MiniLogo

EqWorld

The World of Mathematical Equations

IPM Logo

Exact Solutions Methods Software For Authors Math Forums

EqArchive: Add Equation/Solution > View Equation

 English only

View Equation

The database contains 327 equations (8 equations are awaiting activation).

Equation data
Category:3. Linear Partial Differential Equations
Subcategory:3.5. Higher-Order Equations
Equation(s):$\displaystyle \frac{\partial w}{\partial t}+a\frac{\partial^4w}{\partial x^4}=0$.
Solution(s),
Transformation(s),
Integral(s)
:
Particular solutions:\hfill\break
$w_0(x,t)=1$,\\
$w_1(x,t)=x$,\\
$w_2(x,t)=x^2$,\\
$w_3(x,t)=x^3$,\\
$\displaystyle w_4(x,t)=x^4-4!at$,\\
$\displaystyle w_5(x,t)=x^5-5!axt$,\\
$\displaystyle w_6(x,t)=x^6-\frac {6!a}{2!}x^2t$,\\
$\displaystyle w_7(x,t)=x^7-\frac {7!a}{3!}x^3t$,\\
$\displaystyle w_8(x,t)=x^8-\frac {8!a}{4!}x^4t+\frac {8!a^2}{2!}t^2$,\\
$\displaystyle w_9(x,t)=x^9-\frac {9!a}{5!}x^5t+\frac {9!a^2}{2!}xt^2$,\\
$\displaystyle w_{10}(x,t)=x^{10}-\frac {10!a}{6!}x^6t+\frac {10!a^2}{2!2!}x^2t^2$,\\
$\dots$,\\
$\displaystyle w_n(x,t)=\sum_{k=0}^{n-4k\geq0} \frac {(-1)^kn!a^kt^kx^{n-4k}}{(n-4k)!k!}$.
Novelty:New solution(s) / integral(s)
Admin's Comment:For other solutions see {\it Handbook of Linear Partial Differential Differential Equations for Engineers and Scientists}
by A. D. Polyanin (2002, pp. 602--605).
Author/Contributor's Details
Last name:Stepuchev
First name:Valeriy
Country:Latvija
City:Sigulda
Statistic information
Submission date:Mon 12 May 2008 18:06
Edits by author:0

Edit (Only for author/contributor)


The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2006-2011 Andrei D. Polyanin, Alexei I. Zhurov and Alexander L. Levitin