34. \(y'' + (a - 2q \cos 2x)y = 0 \).

Mathieu equation.

1°. Given numbers \(a \) and \(q \), there exists a general solution \(y(x) \) and a characteristic index \(\mu \) such that

\[
y(x + \pi) = e^{2\pi \mu} y(x).
\]

For small values of \(q \), an approximate value of \(\mu \) can be found from the equation:

\[
\cosh(\pi \mu) = 1 + 2 \sin^2 \left(\frac{1}{2} \pi \sqrt{a} \right) + \frac{\pi q^2}{(1 - a)\sqrt{a}} \sin(\pi \sqrt{a}) + O(q^4).
\]

If \(y_1(x) \) is the solution of the Mathieu equation satisfying the initial conditions \(y_1(0) = 1 \) and \(y_1'(0) = 0 \), the characteristic index can be determined from the relation:

\[
\cosh(2\pi \mu) = y_1(\pi).
\]

The solution \(y_1(x) \), and hence \(\mu \), can be determined with any degree of accuracy by means of numerical or approximate methods.

The general solution differs depending on the value of \(y_1(\pi) \) and can be expressed in terms of two auxiliary periodical functions \(\varphi_1(x) \) and \(\varphi_2(x) \) (see Table 1).

<table>
<thead>
<tr>
<th>Constraint</th>
<th>General solution (y = y(x))</th>
<th>Period of (\varphi_1) and (\varphi_2)</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1(\pi) > 1)</td>
<td>(C_1 e^{2\mu x} \varphi_1(x) + C_2 e^{-2\mu x} \varphi_2(x))</td>
<td>(\pi)</td>
<td>(\mu) is a real number</td>
</tr>
<tr>
<td>(y_1(\pi) < -1)</td>
<td>(C_1 e^{2\mu x} \varphi_1(x) + C_2 e^{-2\mu x} \varphi_2(x))</td>
<td>(2\pi)</td>
<td>(\mu = \rho + \frac{1}{2}i, ; i^2 = -1, ; \rho) is the real part of (\mu)</td>
</tr>
<tr>
<td>(</td>
<td>y_1(\pi)</td>
<td>< 1)</td>
<td>((C_1 \cos \nu x + C_2 \sin \nu x)\varphi_1(x) + (+C_1 \cos \nu x - C_2 \sin \nu x)\varphi_2(x))</td>
</tr>
<tr>
<td>(y_1(\pi) = \pm 1)</td>
<td>(C_1 \varphi_1(x) + C_2 x \varphi_2(x))</td>
<td>(\pi)</td>
<td>(\mu = 0)</td>
</tr>
</tbody>
</table>

2°. In applications, of major interest are periodical solutions of the Mathieu equation that exist for certain values of the parameters \(a \) and \(q \) (those values of \(a \) are referred to as eigenvalues). The most important solutions are listed in Table 2.

The Mathieu functions possess the following properties:

\[
\begin{align*}
\text{ce}_{2n}(x, -q) &= (-1)^n \text{ce}_{2n}\left(\frac{\pi}{2} - x, q \right), \\
\text{se}_{2n}(x, -q) &= (-1)^{n-1} \text{se}_{2n}\left(\frac{\pi}{2} - x, q \right),
\end{align*}
\]

\[
\begin{align*}
\text{ce}_{2n+1}(x, -q) &= (-1)^n \text{se}_{2n+1}\left(\frac{\pi}{2} - x, q \right),
\end{align*}
\]

Selecting a sufficiently large \(m \) and omitting the term with the maximum number in the recurrence relations (indicated in Table 20), we can obtain approximate relations for the eigenvalues \(a_n \) (or \(b_n \))
Periodical solutions of the Mathieu equation $ce_n = ce_n(x, q)$ and $se_n = se_n(x, q)$ (for odd n, the functions ce_n and se_n are 2π-periodical, and for even n, they are π-periodical); certain eigenvalues $a = a_n(q)$ and $b = b_n(q)$ correspond to each value of the parameter q; $n = 0, 1, 2, \ldots$

<table>
<thead>
<tr>
<th>Mathieu functions</th>
<th>Recurrence relations for coefficients</th>
<th>Normalization conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ce_{2n}(x, q) = \sum_{m=0}^{\infty} A_{2m}^{2n} \cos(2mx)$</td>
<td>$qA_{2n}^{2n} = a_{2n} A_{0}^{2n}$; $qA_{4}^{2n} = (a_{2n} - 4) A_{2}^{2n} - 2q A_{0}^{2n}$; $qA_{2m}^{2n} = (a_{2n} - 4m^2) A_{2m}^{2n}$; $-qA_{2m-2}^{2n}$, $m \geq 2$</td>
<td>$(A_{0}^{2n})^2 + \sum_{m=0}^{\infty} (A_{2m}^{2n})^2 = 1$ if $n = 0$</td>
</tr>
<tr>
<td>$ce_{2n+1}(x, q) = \sum_{m=0}^{\infty} A_{2m+1}^{2n+1} \cos[(2m+1)x]$</td>
<td>$qA_{2n+1}^{2n+1} = (a_{2n+1} - 1 - q) A_{1}^{2n+1}$; $qA_{2m+3}^{2n+1} = [a_{2n+1} - (2m+1)^2]$ $\times A_{2m+1}^{2n+1}$ $- qA_{2m+1}^{2n+1}$, $m \geq 1$</td>
<td>$\sum_{m=0}^{\infty} (A_{2m+1}^{2n+1})^2 = 1$</td>
</tr>
<tr>
<td>$se_{2n}(x, q) = \sum_{m=0}^{\infty} B_{2m}^{2n} \sin(2mx)$, $se_0 = 0$</td>
<td>$qB_{2}^{2n} = (b_{2n} - 4) B_{2}^{2n}$; $qB_{2m}^{2n} = (b_{2n} - 4m^2) B_{2m}^{2n}$; $-qB_{2m-2}^{2n}$, $m \geq 2$</td>
<td>$\sum_{m=0}^{\infty} (B_{2m}^{2n})^2 = 1$</td>
</tr>
<tr>
<td>$se_{2n+1}(x, q) = \sum_{m=0}^{\infty} B_{2m+1}^{2n+1} \sin[(2m+1)x]$</td>
<td>$qB_{2n+1}^{2n+1} = (b_{2n+1} - 1 - q) B_{1}^{2n+1}$; $qB_{2m+3}^{2n+1} = [b_{2n+1} - (2m+1)^2]$ $\times B_{2m+1}^{2n+1}$ $- qB_{2m+1}^{2n+1}$, $m \geq 1$</td>
<td>$\sum_{m=0}^{\infty} (B_{2m+1}^{2n+1})^2 = 1$</td>
</tr>
</tbody>
</table>

with respect to parameter q. Then, equating the determinant of the corresponding homogeneous linear system of equations for coefficients A_{2n}^{n} (or B_{2n}^{n}) to zero, we obtain an algebraic equation for finding $a_n(q)$ (or $b_n(q)$).

For fixed real $q \neq 0$, the eigenvalues a_n and b_n are all real and different, while:

- if $q > 0$, then $a_0 < b_1 < a_1 < b_2 < a_2 < \ldots$;
- if $q < 0$, then $a_0 < a_1 < b_1 < b_2 < a_2 < a_3 < b_3 < b_4 < \ldots$

The eigenvalues possess the following properties:

$$a_{2n}(-q) = a_{2n}(q), \quad b_{2n}(-q) = b_{2n}(q), \quad a_{2n+1}(-q) = b_{2n+1}(q).$$

The solution of the Mathieu equation corresponding to eigenvalue a_n (or b_n) has n zeros on the interval $0 \leq x < \pi$ (q is a real number).

References

Mathieu Equation