MiniLogo

EqWorld

The World of Mathematical Equations

IPM Logo

Exact Solutions Methods Software For Authors Math Forums

EqArchive: Add Equation/Solution > List of Equations

 English only

List of Equations

The database contains 327 equations (8 equations are awaiting activation).

Selection options
Categories: 
Subcategories: 
Sorting 1 by:     Order: 
Sorting 2 by:     Order: 
Equations per page (0-all): 
See also: Categorized List of Equations

4. Nonlinear Partial Differential Equations

4.4. Other Second-Order Equations

Found 106 equations, 11 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 >>
 Equation(s)Author/
Contributor
Actions
21 $\displaystyle \left(\frac{\partial^2 w}{\partial x\partial y}\right)^2+
f\left(\frac{\partial w}{\partial x}\right)\frac{\partial^2 w}{\partial x^2}\frac{\partial^2 w}{\partial y^2}+
f\left(\frac{\partial w}{\partial x}\right)\frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial x^2}+
\frac{\partial w}{\partial x}\frac{\partial^2 w}{\partial x\partial y}=0$.\hfill\break Valentin Feodorovich Zaitsev
Submitted: 09 Jan 08 14:09
Edited (admin): 10 Jan 08 13:21
Details
Edit
22 $\displaystyle a\left(\frac{\partial^2 w}{\partial x\partial y}\right)^2+
\frac{\partial^2 w}{\partial x^2}\frac{\partial^2 w}{\partial y^2}+
\left[f(y)\frac{\partial w}{\partial x}+
ag(x)\frac{\partial w}{\partial y}\right]\frac{\partial^2 w}{\partial x\partial y}+
g(x)f(y)\frac{\partial w}{\partial x}\frac{\partial w}{\partial y}=0$.\hfill\break Valentin Feodorovich Zaitsev
Submitted: 09 Jan 08 14:08
Edited (admin): 10 Jan 08 13:22
Details
Edit
23 $\displaystyle a\left(\frac{\partial^2 w}{\partial x\partial y}\right)^2+
\frac{\partial^2 w}{\partial x^2}\frac{\partial^2 w}{\partial y^2}+
a\left[f(y)\frac{\partial w}{\partial x}+f(y)w+
\frac{\partial w}{\partial y}\right]\frac{\partial^2 w}{\partial x\partial y}+
\frac{\partial w}{\partial x}\frac{\partial^2 w}{\partial y^2}=0$.\hfill\break Valentin Feodorovich Zaitsev
Submitted: 09 Jan 08 14:07
Edited (admin): 10 Jan 08 13:23
Details
Edit
24 $\displaystyle a\left(\frac{\partial^2 w}{\partial x\partial y}\right)^2+
\frac{\partial^2 w}{\partial x^2}\frac{\partial^2 w}{\partial y^2}+
\left[f(x)\frac{\partial w}{\partial x}+f(x)w+
\frac{\partial w}{\partial x}\right]\frac{\partial^2 w}{\partial y^2}+
a\frac{\partial w}{\partial y}\frac{\partial^2 w}{\partial x\partial y}=0$.\hfill\break Valentin Feodorovich Zaitsev
Submitted: 09 Jan 08 14:07
Edited (admin): 10 Jan 08 13:25
Details
Edit
25 $\displaystyle w\left(\frac{\partial^2 w}{\partial x\partial y}\right)^2+
\left(\frac{\partial w}{\partial x}\right)^2\frac{\partial^2 w}{\partial y^2}+
f(y)\left(\frac{\partial w}{\partial x}\right)^2\frac{\partial w}{\partial y}=0$.\hfill\break Valentin Feodorovich Zaitsev
Submitted: 09 Jan 08 14:06
Edited (admin): 10 Jan 08 13:41
Details
Edit
26 $\displaystyle w\frac{\partial w}{\partial y}\left(\frac{\partial^2 w}{\partial x^2}\right)^2+
\left(\frac{\partial w}{\partial x}\right)^3\frac{\partial^2 w}{\partial x\partial y}+
f(y)\left(\frac{\partial w}{\partial x}\right)^4=0$.\hfill\break Valentin Feodorovich Zaitsev
Submitted: 09 Jan 08 14:05
Edited (admin): 10 Jan 08 14:22
Details
Edit
27 $\displaystyle \left[\frac{\partial^2 w}{\partial x\partial y}+
g(y)\frac{\partial w}{\partial x}\right]\frac{\partial^3 w}{\partial x\partial y^2}-
\left[\frac{\partial^2 w}{\partial x^2}+
f(x)\frac{\partial w}{\partial x}\right]\frac{\partial^3 w}{\partial y^3}=0$.\hfill\break Valentin Feodorovich Zaitsev
Submitted: 09 Jan 08 14:05
Edited (admin): 10 Jan 08 14:23
Details
Edit
28 $\displaystyle \left[f(x)\frac{\partial w}{\partial y}+
\frac{\partial^2 w}{\partial x\partial y}\right]\frac{\partial^2 w}{\partial z^2}+
\left[g(z)\frac{\partial w}{\partial y}-
\frac{\partial^2 w}{\partial y\partial z}\right]\frac{\partial^2 w}{\partial x\partial z}=0$.\hfill\break Valentin Feodorovich Zaitsev
Submitted: 09 Jan 08 13:58
Edited (admin): 10 Jan 08 14:34
Details
Edit
29 $\displaystyle \frac{\partial^2 w}{\partial x^2}\frac{\partial^2 w}{\partial y\partial z}-
\frac{\partial^2 w}{\partial x\partial y}\left(\frac{\partial^2 w}{\partial x\partial z}-
f(z)\right)=0$.\hfill\break Valentin Feodorovich Zaitsev
Submitted: 09 Jan 08 13:57
Edited (admin): 10 Jan 08 14:35
Details
Edit
30 $\displaystyle \frac{\partial w}{\partial x}\frac{\partial^2 w}{\partial y\partial z}-
\left(\frac{\partial w}{\partial z}-f(z)\right)\frac{\partial^2 w}{\partial x\partial y}=0$.\hfill\break Valentin Feodorovich Zaitsev
Submitted: 09 Jan 08 13:57
Edited (admin): 10 Jan 08 14:36
Details
Edit
Found 106 equations, 11 pages (10 eqs. per page): << 1 2 3 4 5 6 7 8 9 10 11 >>

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2006-2011 Andrei D. Polyanin, Alexei I. Zhurov and Alexander L. Levitin