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Abstract

Generalised symmetries and point symmetries coincide for systems of first-order or-
dinary differential equations and are infinite in number. Systems of linear first-order
ordinary differential equations possess a generalised rescaling symmetry. For the sys-
tem of first-order ordinary differential equations corresponding to the time-dependent
linear oscillator the invariant of this symmetry has the form of the famous Ermakov-
Lewis invariant, but in fact reveals a richer structure.

The origins of the linear second-order ordinary differential equation known as the time-
dependent linear oscillator are disparately manifold. A classical source is the lengthening
pendulum described in the normal approximation by

θ̈ + ω2(t)θ = 0. (0.1)

(The pendulum has to be one of increasing length. Otherwise the approximation sin θ ≈ θ
breaks down [36, 35].) At the first Solvay Conference in 1911 Lorentz proposed an adiabatic
invariant for (0.1) based on its Hamiltonian representation as

Iadiabatic =
1

2ω(t)

(

θ̇2 + ω2(t)θ2

)

(0.2)

in the case that ω2(t) was a slowly varying function. The precise mathematical qual-
ities of this adiabatic invariant were delineated some half-century later by the English
mathematician Littlewood [25, 26, 27, 28].

In the search for workable confinement devices for controlled thermonuclear fusion the
time-dependent linear oscillator again made its appearance as the model equation for
the motion of a charged particle in an axially symmetric electromagnetic field. In 1966
Lewis [21, 22] applied Kruskal’s asymptotic method [14] to find an invariant which would
be an improvement on the adiabatic invariant in that it would apply to a wider class
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of functions ω2(t) than the slowly varying function of the adiabatic invariant. To his
considerable surprise the zeroth-order term was the only nonzero term in the asymptotic
expansion. The Lewis invariant, as it was promptly termed [3], for (0.1) was

I = 1

2

[

(

ρθ̇ − ρ̇θ
)2

+

(

θ

ρ

)2
]

, (0.3)

where ρ(t) was any solution to the second-order nonlinear ordinary differential equation

ρ̈ + ω2(t)ρ =
1

ρ3
(0.4)

which has become known as the Pinney equation after Pinney presented its solution as

ρ2 = Au2 + 2Buv + Cv2, AC − B2 =
1

W 2
, (0.5)

where u and v were two independent solutions of (0.1) and W is their Wronskian [34]. In
fact (0.5) is intimately involved with the theory of linear third-order ordinary differential
equations of maximal symmetry [29] since (0.4) comes from the integration of

...
y + ω2ẏ + ωω̇y = 0, y = 1

2
ρ2 (0.6)

when the constant of integration is set at 2. The general solution of (0.6) is (0.5) without
the constraint on the constants A, B and C [30].

The Hamiltonian corresponding to (0.1) is

H = 1

2

(

p2

θ + ω2(t)θ2
)

, pθ = θ̇. (0.7)

The invariant (0.3) was demonstrated by Leach [15] simply to be the expression in (θ, t)
variables of the Hamiltonian

H̃ = 1

2

(

P 2
Θ + Θ2

)

(0.8)

which, being autonomous, is automatically a first integral and to which (0.7) is related by
the Generalised Canonical Transformation [2]

Θ =
θ

ρ
, PΘ = ρθ̇ − ρ̇θ, T =

∫

ρ−2dt. (0.9)

The use of the Generalised Canonical Transformation was extended to potentials other
than quadratic by Lewis and Leach [23] and González-Gascón et al [5] and to dimension
greater than one by Grammaticos et al [8] and Lewis [24].

All of this time, approximately 100 years, the invariant (0.3) had already been demon-
strated by the Ukrainian mathematician V Ermakov [4] who in 1880 considered the two
equations

ẍ + ω2(t)x = 0 (0.10)

ÿ + ω2(t)y =
1

y3
(0.11)
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and, on eliminating the ω2(t) by multiplying (0.10) by y and x by (0.11), subtracting the
two and then multiplying by the integrating factor ẋy − xẏ, arrived at the first integral

I = 1

2

[

(ẋy − xẏ)2 +
1

y2

]

. (0.12)

It was not until the late seventies of the last century that the work of Ermakov became
widely known.

One should note that (0.1) is the normal form of a scalar linear second-order ordinary
differential equation and so its solution has relevance in a wide area of Mathematical
Physics for which the model equation is, or reduces to, a linear second-order ordinary
differential equation.

In both the theory and practice of ordinary differential equations it is a commonplace to
reduce an higher-order equation (or system) to a system of first-order ordinary differential
equations. This is the classical approach to proving theorems on the existence of solutions
[11] [pp 72-73] and the not so classical way to determine complete symmetry groups [12] for
systems of higher-order ordinary differential equations with an insufficient number of point
symmetries for the purpose [31, 32]. The transformation from an higher-order equation to
a system of first-order ordinary differential equations is not a point transformation and so
there is no preservation of the point symmetry properties of the original equation. In fact
for a first-order ordinary differential equation a point symmetry is equally a generalised
symmetry and there exists an infinite number for any given first-order ordinary differential
equation or system of first-order ordinary differential equations. In the particular case of a
scalar linear nth-order ordinary differential equation the natural reduction to a system of
first-order ordinary differential equations produces a system of linear first-order ordinary
differential equations. (In the case of nonlinear nth-order ordinary differential equations
which are linearisable to linear nth-order ordinary differential equations the natural reduc-
tion may not be so obvious without a knowledge of the linearising transformation. One
notes that the linearising transformation need not be a point transformation. a classic
example to the contrary is the equation y′′ + 3yy′ + y3 = 0 which is linearised to w′′′ = 0
by means of the nonlocal transformation (x, y) =⇒ (x,w : y = w′/w.)

In the case of a linear second-order ordinary differential equation there is already the
equivalence class of all linear second-order ordinary differential equations [6]. This is not
the case with higher-order equations under point transformations. For example linear
third-order ordinary differential equations can have four, five or seven Lie point sym-
metries. However, when the ‘equivalent’ system of linear first-order ordinary differential
equations is considered, there always exists a point transformation (in the variables of the
system of first-order ordinary differential equations) to transform one to another (provided
that the number of variables is the same!) [32]. The alternate route is to introduce nonlo-
cal transformations to the third- (æq higher-) order level to demonstrate the equivalence
of the three classes of linear equations when the classification is made in terms of point
symmetries [7, 18]. The very fact that first-order ordinary differential equations have an
infinite number of Lie point symmetries (equally generalised symmetries for first-order
equations) has a negative impact on the value of the existence of a symmetry. Apart from
this consideration the general problem of the determination of symmetries of first-order
ordinary differential equations is not solvable. However, there are some symmetries which
can be considered. One simply imposes a constraint on the form of the symmetry. In the
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case of systems of linear first-order ordinary differential equations a generalised self-similar
symmetry is an obvious symmetry to be considered since there is by definition similarity
in the dependent variables and so one has only to determine how the independent variable
comes into the symmetry. For examples of a different type of constraint see [1, 9, 10].

Consider the system of homogeneous equations

ẋ = Ax (0.13)

in which the elements of the coefficient matrix A may be time-dependent. In general (0.13)
possesses a Lie point symmetry

Γ = τ∂t + η∂x (0.14)

if

η̇ = (τA)˙x + Aη. (0.15)

Without any specification of the variable dependency in τ and η (0.15) has an infinite
number of solutions. However, if we demand that Γ have the form of a generalised self-
similar symmetry, ie be of the form

Γ = s0∂t + sijxj∂xi
(0.16)

(0.15) becomes

Ṡ = (s0A). + [A,S] , (0.17)

where S = [sij] and [A,S] is the usual commutator of the matrices A and S.
In contrast to (0.15), (0.17) is reasonably well-defined. There is one redundancy in that

there are n2 first-order equations for the n2 + 1 functions s0 and sij. One can consider
the differing results of taking, say, s0 = 0 or one of the sij = 0. In the case of linear
second-order ordinary differential equations being reduced to a system of two first-order
equations it may come as a surprise that the choice s0 = 0/s12 = 0 is equivalent and
the latter choice is a point symmetry of the original second-order equation. For systems
derived from equations of order higher than two this equivalence falls away. At the third-
order the choice s0 = 0/s13 = 0 relates point symmetries at the first-order level and
contact symmetries at the third-order level. At the order of four or more even this is
no longer available and one realises that there should be no surprise in variation in the
symmetry properties of ordinary differential equations as one goes from second- to third-
to higher-order equations.

We now consider the equation of the time-dependent harmonic oscillator, (0.1). As a
system of first-order equations this is simply written as

ẋ1 = x2

ẋ2 = −ω2x1, (0.18)

where x1 = θ and x2 = θ̇. We are now in a position to look at the symmetries of the
system (0.18). In general a symmetry of the form (0.14) is a solution of (0.15). For η
independent of the xi, τ must be 0 and one obtains the solution symmetries

Γs = fi(t)∂xi
, (0.19)
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where

ḟi = Aijfj. (0.20)

The solution symmetries are very useful since they enable one to transform from one
linear system to another and provide the basis for the unity of all linear (and linearisable)
nth-order ordinary differential equations [32].

The solution symmetries (0.19) require the solution of the original system. This is
rarely the easiest to accomplish and, varying with the applications, not always precisely
relevant. In the case of the generalised similarity symmetry (0.17) with (0.18) becomes

[

s11 s12

s21 s22

].

=

(

s0

[

0 1
−ω2 0

]).

+

[[

0 1
−ω2 0

]

,

[

s11 s12

s21 s22

]]

(0.21)

which is a system of four equations with five variables. If we put s0 = 0, ie the trans-
formation of variables induced by the symmetry (0.16) does not change the time, we have
the system of equations

[

u

v

].

=

[

B I
−ω2I B

] [

u

v

]

, (0.22)

where we have written

u =

[

s11

s12

]

, v =

[

s21

s22

]

, B =

[

0 ω2

−1 0

]

(0.23)

and I is the 2 × 2 unit matrix. From the system of equations

u̇ = Bu + v (0.24)

v̇ = −ω2
u + Bv (0.25)

we can use (0.24) to eliminate v from (0.25) and obtain the second-order equation for u,
videlicet

ü − 2Bu̇ − Ḃu = 0, (0.26)

after a certain amount of simplification. In terms of the components of u (0.26) becomes

s̈11 − 2ω2ṡ12 − 2ωω̇s12 = 0 (0.27)

s̈12 + 2ṡ11 = 0 (0.28)

and we can decouple the variables to obtain the single third-order equation for s12, videlicet

1

2

...
s 12 + 2ω2ṡ12 + 2ωω̇s12 = 0 (0.29)

which is easily integrated once by means of the integrating factor s12 to

1

2
s̈12s12 −

1

4
ṡ2
12 + ω2s2

12 = K, (0.30)
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where K is the constant of integration. The appearance of (0.30) is improved by the
introduction of an auxiliary function defined by s12 = ρ2. Then we have

ρ̈ + ω2ρ =
K

ρ3
(0.31)

s11 = −ρρ̇ s12 = ρ2 (0.32)

s21 = −ρ̇2 −
K

ρ2
s22 = ρρ̇, (0.33)

where in (0.33) we have used (0.24). We have the generalised self-similar symmetry

Γss =
(

−ρρ̇x1 + ρ2x2

)

∂x1
+

(

−

(

ρ̇2 +
K

ρ2

)

x1 + ρρ̇x2

)

∂x2
. (0.34)

This is not the most general form of the self-similar symmetry since we set s0 = 0, but
the additional generality is spurious. It is, as it were, that we have fixed a gauge function.
Given Γss, it is an easy matter to calculate the invariant of the system of first-order
ordinary differential equations (0.18) associated with this symmetry. The invariants of Γss

are the solutions of the associated Lagrange’s system

dt

0
=

dx1

−ρρ̇x1 + ρ2x2

=
dx2

−

(

ρ̇2 +
K

ρ2

)

x1 + ρρ̇x2

(0.35)

and are

u = t v = 1

2

[

(ρx2 − ρ̇x1)
2 +

K

ρ2

]

. (0.36)

In the second of these invariants of the symmetry we recognise the invariant for the system
of differential equations, (0.18), as the Ermakov-Lewis invariant. (The presence of the
constant K in (0.36) is a consequence of its presence in (0.30).) Naturally, if we did not
recognise this, we would have to proceed to the second part of the determination of the
invariant by solving the equation

dv

du
= f(u, v) (0.37)

obtained by the differentiation of the two invariants in (0.35). In this case we would find
that f = 0.

In (0.36) there is in fact some detail which appears to have been generally overlooked.
It is conventional to write the Ermakov-Lewis invariant in terms of the auxiliary function
ρ(t) which is the solution of the nonlinear second-order ordinary differential equation (0.31)
(usually with the constant of integration, K, fixed at 1). However, in our symmetry-based
approach the coefficient functions, sij, are found from the solution of the linear third-order
ordinary differential equation (0.29). Consequently there are three linearly independent
sets of coefficient functions. That these are given in terms of the two linearly independent
solutions of (0.1) is a consequence of (0.29) being a third-order ordinary differential equa-
tion of maximal point symmetry and consequently belonging to that hierarchy of ordinary
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differential equations for which the solutions can be expressed in terms of simple functional
combinations of the solutions of (0.1) [30].

The realisation of the three Ermakov-Lewis invariants is obscured by the time depen-
dence of ω2(t). For the purposes of our discussion we obtain a clearer picture if we take
ω2(t) = 1. However, we emphasise that there is no loss of generality in the subsequent
discussion, simply a gain in clarity. Equation (0.29) is now

...
s 12 + 4ṡ12 = 0 (0.38)

with the solution set {1, sin 2t, cos 2t} or, as would be more convenient in quantum mechan-
ical applications [20], {1, exp[2it], exp[−2it]}. There are three sets of coefficient functions,
sij, given by

s11 = 0 s12 = 1
s21 = −1 s22 = 0

(0.39)

corresponding to the solution 1,

s11 = − cos 2t s12 = sin 2t
s21 = sin 2t s22 = cos 2t

(0.40)

corresponding to the solution sin 2t and

s11 = sin 2t s12 = cos 2t
s21 = cos 2t s22 = − sin 2t

(0.41)

corresponding to the solution cos 2t, where we have used (0.28) and (0.24) to obtain s11,
s21 and s22 from s12. We note that, although (0.39) follows easily from (0.31–0.33), this is
not the case for (0.40) and (0.41) since different combinations of the basis solutions than
those chosen here are required. The problem is obviated if the exponential basis set is
used.

From these three symmetries three invariants follow. The generalised self-similar sym-
metries are

Γss1 = x2∂x1
− x1∂x2

Γss2 = (−x1 cos 2t + x2 sin 2t)∂x1
+ (x1 sin 2t + x2 cos 2t)∂x2

(0.42)

Γss3 = (x1 sin 2t + x2 cos 2t)∂x1
+ (x1 cos 2t − x2 sin 2t)∂x2

and for each of the symmetries the corresponding invariant is easily calculated to be

I1 = 1

2

(

x2
1 + x2

2

)

I2 = 1

2

(

x2
1 − x2

2

)

sin 2t + x1x2 cos 2t (0.43)

I3 = 1

2

(

x2
1 − x2

2

)

cos 2t − x1x2 sin 2t.

The integral, I1, is the usual Ermakov-Lewis invariant of the time-dependent harmonic
oscillator when this particular solution is replaced by the solution corresponding to ω2(t).
The transformation properties of the integral, I1, and the invariants, I2 and I3, in the
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general case of an n-dimensional oscillator system have received detailed treatment in the
past [16].

We note that Γss1 has the form of a rotation symmetry and this recalls the angular mo-
mentum interpretation of the traditional Ermakov-Lewis invariant, which is the invariant
of Γss1, proposed by Eliezer and Gray in 1976 [3]. Such an interpretation is not obvious
for Γss2 and/or for Γss3. Even if we take the generally useful combinations

Γss± = ±iΓss2 + Γss3

= e±2it [(±ix1 + x2)∂x1
+ (x1 ± ix2)∂x2

] , (0.44)

it is apparently rather hard to force the interpretation of some sort of rotational invariance
implied in I2 and I3. Nevertheless this is the case since the integrals, (0.43b,c), and the
symmetries, (0.44), represent invariant hyperbolic rotations [19], an invariance which is
reflected in the transformation properties of I1, I2 and I3 in the context of canonical
transformations of Hamiltonian Mechanics [16].

In fine we find that in the representation of the second-order ordinary differential equa-
tion for the time-dependent harmonic oscillator as a system of linear first-order ordinary
differential equations there are three generalised self-similar symmetries when one imposes
the constraint that there be no transformation of the time variable. Not surprisingly the
algebra of the three generalised self-similar symmetries is sl(2, R). The same algebra is
found for the three invariants in (0.43) under the operation of taking the Poisson Bracket.
Although the standard approaches to the Ermakov-Lewis invariant give only one such
invariant, a group theoretical approach based on the Lie point symmetries of the corre-
sponding linear system naturally reveals three invariants. In the case of a linear system
it makes sense to use the generalised self-similar symmetries as a starting point for an
investigation. It is an open question whether a similar approach can work with systems of
first-order equations derived from equations of higher order which possess some suitable
symmetry property such as self-similarity. Certainly there is some positive evidence that
this could be the case, for example in the instance of the Kepler Problem and related
problems [31, 33].

Appendix

In the body of the text we used the particular case of ω2(t) = 1 to provide a simpler and
clearer discussion of the explicit forms of the invariants, their algebraic properties and
geometrical interpretation. At that time we noted that there was no loss of generality in
so doing. Indeed, since the central purpose of this paper is the discussion of the use of the
symmetries of systems of first-order equations to obtain invariants, the precise functional
form of ω2(t) is relevant only if it provides an obstacle to further progress. However, for
the benefit of the reader who wishes to see the general results we provide them in this
brief Appendix.

The crux of the problem is to find the three linearly independent solutions of (0.29),
videlicet

...
s 12 + 4ω2ṡ12 + 4ωω̇s12 = 0, (0.45)
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since the remaining elements of the matrix, B, follow more or less directly from s12. Since
(0.45) is a third-order differential equation of maximal point symmetry, three linearly in-
dependent solutions are obtained from three linearly independent quadratic combinations
of two linearly independent solutions of the second-order differential equation

ü + ω2(t)u = 0. (0.46)

Suppose that these two linearly independent solutions of (0.46) are u(t) and v(t). They
may be expressed in terms of a solution of the Ermakov-Pinney equation

ρ̈ + ω2(t)ρ =
1

ρ3
(0.47)

as

u = ρ sinT and v = ρ cos T, (0.48)

where

T =

∫

ρ−2(t)dt. (0.49)

To maintain a parallel with the main text we take the three linearly independent solutions
for s12 to be

σ1 = u2 + v2 = ρ2 (0.50)

σ2 = 2uv = ρ2 sin 2T (0.51)

σ3 = −u2 + v2 = ρ2 cos 2T. (0.52)

The other elements of B follow as in (0.32) and (0.33) with the exception that we find

s21 = −

(

ρ̇2 −
1

ρ2

)

sin 2T − 2
ρ̇

ρ
cos 2T (0.53)

s21 = −

(

ρ̇2 −
1

ρ2

)

cos 2T + 2
ρ̇

ρ
sin 2T (0.54)

for (0.51) and (0.52) respectively.

The invariants corresponding to those given in (0.43) are then

I1 = 1

2

[

(ρ̇x1 − ρx2)
2 +

(

x1

ρ

)2
]

I2 = 1

2

[

(ρ̇x1 − ρx2)
2 −

(

x1

ρ

)2
]

sin 2T +
x1

ρ
(ρ̇x1 − ρx2) cos 2T (0.55)

I3 = 1

2

[

(ρ̇x1 − ρx2)
2 −

(

x1

ρ

)2
]

cos 2T −
x1

ρ
(ρ̇x1 − ρx2) sin 2t.

The first invariant is the usual Ermakov-Lewis invariant.
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The geometric interpretation is somewhat more difficult to depict for general ω2(t).
However, the algebra of both the three symmetries (Lie Brackets) and the three invariants
(Poisson Brackets) remains as sl(2, R) which is better written as its so(2, 1) variant for
the geometric interpretation of SO(2, 1) is that of rotations on an hyperboloid. A closed-
form solution of the Ermakov-Pinney equation (0.47) for general ω2(t) is not possible.
Nevertheless the use of ρ(t) as the source of the required solutions of (0.29) enables one to
take most computations to the second last line without the need for extensive numerical
calculations as was demonstrated, for example, in a discussion of Berry’s Phase for time-
dependent Hamiltonian systems [17].

One notes that in the approach adopted here the time remains an invariant of each of
the three generalised symmetries used to construct the invariants.
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