velocity potential φ(x, y, t). The
fluid depth h, and the horizontal size of the domain L are given. We study periodic
solutions (in x and t) of standing wave problem.

◦ In general, there are two ways for representing the fluid motion: the Eulerian
approach, in which the coordinates are fixed in the reference frame of the ob-
server, and the Lagrangian approach, in which the coordinates are fixed in the ref-
erence frame of the moving fluid. We construct analytically approximate solutions
in Lagrangian variables. We develop the analytic Lagrangian approach proposed
by Sekerzh-Zenkovich (1947) for constructing approximate solutions for nonlinear
waves. We generalize the solution method that allows one to solve a set of problems,
for example, the problems of infinite- and finite-depth surface standing waves and
infinite- and finite-depth internal standing waves. This method can be useful for
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extending a series solution to high order, solving a problem that is not solvable in
Eulerian formulation, or solving another set of problems. We develop computer al-
gebra procedures to aid in the construction of higher-order approximate analytical
solutions.

◦ Note that most of the approximate analytic solutions were obtained using the Eule-
rian formulation, the present paper deals with the alternative formulation, which de-
serves to be better known. Therefore, we compare the analytic frequency-amplitude
dependences obtained in Lagrangian variables with the corresponding ones known
in Eulerian variables. The analysis has shown that the analytic frequency-amplitude
dependences are in complete agreement with previous results obtained by Rayleigh
(1915), Penney and Price (1952), Aoki (1980), Tadjbakhsh and Keller (1960),
Okamura (1997) in Eulerian variables, and by Shingareva (1995), Shingareva et
al. (2002), Shingareva and Lizárraga (2004a) in Lagrangian variables.

The analysis of solutions has shown that the use of the Lagrangian approach to
solve standing waves problems presents some advantages with respect to the Eu-
ler formulation, particulary because it allows to simplify the boundary conditions
(the unknown free boundary is a line), the radius of convergence of an expansion
parameter is bigger than in the Eulerian variables (this allows one to observe steep
standing waves).

7.2 Asymptotic solution

◦ We consider two-dimensional nonlinear wave motions in the fluid domain D =
{0 ≤ x ≤ L,−∞ ≤ y ≤ η(x, t)}. On the free surface the pressure is constant and
equal to zero. We consider this as a basic model and other models can be derived
on its basis. We choose a rectangular system of coordinates xOy in the plane of
motion so that (i) the x-axis coincides with the horizontal level of fluid at rest and
(ii) the y-axis is directed vertically upwards so that the unperturbed free surface
has coordinates y = 0 and x ∈ [0, L].

◦ We transform variables from Eulerian (x, y) to Lagrangian (a, b) adding the fol-

lowing requirements: the Jacobian J =
∂(x, y)
∂(a, b)

= 1, the free surface y = η(x, t) is

equivalent to the parametric curve {x(a, 0, t), y(a, 0, t)}, at t = 0 the free surface is
{x(a, 0, 0), y(a, 0, 0)}, at the vertical lines a = 0 and a = L the horizontal velocity
xt = 0, and the infinite depth is b = −∞. The Lagrange equations for wave motions
in fluid plus the continuity equation and the boundary conditions are then given as:

xttxa + (ytt + g)ya +
pa
ρ

= 0, xttxb + (ytt + g)yb +
pb
ρ

= 0,
∂(x, y)
∂(a, b)

= 1,

x(0, b, t) = 0, x(L, b, t) = L, y(a,−∞, t) = −∞, p(a, 0, t) = 0,

where x(a, b, t) and y(a, b, t) are the coordinates of an individual fluid particle in
motion, p(a, b, t) is the pressure in the fluid, ρ is the fluid density.
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◦ We consider weakly nonlinear standing waves or waves of small amplitude and
steepness, for which the amplitude and the ratio of wave height to wavelength is
assumed to be of order ε, where ε is a small parameter. We introduce the dimen-
sionless amplitude ε, the wave phase ψ, Lagrangian variables α, β (instead of a, b),
and space coordinates and pressure ξ, η, and σ (instead of x, y, and p):

κA = ε, ψ = ωt, α = aκ, β = bκ,

κx = α+ εξ, κy = β + εη, κ2p = −κ(ρg)κy + ερω2
(0)σ,

where κ = πn/L is the wave number (n is the number of nodes of the wave), ω is the
nonlinear frequency, ω2

(0) = gκ is the dispersion relation for linear periodic waves,
and g is the acceleration due to gravity. In terms of the dimensionless variables, the
equations of motion and the boundary conditions can be rewritten in the form

L1(ξ, σ)=−ε(ξψψξα+ηψψηα), L2(η, σ)=−ε(ξψψξβ+ηψψηβ), L3(ξ, η)=−ε ∂(ξ, η)
∂(α, β)

,

ξ(0, β, ψ) = 0, ξ(πn, β, ψ) = 0, η(α,−∞, ψ) = 0, σ(α, 0, ψ)− η(α, 0, ψ) = 0,

where linear differential operators Li (i = 1, 3) are

L1(ξ, σ) = ξψψ + σα, L2(η, σ) = ηψψ + σβ, L3(ξ, η) = ξα + ηβ .

◦ The construction of asymptotics is based on the perturbation theory. Defining the
formal power series in the amplitude parameter ε

u = F111(u) +
N∑
i=2

εi−1u(i) +O(εN ), u = ξ, η, σ,

where ξ(i), η(i), and σ(i) (i = 2, . . . , N) are unknown 2π-periodic in ψ functions of
variables α, β, and ψ, and the linear terms F111(u), u = ξ, η, σ, are defined by the
following expressions:

F111(ξ) = − sin(α)eβ cos(ψ), F111(η) = F111(σ) = cos(α)eβ cos(ψ).

Considering weakly nonlinear standing waves, we can assume that the nonlinear
wave frequency ω is close to the linear wave frequency ω(0):

ω(ε) ≡ ψt = ω(0) +
N−1∑
i=1

εiω(i) +O(εN ),

where ω(i) are new unknown corrections to the nonlinear wave frequency.

◦ Algebraic procedure: substituting these expansions into the equations of motion
and the boundary conditions and matching the coefficients of like powers of ε,
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we arrive at the linear inhomogeneous system of partial differential equations and
boundary conditions for the i th approximation. We look for a solution, 2π-periodic
in ψ, to this system of equations and the boundary conditions in the form:

v(i)=
i∑

j,k,l=0

V jkl
i F jkl(v), v = ξ, η, σ, V = Ξ,H,Σ,

where Ξjkli ,Hjkl
i , and Σjkl

i are unknown constants. Substituting these series into the
linear system of equations and boundary conditions for the ith approximation and
using the orthogonality conditions for periodic solutions, we obtain a family of sys-
tems of linear algebraic equations with respect to the unknown coefficients Ξjkli ,Hjkl

i ,
and Σjkl

i . By using formulas described above, we obtain the asymptotic solution of
the order of O(εN ) and the unknown corrections to the nonlinear wave frequency
ω(i). Setting β = 0 in the parametric equations for κx and κy, we can obtain the
profiles of surface standing waves in Lagrangian variables for the ith approximation
(i = 2, . . . , N). Changes in the amplitude ε influence the surface configuration by
changing both the shape of the surface and the amplitude of motion.

◦ As an example, we show here how to find the second derivative with respect to
dimensionless time ψ for the variables ξ(α, β, t) and η(α, β, t):

NA:=2; NP:=NA-1; NN:=NA+1; TZ:=-delta/(delta-1):lambda:=1+TZ;
psiT := omega+add(epsilon^i*omega||i, i= 1..NP);
setsub := {diff(psi(t), t) = psiT}; subt := {psi(t) = psi};
xi := (x, y, z) -> -sin(x)*exp(y)*cos(z);
eta := (x, y, z) -> cos(x)*exp(y)*cos(z);
Fxi:=(x->xi(alpha,beta,psi(x)));Feta:=(x->eta(alpha,beta,psi(x)));
dxi := diff(Fxi(t), t); deta :=diff(Feta(t), t);
xi1T := subs(setsub, dxi); xi2T:=subs(setsub, diff(xi1T, t));
eta1T := subs(setsub, deta);eta2T:= subs(setsub, diff(eta1T, t));
Xi := xi(alpha, beta, psi); Eta := eta(alpha, beta, psi);

◦ Based on the perturbation solution obtained for a particular case, for instance,
for the infinite-depth standing wave problem, we write out the frequency-amplitude
dependence:

ω

ω(0)
= 1− 1

8
ε2 − 23

256
ε4 +O(ε5).

The dependence is equal to the previous results obtained by Rayleigh (1915) in

Eulerian variables, where ω1 = 0 and ω2 = −1
8
A2ω0. This expression coincides with

the results obtained by Penney and Price (1952) and Aoki (1980) in Eulerian

variables, where ω3 = 0 and ω4 = − 15
256

A4ω0.
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