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10.
∂w

∂t
=

∂

∂x

[
f (w)

∂w

∂x

]
+ g(w).

This equation occurs in nonlinear problems of heat and mass transfer with volume reaction.

1◦. Traveling-wave solution:
w = w(z), z = kx + λt,

wherek and λ are arbitrary constants, and the functionw(z) is determined by the autonomous
ordinary differential equationk2[f (w)w′z]′z − λw′z + g(w) = 0.

2◦. Let the functionf = f (w) be arbitrary and letg = g(w) be defined by

g(w) =
A

f (w)
+ B,

whereA andB are some numbers. In this case, there is a functional separable solution, which is
defined implicitly by ∫

f (w) dw = At −
1
2

Bx2 + C1x + C2,

whereC1 andC2 are arbitrary constants.

3◦. Let nowg = g(w) be arbitrary and letf = f (w) be defined by

f (w) =
A1A2w + B

g(w)
+

A2A3

g(w)

∫
Z dw, (1)

Z = −A2

∫
dw

g(w)
, (2)

whereA1, A2, andA3 are some numbers. Then there are generalized traveling-wave solutions of
the form

w = w(Z), Z =
±x + C2√
2A3t + C1

−
A1

A3
−

A2

3A3
(2A3t + C1),

where the functionw(Z) is determined by the inversion of (2), andC1 andC2 are arbitrary constants.

4◦. Let g = g(w) be arbitrary and letf = f (w) be defined by

f (w) =
1

g(w)

(
A1w + A3

∫
Z dw

)
exp

[
−A4

∫
dw

g(w)

]
, (3)

Z =
1
A4

exp

[
−A4

∫
dw

g(w)

]
−

A2

A4
, (4)

whereA1, A2, A3, andA4 are some numbers (A4 ≠ 0). In this case, there are generalized traveling-
wave solutions of the form

w = w(Z), Z = ϕ(t)x + ψ(t),

where the functionw(Z) is determined by the inversion of (4),

ϕ(t) = ±
(

C1e
2A4t −

A3

A4

)−1/2

, ψ(t) = −ϕ(t)

[
A1

∫
ϕ(t) dt + A2

∫
dt

ϕ(t)
+ C2

]
,

andC1 andC2 are arbitrary constants.

5◦. Let the functionsf (w) andg(w) be as follows:

f (w) = ϕ′(w), g(w) =
aϕ(w) + b

ϕ′(w)
+ c[aϕ(w) + b],
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whereϕ(w) is an arbitrary function anda, b, andc are any numbers (the prime denotes a derivative
with respect tow). Then there are functional separable solutions defined implicitly by

ϕ(w) = eat
[
C1 cos(x

√
ac ) + C2 sin(x

√
ac )

]
−

b

a
if ac > 0,

ϕ(w) = eat
[
C1 cosh(x

√
−ac ) + C2 sinh(x

√
−ac )

]
−

b

a
if ac < 0.

6◦. Let f (w) andg(w) be as follows:

f (w) = wϕ′w(w), g(w) = a

[
w + 2

ϕ(w)
ϕ′w(w)

]
,

whereϕ(w) is an arbitrary function anda is any number. Then there are functional separable
solutions defined implicitly by

ϕ(w) = C1e
2at − 1

2 a(x + C2)2.

7◦. Let f (w) andg(w) be defined by the formulas

f (w) = A
V (z)
V ′

z (z)
, g(w) = B

[
2z−1/2V ′

z (z) + Bz−3/2V (z)
]
,

whereV (z) is an arbitrary function ofz, A andB are arbitrary constants (AB ≠ 0), and the function
z = z(w) is determined implicitly by

w =
∫

z−1/2V ′
z (z) dz + C1, (5)

with C1 being an arbitrary constant. Then, there is a functional separable solution of the form (5)
where

z = −
(x + C3)2

4At + C2
+ 2Bt +

BC2

2A
,

C2 andC3 are arbitrary constants.
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