MiniLogo

EqWorld

The World of Mathematical Equations

IPM Logo

Exact Solutions Methods Software For Authors Math Forums

EqArchive: Add Equation/Solution > List of Equations

 English only

List of Equations

The database contains 327 equations (8 equations are awaiting activation).

Selection options
Categories: 
Subcategories: 
Sorting 1 by:     Order: 
Sorting 2 by:     Order: 
Equations per page (0-all): 
See also: Categorized List of Equations

5. Integral Equations

5.6. Nonlinear Equations with Constant Limits of Integration

Found 8 equations
 Equation(s)Author/
Contributor
Actions
1 $\displaystyle \int^\infty_0[\sin(xt)y(t)+\varphi(x)\psi(t)y^2(t)]\,dt=f(x)$. Andrei Polyanin
Submitted: 03 Jul 07 17:02
Details
Edit
2 $\displaystyle \int^\infty_0[\cos(xt)y(t)+\varphi(x)\psi(t)y^2(t)]\,dt=f(x)$. Andrei Polyanin
Submitted: 03 Jul 07 17:05
Details
Edit
3 $\displaystyle \int^\infty_0[\sin(xt)+\varphi(x)\Psi(t,y(t))]y(t)\,dt=f(x)$. Andrei Polyanin
Submitted: 03 Jul 07 17:07
Details
Edit
4 $\displaystyle \int^\infty_0[\cos(xt)+\varphi(x)\Psi(t,y(t))]y(t)\,dt=f(x)$. Andrei Polyanin
Submitted: 03 Jul 07 17:09
Details
Edit
5 $\displaystyle y(x)+\int^{\infty}_{-\infty}\bl[\lambda e^{-|x-t|}y(t)+\varphi(x)\psi(t)y^2(t)]\,dt=f(x)$. Andrei Polyanin
Submitted: 03 Jul 07 17:15
Details
Edit
6 $\displaystyle 
y(x)-\int^\infty_0[\lambda\sin(xt)+\varphi(x)\Psi(t,y(t))]y(t)\,dt=f(x)$. Andrei Polyanin
Submitted: 03 Jul 07 17:20
Details
Edit
7 $\displaystyle y(x)-\int^\infty_0[\lambda\cos(xt)+\varphi(x)\Psi(t,y(t))]y(t)\,dt=f(x)$. Andrei Polyanin
Submitted: 03 Jul 07 17:23
Details
Edit
8 $\displaystyle y(x)+\int^{\infty}_{-\infty}\bl[\lambda e^{-|x-t|}y(t)+\varphi(x)\Psi(t,y(t))]\,dt=f(x)$. Andrei Polyanin
Submitted: 03 Jul 07 17:18
Edited (admin): 03 Jul 07 17:26
Details
Edit
Found 8 equations

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2006-2011 Andrei D. Polyanin, Alexei I. Zhurov and Alexander L. Levitin