

10.
$$\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + g(w).$$

This equation occurs in nonlinear problems of heat and mass transfer with volume reaction.

1°. Traveling-wave solution:

$$w = w(z), \quad z = kx + \lambda t,$$

where k and λ are arbitrary constants, and the function w(z) is determined by the autonomous ordinary differential equation $k^2[f(w)w_z']_z' - \lambda w_z' + g(w) = 0$.

 2° . Let the function f = f(w) be arbitrary and let g = g(w) be defined by

$$g(w) = \frac{A}{f(w)} + B,$$

where A and B are some numbers. In this case, there is a functional separable solution, which is defined implicitly by

$$\int f(w) \, dw = At - \frac{1}{2}Bx^2 + C_1x + C_2,$$

where C_1 and C_2 are arbitrary constants.

 3° . Let now g = g(w) be arbitrary and let f = f(w) be defined by

$$f(w) = \frac{A_1 A_2 w + B}{g(w)} + \frac{A_2 A_3}{g(w)} \int Z \, dw,\tag{1}$$

$$Z = -A_2 \int \frac{dw}{g(w)},\tag{2}$$

where A_1 , A_2 , and A_3 are some numbers. Then there are generalized traveling-wave solutions of the form

$$w = w(Z), \quad Z = \frac{\pm x + C_2}{\sqrt{2A_3t + C_1}} - \frac{A_1}{A_3} - \frac{A_2}{3A_3}(2A_3t + C_1),$$

where the function w(Z) is determined by the inversion of (2), and C_1 and C_2 are arbitrary constants.

 4° . Let g = g(w) be arbitrary and let f = f(w) be defined by

$$f(w) = \frac{1}{g(w)} \left(A_1 w + A_3 \int Z \, dw \right) \exp \left[-A_4 \int \frac{dw}{g(w)} \right],\tag{3}$$

$$Z = \frac{1}{A_4} \exp\left[-A_4 \int \frac{dw}{g(w)}\right] - \frac{A_2}{A_4},\tag{4}$$

where A_1 , A_2 , A_3 , and A_4 are some numbers ($A_4 \neq 0$). In this case, there are generalized traveling-wave solutions of the form

$$w = w(Z), \quad Z = \varphi(t)x + \psi(t),$$

where the function w(Z) is determined by the inversion of (4),

$$\varphi(t) = \pm \left(C_1 e^{2A_4 t} - \frac{A_3}{A_4}\right)^{-1/2}, \quad \psi(t) = -\varphi(t) \left[A_1 \int \varphi(t) dt + A_2 \int \frac{dt}{\varphi(t)} + C_2\right],$$

and C_1 and C_2 are arbitrary constants.

 5° . Let the functions f(w) and g(w) be as follows:

$$f(w) = \varphi'(w), \quad g(w) = \frac{a\varphi(w) + b}{\varphi'(w)} + c[a\varphi(w) + b],$$

where $\varphi(w)$ is an arbitrary function and a, b, and c are any numbers (the prime denotes a derivative with respect to w). Then there are functional separable solutions defined implicitly by

$$\varphi(w) = e^{at} \left[C_1 \cos(x\sqrt{ac}) + C_2 \sin(x\sqrt{ac}) \right] - \frac{b}{a} \quad \text{if } ac > 0,$$

$$\varphi(w) = e^{at} \left[C_1 \cosh(x\sqrt{-ac}) + C_2 \sinh(x\sqrt{-ac}) \right] - \frac{b}{a} \quad \text{if } ac < 0.$$

 6° . Let f(w) and g(w) be as follows:

$$f(w) = w\varphi'_w(w), \quad g(w) = a\left[w + 2\frac{\varphi(w)}{\varphi'_w(w)}\right],$$

where $\varphi(w)$ is an arbitrary function and a is any number. Then there are functional separable solutions defined implicitly by

$$\varphi(w) = C_1 e^{2at} - \frac{1}{2}a(x + C_2)^2.$$

 7° . Let f(w) and g(w) be defined by the formulas

$$f(w) = A \frac{V(z)}{V_z'(z)}, \quad g(w) = B \left[2z^{-1/2}V_z'(z) + Bz^{-3/2}V(z) \right],$$

where V(z) is an arbitrary function of z, A and B are arbitrary constants ($AB \neq 0$), and the function z = z(w) is determined implicitly by

$$w = \int z^{-1/2} V_z'(z) dz + C_1, \tag{5}$$

with C_1 being an arbitrary constant. Then, there is a functional separable solution of the form (5) where

$$z = -\frac{(x+C_3)^2}{4At+C_2} + 2Bt + \frac{BC_2}{2A},$$

 C_2 and C_3 are arbitrary constants.

References

Dorodnitsyn, V. A., On invariant solutions of the nonlinear heat equation with a source [in Russian], *Zhurn. vychisl. matem. i matem. fiziki*, Vol. 22, No. 6, pp. 1393–1400, 1982.

Galaktionov, V. A., Quasilinear heat equations with first-order sign-invariants and new explicit solutions, *Nonlinear Analys.*, *Theory, Meth. and Applications*, Vol. 23, pp. 1595–1621, 1994.

Vorob'ev, E. M., Weak and partial symmetries of nonlinear PDE in two independent variables, *Nonlinear Mathematical Physics*, Vol. 3, N 3–4, pp. 330–335, 1996.

Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, 2004.

Polyanin, A. D. and Vyazmina, E. A., EqWorld, 2004 (Private communication: Item 7°, received 12 April 2004).