MiniLogo

EqWorld

The World of Mathematical Equations

IPM Logo

Exact Solutions Methods Software For Authors Math Forums

EqArchive: Add Equation/Solution > View Equation

 English only

View Equation

The database contains 327 equations (8 equations are awaiting activation).

Equation data
Category:3. Linear Partial Differential Equations
Subcategory:3.2. Second-Order Hyperbolic Equations
Equation(s):$\displaystyle \frac{\partial ^2w}{\partial t^2}=ax\frac{\partial^2w}{\partial x^2}+b
\frac{\partial w}{\partial x}$.
Solution(s),
Transformation(s),
Integral(s)
:
1. Particular solutions:\\
$w_0(x,t)=1$,\\
$w_1(x,t)=t$,\\
$\displaystyle w_2(x,t)=t^2+\frac 2bx$,\\
$\dots$,\\
$\displaystyle w_n(x,t)=t^n+\sum_{k=1}^{n-2k\geq0}\frac {n!t^{n-2k}x^k}{(n-2k)!k!a^k\left(\frac{b}{a}\right)_k}$.
\medskip

2. Particular solutions:\\
$\displaystyle w_0(x,t)=x^{1-\frac ba}$,\\
$\displaystyle w_1(x,t)=tx^{1-\frac ba}$,\\
$\displaystyle w_2(x,t)=t^2x^{1-\frac ba}+\frac {2x^{2-\frac ba}}{2a-b}$,\\
$\dots$,\\
$\displaystyle w_n(x,t)=t^nx^{1-\frac ba}+x^{1-\frac ba}\sum_{k=1}^{n-2k\geq0}\frac {n!t^{n-2k}x^k}{(n-2k)!k!a^k\left(\frac{2a-b}{a}\right)_k}$.
Novelty:New solution(s) / integral(s)
Author/Contributor's Details
Last name:Stepuchev
First name:Valeriy
Country:Latvija
City:Sigulda
Statistic information
Submission date:Wed 04 Jun 2008 20:36
Edits by author:1
Last edit by author:Wed 07 Oct 2015 17:59

Edit (Only for author/contributor)


The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2006-2011 Andrei D. Polyanin, Alexei I. Zhurov and Alexander L. Levitin