1.4. Heat Equation with Axial Symmetry

\[\frac{\partial w}{\partial t} = a \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right) \]

This is the heat (diffusion) equation with axial symmetry, where \(r = \sqrt{x^2 + y^2} \) is the radial coordinate.

1.4-1. Particular solutions of the heat equation with axial symmetry:

\[
\begin{align*}
 w(r) & = A + B \ln r, \\
 w(r, t) & = A + B(r^2 + 4at), \\
 w(r, t) & = A + B(r^4 + 16atr^2 + 32a^2t^2), \\
 w(r, t) & = A + B \left(r^{2n} + \sum_{k=1}^{n} \frac{4^k [n(n-1) \ldots (n-k+1)]^2}{k!} (at)^k r^{2n-2k} \right), \\
 w(r, t) & = A + B(4at \ln r + r^2 \ln r - r^2), \\
 w(r, t) & = A + \frac{B}{t} \exp \left(-\frac{r^2}{4at} \right), \\
 w(r, t) & = A + B \exp(-at \ln r), \\
 w(r, t) & = A + B \exp(-at r^2), \\
 w(r, t) & = A + B \exp \left(-\frac{r^2 + \mu^2}{4t} \right) J_0 \left(\frac{\mu r}{2t} \right), \\
 w(r, t) & = A + B t \exp \left(-\frac{r^2 + \mu^2}{4t} \right) K_0 \left(\frac{\mu r}{2t} \right),
\end{align*}
\]

where \(A, B, \) and \(\mu \) are arbitrary constants, \(n \) is an arbitrary positive integer, \(J_0(z) \) and \(Y_0(z) \) are the Bessel functions, and \(I_0(z) \) and \(K_0(z) \) are the modified Bessel functions.

1.4-2. Formulas allowing the construction of particular solutions.

Suppose \(w = w(r, t) \) is a solution of the heat equation. Then the functions

\[
\begin{align*}
 w_1 & = A w(\pm \lambda r, \lambda^2 t + C) + B, \\
 w_2 & = \frac{A}{\delta + \beta t} \exp \left(-\frac{\beta r^2}{4a(\delta + \beta t)} \right) w \left(\pm \frac{r}{\delta + \beta t}, \frac{\gamma + \lambda t}{\delta + \beta t} \right),
\end{align*}
\]

where \(A, B, C, \beta, \delta, \) and \(\lambda \) are arbitrary constants, are also solutions of this equation. The second formula usually may be encountered with \(\beta = 1, \gamma = -1, \) and \(\delta = \lambda = 0.\)

1.4-3. Boundary value problems for the heat equation with axial symmetry.

For solutions of various boundary value problems, see [Subsection 1.5].

References
