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Preface

Presently, the notion of function is not as finally crystallized
and definitely established as it seemed at the end of the 19th cen-
tury; one can say that at present this notion is still in evolution,
and that the dispute concerning the vibrating string is still going on
only, of course, in different scientific circumstances, involving other
personalities and using other terms.

Luzin N.N. (1935) [42]
It is symbolic that in that same year of 1935, S.L. Sobolev, who

was 26 years old that time, submitted to the editorial board of the
journal “Matematicheskiy sbornik” his famous work [61] and pub-
lished at the same time its brief version in “Doklady AN SSSR” [60].
This work laid foundations of a completely new outlook on the con-
cept of function, unexpected even for N.N. Luzin — the concept of
a generalized function (in the framework of the notion of distribu-
tion introduced later). It is also symbolic that the work by Sobolev
was devoted to the Cauchy problem for hyperbolic equations and, in
particular, to the same vibrating string.

In recent years Luzin’s assertion that the discussion concern-
ing the notion of function is continuing was confirmed once again,
and the stimulus for the development of this fundamental concept
of mathematics is, as it was before, the equations of mathematical
physics (see, in particular, Addition written by Yu.V. Egorov and
[10, 11, 16, 17, 18, 32, 49, 67]). This special role of the equa-
tions of mathematical physics (in other words, partial differential
equations directly connected with natural phenomena) is explained
by the fact that they express the mathematical essence of the funda-
mental laws of the natural sciences and consequently are a source and
stimulus for the development of fundamental mathematical concepts
and theories.

vii



viii PREFACE

The crucial role in appearance of the theory of generalized func-
tions (in the sense the theory of distributions) was played by J. Ha-
damard, K.O. Friedrichs, S. Bochner, and especially to L. Schwartz,
who published, in 1944–1948, a series of remarkable papers concern-
ing the theory of distributions, and in 1950–1951 a two-volume book
[54], which immediately became classical. Being a masterpiece and
oriented to a wide circle of specialists, this book attracted the at-
tention of many people to the theory of distributions. The huge
contribution to its development was made by such prominent math-
ematicians as I.M. Gel’fand, L. Hörmander and many others. As a
result, the theory of distributions has changed all modern analysis
and first of all the theory of partial differential equations. Therefore,
the foundations of the theory of distributions became necessary for
general education of physicists and mathematicians. As for students
specializing in the equations of mathematical physics, they cannot
even begin any serious work without knowing the foundations of the
theory of distributions.

Thus, it is not surprising that a number of excellent monographs
and textbooks (see, for example, [12, 22, 23, 25, 31, 40, 44, 54,
57, 59, 62, 68, 69]) are devoted to the equations of mathematical
physics and distributions. However, most of them are intended for
rather well prepared readers. As for this small book, I hope that it
will be clear even to undergraduates majoring in physics and math-
ematics and will serve to them as starting point for a deeper study
of the above-mentioned books and papers.

In a nutshell the book gives an interconnected presentation of
a some basic ideas, concepts, results of the theory of generalized
functions (first of all, in the framework of the theory of distributions)
and equations of mathematical physics.

Chapter 1 acquaints the reader with some initial elements of the
language of distributions in the context of the classical equations
of mathematical physics (the Laplace equation, the heat equation,
the string equation). Here some basic facts from the theory of the
Lebesgue integral are presented, the Riesz spaces of integrable func-
tions are introduced. In the section devoted to the heat equation,
the student of mathematics can get familiar with the method of
dimensionality and similarity, which is not usually included in the
university program for mathematicians, but which is rather useful on
the initial stage of study of the problems of mathematical physics.



PREFACE ix

Chapter 2 is devoted to the fundamentals of the theory of distri-
butions due to L. Schwartz. Section 16 is the most important. The
approach to some topics can also be interesting for the experts.

Chapter 3 acquaints the reader with some modern tools and
methods for the study of linear equations of mathematical physics.
The basics of the theory of Sobolev spaces, the theory of pseudodif-
ferential operators, the theory of elliptic problems (including some
elementary results concerning the index of elliptic operators) as well
as some other problems connected in some way with the Fourier
transform (ordinary functions and distributions) are given here.

Now I would like to say a few words concerning the style of the
book. A part of the material is given according to the scheme: defini-
tion — theorem — proof. This scheme is convenient for presenting
results in clear and concentrated form. However, it seems reason-
able to give a student the possibility not only to study a priori given
definitions and proofs of theorems, but also to discover them while
considering the problems involved. A series of sections serves this
purpose. Moreover, a part of the material is given as exercises and
problems. Thus, reading the book requires, in places, a certain ef-
fort. However, the more difficult problems are supplied with hints
or references. Problems are marked by the letter P (hint on Parking
for the solution of small Problems).

The importance of numerous notes is essentially connected with
a playful remark by V.F. D’yachenko: “The most important facts
should be written in notes, since only those are read”. The notes are
typeset in a small font and located in the text immediately after the
current paragraph.

I am very grateful to Yu.V. Egorov, who kindly agreed to write
Addendum to the book. I would also like to acknowledge my grati-
tude to M.S. Agranovich, A.I. Komech, S.V. Konyagin, V.P. Palam-
odov, M.A. Shubin, V.M. Tikhomirov, and M.I. Vishik for the useful
discussions and critical remarks that helped improve the manuscript.
I am also thankful to E.V. Pankratiev who translated this book and
produced the CRC.

While preparing this edition, some corrections were made and
the detected misprints have been corrected.

A.S. Demidov





Notation

N = {1, 2, 3, . . . }, Z = {0,±1,±2, . . . } and Z+ = {0,±1,±2, . . . } are
the sets of natural numbers, integers and non-negative integers.

X × Y is the Cartesian product of the sets X and Y , Xn = Xn−1 ×X.
i =
√
−1 is the imaginary unit (“dotted i”).

◦
ı = 2πi the imaginary 2π (“i with a circle”).
Rn and Cn are n-dimensional Euclidean and complex spaces; R = R1,

C = C1 3 z = x+ iy, where x = <z ∈ R and y = =z ∈ R.
x < y, x ≤ y, x > y, x ≥ y are the order relations on R.
a� 1 means the a sufficiently large.
{x ∈ X | P} is the set of elements which belong to X and have a

property P .
]a, b] = {x ∈ R | a < x ≤ b}; [a, b], ]a, b[ and [a, b[ are defined similarly.
{an} is the sequence {an}∞n=1 = {a1, a2, a3, . . . }.
f : X 3 x 7→ f(x) ∈ Y is the mapping f : X → Y , putting into

correspondence to an element x ∈ X the element f(x) ∈ Y .
1A is the characteristic function of the set A, i.e. 1A = 1 in A and

1A = 0 outside of A.
arccotα =

π

2
− arctanα.

x→ a means that the numerical variable x converges (tends) to a.
=⇒ means “it is necessary follows”.
⇐⇒ means “if and only if” (“iff”), i.e an equivalence.
A b Ω means A is compactly embedded in Ω (see Definition 3.2).
Cm(Ω), Cm

b (Ω), Cm(Ω̄), PCm(Ω), PCm
b (Ω), Cm

0 (Ω), Cm
0 (Ω̄) see Defi-

nition 3.1 (for 0 ≤ m ≤ ∞).
Lp(Ω), L∞(Ω), Lp

loc(Ω) see Definitions 9.1, 9.9, 9.15.
D[(Ω), D#(Ω), D(Ω), D′(Ω) see Definitions 12.2, 13.1, 16.7, 16.9.
E(Ω), E ′(Ω) see P.16.13.
S(Rn), S ′(Rn) see Definitions 17.10, 17.18.

xi





CHAPTER 1

Introduction to problems of
mathematical physics

1. Temperature at a point? No! In volumes contracting to
the point

Temperature. We know this word from our childhood. The tem-
perature can be measured by a thermometer. . . This first impression
concerning the temperature is, in a sense, nearer to the essence than
the representation of the temperature as a function of a point in
space and time. Why? Because the concept of the temperature as
a function of a point arose as an abstraction in connection with the
conception of continuous medium. Actually, a physical parameter
of the medium under consideration (for instance, its temperature)
is first measured by a device in a “large” domain containing the
fixed point ξ, then using a device with better resolution in a smaller
domain (containing the same point) an so on. As a result, we ob-
tain a (finite) sequence of numbers {a1, . . . , aM}— the values of the
physical parameter in the sequence of embedded domains contain-
ing the point ξ. We idealize the medium considered, by assuming
that the construction of the numerical sequence given above is for
an infinite system of domains containing the point ξ and embedded
in each other. Then we obtain an infinite numerical sequence {am}.
If we admit (this is the essence of the conception of the continuous
medium1), that such a sequence exists and has a limit (which does
not depend on the choice of the system of embedded in each other
domains), then this limit is considered as the value of the physical
parameter (for instance, temperature) of the considered medium at
the point ξ.

1) In some problems of mathematical physics, first of all in nonlin-

ear ones, it is reasonable (see, for example, [10, 11, 16, 18, 32, 49]) to

1



2 1. INTRODUCTION TO PROBLEMS OF MATHEMATICAL PHYSICS

consider a more general conception of the continuous medium in which a

physical parameter (say, temperature, density, velocity. . . ) is character-

ized not by the values measured by one or another set of “devices”, in

other words, not by a functional of these “devices”, but a “convergent”

sequence of such functionals which define, similarly to nonstandard anal-

ysis [5, 13, 73], a thin structure of a neighbourhood of one or another

point of continuous medium.

Thus, the concept of continuous medium occupying a domain2)

Ω, assumes that the numerical characteristic f of a physical param-
eter considered in this domain (i.e. in Ω) is a function in the usual
sense: a mapping from the domain Ω into the numerical line (i.e. into
R or into C). Moreover, the function f has the following property:

〈f, ϕξ
m〉 = am, m = 1, . . . ,M. (1.1)

Here, am are the numbers introduced above, and the left-hand side
of (1.1), which is defined3) by the formula 〈f, ϕξ〉 =

∫
f(x)ϕξ(x)dx,

represents the “average” value of the function f , measured in the
neighbourhood of the point ξ ∈ Ω by using a “device”, which will
be denoted by 〈·, ϕξ〉. The “device” has the resolving power, that
is determined by its “device function” (or we may also say “test
function”) ϕξ : Ω→ R. This function is normed:

∫
ϕξ(x)dx = 1.

2) Always below, if the contrary is not said explicitly, the domain Ω
is an open connected set in Rn, where n > 1, with a sufficiently smooth
(n− 1)-dimensional boundary ∂Ω.

3) Integration of a function g over a fixed (in this context) domain

will be often written without indication of the domain of integration, and

sometimes simply in the form
R
g.

Let us note that more physical are “devices”, in which ϕξ has
the form of a “cap” in the neighbourhood of the point ξ, i.e. ϕξ(x) =
ϕ(x−ξ) for x ∈ Ω, where the function ϕ : Rn 3 x = (x1, . . . , xn) 7−→
ϕ(x) ∈ R has the following properties:

ϕ ≥ 0,
∫
ϕ = 1,

ϕ = 0 outside the ball {x ∈ Rn
∣∣ |x| ≡√x2

1 + · · ·+ x2
n ≤ ρ}.

(1.2)

Here, ρ ≤ 1 is such that {x ∈ Ω
∣∣ |x − ξ| < ρ} ⊂ Ω. Often one

can assume that the “device” measures the quantity f uniformly
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in the domain ω ∈ Ω. In this case, ϕ = 1ω/|ω|, where 1ω is the
characteristic function of the domain ω (i.e. 1ω = 1 in ω and 1ω = 0
outside ω), and |ω| is the volume of the domain ω (i.e. |ω| =

∫
1ω). In

particular, if Ω = Rn and ω = {x ∈ Rn
∣∣ |x| < α}, then ϕ(x) = δα(x),

where

δα(x) =

{
α−n/|Bn| for |x| ≤ α,
0 for |x| > α,

(1.3)

and |Bn| is the volume of the unit ball Bn in Rn.

1.1.P. It is well known that |B2| = π and |B3| = 4π/3. Try to
calculate |Bn| for n > 3. We shall need it below.

Hint. Obviously, |Bn| = σn/n, where σn is the area of the
surface of the unit (n − 1)-dimensional sphere in Rn, since |Bn| =∫ 1

0
rn−1σndr. If the calculation of σn for n > 3 seems to the reader

difficult or noninteresting, he can read the following short and unex-
pectedly beautiful solution.

Solution. We have( ∞∫
−∞

e−t2dt

)n

=
∫

Rn

e−|x|
2
dx =

∞∫
0

e−r2
rn−1σndr = (σn/2) · Γ(n/2),

(1.4)
where Γ(·) is the Euler function defined by the formula

Γ(λ) =

∞∫
0

tλ−1e−tdt, where <λ > 0. (1.5)

For n = 2 the right-hand side of (1.4) is equal to π. Therefore,
∞∫

−∞

e−t2dt =
√
π. (1.6)

Thus, σn = 2πn/2Γ−1(n/2). By taking n = 3, we obtain 2Γ(3/2) =√
π. By virtue of the remarkable formula Γ(λ + 1) = λ · Γ(λ), (ob-

tained from (1.5) by integration by parts and implying Γ(n+1) = n!),
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this implies that Γ(1/2) =
√
π. Now we get that

σ2n =
2πn

(n− 1)!
, σ2n+1 =

2πn

(n− 1/2) · (n− 3/2) · · · · · 3/2 · 1/2
.

(1.7)
�

2. The notion of δ-sequence and δ-function

In the preceding section the idea was indicated that the defini-
tion of a function f : Ω → R (or of a function f : Ω → C) as a
mapping from a domain Ω ⊂ Rn into R (or into C) is equivalent to
determination of its “average values”:

〈f, ϕ〉 =
∫
Ω

f(x)ϕ(x) dx, ϕ ∈ Φ, (2.1)

where Φ is a sufficiently “rich” set of functions on Ω. A sufficiently
general result concerning this fact is given in Section 10. Here, we
prove a simple but useful lemma. Preliminary, we introduce for
ε ∈]0, 1] the function δε : Rn → R by the formula

δε(x) = ϕ(x/ε)/εn, ϕ ≥ 0,
∫
ϕ = 1, ϕ = 0 outside Bn. (2.2)

Let us note that for 1/ε� 1 we have∫
Rn

δε(x) dx =
∫
Ω

δε(x− ξ) dx = 1, ξ ∈ Ω.

2.1. Lemma. Let f ∈ C(Ω), i.e. f is continuous in Ω ⊂ Rn.
Then

f(ξ) = lim
ε→0

∫
Ω

f(x)δε(x− ξ) dx, ξ ∈ Ω, (2.3)

i.e. the function f can be recovered by the family of “average values”{∫
f(x) · δε(x− ξ)dx

}
ξ∈Ω, ε>0

.

Proof. For any η > 0, there exists ε > 0 such that |f(x) −
f(ξ)| ≤ η if |x− ξ| ≤ ε. Therefore,
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∣∣∣∣∣∣
[∫
Ω

f(x)δε(x− ξ) dx
]
− f(ξ)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
Ω

(f(x)− f(ξ))δε(x− ξ) dx

∣∣∣∣∣∣
≤

∫
|x−ξ|≤ε

|f(x)− f(ξ)|δε(x− ξ) dx

≤ η
∫

|x−ξ|≤ε

δε(x− ξ) dx = η.

�

2.2. Definition. Let Φ be a subspace of the space C(Ω) and
ξ ∈ Ω. A sequence {δε(x − ξ), x ∈ Ω}ε∈R,ε→0 of functions x 7−→
δε(x − ξ) such that equality (2.3) holds for any f ∈ C(Ω) (for any
f ∈ Φ) is called δ-sequence (on the space1) Φ) concentrated near the
point ξ. The last words are usually skipped.

1) The notion of δ-sequence on the space Φ allow to obtain a series of

rather important results. Some of them are mentioned at the beginning

of Section 4.

In Section 4 some examples of δ-sequences on one or another
subspace Φ ⊂ C(Ω) are given. Important examples of such sequences
are given in Section 3.
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2.3. Definition. A linear functional2) δξ defined on the space
C(Ω) by the formula

δξ : C(Ω) 3 f 7−→ f(ξ) ∈ R (or C), ξ ∈ Ω, (2.4)

is called the δ-function, or the Dirac function concentrated at the
point ξ.

2) A (linear) functional on a (linear) space of functions is defined as

a (linear) mapping from this functional space into a number set.

Often one writes δ-function (2.4) in the form δ(x − ξ) and its
action on a function f ∈ C(Ω) writes (see formula (1.1)) in the form

〈f(x), δ(x− ξ)〉 = f(ξ) or 〈δ(x− ξ), f(x)〉 = f(ξ). (2.5)

The following notation is also used: 〈f, δξ〉 = f(ξ) or 〈δξ, f〉 =
f(ξ). The Dirac function can be interpreted as a measuring instru-
ment at a point (a “thermometer” measuring the “temperature” at
a point). If ξ = 0, then we write δ or δ(x).

3. Some spaces of smooth functions. Partition of unity

The spaces of smooth functions being introduced in this section
play very important role in the analysis. In particular, they give
examples of the space Φ in the “averaging” formula (2.1).

3.1. Definition. Let Ω be an open set in Rn, Ω̄ the closure of
Ω in Rn, and m ∈ Z+, i.e., m is a non-negative integer. Then1)

1) If m = 0, then the index m in the designation of the spaces defined

below is usually omitted.

3.1.1. Cm(Ω) (respectively, Cm
b (Ω)) is the space! Cm(Ω) of m-

times continuously differentiable (respectively, with bounded
derivatives) functions ϕ : Ω → C, i.e., such that the func-
tion ∂αϕ is continuous (and respectively, bounded) in Ω for
|α| ≤ m. Here and below

∂αϕ(x) =
∂|α|ϕ(x)

∂xα1
1 . . . ∂xαn

n
, |α| = α1+· · ·+αn, αj ∈ Z+ = {0, 1, 2, . . . }.

The vector α = (α1, . . . , αn) is called a multiindex.
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3.1.2. Cm(Ω̄) = Cm(Rn)
∣∣
Ω
, i.e.2) Cm(Ω̄) is the restriction of the

space Cm(Rn) to Ω. This means that ϕ ∈ Cm(Ω̄) ⇐⇒
there exists a function ψ ∈ Cm(Rn) such that ϕ(x) = ψ(x)
for x ∈ Ω.

2) The space Cm(Ω̄), in general, does not coincide with

the space of functions m-times continuously differentiable up to

the boundary. However, they coincide, if the boundary of the

domain is sufficiently smooth.

3.1.3. PCm(Ω) (respectively, PCm
b (Ω)) is the space of functions

m-times piecewise continuously differentiable (and respec-
tively, bounded) in Ω; this means that ϕ ∈ PCm(Ω) (re-
spectively, ϕ ∈ PCm

b (Ω)) if and only if the following two
conditions are satisfied. First, ϕ ∈ Cm(Ω \ K0) (respec-
tively, ϕ ∈ Cm

b (Ω \K0)) for a compact3) K0 ⊂ Ω. Second,
for any compact K ⊂ Ω̄ there exists a finite number of do-
mains Ωj ⊂ Ω, j = 1, . . . , N , each of them is an intersection
of a finite number of domains with smooth boundaries, such
that K ⊂

⋃N
j=1 Ω̄j and ϕ

∣∣
ω
∈ Cm(ω̄) for any connected

component ω of the set

(( N⋃
j=1

Ωj

)
\
( N⋃

j=1

∂Ωj

))
.

3) A set K ⊂ Rn is called compact , if K is bounded and

closed.

3.1.4. The support of a function ϕ ∈ C(Ω), denoted by suppϕ,
is the complement in Ω of the set {x ∈ Ω | ϕ(x) 6= 0}.
In other words, suppϕ is the smallest set closed in Ω such
that the function ϕ vanishes outside this set.

3.1.5. Cm
0 (Ω̄) = {ϕ ∈ Cm(Ω̄) | suppϕ is a compact}.

3.1.6. Cm
0 (Ω) = {ϕ ∈ Cm

0 (Ω̄) | suppϕ ⊂ Ω}.
3.1.7. C∞(Ω) =

⋂
m
Cm(Ω),. . . , C∞0 (Ω) =

⋂
m
Cm

0 (Ω).

3.1.8. If ϕ ∈ Cm
0 (Ω) (or ϕ ∈ C∞0 (Ω)) and suppϕ ⊂ ω, where ω

is a subdomain of Ω, then the function ϕ is identified with
its restriction to ω. In this case we write: ϕ ∈ Cm

0 (ω) (or
ϕ ∈ C∞0 (ω)).

3.2. Definition. We say that a set A is compactly embedded in
Ω, if Ā is a compact and Ā ⊂ Ω. In this case we write A b Ω.
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Obviously, Cm
0 (Ω) = {ϕ ∈ Cm(Ω) | suppϕ b Ω}, and

Cm
0 (Ω) ( Cm

0 (Ω̄) ( Cm(Ω̄) ( Cm(Ω) ( PCm(Ω),

where the first inclusion and the third one should be replaced by =,
if Ω = Rn.

3.3. Example.

Cm
0 (Rn) 3 ϕ : x 7−→ ϕ(x) =

{
(1− |x|2)m+1 for |x| < 1,
0 for |x| ≥ 1.

3.4. Example.

C∞0 (Rn) 3 ϕ : x 7−→ ϕ(x) =

{
exp(1/(|x|2 − 1)) for |x| < 1,
0 for |x| ≥ 1.

3.5. Example (A special case of (2.2)). Let ε > 0. we set

ϕε(x) = ϕ(x/ε), (3.1)

where ϕ is the function from Example 3.4. Then the function

δε : x 7−→ ϕε(x)/
∫

Rn

ϕε(x)dx, x ∈ Rn, (3.2)

belongs to C∞0 (Rn) and, moreover,

δε(x) ≥ 0, ∀x ∈ Rn, δε(x) = 0 for |x| > ε,

∫
Rn

δε(x) dx = 1. (3.3)

3.6. Example. Let x ∈ R, ϕ : x 7−→ ϕ(x) =
∫ x

−∞ g(τ)dτ , where
(see Fig.) g(−x) = −g(x) and g(x) = δε(x + 1 + ε) for x < 0 (δε
satisfies (3.3)).
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We have ϕ ∈ C∞0 (R), 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for |x| < 1.

3.7. Example. Let (x1, . . . , xn) ∈ Rn be Euclidian coordinates
of a point x ∈ Rn. Taking ϕ from Example 3.6, we set

ψν(x) =
∑
|k|=ν

ϕ(x1+2k1)·· · ··ϕ(xn+2kn), kj ∈ Z, |k| = k1+· · ·+kn.

Then the family {ϕν}∞ν=0 of the functions ϕν(x) = ψν(x)/
( ∞∑

ν=0
ψν(x)

)
form a partition of unity in Ω = Rn, i.e., ϕν ∈ C∞0 (Ω), and

(1) for any compact K ⊂ Ω, only a finite number of functions
ϕν is non-zero in K;

(2) 0 ≤ ϕν(x) ≤ 1 and
∑
ν
ϕν(x) = 1 ∀x ∈ Ω.

3.8. Proposition. For any domain ω b Ω, there exists a func-
tion ϕ ∈ C∞0 (Ω) such that 0 ≤ ϕ ≤ 1 and ϕ(x) = 1 for x ∈ ω.

Proof. Let ε > 0 is such that 3ε is less than the distance from
ω to ∂Ω = Ω̄\Ω. We denote the ε-neighbourhood of ω by ωε. Then
the function

x 7−→ ϕ(x) =
∫
ωε

δε(x− y)dy, x ∈ Ω

(δε from (3.2)) has the required properties. �

3.9. Definition. Let {Ων} be a family of subdomains Ων b Ω
of a domain Ω = ∪Ων . Suppose that any compact K b Ω has
a nonempty intersection with only a finite number of domains Ων .
Then we say that the family {Ων} forms a locally finite cover of Ω.

3.10. Theorem (on partition of unity). Let {Ων} be a locally
finite cover of a domain Ω. Then there exists a partition of unity
subordinate to a locally finite cover, i.e., there exists a family of
functions ϕν ∈ C∞0 (Ων) that satisfies conditions (1)–(2) above.
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The reader can himself readily obtain the proof; see, for example,
[69]. The partition of unity is a very common and convenient tool, by
using which some problems for the whole domain Ω can be reduced
to problems for subdomains covering Ω (see, in particular, in this
connection Sections 11, 20, and 22).

4. Examples of δ-sequences

The examples in this section are given in the form of exercises.
Exercise P.4.1 will be used below in the deduction of the Poisson
formula for the solution of the Laplace equation (see Section 5),
P.4.2 will be used for the Poisson formula for the solution of the
heat equation (see Section 6), P.4.3 will be used in the proof of the
theorem on the inversion of the Fourier transform (see Section 17),
and with the help of P.4.3 the Weierstrass theorem on approximation
of continuous functions by polynomials can be easily proved (see
Section 19).

4.1.P. Show that the sequence {δy}y→+0 of the functions δy(x) =
1
π

y
x2+y2 , where x ∈ R, is a δ-sequence on the space Cb(R) (see Defi-

nition 3.1.1) and is not a δ-sequence on C(R).

4.2.P. Show that the sequence {δt}t→+0 of the functions δt(x) =
1

2
√

πt
e−x2/4t, where x ∈ R, is not a δ-sequence on C(R), but is a

δ-sequence on the space Φ ⊂ C(R) of the functions that satisfy the
condition ∀ϕ ∈ Φ ∃a > 0 such that |ϕ(x) exp(−ax2)| → 0 for |x| →
∞.

4.3.P. Show that the sequence {δν}1/ν→0 of the functions δν(x) =
sin νx

πx , where x ∈ R, is a δ-sequence on the space Φ ⊂ C1(R) of the
functions ϕ such that∫

R

|ϕ(x)| dx <∞,
∫
R

|ϕ′(x)| dx <∞,

4.4.P. By taking the polynomials δk(x) = k√
π

(
1− x2

k

)k3

, where
x ∈ R and k is a positive integer, show that the sequence {δk}1/k→0

is a δ-sequence on the space C0(R), but is not a δ-sequence on the
space Cb(R) (compare P.4.1)
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4.5. Remark. For exercises P.4.1–P.4.4 it is helpful to draw
sketches of graphs of the appropriate functions. Exercises P.4.1–
P.4.2 are simple enough, exercises P.4.3–P.4.4 are more difficult,
because the corresponding functions are alternating. In Section 13
Lemma 13.10 is proven that allows us to solve readily P.4.3–P.4.4.
While solving P.4.2–P.4.4, one should use the well-known equalities:

∞∫
−∞

e−y2
dy =

√
π,

∞∫
−∞

sinx
x

dx = π, lim
ν→∞

(1− a/ν)ν = e−a.

5. On the Laplace equation

Three pearls of mathematical physics. Rephrasing the title of
the well-known book by A.Ya. Khinchin [33], one can say so about
three classical equations in partial derivatives: the Laplace equation,
the heat equation and the string equation. One of this pearls has
been found by Laplace, when he analyzed1) Newton’s gravitation
law.

1) See in this connection Section 1 of the book by S.K. Godunov [25].

5.1. Definition. A function u ∈ C2(Ω) is called harmonic on
an open set Ω ⊂ Rn, if it satisfies in Ω the (homogeneous2)) Laplace
equation

∆u = 0, where ∆ : C2(Ω) 3 u 7−→ ∆u ≡ ∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

∈ C(Ω),

(5.1)
and x1, . . . , xn are the Euclidian coordinates of the point x ∈ Ω ⊂
Rn. Operator3) (5.1) denoted by the Greek letter ∆ — “delta” — is
called the Laplace operator or Laplacian.

2) The equation ∆u = f with non-zero right-hand side is sometimes
called the Poisson equation.

3) By an operator we mean a mapping f : X → Y , where X and Y

are functional spaces.
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5.2.P. Let a function u ∈ C2(Ω), where x ∈ Ω ⊂ Rn, depend
only on ρ = |x|, i.e., u(x) = v(ρ). Show that ∆u also depends only
on ρ and ∆u = ∂2v(ρ)

∂ρ2 + n−1
ρ

∂v(ρ)
∂ρ .

Harmonic functions of two independent variables are closely con-
nected with analytic functions of one complex variable, i.e., with the
functions

w(z) = u(x, y) + iv(x, y), z = x+ iy ∈ C,

which satisfy the so-called Cauchy–Riemann equations

ux − vy = 0, vx + uy = 0. (5.2)

Here, the subscript denotes the derivative with respect to the corre-
sponding variable, i.e., ux = ∂u/∂x, . . . , uyy = ∂2u/∂y2, . . . ). From
(5.2) it follows that

uxx + uyy = (ux − vy)x + (vx + uy)y = 0, vxx + vyy = 0.

Thus, the real and imaginary parts of any analytic function w(z) =
u(x, y) + iv(x, y) are harmonic functions.

Consider the following problem for harmonic functions in the
half-plane R2

+ = {(x, y) ∈ R2 | y > 0}. Let f ∈ PCb(R), i.e., (see
Definition 3.1.3) f is a bounded and piecewise continuous function
of the variable x ∈ R. We seek a function u ∈ C2(R2

+) satisfying the
Laplace equation

uxx + uyy = 0 in R2
+ (5.3)

and the following boundary conditions

lim
y→+0

u(x, y) = f(x), (5.4)

where x is a point of continuity of the function f .
Problem (5.3)–(5.4) is called the Dirichlet problem for the Laplace

equation in the half-plane and the function u is called its solution.
The Dirichlet problem has many physical interpretations, one of
which is given in Remark 6.1.

According to Exercises P.5.12 and P.5.15 below, problem (5.3)–
(5.4) has at most one bounded solution. We are going to find it.
Note that the imaginary part of the analytic function

ln(x+ iy) = ln |x+ iy|+ i arg(x+ iy), (x, y) ∈ R2
+
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coincides with arccot(x/y) ∈]0, π[. Hence, this function is harmonic
in R2

+. Moreover,

lim
y→+0

arccot
x

y
=

{
π, if x < 0,
0, if x > 0.

These properties of the function arccot(x/y) allow us to use it in
order to construct functions harmonic in R2

+ with piecewise constant
boundary values. In particular, the function

Pε(x, y) =
1

2πε

[
arccot

x− ε
y
− arccot

x+ ε

y

]

is harmonic in R2
+ and satisfies the boundary condition

lim
y→+0

Pε(x, y) = δε(x) for |x| 6= ε,

where the function δε(x) is defined in (1.3). On the other hand, if x
is a point of continuity for f , then, by virtue of Lemma 2.1,

f(x) = lim
ε→0

∞∫
−∞

δε(ξ − x)f(ξ)dξ.

This allows us to suppose that the function

R2 3 (x, y) 7−→ lim
ε→0

∞∫
−∞

Pε(ξ − x, y)f(ξ)dξ (5.5)

assumes (at the points of continuity of f) the values f(x) as



14 1. INTRODUCTION TO PROBLEMS OF MATHEMATICAL PHYSICS

y → +0 and that this function is harmonic in R2, since(
∂2

∂x2
+

∂2

∂y2

)( N∑
k=1

Pε(ξk − x, y)f(ξk)(ξk+1 − ξk)

)
=

N∑
k=1

f(ξk)(ξk+1 − ξk))
[(

∂2

∂x2
+

∂2

∂y2

)
Pε(ξk − x, y)

]
= 0.

The formal transition to the limit in (5.5) leads us to the Poisson
integral (the Poisson formula)

u(x, y) =

∞∫
−∞

f(ξ)P (x− ξ, y)dξ, where P (x, y) =
1
π

y

x2 + y2
, (5.6)

since

lim
ε→0

Pε(x, y) = − 1
π

∂

∂x

(
arccot

x

y

)
=

1
π

y

x2 + y2
.

Let us note that condition (5.4) is satisfied by virtue of P.4.1. More-
over, note that the function u is bounded. Indeed,

|u(x, y)| =
∞∫

−∞

|f(ξ)|P (x− ξ, y) dξ ≤ C
∞∫

−∞

P (x− ξ, y) dy = C.

We are going to show that the function u is harmonic in R2
+. Differ-

entiating (5.6), we obtain

∂j+ku(x, y)
∂xj∂yk

=

∞∫
−∞

f(ξ)
∂j+k

∂xj∂yk
P (x− ξ, y) dξ ∀j ≥ 0, ∀k ≥ 0.

(5.7)
Differentiation under the integral sign is possible, because∣∣∣∣∂j+kP (x− ξ, y)

∂xj∂yk

∣∣∣∣ ≤ C

1 + |ξ|2
for |x| < R,

1
R
< y < R, (5.8)

where C depends only on j ≥ 0, k ≥ 0 and R > 1. From (5.7) it
follows that

∆u(x, y) =

∞∫
−∞

f(ξ)∆P (x− ξ, y) dξ.
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However, ∆P (x− ξ, y) = ∆P (x, y) = 0 in R2
+, since

P (x, y) = − 1
π

∂

∂x

(
arccot

x

y

)
, ∆

(
arccot

x

y

)
= 0 and ∆

∂

∂x
=

∂

∂x
∆.

Thus, we have proved that the Poisson integral (5.6) gives a solution
of problem (5.3)–(5.4) bounded in R2

+.

5.3.P. Prove estimate (5.8).

5.4. Remark. The function P defined in (5.6) is called the Pois-
son kernel . It can be interpreted as the solution of the problem
∆P = 0 in R2

+, P (x, 0) = δ(x), where δ(x) is the δ-function4).

4) The formula (5.6) which gives the solution of the problem ∆u = 0

in R2
+, u(x, 0) = f(x), can be very intuitively interpreted in the following

way. The source “stimulating” the physical field u(x, y) is the function

f(x) which is the “sum” over ξ of point sources f(ξ)δ(x − ξ). Since one

point source δ(x − ξ) generates the field P (x − ξ, y), the “sum” of such

sources generates (by virtue of linearity of the problem) the field which is

the “sum” (i.e., the integral) by ξ of fields of the form f(ξ)P (x− ξ, y). In

this case, physicists usually say that we have superposition (covering) of

fields generated by point sources. This superposition principle is observed

in many formulae which give solutions of linear problems of mathematical

physics (see in this connection formulae (5.10), (6.15), (7.14),. . . ). In these

cases, mathematicians usually use the term “convolution” (see Section 19).

5.5. Remark. Note that the function P is (in the sense of the
definition given above) a solution unbounded in R2

+ of problem
(5.3)–(5.4), if f(x) = 0 for x 6= 0 and f(0) is equal to, for in-
stance, one. On the other hand, for this (piecewise continuous)
boundary function f , problem (5.3)–(5.4) admits a bounded solu-
tion u(x, y) ≡ 0. Thus, there is no uniqueness of the solution of the
Dirichlet problem (5.3)–(5.4) in the functional class C2(R2

+). In this
connection also see P.5.6, P.5.12 and P.5.15.

5.6.P. Find an unbounded solution u ∈ C∞(R2
+) of problem

(5.3)–(5.4) for f(x) ≡ 0.

5.7.P. Let k ∈ R, and u be the solution of problem (5.3)–(5.4)
represented by formula (5.6). Find lim

y→+0
(x0+ky, y) in the two cases:
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(1) f is continuous;
(2) f has a jump of the first kind at the point x0.

5.8.P. Prove

5.9. Proposition. Let Ω and ω be two domains in R2. Suppose
that u : Ω 3 (x, y) 7−→ u(x, y) ∈ R is a harmonic function and

z(ζ) = x(ξ, η) + iy(ξ, η), (ξ, η) ∈ ω ⊂ R2

is an analytic function of the complex variable ζ = ξ + iη with the
values in Ω (i.e., (x, y) ∈ Ω). Then the function

U(ξ, η) = u(x(ξ, η), y(ξ, η)), (ξ, η) ∈ ω
is harmonic in ω.

5.10.P. Let ρ and ϕ be polar coordinates in the disk D = {ρ <
R, ϕ ∈ [0, 2π[} of radius R. Suppose that f ∈ PC(∂D), i.e., f
is a function defined on the boundary ∂D of the disk D and f is
continuous everywhere on ∂D except at a finite number of points,
where it has discontinuities of the first kind. Consider the Dirichlet
problem for the Laplace equation in the disk D: to find a function
u ∈ C2(D) such that

∆u = 0 in D, lim
ρ→R

u(ρ, ϕ) = f(Rϕ), (5.9)

where s = Rϕ is a point of continuity of the function f ∈ PCb(∂D).
Show that the formula

u(ρ, ϕ) =
1

2πR

2πR∫
0

f(s)
(R2 − ρ2)ds

R2 + ρ2 − 2Rρ cos(ϕ− θ)
, θ =

s

R
(5.10)

represents a bounded solution of problem (5.9). Formula (5.10) was
obtained by Poisson in 1823.

Hint. Make the transformation w = R z−i
z+i of the half-plane R2

+

onto the disk D and use formula (5.6).

5.11.P. Interpret the kernel of the Poisson integral (5.10), i.e.,
the function

1
2πR

(R2 − ρ2)
R2 + ρ2 − 2Rρ cos(ϕ− θ)

,

similar to what has been done in Remark 5.4 with respect to the
function P .



5. ON THE LAPLACE EQUATION 17

5.12.P. Using Theorem 5.13 below, prove the uniqueness of the
solution of problem (5.9) as well as the uniqueness of the bounded
solution of problem (5.3)–(5.4) in the assumption that the bounded
function f is continuous. (Compare with Remark 5.5.)

5.13. Theorem (Maximum principle). Let Ω be a bounded open
set in Rn with the boundary ∂Ω. Suppose that u ∈ C(Ω̄) and u is
harmonic in Ω. Then u attains its maximum on the boundary of the
domain Ω, i.e., there exists a point x◦ = (x◦1, . . . , x

◦
n) ∈ ∂Ω such that

u(x) ≤ u(x◦) ∀x ∈ Ω̄.

Proof. Let m = sup
x∈∂Ω

u(x), M = sup
x∈Ω

u(x) = u(x◦), x◦ ∈ Ω̄.

Suppose on the contrary that m < M . Then x◦ ∈ Ω. We set

v(x) = u(x) +
M −m

2d2
|x− x◦|2,

where d is the diameter of the domain Ω. The inequality |x−x◦|2 ≤
d2 implies that

v(x) ≤ m+
M −m

2d2
d2 =

M +m

2
< M, x ∈ ∂Ω.

Note that v(x◦) = u(x◦) = M . Thus, v attains its maximum
at a point lying inside Ω. It is know that at such a point ∆v ≤ 0.
Meanwhile,

∆v = ∆u+
M −m

2d2
∆

(
n∑

k=1

(xk − x◦k)2
)

=
M −m

2d2
· 2n > 0.

The contradiction obtained proves the theorem. �

5.14.P. In the assumptions of Theorem 5.13, show that u attains
its minimum as well on ∂Ω. (This is the reason why the appropriate
result (Theorem 5.13) is known as minimum principle.)

5.15.P. Using Theorem 5.16 below, prove the uniqueness of the
bounded solution of problem (5.9) as well as problem (5.3)–(5.4).
Compare with Exercise P.5.12.

5.16. Theorem (on discontinuous majorant). Let Ω be a
bounded open set in R2 with the boundary ∂Ω, and F a finite set
of points xk ∈ Ω̄, k = 1, . . . , N . Let u and v be two functions har-
monic in Ω \ F and continuous in Ω̄ \ F . Suppose that there exists
a constant M such that |u(x)| ≤ M , |v(x)| ≤ M ∀x ∈ Ω̄ \ F . If
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u(x) ≤ v(x) for any point x ∈ ∂Ω \ F , then u(x) ≤ v(x) for all
points x ∈ Ω̄ \ F .

Proof. First, note that the function ln |x|, where x ∈ R2 \ {0},
is harmonic. We set

wε(x) = u(x)− v(x)−
N∑

k=1

2M
ln(d/ε)

ln
d

|x− xk|
.

Here, 0 < ε < d, where d is the diameter of Ω, hence, ln(d/|x−xk|) ≥
0. Consider the domain Ωε obtained by cutting off the disks of
the radius ε centered at the points xk ∈ F , k = 1, . . . , N , from Ω.
Obviously, wε is harmonic in Ωε, continuous in Ω̄ε, and wε(x) ≤ 0 for
x ∈ ∂Ωε = Ω̄ε \ Ωε. Therefore, by virtue of the maximum principle,
wε(x) ≤ 0 for x ∈ Ωε. It remains to tend ε to zero. �

5.17.P. Let Ω ⊂ R2 be a simply connected open set bounded by
a closed Jordan curve ∂Ω. Suppose that a function f is specified on
∂Ω and is continuous everywhere except a finite number of points at
which it has discontinuities of the first kind. Using Proposition 5.9,
the Riemann theorem on existence of a conformal mapping from Ω
onto the unit disk (see, for instance, [38]), prove that there exists a
bounded solution u ∈ C2(Ω) of the following Dirichlet problem:

∆u = 0 in Ω, lim
x∈Ω,x→s

u(x) = f(s), (5.11)

where s is a point of continuity of the function f ∈ PC(∂Ω). Us-
ing Theorem 5.16, prove the uniqueness of the bounded solution of
problem (5.11) and continuous (make clear in what sense) depen-
dence of the solution on the boundary function f . (Compare with
Corollary 22.31.)

5.18. Theorem (on the mean value). Let u be a function har-
monic in a disk D of radius R. Suppose that u ∈ C(D̄). Then the
value of u at the centre of the disk D is equal to the mean u(x),
x ∈ ∂D, i.e., (in notation of P.5.10)

u
∣∣
ρ=0

=
1

2πR

2πR∫
0

u(R,
s

R
)ds. (5.12)

Proof. The assertion obviously follows from (5.10). �
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5.19.P. Let u be a continuous function in a domain Ω ⊂ R2 and
u satisfy (5.12) for any disk D ⊂ Ω. Prove (by contradiction) that
if u 6= const, then u(x) < ‖u‖ ∀x ∈ Ω, where ‖u‖ is the maximum
of |u| in Ω̄.

By virtue of Theorem 5.18, the result of Exercise 5.19 can be
formulated in the form of the following assertion.

5.20. Theorem (strong maximum principle). Let u be a har-
monic function in a domain Ω ⊂ R2. If u 6= const, then u(x) <
‖u‖ ∀x ∈ Ω, where ‖u‖ is the maximum of |u| in Ω̄.

5.21.P. In the assumptions of P.5.19, show that u is harmonic
in the domain Ω.

Hint. Let a ∈ Ω and D ⊂ Ω be a disk centred at a. Suppose
that v is a function bounded and harmonic in D such that v = u on
∂D. Using the result of P.5.19, show that the function w = u− v is
a constant in D.

5.22. Remark. It follows from P.5.21 and Theorem 5.18 that a
function continuous in a domain Ω ⊂ R2 is harmonic if and only if
the mean value property (5.12) holds for any disk D ⊂ Ω. This fact
as well as all others in this section is valid for any bounded domain
Ω ⊂ Rn, n ≥ 3, with a smooth (n− 1)-dimensional boundary (with
an appropriate change of the formulae).

Let us note one more useful fact.

5.23. Lemma (Giraud–Hopf–Oleinik). Let u be harmonic in Ω
and continuous in Ω̄, where the domain Ω b Rn has a smooth (n−1)-
dimensional boundary Γ. Suppose that at a point x◦ ∈ Γ there exists
a normal derivative ∂u/∂ν,where ν is the outward normal to Γ and
u(x◦) > u(x) ∀x ∈ Ω. Then ∂u/∂ν

∣∣
x=x◦

> 0.

The proof can be found, for instance, in [12, 23, 24, 28, 46].

6. On the heat equation

It is known that in order to heat a body occupying a domain
Ω ⊂ R3 from the temperature u0 = const to the temperature u1 =
const, we must transmit the energy equal to C · (u1 − u0) · |Ω| to
the body as the heat, where |Ω| is the volume of the domain Ω and
C is a (positive) coefficient called the specific heat. Let u(x, t) be
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the temperature at a point x = (x1, x2, x3) ∈ Ω at an instant t. We
deduce the differential equation which is satisfied by the function u.
We assume that the physical model of the real process is such that
functions considered in connection with this process (heat energy,
temperature, heat flux) are sufficiently smooth. Then the variation
of the heat energy in the parallelepiped

Π = {x ∈ R3 | x◦k < x < x◦k + hk, k = 1, 2, 3}

at time τ (starting from the instant t◦) can be represented in the
form

C · [u(x◦, t◦ + τ)− u(x◦, t◦)] · |Π|+ o(τ · |Π|)
= C · [ut(x◦, t◦) · τ + o(τ)] · |Π|+ o(τ · |Π|), (6.1)

where |Π| = h1 · h2 · h3 and o(A) is small o of A ∈ R as A→ 0.
This variation of the heat energy is connected with the presence

of a heat flux through the boundary of the parallelepiped Π. Ac-
cording to the Fourier law, the heat flux per unit of time through
an area element in direction of the normal to this element is propor-
tional with a (negative) coefficient of proportionality to−k derivative
of the temperature along this normal. The coefficient of proportion-
ality k > 0 is called the coefficient of heat conductivity. Thus, the
quantity of the energy entered into the parallelepiped Π during the
time τ through the area element x1 = x◦1 + h1 is equal to

k(x◦1 + h1, x
◦
2, x

◦
3) ·

∂u

∂x1
(x◦1 + h1, x

◦
2, x

◦
3; t

◦) · τ · h2 · h3 + o(τ · |Π|),

and gone out during the same time through the area element x1 = x◦1
is equal to

k(x◦1, x
◦
2, x

◦
3) ·

∂u

∂x1
(x◦1, x

◦
2, x

◦
3; t

◦) · τ · h2 · h3 + o(τ · |Π|).

Therefore, the variation of the heat energy in Π caused by the heat
flux along the axis x1 is equal to[

∂

∂x1
(k(x◦)

∂u

∂x1
(x◦, t◦))h1 + o(h1)

]
τ · h2 · h3 + o(τ · |Π|).

It is clear that the variation of the heat energy in Π in all three
directions is equal to the total variation of the heat energy in Π, i.e.,
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(6.1). By dividing the equality obtained in this way by τ · |Π| and
tending τ , h1, h2, and h3 to zero, we obtain the heat equation

C
∂u

∂t
=

∂

∂x1

(
k
∂u

∂x1

)
+

∂

∂x2

(
k
∂u

∂x2

)
+

∂

∂x3

(
k
∂u

∂x3

)
. (6.2)

If the coefficients C and k are constant, then equation (6.2) can be
rewritten in the form

∂u

∂t
= a

(
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

)
, where a =

k

C
> 0.

6.1. Remark. In the case when the distribution of the temper-
ature does not depend on the time, i.e., ut = 0, the temperature
u satisfies the Laplace equation (if k = const). Thus, the Dirichlet
problem for the Laplace equation (see Section 5) can be interpreted
as a problem on the distribution of stabilized (stationary) tempera-
ture in the body, if the distribution of the temperature on the surface
of the body is known.

If we are interested in distribution of the temperature inside the
body, where (during some time) influence of the boundary conditions
is not very essential, then we idealize the situation and consider the
following problem:

C
∂u

∂t
=div(k · gradu), (x, y, z) ∈ R3, t > 0,

u
∣∣
t=0

=f(x, y, z),

where f is the distribution of the temperature (in the body without
boundary, i.e., in R3) at the instant t = 0. This problem is sometimes
called by the Cauchy problem for the heat equation.

Suppose that f and k, hence, also u do not depend on y and z.
Then u is a solution of the problem

C
∂u

∂t
=

∂

∂x

(
k · ∂u

∂x

)
, (x, t) ∈ R2

+ = {x ∈ R, t > 0}, (6.3)

u
∣∣
t=0

= f(x), (6.4)
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6.2. Hint. The method which was used to solve problem (5.3)–
(5.4)1) suggests that the solution to problem (6.3)–(6.4) can be rep-
resented by the formula

u(x, t) =

∞∫
−∞

f(ξ)v(x− ξ, t) dξ,

where v is the solution of equation (6.3), satisfying the condition

lim
t→+0

v(x, t) = δ(x), where δ is the δ-function. (6.5)

1) See note 4 in Section 5.

Below (see Theorem 6.5) we show that this is true.
Let us try to find the function v. It satisfies the following con-

ditions:

C
∂v

∂t
=

∂

∂x

(
k · ∂v

∂x

)
,

∞∫
−∞

Cv dx = Q, (6.6)

where Q is the total quantity of the heat that in our case is equal to
C. Thus, we see that v is a function G of five independent variables
x, t, C, k, and Q, i.e.,

v = G(x, t, C, k,Q). (6.7)

6.3. Remark. The method with the help of which we seek for
the function v is originated from mechanics [55]. It is known as the
dimensionless parameters (variables) method.

Note that the units of measurement of the quantities v, x, t, and
Q in the SI system, for instance, are the following: [v] = K, [x] =
m, [t] = sec, [Q] = w. By virtue of (6.6), [C][v]/[t] = [k][v]/[x]2,
[C][v][x] = [Q]; therefore the dimensions of the quantities C and k
are expressed by the formulae:

[C] = w/(m ·K), [k] = w ·m/(sec ·K).

Since C, k, and Q play the role of the parameters of the function
v(x, t), it is preferable to express the units of measurement v and,
say, x via [t], [C], [k] and [Q]. We have

[x] =
√

[t] · [k]/[C], [v] = [Q]/
√

[t] · [k] · [C].
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Let us take another system of units of measurement

[t∗] = σt[t], [C∗] = σC [C], [k∗] = σk[k], [Q∗] = σQ[Q],

where σt, σC , σk, σQ are scaling coefficients, i.e., positive (dimen-
sionless) numbers. We formulate the question: what are the values
of the scaling coefficients σx and σv (for the variables x and v which
are “derivatives” of the chosen “basic” physical variables t, C, k, and
Q)? We have

[x∗] =

√
[t∗][k∗]
[C∗]

= σx[x] = σx

√
[t][k]/[C]

= σx

√
σC [t∗][k∗]/(σtσk[C∗]).

Therefore,

σx =
√
σtσk/σC and similarly σv = σQ/

√
σtσkσC . (6.8)

The numerical values t∗, . . . , v∗ of the variables t, . . . , v in the new
system of units are determined from the relation

t∗[t∗] = t[t], . . . , v∗[v∗] = v[v].

Thus,

t∗ =
t

σt
, C∗ =

C

σC
, k∗ =

k

σk
, Q∗ =

Q

σQ
,

x∗ = x

√
σC

σtσk
, v∗ = v

√
σtσkσC

σQ
.

For instance, if [t] = sec and [t∗] = hour, then σt = 3600 and t∗ =
t/3600.

Let us now note that relation (6.7) expresses a law that does not
depend on the choice of the units. Therefore,

v∗ = G(x∗, t∗, C∗, k∗, Q∗) (6.9)

with the same function G. Now, we choose the system of units such
that t∗ = C∗ = k∗ = Q∗ = 1, i.e., we set σt = t, σC = C, σk = k,
σQ = Q. Then

x∗ = x
√
C/(kt), v∗ = v

√
tkC/Q.
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Hence, by virtue of (6.9), we have

v(x, t) =
Q√
kCt

g

(√
C

kt
· x

)
, where g(y) = G(y, 1, 1, 1, 1).

(6.10)

6.4. Remark. We can come to formula (6.10) strongly mathe-
matically. Namely, by making the change of variables

t∗ =
t

σt
, C∗ =

C

σC
, k∗ =

k

σk
, Q∗ =

Q

σQ
, x∗ =

x

σx
, v∗ =

v

σv
,

we require v∗ be equal to G(x∗, t∗, C∗, k∗, Q∗), i.e., we require that

C∗ · ∂v
∗

∂t∗
=

∂

∂x∗

(
k∗ · ∂v

∗

∂x∗

)
,

∞∫
−∞

C∗v∗dx = Q∗.

Then (6.6) necessarily implies (6.8). Choosing, as before, the scaling
coefficients σt, σC , σk, and σQ, we again obtain (6.10).

Nevertheless, it is helpful to use the dimension arguments. Firstly,
they allow us to test the correctness of involving some parameters
when formulating the problem: both sides of any equality used in the
problem should have consistent dimensions. Secondly, the reasoning
of dimension allows to find the necessary change of variables (not
necessarily connected only with scaling coefficients). All these facts
allow automatically (hence, easily) to get rid of “redundant” param-
eters and so to simplify the analysis as well as the calculations2).
Moreover, the passage to dimensionless coordinates allows us to ap-
ply the reasoning by similarity that sometimes essentially simplify
the solution of rather difficult problems (see [55]).

2) Consider the problem on the temperature field of an infinite plate of
a thickness 2S, with an initial temperature T0 = const, in the case, when
there is the heat transfer on the surface of the plate (with the coefficient
of the heat transfer α) with the medium whose temperature is equal to
T1 = const. In other words, we consider the problem

∂T

∂τ
= a

∂2T

∂ξ2
, τ > 0, |ξ| < S; ∓k ∂T

∂ξ

˛̨
ξ=±S

= α(T−T1)
˛̨
ξ=±S

; T
˛̨
τ=0

= T0.

The function T = f(τ, ξ, a, S, k, α, T1, T0) depends a priori on eight pa-
rameters. The tabulating the values of such a function, if each of the pa-
rameters run over at least ten values, is unreasonable, because one should
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analyze million pages. At the same time, the passage to the dimensionless
parameters

u = (T − T1)/(T1 − T0), x = ξ/S, t = aτ/S2, σ = k/αS

reduces this problem to the problem

∂u

∂t
=
∂2u

∂x2
, t > 0, |x| < 1;

„
u± σ

∂u

∂x

« ˛̨
x=±1

= 0; u
˛̨
t=0

= 1, (6.11)

whose solution u = u(t, x, σ) can be represented (this is very important

for applications) in the form of compact tables (one page for each value

of σ ≥ 0).

In order to find the function g and, hence, v we substitute ex-
pression (6.10) into the heat equation (6.2). We obtain

Q
√
C/kt3[g(y)/2+y·g′(y)/2+g′′(y)] = 0, i.e., (yg(y))′/2+g′′(y) = 0.

Thus, the function g satisfies the linear equation

g′(y) + yg(y)/2 = const . (6.12)

If g is even, i.e., g(−y) = g(y), then g′(0) = 0; therefore, the func-
tion g satisfies the homogeneous equation (6.12) whose solution, ob-
viously, is represented by the formula g(y) = A · exp(−y2/4). The
constant A is to be determined from the second condition in (6.6):

Q =

∞∫
−∞

Cvdx = ACQ/
√
kCt

∞∫
−∞

e−Cx2/4ktdx = 2AQ

∞∫
−∞

e−ξ2
dξ,

i.e., (accounting formula (1.6)) A = 1/(2
√
π), hence,

v(x, t) = (Q/2
√
kCπt) · exp(−Cx2/4kt). (6.13)

6.5. Theorem. Let f ∈ C(R), and for some σ ∈ [1, 2[, a > 0,
and M > 0 the following inequality holds:

|f(x)| ≤M exp(a|x|σ) ∀x ∈ R. (6.14)

Then the function u : R2
+ = {(x, t) ∈ R2 | t > 0} → R defined by the

formula

u(x, t) =

∞∫
−∞

f(ξ)P (x− ξ, t)dξ, P (x, t) = (1/2
√
πt) exp(−x2/4t),

(6.15)
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is a solution of the heat equation

∂u

∂t
=
∂2u

∂x2
in R2

+ = {(x, t) ∈ R2 | t > 0}. (6.16)

This solution is infinitely differentiable and satisfies the initial con-
dition (which is sometimes called the Cauchy condition)

lim
t→+0

u(x, t) = f(x). (6.17)

Moreover, ∀T > 0 ∃C(T ) > 0 such that

|u(x, t)| ≤ C(T ) exp((2a|x|)σ) ∀x ∈ R and ∀t ∈ [0, T ]. (6.18)

Proof. From construction of function (6.13), it follows that the
function P (x, t) = (4πt)−1/2 exp(−x2/4t) satisfies relations (6.6) in
which C = k = Q = 1. Therefore, formula (6.17) follows from
P.4.2, and (6.16) as well as the smoothness of the function u follows
from the known theorem on differentiability of integrals with respect
to the parameter (see, for instance, [72]), because the appropriate
integral converges uniformly, since ∀R > 1 ∀ε > 0 ∃N > 1 such that∫

|ξ|>N

∣∣∣∣ ∂j+k

∂xj∂tk
(f(ξ)P (x− ξ, t))

∣∣∣∣ dξ < ε (6.19)

for x ∈ [−R,R], t ∈ [1/R,R]. For j + k > 0, the integrand in
(6.19) can be estimated for the specified x and t via CRf(ξ)P (x −
ξ, t). Therefore, in order to prove inequality (6.19) it is sufficient to
establish estimate (6.18). Note that for σ ∈ [1, 2[,

|ξ|σ ≤ 2σ(|x|σ + |ξ − x|σ), |ξ − x|σ ≤ ε(ξ − x)2 + Cε|ξ − x|.
Take ε such that 1 − 4T · a◦ · ε > 0, where a◦ = a · 2σ. Then for
t ≤ T , (compare with [25])

|u(x, t)| ≤ M

2
√
π

∫
ea|ξ|σ · exp(−(x− ξ)2/4t) dξ√

t

≤M1e
(2a|x|)σ

∫
ea(2|ξ−x|)σ

· e−((x−ξ)/2
√

t)2 dξ

2
√
t

≤M1e
(2a|x|)σ

∫
e−(1−4Ta◦ε)(x−ξ)2/4t · ea◦Cξ(|x−ξ|/2

√
t)2
√

t dξ

2
√
t
.

Setting η = (ξ − x)(1− 4Ta◦ε)1/2/(2
√
t), we have

|u(x, t)| ≤ C(T )e(2a|x|)σ

∫
e−η2+α|η|·2

√
tdη.
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This implies estimate (6.18), if we note that

∞∫
0

e−η2+αη·2
√

tdη = eα2t

∞∫
0

e−(η−α
√

t)dη ≤ eα2t

∞∫
0

e−ζ2
dζ.

�

6.6. Remark. In general, there exists a solution of problem
(6.16)–(6.17) different from (6.15). For instance, the function u(x, t)
represented by the series

u(x, t) =
∞∑

m=0

ϕ(m)(t) · x2m/(2m)!, (x, t) ∈ R2
+, (6.20)

in which the function ϕ ∈ C∞(R) satisfies the conditions:

suppϕ ⊂ [0, 1], ∀m ∈ Z+ |ϕ(m)(t)| ≤ (γm)!, where 1 < γ < 2,
(6.21)

is, obviously, a solution of problem (6.16)–(6.17) for f = 0. (The
condition γ < 2 is needed for uniform (with respect to x and t, |x| ≤
R <∞) convergence of series (6.20) ad its derivatives.) This simple
but important fact was observed in 1935 by A.N. Tikhonov [64],
who, while constructing series (6.20), used the result by Carleman
[9] on the existence of a non-zero function ϕ with properties (6.21).
It is important to emphasize that the non-zero solution (6.20) of
the heat equation constructed by Tikhonov (satisfying the condition
u(x, 0) = 0) grows for |x| → ∞ faster than expCx2 ∀C > 0 (and
slower than expCxσ, where σ = 2/(2− γ) > 2). On the other hand,
one can show, by using the maximum principle for the heat equation
(see, for instance, [20, 25, 44, 64]) that the solution of problem
(6.16)–(6.17) is unique, if condition (6.18) holds. The uniqueness
theorem for a more large class of function was proved in 1924 by
Holmgren [27].

From Remark 6.6, it follows

6.7. Theorem. Let f ∈ C(R), and f satisfy (6.14). Then for-
mula (6.15) represents a solution of problem (6.16)–(6.17) and this
solution is unique in class (6.18).
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7. The Ostrogradsky–Gauss formula. The Green formulae
and the Green function

Let Ω be a bounded domain in Rn with a smooth (n − 1)-
dimensional boundary ∂Ω. Let f = (f1, . . . , fn) be a vector-function
such that fk ∈ C(Ω̄) and ∂fk/∂xk ∈ PC(Ω) ∀k. It is known [63, 72]
that in this case the Ostrogradsky–Gauss formula1)∫

Ω

n∑
k=1

∂fk(x)
∂xk

dx =
∫

∂Ω

n∑
k=1

fk(x) · αk dΓ (7.1)

holds, where αk = αk(x) is the cosine of the angle between the
outward normal ν to Γ = ∂Ω at the point x ∈ Γ and kth coordinate
axis, and dΓ is the “area element” of Γ. For n = 1, formula (7.1)
becomes the Newton–Leibniz formula.

1) Formula (7.1) is a special case of the important Stokes theorem
on integration of differential forms on manifolds with boundary (see, for
instance, [63, 72]), which can be represented by the Poincaré formula:R
Ω
dω =

R
∂Ω
ω. The Poincaré formula implies (7.1) for

ω =
X

k

fk(x)dx1

V
. . .

V
dxk−1

V
dxk+1

V
. . .

V
dxn,

because

dω =
X

(∂fk(x)/∂xk)dx, and ω
˛̨
∂Ω

=
X

fk(x)αkdΓ.

If fk(x) = Ak(x)v(x), where v ∈ PC2(Ω) ∩ C1(Ω̄), then (7.1)
implies that∫

Ω

v·

(
n∑

k=1

∂Ak

∂xk

)
dx = −

∫
Ω

n∑
k=1

Ak
∂v

∂xk
dx+

∫
∂Ω

n∑
k=1

Ak·v·αkdΓ. (7.2)

Setting Ak = ∂u
∂xk

, where u ∈ PC2(Ω) ∩ C1(Ω̄), we obtain the first
Green formula∫

Ω

v ·∆udx =
∫

∂Ω

v
∂u

∂ν
dΓ−

∫
Ω

n∑
k=1

∂u

∂xk
· ∂v
∂xk

dx, (7.3)

where ∆ is the Laplace operator (see Section 5). Renaming u by v in
(7.3) and v by u and subtracting the formula obtained from (7.3), we
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obtain the so-called second Green formula for the Laplace operator∫
Ω

(v ·∆u− u ·∆v)dx =
∫

∂Ω

(
v · ∂u

∂ν
− u · ∂v

∂ν

)
dΓ. (7.4)

Formula (7.4) implies (if we set v ≡ 1) the remarkable corollary:∫
Ω

∆u dx =
∫

∂Ω

∂u

∂ν
dΓ. (7.5)

In particular, it the function u ∈ C1(Ω̄) is harmonic in Ω, then∫
∂Ω

∂u
∂ν dΓ = 0. This is the so-called integral Gauss formula.

Rewrite formula (7.4) in the form∫
Ω

u(y)∆v(y)dy =
∫
Ω

v(y)∆u(y) dy

+
∫

∂Ω

[
u(y)

∂v

∂ν
(y)− v(y)∂u

∂ν
(u)
]
dΓ. (7.6)

Let us take a point x ∈ Ω. Replace the function u in (7.6) by the
function Eα(x, ·) ∈ PC2(Ω) which depends on x as an parameter
and which satisfies the equation

∆yEα(x, y) ≡
n∑

k=1

∂2

∂y2
k

Eα(x, y) = δα(x− y), (7.7)

where δα is defined in (1.3), and 1/α � 1. Using the result of
Exercise 7.1, we tend α to zero. As a result, taking into account
Lemma 2.1, we obtain

u(x) =
∫
Ω

E(x− y)∆u(y)dy

+
∫

∂Ω

[
u(y)

∂E(x− y)
∂ν

− E(x− y)∂u(y)
∂ν

]
dy. (7.8)

7.1.P. Using the result of P.5.2 and Theorem 5.13, show that
the general solution of equation (7.7) depending only on |x− y| can
be represented in the form Eα(x − y) + const, where the function
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Eα ∈ C1(Rn) coincides for |x| ≥ α with the function

E(x) =

{
(1/2π) · ln |x| x 6= 0, n = 2,
−1/((n− 2)σn · |x|n−2) x 6= 0, n ≥ 3,

(7.9)

and for |x| < α, the estimate |Eα(x)| ≤ |E(x)| holds. Here, σn

denotes (see P.1.1) the area of the unit sphere in Rn.

Hint. By virtue of (7.5) and (1.3),∫
|x|=α

(∂Eα/∂ν)dΓ =
∫

|x|<α

∆Eαdx = 1.

Let x ∈ Ω. We take2) the function g(x, ·) : Ω̄ 3 y 7−→ g(x, y),
which is the solution of the following Dirichlet problem for the ho-
mogeneous Laplace equation with the special boundary condition

∆yg(x, y) = 0 in Ω, g(x, y) = −E(x− y) for y ∈ Γ. (7.10)

Substituting the function g(x, ·) into formula (7.6) for the function v
and summing termwise the equality obtained with (7.8), as a result,
we have the following integral representation of the function u ∈
PC2(Ω) ∩ C1(Ω̄):

u(x) =
∫
Ω

G(x, y)∆u(y) dy +
∫

∂Ω

∂G(x, y)
∂ν

u(y) dΓ, (7.11)

where
G(x, y) = E(x− y) + g(x, y). (7.12)

2) In Section 22 the theorem is presented on existence of solutions for

problems much more general than problem (7.10). In the same section the

theorem concerning the smoothness of the solutions is given.

Function (7.12) is called the Green function of the Dirichlet prob-
lem for the Laplace equation

∆u = f in Ω, u = ϕ on ∂Ω. (7.13)

This term is connected with the fact that, by virtue of (7.11), the
solution of problem (7.13), where f ∈ PC(Ω), ϕ ∈ C(∂Ω), can be
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represented , using the function G, in the form

u(x) =
∫
Ω

f(y)G(x, y) dy +
∫

∂Ω

ϕ(y)
∂G(x, y)
∂ν

dΓ. (7.14)

Formula (7.14) is often called the Green formula.

7.2.P. Let Ω = Rn
+, where Rn

+ = {x = (x′, xn) ∈ Rn | x′ ∈
Rn−1, xn > 0} and x′ = (x1, . . . , xn−1) ∈ Rn−1. Show that in this
case G(x, y) = E(x, y)−E(x∗, y), where x∗ = (x′,−xn) is the flip of
the point x over the hyperplane xn = 0. Verify (compare with (5.6))
that
∂G(x, y)
∂y

∣∣
yn=0

=
2
σn

xn

[(x1 − y1)2 + · · ·+ (xn−1 − yn−1)2 + xn]n/2
.

8. The Lebesgue integral1)

1) The theory of the Lebesgue integral is, as a rule, included now in
the educational programs for the students of low courses. Nevertheless,
maybe some readers are not familiar with this subject. This section and
the following one are addressed to these readers. At the first reading, one
can, having a look at the definitions and formulations of the assertions of
this sections, go further. For what follows, it is important to know at least
two facts:

(1) if a function f is piecewise continuous in Ω b Rn, then f is
integrable in the sense of Riemann;

(2) a function integrable in the sense of Riemann is integrable in
the sense of Lebesgue, and its Riemann integral coincides with
its Lebesgue integral (see P.8.15 below).

If the need arises (when we consider the passage to the limit under the

integral sign, the change of the order of integration and so on), it is ad-

visable to come back to more attentive reading of Sections 8–9 and the

text-books cited.

In Sections 1–2 we have outlined the idea of representability (in
other words, of determination) of a function by its “average values”.
This idea is connected with the notion of an integral. Let us recall
that the definition of an integral, known to all the students since
their first year of studies, has been given by Cauchy. It was the
first analytic definition of the integral. Cauchy gave the first strict
definition of continuity of a function. He proved that functions con-
tinuous on a closed interval are integrable. In connection with the
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development (Dirichlet, Riemann) of the concept of a function as a
pointwise mapping into the real axis, the question arose concerning
the class of functions for which the integral in the sense of Cauchy
exists. This question has been answered by Riemann (see, for in-
stance, [65]). This is the reason, why the integral introduced by
Cauchy is called the Riemann integral.

The space of functions integrable in the Riemann sense is rather
large. However, it is not complete (see note 5 in Section 8) with
respect to the convergence defined by the Riemann integral similarly
to the fact the set of rational numbers (in contrast to the set of real
numbers) is not complete with respect to the convergence defined by
the Euclidian distance on the line. Actually, let

fn(x) = x−1/2 for x ∈]1/n, 1] and fn(x) = 0 for x ∈]0, 1/n].

Obviously,
∫ 1

0
|fm(x) − fn(x)| dx → 0 as m and n → ∞, i.e., the

sequence {fk} is a fundamental sequence (see note 5 in Section 8)
with respect to the convergence defined by the riemann integral. It
follows from the definition the Riemann integral that the function
x 7−→ x−1/2 (to which the sequence {fn(x)} converges pointwise)
is not integrable in the Riemann sense. Moreover, one can easily
show, using P.8.15 and Theorem 8.17, that there exists no function f
integrable in the Riemann sense such that lim

m→∞

∫
|f(x)−fm(x)| dx =

0, i.e., the space of functions integrable in the Riemann sense, is not
complete with respect to the convergence defined by the Riemann
integral (see also Exercise P.8.23).

This reason as well as some others stimulated (see, for instance,
[65]) the development of the notion of integral. A particular role
due to its significance is played by the Lebesgue integral. In 1901
26-year Lebesgue introduced (see Definition 8.12 below) the space
L(Ω) of functions defined on an open set Ω ⊂ Rn and called now
by integrable in the Lebesgue sense and the integral that is called
now by his name (see Definition 8.12). This integral was defined by
Lebesgue as the functional∫

: L(Ω) 3 f 7−→
∫
f ∈ R,

which in the case Ω =]a, b[ is noted by the standard symbol and
possesses the following six properties:
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(1)

b∫
a

f(x) dx =

b+h∫
a+h

f(x− h) dx for any a, b, and h.

(2)

b∫
a

f(x) dx+

c∫
b

f(x) dx+

a∫
c

f(x) dx = 0 for any a, b, and

c.

(3)

b∫
a

[f(x) + g(x)] dx =

b∫
a

f(x)d x+

b∫
a

g(x) dx for any a and b.

(4)

b∫
a

f(x) dx ≥ 0, if f ≥ 0 and b > a.

(5)

1∫
0

1 · dx = 1.

(6) If, when n increases, the function fn(x) tends increasing
to f(x), then the integral of fn(x) tends to the integral of
f(x).

“Condition 6, – wrote Lebesgue [39], – takes a special place.
It have neither the character of simplicity as the first five nor the
character of necessity”. Nevertheless, it is Condition 6 that became
a corner-stone in Lebesgue’s presentation of his theory of integration.

Below we give2) the construction theory of the Lebesgue inte-
gral and the space L(Ω) and formulate results of the theory of the
Lebesgue integral that we need in further considerations.

2) Following mainly the book by G.E. Shilov and B.L. Gurevich [58];

also see [36, 56].

8.1. Definition. A set A ⊂ Ω is said to be a set of zero measure,
if ∀ε > 0 there exists a family of parallelepipeds

Πk = {x = (x1, . . . , x
n) ∈ Rn | xj ∈]ajk

, bjk
[}, k ∈ N,

such that

(1) A ⊂
∞⋃

k=1

Πk;
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(2)
∞∑

k=1

µ(Πk) < ε, where µ(Πk) is the measure of the paral-

lelepiped, i.e., µ(Πk) =
∞∏

j=1

(bjk
− ajk

).

8.2. Definition. We say that a property P (x) depending on
the point x ∈ Ω is valid almost everywhere, if the set of points x, at
which P (x) does not hold, is of zero measure. We also say that P (x)
is valid for almost all x ∈ Ω.

8.3. Definition. By a step function in Ω we mean a function f :
Ω→ R that is a finite linear combination of characteristic functions
of some parallelepipeds Πk, k = 1, . . . , N , N ∈ N, i.e.,

f(x) =
N∑

k=1

ck · 1Πk
(x), ck ∈ R, x ∈ Ω. (8.1)

In this case the sum
N∑

k=1

ck · µ(Πk), denoted by
∫
f , is called the

integral of the step function (8.1).

8.4. Definition. A function f : Ω 3 x 7−→ f(x) ∈ C with
complex values finite for almost all x ∈ Ω is called measurable, if
there exists sequences {gm} and {hm} step functions in Ω such that
lim

m→∞
[gm(x) + ihm(x)] = f(x) for almost all x ∈ Ω.

8.5.P. Show that if f and g are measurable in Ω and h : C2 → C
is continuous, then the function Ω 3 x 7−→ h(f(x), g(x)) ∈ C is also
measurable.

8.6. Definition. A set A ⊂ Ω is called measurable, if 1A is a
measurable function.

8.7.P. Show that any open set and any closed set are measurable.
Show that the complement of a measurable set is measurable. Show
that a countable union and a countable intersection of measurable
sets are measurable.

8.8. Definition. We say that f belongs to the class L+ (more
exactly, to L+(Ω)), if in Ω there exists an increasing sequence {hk}∞k=1

of step functions such that
∫
hm ≤ C ∀m for a constant C and, more-

over, hm ↑ f . The last condition means3) that h1(x) ≤ h2(x) ≤ · · · ≤
hm(x) ≤ . . . and lim

m→∞
hm(x) = f(x) for almost all x ∈ Ω.
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3) The notation hm ↓ f has the similar meaning.

One can readily prove

8.9. Proposition. If f ∈ L+(Ω), then f is measurable in Ω.

8.10. Definition. The (Lebesgue) integral of a function f ∈
L+(Ω) is defined by the formula

∫
f = lim

m→∞

∫
hm, where {hm}∞m=1

is an increasing sequence of functions determining f (see Defini-
tion 8.8).

One can show that Definition 8.10 is correct, i.e.,
∫
f depends

only on f but not on the choice of the sequence hm ↑ f .

8.11. Lemma (see, for instance, [56]). Let fn ∈ L+, fn ↑ f ,∫
fn ≤ C ∀n. Then f ∈ L+ and

∫
f = lim

n→∞
fn.

8.12. Definition. A function f : Ω→ R̄ is said to be Lebesgue
integrable (in Ω), if there exists two functions g and h in L+ such that
f = g− h. In this case, the number

∫
g−

∫
h denoted by

∫
Ω
f(x) dx

(or simply,
∫
f) is called the Lebesgue integral of the function f . The

linear (real) space of functions integrable in Ω is denoted by L(Ω)
(or L)4). If 1A ∈ L(Ω), then the number µ(A) =

∫
1A is called the

measure of the set A ⊂ Ω.

4) In this case two functions are identified, if their difference is equal

to zero almost everywhere (see, in this connection, P.8.14 and P.8.18).

8.13. Remark. One can readily check that
∫
f depends only on

f , i.e., Definition 8.12 is correct.

8.14.P. Show that
∫
f = 0, if f = 0 almost everywhere.

8.15.P. Let hN (x) =
N∑

k=1

mk ·1Πk
(x), where mk = inf

x∈Πk

f(x) is a

step function corresponding to the lower Darboux sum
N∑

k=1

mkµ(Πk)

of a function f which is Riemann integrable. Verify that Definitions
8.8, 8.10, and 8.12 immediately imply that f ∈ L+ (thus, f ∈ L),

and, moreover, the Riemann integral equal to lim
N→∞

N∑
k=1

mkµ(Πk),

coincides with the Lebesgue integral
∫
f(x)dx = lim

N→∞

∫
hN (x) dx.
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8.16.P. Let f be measurable on [0, 1] and bounded: m ≤ f(x) ≤
M . Consider the partition of the closed interval [m,M ] by the points
yk : y0 < y1 < · · · < yN = M . Let σ = max(yk − yk−1). Consider
the sum

S =
N∑

k=1

ykµ{x ∈ [0, 1] | yk−1 ≤ f(x) ≤ yk}.

Prove that ∃ lim
σ→0

S, and this limit is the Lebesgue integral
∫
f(x) dx.

8.17. Theorem (Beppo Levi, 1906; see, for instance, [56]). Let
fn ∈ L(Ω) and fn(x) ↑ f(x) ∀x ∈ Ω. If there exists a constant C
such that

∫
fn ≤ C ∀n, then f ∈ L(Ω) and lim

n→∞

∫
fn =

∫
f .

8.18.P (Compare with P.8.14). Show that f = 0 almost every-
where if f ≥ 0 and

∫
f = 0.

8.19.P. Verify that if ϕ ∈ L, ψ ∈ L, then max(ϕ,ψ) ∈ L,
min(ϕ,ψ) ∈ L.

8.20. Theorem (Lebesgue, 1902; see, for instance, [56]). Let
fn ∈ L(Ω) and fn(x) → f(x) almost everywhere in Ω. Suppose
that there exists a function g ∈ L(Ω), which is called the majorant,
such that |fn(x)| ≤ g(x) ∀n ≥ 1, ∀x ∈ Ω. Then f ∈ L(Ω) and∫
f = lim

n→∞

∫
fn.

8.21. Lemma (Fatou, 1906; see, for instance, [56]). Let fn ∈ L,
fn ≥ 0 and fn → f almost everywhere. If

∫
fn ≤ C ∀n, where

C <∞, then f ∈ L and 0 ≤
∫
f ≤ C.

8.22. Theorem (Fischer and F. Riesz, 1907). A space L with
the norm ‖ϕ‖ =

∫
|ϕ|, is a Banach space5).

5) A norm in a linear space X is a function ‖ · ‖ : X 3 f 7−→ ‖f‖ ∈ R,

with the following properties: ‖f‖ > 0 for f 6= 0 ∈ X, ‖0‖ = 0, ‖λf‖ =

|λ| · ‖f‖ for any number λ, ‖f + g‖ ≤ ‖f‖ + ‖g‖. The words “the space

X is endowed with the norm” mean that a notion of the convergence is

introduced in the space X. Namely, fn → f as n → ∞, if ρ(fn, f) → 0,

where ρ(fn, f) = ‖fn − f‖. In this case one say that the space X is

normed. The function introduced ρ has, as can be easily seen, the following

properties: ρ(f, g) = ρ(g, f), ρ(f, h) ≤ ρ(f, g) + ρ(g, h), and ρ(f, g) > 0,

if f 6= g. If a function ρ with these properties is defined on the set
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X ×X, then this function is called the distance in X, and the pair (X, ρ)

is called a metric space (in general, non-linear). It is clear that a normed

space is a linear metric space. A metric space is called complete, if for

any fundamental sequence {fn}n≥1 (this means that ρ(fn, fm) → 0 as

n,m → ∞) there exists f ∈ X such that ρ(fn, f) → 0. A complete

normed space is called a Banach space.

Proof. Let ‖ϕn − ϕ‖ → 0 as n,m → ∞. Then there exists
an increasing sequence if indices {nk}k≥1 such that ‖ϕn − ϕm‖ ≤

2−k ∀n > nk. Let us set fN (x) =
N−1∑
k=1

|ϕnk+1(x) − ϕnk
(x)|. The

sequence {fN}∞N=2 is increasing and
∫
fN ≤ 1. Using the theorem of

B. Levi, we obtain that the series
∞∑

k=1

|ϕnk+1(x)− ϕnk
(x)| converges

almost everywhere. Therefore, the series
∞∑

k=1

|ϕnk+1(x) − ϕnk
(x)|

also converges almost everywhere. In other words, for almost all x,
the limit lim

k→∞
ϕnk

= ϕ(x) exists6). Let us show that ϕ ∈ L and

‖ϕn − ϕ‖ → 0 as n → ∞. We have ∀ε > 0 ∃N ≥ 1 such that∫
|ϕnm

(x) − ϕnk
(x)|dx ≤ ε for nm ≥ N , nk ≥ N . Using the Fatou

lemma, we pass to the limit as nm → ∞. We obtain ϕ − ϕnk
∈ L,∫

|ϕ(x) − ϕnk
(x)| dx ≤ ε; therefore, ϕ ∈ L, and ‖ϕ − ϕnk

‖ → 0 as
k → ∞. Hence, ‖ϕ − ϕn‖ → 0 as n → ∞, because ‖ϕ − ϕn‖ ≤
‖ϕ− ϕnk

‖+ ‖ϕnk
− ϕn‖. �

6) Thus, any fundamental sequence in L contains a subsequence that

converges almost everywhere. We shall use this fact in Corollary 9.7 and

in Lemma 10.2.

8.23.P. Construct an example of a bounded sequence (compare
with the example at the beginning of Section 8) which is fundamental
with respect to the convergence defined by the Riemann integral but
has no limit with respect to this convergence.

Hint. For λ ∈ [0, 1[, consider the sequence of characteristic func-
tions of the sets Cn that are introduced below, when constructed
a Cantor set of measure 1 − λ. Let {λn} be a sequence of posi-

tive numbers such that
∞∑

n=1
2n−1λn = λ ∈ [0, 1]. The Cantor set
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C ⊂ [0, 1] (see [21, 36, 56]) corresponding to the sequence {λn} is

constructed in the following way: C = ∩Cn, Cn = [0, 1] \ (
n⋃

m=1
In),

In =
2n−1⋃
k=1

Ik
m. Here, Ik

m is the kth interval of the mth rank, i.e., an in-

terval of length λm whose centre coincides with the centre of the kth
(k = 1, . . . , 2m−1) closed interval of the set Cm−1. In other words,
the Cantor set is constructed step by step in the following way. At the
first step we “discard” from the closed interval C0 = [0, 1] its “mid-
dle part” I1 of length λ1, at the second step from the two remaining
closed intervals of the set C1 = C0 \ I we “discard” their “middle
parts” each of which has the length λ2. At mth step (m ≥ 3) we
“discard” from the remaining 2m−1 closed intervals of the set Cm−1

their “middle parts”, each one the length λm. It can be easily seen
(verify!) that the set C is measurable and its measure µ(C) is equal
to µ = 1−λ ≥ 0. It can be rather easily shown that the set C is not
countable and, moreover, there exists a one-to-one correspondence
between C and R. At first sight, this seems astonishing, since the
measure µ(C) = 0 for λ = 1. Nevertheless, it is true! (Prove.) The
Cantor set is often used as the base of constructing some “puzzling”
examples.

8.24. Theorem (Fubini, 1907; see, for instance, [58]). Let Ωx

be an open set in Rk and Ωy an open set in Rm. Suppose that
f : Ω 3 (x, y) 7−→ f(x, y) is an integrable functions in the direct
product Ω = Ωx × Ωy. Then

(1) for almost all y ∈ Ωx (respectively, x ∈ Ωy) the function
f(·, y) : Ωx 3 x 7−→ f(x, y) (respectively, f(·, y) : Ωy 3
x 7−→ f(x, y)) is an element of the space L(Ωx) (respec-
tively, L(Ωy));

(2)
∫
Ωx

f(x, ·)dx ∈ L(Ωy) (respectively,
∫
Ωy

f(·, y)dy ∈ L(Ωx));

(3)
∫
Ω

f(x, y)dxdy =
∫
Ωy

∫
Ωx

f(x, y)dx

 dy =
∫
Ωx

∫
Ωy

f(x, y)dy

 dx.
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8.25. Remark. The existence of two (iterated) integrals

∫
Ωy

∫
Ωx

f(x, y)dx

 dy and
∫
Ωx

∫
Ωy

f(x, y)dy

 dx
implies, in general, neither their equality nor the integrability of the
function f in Ω = Ωx × Ωy (see, for instance, [21]). However, the
following lemma holds.

8.26. Lemma. Let f be a function defined in Ω = Ωx×Ωy. Sup-
pose that f is measurable and f ≥ 0. Suppose also that there exists

the iterated integral
∫
Ωy

∫
Ωx

f(x, y)dx

 dy = A. Then f ∈ L(Ωx×Ωy);

therefore, property 3) of Theorem 8.24 holds.

Proof. We set fm = min(f,Hm), whereHm = max(h1, . . . , hm),
{hk} is a sequence of step functions such that hk → f almost every-
where (see Definition 8.4). Note that fm = lim

k→∞
min(hk,Hm) almost

everywhere and |fm| ≤ |Hm|, since f ≥ 0. Therefore, fm = lim
k→∞

gkm

almost everywhere, where gkm = max(min(hk,Hm),−|Hm|). Fur-
thermore, |gkm| ≤ |Hm| ∈ L ∀k ≥ 1. Hence, by the Lebesgue
theorem, f ∈ L. By virtue of the Fubini theorem, we have

∫
fm =

∫
Ωy

∫
Ωx

fm(x, y)dx

 dy ≤ A.
Let us note that fn ↑ f . Therefore, by the B. Levi theorem, f ∈
L(Ω). �

8.27. Theorem (see, for instance, [56]). Let f ∈ L(R), g ∈

L(R), F (x) =
x∫
0

f(t)dt, G(x) =
x∫
0

g(t)dt. Then

b∫
a

F (x)g(x)dx+

b∫
a

f(x)G(x)dx = F (b)G(b)− F (a)G(a).
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In this case the function F (x) has for almost all x ∈ R the deriv-
ative F ′(x) = lim

σ→0
(F (x + σ) − F (x))/σ, and F ′(x) = f(x) almost

everywhere.

9. The spaces Lp and Lp
loc

9.1. Definition (F. Riesz). Let 1 ≤ p ≤ ∞. By the space
Lp(Ω) (or simply Lp) of functions integrable in pth power we call
the complex space of measurable functions1) f defined in Ω and such
that |f |p ∈ L(Ω). If f ∈ L1(Ω), then the integral of f is defined by
the formula ∫

f =
∫
<f + i

∫
=f.

1) More exactly, of the classes of functions {f} : Ω → C, where

g ∈ {f} ⇐⇒ g = f almost everywhere.

9.2. Lemma. Let p ∈ [1,∞[. Then the mapping

‖ · ‖p : Lp 3 f 7−→ ‖f‖p =

∫
Ω

‖f(x)‖pdx

1/p

, (9.1)

which will sometimes be noted by ‖ · ‖Lp is a norm2).

2) That is the properties of a norm (see note 5 in Section 8) hold.

Proof. It is not obvious only the validity of the triangle in-
equality, i.e., the inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p (9.2)

which (in case of norm (9.1)) is called the Minkowski inequality . It
is trivial for p = 1. Let us prove it for p > 1, using the known [36]
Hölder inequality

‖f · g‖1 ≤ ‖f‖p · ‖g‖q, where 1/p+ 1/q = 1, p > 1. (9.3)

We have∫
|f + g|p ≤

∫
|f + g|p−1|f |+

∫
(|f + g|p−1|g|)

≤
[∫
|f + g|(p−1)·q

]1/q
{[∫

|f |p
]1/p

+
[∫
|g|p
]1/p

}
.
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However, [∫
|f + g|(p−1)·q

]1/q

=
[∫
|f + g|p

]1−(1/p)

.

�

Similarly to the proof of Theorem 8.22, one can prove

9.3. Lemma. Let 1 ≤ p < ∞. The space Lp with norm (9.1) is
a Banach space.

9.4. Lemma. The complexification of the space of step functions3)

is dense in Lp, 1 ≤ p <∞.

3) The complexification of a real linear space X is the complex linear

space of elements of the form f = g + ih, where g and h are elements of

X.

Proof. It is sufficient to prove that ∀f ∈ Lp, where f ≥ 0,
there exists a sequence {hk} of step functions such that

‖f − hk‖p → 0 as k →∞. (9.4)

In case p = 1, we take the sequence {hk}∞k=1 such that hk ↑ f ∈ L+

and
∫
hk →

∫
f . Then we obtain (9.4). If 1 < p < ∞, then we

set En = {x ∈ Ω | 1/n ≤ f(x) ≤ n}, where n ≥ 1 and fn(x) =
1En

(x) · f(x) (1En
is the characteristic function of En). We have

fn ↑ f ; hence, (f − fn)p ↓ 0. By the B. Levi theorem, ‖f − fn‖p =(∫
Ω
|f(x)− fn(x)|pdx

)1/2 → 0 for n→∞. Therefore, ∀ε > 0 ∃n ≥ 1
such that ‖f − fn‖p < ε/2. Let us fix this n. Note that

∫
1En =∫

1p
En
≤
∫
np|f |p < ∞. By virtue of the Hölder inequality,

∫
fn =∫

1En
f ≤

(∫
1q

En

)1/q ∫ (fp)1/p < ∞. Since fn ∈ L(Ω) and fn(x) ∈
[0, n] ∀x ∈ Ω, there exists a sequence {hk} of step functions defined
in Ω with values in [0, n] such that lim

k→∞

∫
|fn − hk| = 0. Therefore,

‖fn − hk‖p =
[∫
|fn − hk|p

]1/p

=
[∫ (

|fn − hk|p−1|fn − hk|
)]1/p

≤ n1−(1/p)

[∫
|fn − hk|

]1/p

→ 0 for k →∞.
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Choose K such that ‖fn − hk‖p < ε/2 for k ≥ K. Then

‖f − hk‖p ≤ ‖f − fn‖p + ‖fn − hk‖ < ε ∀k ≥ K.

�

9.5. Theorem. Let f ∈ L1(Ω) and f = 0 almost everywhere
outside some K b Ω. Let ρ > 0 be the distance between K and ∂Ω.
Then for any ε ∈]0, ρ], the function

Rε(f) = fε : Ω 3 x 7−→ fε(x) =
∫
f(y)δε(x− y)dy, (9.5)

where δε is defined in (3.2), belongs to the space C∞0 (Ω). Moreover4),

lim
ε→0
‖f − fε‖p = 0, 1 ≤ p <∞. (9.6)

4) Function (9.5) is called the (Steklov) smoothing function of the

function f .

Proof. Obviously, fε ∈ C∞0 (Ω). Let us prove (9.6). By virtue
of Lemma 9.4, ∀η > 0 there exists a function h = h1 + ih2, where
h1 and h2 are step functions, such that ‖f − h‖p < η. We have:
‖f − fε‖p ≤ ‖f − h‖p + ‖h − Rε(h)‖p + ‖Rε(f − h)‖p. Let s show
that ‖Rε(g)‖p ≤ ‖g‖p. For p = 1 this is obvious:

∫
Ω

∫
Ω

|g(y)| · δε(x− y)dy

 dx
=
∫
Ω

∫
Ω

δε(x− y)dx

 |g(y)|dy =
∫
Ω

|g(y)|dy.
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If p > 1, then by inequality (9.3):

‖Rε(g)‖pp =
∫
Ω

|gε(x)|pdx

≤
∫
Ω

∫
Ω

(δε(x− y))(p−1)/p)(δε(x− y)1/p|g(y)|)dy

p

dx

≤
∫
Ω


∫

Ω

δε(x− y)dy

(p−1)/p∫
Ω

δε(x− y)|g(y)|pdy

1/p


p

dx

=
∫
Ω

∫
Ω

δε(x− y)|g(y)|pdy

 dx
=
∫
Ω

∫
Ω

δε(x− y)dx

 |g(y)|pdy =
∫
Ω

|g(y)|pdy.

Thus, ‖f − fε‖p ≤ 2η + ‖h − Rε(h)‖p. By virtue of (8.1), h =
N∑

k=1

ck · 1Πk
, where ck ∈ C; hence,

‖h−Rε(h)‖pp =

∣∣∣∣∣∣
∫
Ω

|
N∑

k=1

ck · (1Πk
−Rε(1Πk

))

∣∣∣∣∣∣
p

dx

≤

(
N∑

k=1

|ck|

)p

max
k

∫
Ω

|1Πk
−Rε(1Πk

)dx ≤ C · ε,

because (1Πk
− Rε(1Πk

)) = 0 outside the ε-neighbourhood of the
parallelepiped Πk. Taking ε < ηp/C, we obtain ‖h − Rε(h)‖p <
η. �

9.6. Corollary. C∞0 (Ω) is dense in Lp(Ω), 1 ≤ p ≤ ∞.

Proof. Let g ∈ Lp(Ω). Note that ∀η > 0 ∃K b Ω such that
‖g − g · 1K‖p < η. By Theorem 9.5 there exists ε > 0 such that
‖g · 1K −Rε(g · 1K)‖p < η. �

9.7. Corollary. Let f ∈ L1(Ω), f = 0 almost everywhere
outside K b Ω. Then there exists a sequence of functions fm ∈
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C∞0 (Ω) such that fm → f almost everywhere as m→∞, if |f | ≤M
almost everywhere.

Proof. By virtue of (9.5)–(9.6), ‖f − Rε(f)‖1 → 0 as ε → 0.
Therefore, according to note 6 in Section 8, there exists a subse-
quence {fm} of the sequence {Rε(f)}ε→0 such that fm → f almost
everywhere. The estimate |fm| ≤M is obvious. �

9.8.P. 5) Prove that ‖u−Rε(u)‖C → 0 as ε→ 0, if u ∈ C0(Ω).

5) Here and below, ‖f‖C = sup
x∈Ω

|f(x)| for f ∈ C(Ω̄).

9.9. Definition. L∞(Ω) is the space of essentially bounded
functions in Ω, i.e., the space of measurable functions f : Ω → C
such that

‖f‖∞ = inf
ω∈Ω

sup
x∈ω
|f(x)| <∞, µ(Ω \ ω) = 0. (9.7)

Condition (9.7) means that the function f is bounded almost every-
where, i.e., ∃M < ∞ such that |f(x)| ≤ M almost everywhere and
‖f‖∞ = infM .

One can readily prove

9.10. Lemma. The space L∞(Ω) with the norm (9.7) is a Banach
space,

9.11. Remark. The symbol ∞ in the designation of the space
and the norm (9.7) is justified by the fact that ‖f‖∞ = lim

p→∞
‖f‖p, if

Ω b Rn. This fact is proved, for instance, in [71].

9.12. Definition. Let X be a normed space with a norm ‖ · ‖.
Then X ′ denotes the space of continuous linear functional on X.
The space X ′ is called dual to X.

One can readily prove

9.13. Proposition. The space X ′ equipped with the norm

‖f‖′ = sup
x∈X

|〈f, x〉|
‖x‖

, f ∈ X ′,

is a Banach space. Here, 〈f, x〉 is that value of f at x ∈ X.
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9.14. Theorem (F. Riesz, 1910). Let 1 ≤ p <∞. Then (Lp)′ =
Lq, where 1/p+ 1/q = 1 (q =∞ for p = 1). More exactly:

1) ∀f ∈ Lq(Ω) ∃F ∈ (Lp(Ω))′, i.e., a linear continuous func-
tional F on Lp(Ω) such that

〈F,ϕ〉 =
∫
Ω

f(x)ϕ(x)dx ∀ϕ ∈ Lp(Ω); (9.8)

2) ∀F ∈ (Lp(Ω))′ there exists a unique6) element (function)
f ∈ Lq(Ω) such that (9.8) holds;

6) See note 4 in Section 8.

3) the correspondence I : (Lp)′ 3 F 7−→ f ∈ Lq is an isomet-
ric isomorphism of Banach spaces, i.e., the mapping I is
linear bijective and ‖IF‖q = ‖F‖′p.

Proof. Assertion 1) as well as the estimate ‖F‖′p ≤ ‖f‖q are
obvious for p = 1. For p > 1 one should use the Hölder inequality.
Assertion 2) as well as the estimate ‖F‖′p ≥ ‖f‖q are proven, for
instance, in [71]. Assertion 3) follows from 1) and 2). �

9.15. Definition. Let p ∈ [1,∞]. Then Lp
loc(Ω) (or simply

Lp
loc) denotes the space of functions locally integrable in pth power

f : Ω → C, i.e., of the functions such that f · 1K ∈ Lp(Ω) ∀K b Ω.
We introduce in Lp

loc(Ω) the convergence: fj → f in Lp
loc(Ω) if and

only if ‖1K · (fj − f)‖p → 0 as j →∞ ∀K b Ω.

Let us note the obvious fact: if 1 < r < s <∞, then

PC ( L∞loc ( Ls
loc ( Lr

loc ( L1
loc.

10. Functions of L1
loc as linear functional on C∞0

The idea of representability (i.e., of determination) of a function
by its “averagings”, outlined in Sections 1–2 can now be written in
a rather general form as the following

10.1. Theorem. Any function f ∈ L1
loc(Ω) can be uniquely1)

reconstructed by the linear functional

〈f, ·〉 : C∞0 (Ω) 3 ϕ 7−→ 〈f, ϕ〉 =
∫
Ω

f(x)ϕ(x)dx ∈ C (10.1)
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(i.e., by the set of the numbers
{
〈f, ϕ〉

∣∣
ϕ∈C∞

0 (Ω)

}
). Moreover, the

correspondence f ←→ 〈f, ·〉, f ∈ L1
loc, is an isomorphism.

1) As an element of the space L1
loc(Ω) (see note 4 in Section 8).

Proof. Suppose that two functions f1 and f2 correspond to
one functional. Then

∫
(f1 − f2)ϕ = 0 ∀ϕ ∈ C∞0 . This, by virtue of

Lemma 10.2 below, implies that f1 = f2 almost everywhere. �

10.2. Lemma. Let f ∈ L1
loc(Ω). If

∫
Ω
f(x)ϕ(x)dx = 0 ∀ϕ ∈

C∞0 (Ω), then f = 0 almost everywhere.

Proof. Let ω b Ω. Note that |f | · 1ω = f · g, where g(x) =
1ω ·exp[−i arg f(x)]. (If f is a real function, then g(x) = − sgn f(x) ·
1ω(x).) According to Corollary 9.7, there exists a sequence of func-
tions ϕn ∈ C∞0 (Ω), such that almost everywhere in Ω f · ϕn → f · g
as n→∞, and |ϕn| ≤ 1. Since

∫
ω
|f | =

∫
Ω
f · g and by the Lebesgue

theorem
∫
Ω
f · g = lim

n→∞

∫
Ω
f · ϕn, we have

∫
ω
|f | = 0, because∫

Ω
f · ϕn = 0. Thus, f = 0 almost everywhere in ω. Hence, by

virtue of arbitrariness of ω b Ω, f = 0 almost everywhere in Ω. �

11. Simplest hyperbolic equations. Generalized Sobolev
solutions

In this section we illustrate one of the main achievements of the
theory of distributions on the example of the simplest partial differ-
ential equation ut +ux = 0,1) which is sometimes called the transfer
equation. It concerns a new meaning of solutions of differential equa-
tions, more exactly, a new (extended) meaning of differential equa-
tions. This meaning allows us to consider correctly some important
problems of mathematical physics which have no solutions in the
usual sense. This new approach to the equations of mathematical
physics and their solutions, designed by S.L. Sobolev in 1935 (see,
for instance, [62]) under the title “generalized solutions”, allows, in
particular, to prove the existence and uniqueness theorem for the
generalized solution of the Cauchy problem:

Lu ≡ ut + ux = 0, (x, t) ∈ R2
+ = {(x, t) ∈ R2 | t > 0}, (11.1)

u
∣∣
t=0

= f(x), x ∈ R (11.2)
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for equation (11.1) for any function f ∈ PC(R) (and even f ∈ L1
loc;

see Theorem 11.10 below). The theorem is also valid (see P.11.11)
on the continuous dependence of the solution of this problem on
f ∈ L1

loc(R).
1) Here, ut and ux denote the partial derivatives of the function u(x, t)

with respect to t and x.

Let us clarify the essence of the problem. Equation (11.1) is
equivalent to the system

ut + ux · dx/dt = 0, dx/dt = 1.

Therefore, along the line x = t+ a, where a is a real parameter, we
have du(t + a, t)/dt = 0. In other words, u(t + a, t) = u(a, 0) ∀t.
Thus, the function f(x) = lim

t→+0
u(x, t) must necessary be contin-

uous; in this case u(x, t) = f(x − t).2) If f is differentiable, then
u(x, t) = f(x − y) is a solution of problem (11.1)–(11.2). How-
ever, this problem has no solution (differentiable or even contin-
uous), if f is discontinuous, for instance, if f(x) = θ(x), where
θ : R 3 x 7−→ θ(x) ∈ R is the Heaviside function, i.e.,

θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0. (11.3)

2) This formula implies that the graph of the function x 7−→ u(x, t)

for any fixed t can be obtained by the transition (shift) of the graph of the

function f to the right along the axis x on the distance t. It is the reason

why equation (11.1) is sometimes called the transfer equation.

However, consideration of problem (11.1)–(11.2) with the initial
function (11.3) is justified at least by the fact that this problem arises
(as minimum, on the formal level) when studying the propagation of
the plane sonic waves in a certain medium. The appropriate process
is described by the so-called acoustic system of differential equations

ut +
1
ρ
px = 0, pt + ρ · c2ux = 0, ρ > 0, c > 0. (11.4)

Here, ρ is the density, c is the characteristic of the compressible
medium, and u = u(x, t) and p = p(x, t) are the velocity and the
pressure at the instant t at the point x. Setting

α = u+ p/(ρ · c), β = u− p/(ρ · c),
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we obtain the equivalent system αt + cαx = 0, βt − cβx = 0 of two
transfer equations. Thus, problem (11.1)–(11.2) with the initial func-
tion (11.3) arises when considering the propagation of sonic waves,
say, for the initial velocity u(x, t) = θ(x) and zero initial pressure.

11.1.P. Show that any solution of the class C1 of system (11.4)
can be represented in the form

u(x, t) = [ϕ(x− ct) + ψ(x+ ct)]/2,

p(x, t) = [ϕ(x− ct)− ψ(x+ ct)]/2, where ϕ ∈ C1, ψ ∈ C1.
(11.5)

11.2.P. Show that the following theorem is valid.

11.3. Theorem. ∀f ∈ C1(R) ∀F ∈ C(R̄2
+) the Cauchy problem

ut + ux = F (x, t) in R2
+, u

∣∣
t=0

= f(x), x ∈ R

has a unique solution u ∈ C1(R̄2
+).

As has been said, for f(x) = θ(x) problem (11.1)–(11.2) has
no regular solution (i.e., a solution in the usual sense of this word);
nevertheless the arguments which lead to the formula u(x, t) = f(x−
t) as well as this formula suggest to call by the solution of problem
(11.1)–(11.2) the function f(x− t) for whatever function f ∈ PC(R)
(and even f ∈ L1

loc(R)), especially, as the following lemma holds.

11.4. Lemma. Let f ∈ L1
loc(R) and {fn} be a sequence of func-

tions fn ∈ C1(R) such that3)

fn → f in L1
loc(R) as n→∞.

Then the function u : R2
+ 3 (x, t) 7−→ u(x, t) = f(x − t) belongs to

L1
loc(R2

+), and u = lim
n→∞

un in L1
loc(R2

+), where u(x, t) = f(x− t).4)

3) According to Lemma 11.5 below, such a sequence exists.

4) Note that un(x, t) is a solution of problem (11.1)–(11.2), if un

˛̨
t=0

=

fn(x).

Proof. Since f = f1 + if2 and fk = fk
+ − fk

−, where fk
± =

max(±fk, 0), it is sufficient to consider the case f ≥ 0. Let us make
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the change of the variables (x, t) 7−→ (y, t), where y = x − t. Note
that u(x, t) = f(y) and

b∫
a

 d∫
c

u(x, t)dx

 dt ≤
b∫

a

 d−a∫
c−d

f(y)dy

 dt <∞

for any a, b, c, d such that 0 < a < b, c < d. By virtue of Lemma 8.26,
this implies u ∈ L1

loc(R2
+). Furthermore, for the same a, b, c, and d

b∫
a

 d∫
c

|un(x, t)− u(x, t)|dx

 dt ≤ (b− a)
d−a∫

c−b

|fn(y)− f(y)|dy → 0

as n −→∞. �

11.5. Lemma. ∀f ∈ L1
loc(R) there exists a sequence of functions

fn ∈ C∞(R) converging to f in L1
loc(R).

Proof. Let {ϕµ}∞µ=1 be the partition of unity in R (see Sec-
tion 3), ψµ ∈ C∞0 (R) and ψµ · ϕµ = ϕµ. We have ψµ · f ∈ L1(R).
By Theorem 9.5, there exists a sequence {fµ

n}∞µ=1 of functions fµ
n ∈

C∞(R) such that for any fixed µ: lim
n→∞

‖ψµf − fµ
n‖1 = 0. Setting

fn(x) =
∞∑

µ=1
ϕµ(x)fµ

n (x), x ∈ R, we have fn ∈ C∞(R). Note that

∀c > 0 ∃M ∈ N such that
∞∑

µ=1
ϕµ(x) =

M∑
µ=1

ϕµ(x) for |x| < c. Hence,

c∫
−c

|f(x)− fn(x)|dx =

c∫
−c

∣∣∣∣∣f(x)−
M∑

µ=1

ϕµ(x)fµ
n (x)

∣∣∣∣∣ dx
+

c∫
−c

∣∣∣∣∣
M∑

µ=1

ϕµ(ψµf − fµ
n )

∣∣∣∣∣ dx ≤
M∑

µ=1

c∫
−c

|ψµf − fµ
n |dx.

Therefore,

lim
n→∞

c∫
−c

|f − fn|dx ≤
M∑

µ=1

lim
n→∞

c∫
−c

|ψµf − fµ
n |dx = 0,

because lim
n→∞

‖ψµf − fµ
n‖1 = 0. �
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The definition of the solution of problem (11.1)–(11.2), where
f ∈ L1

loc, with the help of the formula u(x, t) = f(x − t) is rather
tempting, however, let us note that it has a serious defect: with
the help of a concrete formula, one can define the solution of only
a small class of problems. Lemma 11.4 suggests a definition free of
this defect.

11.6. Definition. Let f ∈ L1
loc(R). We say that u ∈ L1

loc(R2
+)

is a generalized solution of problem (11.1)–(11.2), if there exists a
sequence of solutions un ∈ C1(R̄2

+) of equation (11.1) such that, as
n→∞,

un → u in L1
loc(R2

+) and un

∣∣
t→0
→ f in L1

loc(R).

Approximative approach to the definition of a generalized so-
lution can be applied to a large class of problems. So, it has been
above constructed (but was not named), for instance, the generalized
solution of the equation ∆E(x) = δ(x) (see (7.9)) as well as the gen-
eralized solution of the problem ∆P = 0 in R2

+, P (x, 0) = δ(x) (see
Remark 5.4). However, the approximative definition, in spite of tech-
nical convenience, also has an essential shortage: it does not show
the real mathematical object, the “generalized” differential equation,
whose immediate solution is the defined “generalized solution”.

It is reasonable to search for the appropriate definition of the
generalized solutions of differential equations (and appropriate “gen-
eralized” differential equations), by analyzing the deduction of the
equations of mathematical physics (in the framework of one or an-
other conception of the continuous medium). The analysis fulfilled
in Sections 1–2, Lemma 10.2, and the Ostrogradsky–Gauss formula
(7.2) suggest the suitable definition (as will be seen from Proposi-
tion 11.8).

11.7. Definition. Let f ∈ L1
loc(R). A function u ∈ L1

loc(R2
+) is

called a generalized solution of problem (11.1)–(11.2), if it satisfies
the following equation (so-called integral identity (in ϕ))∫

R2
+

(ϕt + ϕx)u(x, t)dxdt+
∫
R

ϕ(x, 0)f(x)dx = 0 ∀ϕ ∈ C1
0 (R̄2

+).

(11.6)

11.8. Proposition. If u ∈ C1(R̄2
+), then (11.6) is equivalent to

(11.1)–(11.2).
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Proof. Let ϕ ∈ C1
0 (R̄2

+) and let Ω be a bounded domain in R2
+

with the boundary Γ = ∂Ω. Formula (7.2) implies that∫
Ω

(ut + ux)ϕdx dt+
∫
Ω

(ϕt + ϕx)u dx dt

=
∫

∂Ω

(ϕ · u)[cos(ν, t) + cos(ν, x)] dΓ. (11.7)

If suppϕ ⊂ Ω̄ and (see Fig.) (suppϕ∩∂Ω) ⊂ Rx = {(x, t) ∈ R2 |
t = 0}, then formula (11.7) can be rewritten in the form∫

R2
+

(ut + ux)ϕdxdt+
∫

R2
+

(ϕt + ϕx)udxdt = −
∫
R

(ϕu)
∣∣
t=0

dx. (11.8)

Furthermore, by virtue of Lemma 10.2,

(11.1) ⇐⇒
∫

R2
+

(ut + ux)ϕdx dt = 0 ∀ϕ ∈ C1
0 (R̄2

+)

and
(11.2) ⇐⇒

∫
R

f(x)ϕ(x, 0)dx =
∫
R

u
∣∣
t=0
· ϕ(x, 0)dx ∀ϕ ∈ C1

0 (R̄2
+).

This and (11.8) imply that (11.6)⇐⇒(11.1)–(11.2). �

Proposition 11.8 shows that
Definition 11.7 is consistent with
the definition of an ordinary (dif-
ferentiable or, as one says, regu-
lar) solution of problem (11.1)–
(11.2). The following Theorem
11.10 justifies the new features
appearing in Definition 11.7 and shows that the integral equality
(11.6) is the same “generalized” differential equation which has been
spoken about.

11.9. Remark. The proof of Proposition 11.8 comes from the
deduction of the Euler–Lagrange equation and the transversality
conditions in calculus of variations proposed by Lagrange (see, for
instance, [56]).

11.10. Theorem. ∀f ∈ L1
loc(R) problem (11.1)–(11.2) has a

(unique) generalized solution u ∈ L1
loc(R2

+).
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Proof. First, we prove the existence. Since the function

u : R2
+ 3 (x, t) 7−→ un(x, t) = f(x− t)

is a regular solution of equation (11.1) and satisfies the initial con-
dition un

∣∣
t=0

= fn(x), by virtue of proposition 11.8 we have∫
R2

+

(ϕt + ϕx) · un dx dt+
∫
R

fn(x)ϕ(x, 0) dx = 0 ∀ϕ ∈ C1
0 (R̄2

+).

(11.9)
On the other hand, by Lemma 11.4, the sequence {un}∞n=1 tends in
L1

loc(R2
+) to the function u ∈ L1

loc(R2
+) such that u(x, t) = f(x− t).

It remains to verify that the function u satisfies (11.6). For this
purpose we note: ∀ϕ ∈ C1

0 (R̄2
+) ∃aϕ > 0 and bϕ > 0 such that

suppϕ ⊂ {(x, t) ∈ R2 | |x| ≤ aϕ, 0 ≤ t ≤ bϕ}.

Therefore,∣∣∣∣∣∣∣
∫

R2
+

(un(x, t)− u(x, t))(ϕt + ϕx)dxdt

∣∣∣∣∣∣∣
≤ [max

(x,t)
|ϕt + ϕx|] ·

bϕ∫
0

 aϕ∫
−aϕ

|fn(x− t)− f(x− t)|dx

 dt

≤Mϕ · bϕ
∫

|x|≤aϕ+bϕ

|fn(x)− f(x)|dx→ 0 for n→∞.

Taking into account (11.9), we obtain (11.6).
Now prove the uniqueness. Let u1 and u2 be two generalized

solutions of problem (11.1)–(11.2). Then their difference u = u1−u2

satisfies the relation
∫

R2
+
(ϕt + ϕx)udxdt = 0 ∀ϕ ∈ C1

0 (R̄2
+). Show

that u(x, t) = 0 almost everywhere. By virtue of Lemma 10.2, it is
sufficient to show that the equation

ϕt + ϕx = g(x, t), (x, t) ∈ R2
+ (11.10)

has a solution ϕ ∈ C1
0 (R̄2

+) for any g ∈ C∞0 (R2
+). However, this

follows from P.11.2. Indeed, let T > 0 be such that g(x, t) ≡ 0, if
t ≥ T . We set
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ϕ(x, t) =

t∫
T

g(x− t+ τ, τ)dτ.

Obviously, (see Fig.) ϕ ∈ C1
0 (R̄2

+) and ϕ is a solution of (11.10). �

11.11.P. Prove that the generalized solution of problem (11.1)–
(11.2) depends continuously in L1

loc(R2
+) on the initial function f ∈

L1
loc(R).

11.12.P. Analyzing the proof of Theorem 11.10, prove that Def-
inition 11.7 is equivalent to Definition 11.6

11.13.P. Verify directly that the function u(x, t) = θ(x− t) is a
solution of problem (11.1)–(11.2) in the sense of Definition 11.7, if
f(x) = θ(x).

In the exercises below, we assume Q = {(x, t) ∈ R2 | x > 0,
t > 0}.

11.14.P. Consider the problem

ut + ux = 0 in Q, (11.11)

u
∣∣
t=0

= f(x), x > 0, (11.12)

u
∣∣
x=0

= h(t), t > 0. (11.13)

This problem is called mixed, because it simultaneously includes the
initial condition (11.12) and the boundary condition (11.13). Show
that problem (11.11)–(11.13) has a (unique) solution u ∈ C1(Q̄) if
and only if f ∈ C1(R̄+), h ∈ C1(R̄+), ans f(0) = h(0), f ′(0) =
−h′(0).

11.15.P. Show that the following problem

ut − ux = 0 in Q, (11.14)

u
∣∣
t=0

= f(x), x > 0 (11.15)
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has a (unique) solution u ∈ C1(Q̄) if and only if f ∈ C1(R̄+). Com-
pare with problem (11.11)–(11.13). Compare the characteristics, i.e.,
the families of the straight lines dx/dt = 1 and dx/dt = −1 (shown in
figures), along which the solutions of equations (11.11) and (11.14)
are constant.

11.16.P. Consider a mixed problem for the system of acoustic
equations

ut + (1/ρ)px = 0, pt + ρc2ux = 0, (x, t) ∈ Q, (11.16)

u
∣∣
t=0

= f(x), p
∣∣
t=0

= g(x), x > 0, (11.17)

p
∣∣
x=0

= h(t), t > 0, (11.18)

where f , g, and h are functions from C1(R̄+).
(1) Draw the level lines of the functions u± (1/ρc)p.
(2) Show that problem (11.16)–(11.18) has a (unique) solution

u ∈ C1(Q̄), p ∈ C1(Q̄) if and only if

h(0) = g(0) and f ′(0) + (1/ρc2)h′(0) = 0. (11.19)

Show also that this solution (u, p) can be represented by formulae
(11.5), where

ϕ(y) = f(y) + (1/ρc)g(y), ψ(y) = f(y)− (1/ρc)g(y), if y > 0
(11.20)

and

ϕ(y) = (2/ρc)h(−y/c) + f(−y)− (1/ρc)g(−y), if y ≤ 0. (11.21)

11.17. Remark. Often instead of system (11.4) of the acoustic
equations, the following second order equation is considered

∂2p/∂t2 − c2 · ∂2p/∂x2 = 0.

This equation obviously follows from system (11.4), if p ∈ C2, u ∈
C2. This equation is called the string equation, since the graph of
the function p can be interpreted as a form of small oscillations of a
string. The string equation is a special case of the wave equation

ptt − c2∆p = 0, p = p(x, t), x ∈ Rn, t > 0. (11.22)

Here, ∆ is the Laplace operator. For n = 2 the wave equation
describes the oscillations of a membrane, for n = 3 it describes the
oscillations of 3-dimensional medium.
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11.18. Remark. The string equation is remarkable in many as-
pects. It was the first equation in partial derivatives that appeared
in mathematical investigations (B. Teylor, 1713). It was a source of
fruitful discussion (see, for instance, [42, 50]) in which the notion of
a function was developed (d’Alembert, Euler, D. Bernoulli, Fourier,
Riemann,. . . ).

11.19. Remark. Many distinctive properties of some differen-
tial operators A(y, ∂y1 , . . . ∂ym

), y ∈ Ω are defined by the proper-
ties of the corresponding characteristic polynomials A(y, η1, . . . , ηm)
of the variable η = (η1, . . . , ηm). Thus, the hyperbolic polynomial
τ2−ξ2 (τ2−|ξ|2) is associated with the string equation utt−uxx = 0
(or, more generally, with the wave equation utt−∆u = 0); the ellip-
tic polynomial |ξ|2 ≡

∑
k

ξ2k is associated with the Laplace equation

∆u = 0; the parabolic polynomial τ−|ξ|2 is associated with the heat
equation ut − ∆u = 0. According to the type of the characteristic
polynomial, partial differential equations can be classified into hy-
perbolic equations, elliptic equations, parabolic equation, . . . . (See
exact definitions, for instance, in [48].)

11.20. Example. Consider problem (11.16)–(11.18) with f =
g = 0, h = 1. This means that at the initial instant t = 0 the
velocity u and the pressure p are equal to zero, and on the boundary
x = 0 the pressure p = 1 is maintained. Formulae (11.5), (11.20)–
(11.21) give the following result:

u = 0, p = 0, if t < x/c
u = 1/ρc, p = 1, if t ≥ x/c

}
(11.23)

The functions u and p are
discontinuous that is not sur-
prising, because condition (11.9)
does not hold. However, on the
other hand, formulae (11.23) are
in a good accordance with the
physical processes. This yields

11.21.P. Find the appropriate definitions of the generalized so-
lutions for the following problems:
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(1) ut + ux = F (x, t) in Q = {(x, t) ∈ R2 | x > 0, t > 0};
u
∣∣
t=0

= f(x), x > 0; u
∣∣
x=0

= h(t), t > 0;
(2) ut + (1/ρ)px = F (x, t), pt + ρ · c2ux = G(x, t) in Q;

u
∣∣
t=0

= f(x), p
∣∣
t=0

= g(x), x > 0; u
∣∣
x=0

= h(t), t > 0.
(3) ptt − c2pxx = F (x, t) in the half-strip Ω = {(x, t) ∈ R2

+ |
0 < x < 1};
p
∣∣
t=0

= f(x), pt

∣∣
t=0

= g(x), 0 < x < 1; p
∣∣
x=0

= h0(x),
p
∣∣
x=1

= h1(x), t > 0.

Revise the requirements to the functions f , g, h, F , G, under which
the solutions of these problems belong, say, to the space C1, PC1

or L1
loc. Prove the theorems of existence, uniqueness and continuous

dependence (compare with P.11.11).

We conclude this section by consideration of the non-linear equa-
tion

ut + (u2/2)x = εuxx + bx(x, t), u = u(x, t), (11.24)

where ε ≥ 0, and b is a given function. This equation is called the
Burgers equation and is considered in hydrodynamics as a model
equation for ε > 0 of the Navier–Stokes system, and for ε = 0 of the
Euler system (see [52]).

First, consider
equation (11.24) for
ε = 0 and b ≡ 0. In
this case, the regu-
lar (of the class C1)
solution of this equa-
tion satisfies the sys-
tem dx/dt = u,
du/dt = 0. Thus,
the solution u(x, t)

is constant along the characteristic, i.e., along the curve defined
by the equation dx/dt = u(x, t); hence, this curve is, in fact, the
straight line x = a + f(a)t that depends only on the parameter
a ∈ R and a function f . The function f is determined by the rela-
tions f(a) = dx/dt, dx/dt = u(x, t), i.e., f(x) = u(x, 0). If f is a
decreasing function, for instance, f(x) = − th(x), then the charac-
teristics intersect at some t > 0, and at the point of the intersection
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we have
u(x− 0, t) > u(x+ 0, t). (11.25)

The continuous solution cease to exist. Thus, the Cauchy problem

ut + (u2/2)x = 0 in R2
+, u

∣∣
t=0

= f(x), x ∈ R (11.26)

has, in general, no continuous solution even for analytic initial data.
This effect is well known in hydrodynamics. It is connected with
arising of the so-called shock waves5) which are characterized by a
jump-like change of the density, velocity, etc. Thus, physics suggest
that the solution of problem (11.26) should be sought as a generalized
solution of the class PC1.

5) See Addendum.

Suppose that u is a generalized solution of problem (11.26), and
u has a jump along the curve

γ = {(x, t) ∈ R2 | x = λ(t), λ ∈ C1[α, β]};

more exactly, suppose that (x, t) ∈ γ satisfies condition (11.25).

11.22.P. Prove (compare with P.12.6) that the Hugoniót condi-
tion

dλ(t)/dt = [u(λ(t) + 0, t) + u(λ(t)− 0, t)]/2. (11.27)

holds along this line γ called the break line.

One can show (see, for instance, [52]) that relations (11.25),
(11.27) replace the differential equation ut + (u2/2)x = 0 on the
break line.

One of the approaches to the study of problem (11.26) is based
on consideration of the Cauchy problem for equation (11.24) for ε > 0
(and b ≡ 0) with the passage to the limit as ε→ 0 (see, for instance,
[52]). The point is that (for b ≡ 0) equation (11.24) can be reduced,
however surprising it is, to the well studied heat equation. Actually,
the following theorem holds6).

6) This theorem was proven in 1948 by V.A. Florin and in 1950 was

rediscovered by E. Hopf.

11.23. Theorem. The solution of equation (11.24) can be rep-
resented in the form u = −2ε(lnG)x, where G is the solution of the
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linear parabolic equation

Gt = εGxx −
b(x, t)

2ε
G. (11.28)

Proof. Let u be the solution. Setting

P (x, t) = u(x, t), Q(x, t) = −u2(x, t)/2 + εux(x, t) + b(x, t),

we have Pt = ut, Qx = −u ·ux + εuxx + bx(x, t). Therefore, Pt = Qx.
Thus, the function is defined

F (x, t) =

(x,t)∫
(0,0)

Pdx+Qdt.

We have Fx = P , Ft = Q. Hence, Ft +(Fx)2/2−εFxx = b. Introduc-
ing the function G = exp[−F/2ε], we obtain that G is the solution
of equation (11.28) and u = −2ε(lnG)x, because u = Fx. �



CHAPTER 2

The spaces D[, D# and D′. Elements of
the distribution theory (generalized
function in the sense of L. Schwartz)

12. The space D[ of the Sobolev derivatives

The definition of the generalized solution u ∈ L1
loc to one or an-

other problem of mathematical physics given by Sobolev [61] and,
in particular, Definition 11.7 is based on Theorem 10.1 and the
Ostrogradsky–Gauss formula (7.2). Let us recall that Theorem 10.1
asserts the equivalence of the two following representations of an
element u ∈ L1

loc:

1) Ω 3 x 7−→ u(x) and 2) C∞0 (Ω) 3 ϕ 7−→
∫
Ω

u(x)ϕ(x)dx,

and formula (7.2) implies that, for the differential operator ∂α =
∂|α|/∂xα1

1 . . . ∂xαn
n and any function u ∈ C |α|(Ω) the following iden-

tity is valid:∫
Ω

(∂αu(x))ϕ(x)dx = (−1)|α|
∫
Ω

u(x)∂αϕ(x)dx ∀ϕ ∈ C∞0 (Ω).

Thus, the functional

∂αu : C∞0 (Ω) 3 ϕ 7−→ 〈∂αu, ϕ〉 = (−1)|α|
∫
Ω

u(x)∂αϕ(x)dx

∀ϕ ∈ C∞0 (Ω) (12.1)

determines the function ∂αu(x), if u ∈ C |α|(Ω). Since functional
(12.1) is also defined for u ∈ L1

loc(Ω), one can, tracing S.L. Sobolev’s
approach, give the following definition.

59
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12.1. Definition. Let α = (α1, . . . , αn) be a multiindex. The
weak derivative of order α of the function u ∈ L1

loc(Ω) is defined as
the functional ∂αu given by formula (12.1).

Using Theorem 10.1, formula (7.2), and the identity∫
Ω

a(x)(∂αu(x))ϕ(x) dx = (−1)|α|
∫
Ω

u(x)∂α(a(x)ϕ(x)) dx,

u ∈ C |α|(Ω), ϕ ∈ C∞0 (Ω),

which is valid for any function a ∈ C∞(Ω), we introduce the opera-
tion of multiplication of the functional ∂αu, where u ∈ L1

loc(Ω), by
a function a ∈ C∞(Ω) with the help of the formula

a∂αu : C∞0 (Ω) 3 ϕ 7−→ (−1)|α|
∫
Ω

u(x)∂α(a(x)ϕ(x))dx ∈ C. (12.2)

12.2. Definition. The space of Sobolev derivatives is the space
of functionals of the form

∑
|α|<∞

∂αuα, where α is a multiindex and

u ∈ L1
loc(Ω), equipped with the operation of multiplication by for-

mula (12.2). This space is denoted by D[(Ω).

12.3. Example. Let the function x+ ∈ L1
loc(R) be defined in

the following way: x+ = x for x > 0, x+ = 0 for x < 0. Let us find
its derivatives. We have

〈x′+, ϕ〉 = −〈x+, ϕ
′〉 = −

∫
R

x+ϕ
′(x)dx = −

∫
R+

xϕ′(x)dx

= −xϕ(x)
∣∣∞
0

+

∞∫
0

ϕ(x)dx =
∫
R

θ(x)ϕ(x)dx = 〈θ, ϕ〉,

i.e., x′+ = Θ is the Heaviside function. Now find x′′+, i.e., Θ′. We
have

〈Θ′, ϕ〉 = −〈Θ, ϕ′〉 = −
∞∫
0

ϕ′(x)dx = −ϕ(x)
∣∣∞
0

= ϕ(0) = 〈δ, ϕ〉,

(12.3)
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i.e., Θ′ = δ(x) is the Dirac δ-function. In the same way one can find
any derivative of the δ-function of order k. We have

〈δ(k), ϕ〉 = −〈δ(k−1), ϕ′〉 = · · · = (−1)k〈δ, ϕ(k)〉 = (−1)kϕ(k)(0).
(12.4)

12.4.P. Let Θε ∈ C∞(R), 0 ≤ Θε(x) ≤ 1, and Θε(x) ≡ 1 for
x > ε and Θε(x) ≡ 0 for x < −ε. Let us set δε(x) = Θ′

ε(x). Show
that limε→0〈δ(k)

ε , ϕ〉 = (−1)kϕ(k)(0) ∀k ≥ 0, ∀ϕ ∈ C∞0 (R).

12.5. Remark. Formulae (12.4) allow us to extend the func-
tional δ(k) from the functional space C∞0 (R) to the space of func-
tions k-times continuously differentiable at the point x = 0 (see
Definition 2.2). On the other hand, formula (12.3) is not defined on
the space C(R), because the functional Θ is not defined on C(R).

Define the function Θ± : Rn 3 x 7→ Θ±(x) by the following
formula

Θ±(x) = 1Q±(x), x ∈ R,
Q± = {x = (x1, . . . , xn) ∈ Rn | ±xk > 0 ∀k}.

(12.5)

If n = 1, then Θ+ = Θ is the Heaviside function, and Θ− = 1−Θ+

(in L1
loc).

12.6.P. (cf. P.11.22). Let F ∈ C1(R), λ ∈ C1(R), u± ∈
C1(R2). Let, for (x, t) ∈ Ω ⊂ R2, u(x, t) = u+(x, t)Θ+(x − λ(t)) +
u−(x, t)Θ−(x−λ(t)). Find ut and (F (u))x, noting that F (u(x, t)) =
F (u+(x, t))Θ+(x− λ(t)) +F (u−(x, t))Θ−(x− λ(t)). Show that ut +
(F (u))x = 0 almost everywhere in Ω if and only if, first, ut +
(F (u))x ≡ 0 in Ω \ γ, where γ = {(x, t) ∈ R2 | x = λ(t)}, and
second, the Hugoniót condition dλ(t)

dt = F (u(x+0,t)−F (u(x−0,t)
u(x+0,t)−u(x−0,t) holds

on the line γ.

12.7.P. Check (see (12.5)) that ∂n

∂x1...∂xn
Θ+ = δ(x), x ∈ Rn.

12.8.P. Show that the function E(x, t) = Θ(t − |x|)/2 is the
fundamental solution of the string operator, i.e.,

(∂2/∂t2 − ∂2/∂x2)E(x, t) = δ(x, t).

Here, δ(x, t) is that δ-function in R × R, i.e., 〈δ(x, t), ϕ〉 = ϕ(0, 0)
∀ϕ ∈ C∞0 (R× R).
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12.9.P. Noting that, for ϕ ∈ C∞0 (R),

lim
ε→0

∫
|x|>ε

ln |x| · ϕ′(x)dx = lim
ε→0

ln ε(ϕ(−ε)− ϕ(ε))−
∫

|x|>ε

ϕ(x)
x

dx

 ,
prove that d

dx ln |x| = v.p. 1
x , i.e.,

〈
d
dx ln |x|, ϕ

〉
= v.p.

∫∞
−∞

ϕ(x)
x dx

∀ϕ ∈ C∞0 (R), where v.p.
∫∞
−∞ x−1ϕ(x) dx is so-called the principal

value = valeur principal (French) of the integral
∫∞
−∞ x−1ϕ(x)dx

defined by the formula

v.p.

∞∫
−∞

x−1ϕ(x)dx = lim
ε→0

∫
|x|>ε

x−1ϕ(x)dx. (12.6)

12.10.P. Taking into account that ln(x ± iε) = ln |x ± iε| +
i arg(x± iε)→ ln |x| ± iπΘ(−x) as ε→ +0, prove the simplest ver-
sion the Sokhotsky formulae (very widespread in the mathematical
physics (see, for instance, [38]))

1
x∓ i0

= v.p.
1
x
± iπδ(x), (12.7)

i.e., prove that lim
ε→+0

∫∞
−∞

ϕ(x)dx
x∓iε = v.p.

∫∞
−∞

ϕ(x)
x dx ± iπϕ(0) ∀ϕ ∈

C∞0 (R).

12.11. Remark. Formulae (12.7) imply that

δ(x) = f(x− i0)− f(x+ i0), where f(x+ iy) =
1

2πi
(x+ iy)−1,

(12.8)
i.e., the δ-function being an element of D[(R) admits the represen-
tation in the form of the difference of boundary values on the real
axis of two functions analytic in C+ and in C−, respectively, where
C± = {z = x+ iy ∈ C | ±y > 0}. This simple observation has deep
generalizations in the theory of hyperfunctions (see, for instance,
[43, 53]).

12.12. Remark. Any continuous function F ∈ C(R) has, as
an element of the space L1

loc, the Sobolev derivative F ′ ∈ D[(R).
If this derivative is a locally integrable function, in other words, if
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F (x) =
∫ x

a
f(y) dy + F (a), where f ∈ L1

loc(R), then Theorem 8.27
implies that

F ′(x) = lim
σ→0

σ−1(F (x+ σ)− F (x)) for almost all x ∈ R. (12.9)

In this case, formula (12.9) totally determines the Sobolev derivative
F ′. Emphasize that the last assertion does not hold (even under the
assumption that formula (12.9) is valid), if F ′ /∈ L1

loc(R). Thus, for
instance, the Cantor ladder (see [36] or [56]) corresponding to the
Cantor set of zero measure (see hint to P.8.23), i.e., a continuous
monotone function K ∈ C[0, 1] with the value (2k − 1) · 2−n in kth
(k = 1, . . . , 2n−1) interval In =]ak

n, b
k
n[ of rank n (see hint to P.8.23)

has, for almost all x ∈ [0, 1], zero derivative but its Sobolev derivative
K ′ is non-zero. Namely,

K ′ =
∞∑

n=1

2n−1∑
k=1

(2k − 1) · 2−n(δ(x− bkn)− δ(x− ak
n)). (12.10)

12.13.P. Prove formula (12.10).

13. The space D# of generalized functions

The elements of the space D[ were defined as finite linear com-
binations of the functionals ∂αuα (12.1), i.e., of the derivatives of
the functions uα ∈ L1

loc. If we neglect the concrete form of the
functionals, i.e., consider an arbitrary linear functional

f : C∞0 (Ω) 3 ϕ 7−→ 〈f, ϕ〉 ∈ C, (13.1)

then we obtain an element of the space D#(Ω), which will be called
a generalized function (in the domain Ω). Let us give the exact

13.1. Definition. D#(Ω) is the space of all linear functionals
(13.1) in which the operations of differentiation ∂α and multipli-
cation by a function a ∈ C∞(Ω) are introduced by the following
formulae:

〈∂αf, ϕ〉 = (−1)|α|〈f, ∂αϕ〉, 〈af, ϕ〉 = 〈f, aϕ〉 ∀ϕ ∈ C∞0 (Ω).
(13.2)

13.2. Example. f =
∞∑

k=0

δ(k)(x − k), x ∈ R, i.e., 〈f, ϕ〉 =
∞∑

k=0

(−1)kϕ(k)(k) ∀ϕ ∈ C∞0 (R). Obviously, f ∈ D#(R), and f /∈
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D[(R). Thus, D[(Ω) ( D#(Ω). By the way, the following lemma is
valid.

13.3. Lemma (P. du Bois Reimond). If f ∈ D#(R) and f ′ = 0,
then f = const. (Thus, f ∈ D[(R).)

Proof. We have 〈f ′, ϕ〉 = 〈f, ϕ′〉 = 0 ∀ϕ ∈ C∞0 (R). Let us
take a function ϕ0 ∈ C∞0 (R) such that

∫
ϕ0 = 1. Any function

ϕ ∈ C∞0 (R) can be represented in the form ϕ = ϕ1 +
(∫
ϕ
)
ϕ0, where

ϕ1 = ϕ−
(∫
ϕ
)
ϕ0. Note that

∫
ϕ1 = 0. Setting ψ(x) =

∫ x

−∞ ϕ1(ξ)dξ,
we have ψ ∈ C∞0 (R) and ψ′ = ϕ1. Therefore, 〈f, ϕ〉 = 〈f, ψ′〉 +
〈f,
(∫
ϕ
)
ϕ0〉. Since 〈f, ψ′〉 = 0, it follows that 〈f, ϕ〉 = C

∫
ϕ, where

C = 〈f, ϕ0〉. �

Generalizing the notion of a δ-sequence, we introduce

13.4. Definition. A sequence of functionals fν ∈ D# is said
weakly converges to f ∈ D# on the space Φ ⊃ C∞0 , if fν −→ f in
D# on the space Φ, i.e., limν→∞〈fν , ϕ〉 = 〈f, ϕ〉 ∀ϕ ∈ Φ. If Φ = C∞0 ,
then the words “on the space C∞0 ” are usually omitted.

13.5. Definition. We say that a subspace X of the space D# is
complete with respect to the weak convergence, if, for any sequence
{fν}∞ν=1 of functionals fν ∈ X satisfying the condition

〈fν − fµ, ϕ〉 −→ 0 ∀ϕ ∈ C∞0 as ν, µ −→∞,
there exists f ∈ X such that fν → f in D#.

13.6.P. Show that D[ is not complete with respect to the weak
convergence.

13.7.P. Show that D# is complete with respect to the weak con-
vergence.

13.8. Lemma. If fν → f in D# on the space Φ ⊃ C∞0 , then
∂αfν → ∂αf in D# on the space Φ for any α.

Proof. 〈∂αfν , ϕ〉 = (−1)|α|〈fν , ∂
αϕ〉 −→ (−1)|α|〈f, ∂αϕ〉 =

〈∂αf, ϕ〉. �

13.9. Example. Let fν = sin νx
ν , i.e., 〈fν , ϕ〉 =

∫
R

sin νx
ν ϕ(x)dx.

Then f ′ν = cos νx, f ′′ν = −ν · sin νx, . . . We have 〈fν , ϕ〉 −→ 0
∀ϕ ∈ C∞0 as ν → ∞. Thus, cos νx → 0 in D#, ν sin νx → 0 in
D#, . . .
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13.10. Lemma. Let a = (a1, . . . , an) ∈ Ω ⊂ Rn. Suppose that
a sequence {fν}∞ν=1 of functions fν ∈ L1

loc(Ω) and a point b =
(b1, . . . , bn)1) ∈ Π, where

Π = {x = (x1, . . . , xn) ∈ Rn | |xk − ak| < σk, σk > 0 ∀k} ⊂ Ω,

are such that, for Fν(x) =
∫ x1

b1
. . .
∫ xn

bn
fν(y)dy1 . . . dyn, the following

two properties hold:
1) As b = (b1, . . . , bn) one can take any point of Π such that bk < ak

∀k.

(1) |Fν(x)| ≤ G(x), x ∈ Ω, where G ∈ L1
loc(Ω),

(2) Fν(x) → Θ+(x − a) almost everywhere in Ω, where Θ+ is
defined in (12.5).

Then fν weakly converges to δ(x− a) on the space

Φ = {ϕ ∈ C(Ω) | ϕ ∈ L1(Ω), ∂nϕ/∂x1 . . . ∂xn ∈ L1(Ω)}. (13.3)

Proof. Using Theorems 8.20, 8.24, and 8.27, we obtain, for any
ϕ ∈ Φ,

〈fν , ϕ〉 =
〈

∂nFν

∂x1 . . . ∂xn
, ϕ

〉
= (−1)n

〈
Fν ,

∂nϕ

∂x1 . . . ∂xn

〉

= (−1)n

∫
Ω

Fν(x)
∂nϕ(x)

∂x1 . . . ∂xn
dx −→ (−1)n

∞∫
a1

. . .

∞∫
an

∂nϕ(x)dx
∂x1 . . . ∂xn

= −(−1)n

∞∫
a2

. . .

∞∫
an

∂n−1ϕ(x)dx
∂x2 . . . ∂xn

dx2 . . . dxn = ϕ(a).

�

13.11.P. Using Lemma 13.10, solve problems P.4.3 and P.4.4.

Let us generalize the notion of the support of a function (see
Section 3), assuming, in particular, an exact meaning to the phrase
usual for physicists: “δ(x) = 0 for x 6= 0”.

13.12. Definition. Let f ∈ D#(Ω), and ω be an open set in
Ω. We say that f is zero (vanishes) on ω (and write f

∣∣
ω

= 0 or
f(x) = 0 for x ∈ Ω), if 〈f, ϕ〉 = 0 ∀ϕ ∈ C∞0 (ω).
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13.13. Definition. The annihilating set of a functional f ∈
D#(Ω) is the maximal open set Ω0 = Ω0(f) ⊂ Ω on which f is zero,
i.e., f

∣∣
Ω0

= 0, and the condition f
∣∣
ω

= 0 implies ω ⊂ Ω0.

It is clear that Ω0(f) is the union of ω ⊂ Ω such that f
∣∣
ω

= 0.

13.14. Definition. Let f ∈ D#(Ω). The support of the func-
tional f , denoted by supp f , is the completion to the annihilating set
Ω0(f), i.e., the set Ω \ Ω0(f).

13.15.P. Let f ∈ D#(Ω). Check that x ∈ supp f if and only if,
for any neighbourhood ω ⊂ Ω of the point x there exists a function
ϕ ∈ C∞0 (ω) such that 〈f, ϕ〉 6= 0. Verify also that Definition 13.14
is equivalent to Definition 3.1.4, if f ∈ C(Ω).

13.16.P. Find supp δ(α)(x) and supp[(x1 + · · ·+ xn)δ(α)(x)].

13.17.P. Let f ∈ D#(Ω), a ∈ C∞, and a(x) = 1 for x ∈ supp f .
Is it true that a · f = f?

13.18.P. Let ω be an open set in Ω such that ω ⊃ supp f , f ∈
D#(Ω). Show that af = f , if a(x) = 1 for x ∈ ω.

13.19.P. Let f ∈ D#(Ω) be a generalized function with a com-
pact support. Show that the formula 〈F,ϕ〉 = 〈f, ψϕ〉 ∀ϕ ∈ C∞(Ω),
ψ ∈ C∞0 (Ω), where ψ ≡ 1 on an open set ω ⊃ supp f defines the ex-
tension of the functional f onto the space C∞(Ω), i.e., F is a linear
functional on C∞(Ω) such that 〈F,ϕ〉 = 〈f, ϕ〉 ∀ϕ ∈ C∞0 (Ω).

14. The problem of regularization

The idea of representability of a function f : Ω −→ C with
the help of its “averaging” functional (10.1) concerned only locally
integrable functions. However, in many problems of analysis, an
important role is played by functions which are not locally integrable.
This is the reason of arising of the so-called problem of regularization:
let g : Ω 3 x 7→ g(x) be a function locally integrable everywhere in
Ω except a subset N ⊂ Ω. It is required to find functionals f ∈ D#

such that

〈f, ϕ〉 =
∫
Ω

g(x)ϕ(x) dx ∀ϕ ∈ C∞0 (Ω \N). (14.1)
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In this case one says that the functional f regularizes the (di-
vergent) integral

∫
Ω
g(x) dx.

It is clear that the functionals f satisfying (14.1) can be repre-
sented in the form

f = f0 + f1, f0 ∈ F0,

where f1 is a particular solution of the problem of regularization (i.e.,
f1 satisfies (14.1)), and F0 is the linear subspace of the functionals
f0 ∈ D#(Ω) such that

〈f0, ϕ〉 = 0 ∀ϕ ∈ C∞0 (Ω \N). (14.2)

The question of description of the subspace F0 is connected only
with the set N ⊃ supp f0. In the case when N = x0 ∈ Ω, this
question, i.e., the problem concerning the general form of function-
als with a point support, is considered in Section 15. As for the
particular solution of the problem regularization, we conclude this
section by consideration of the regularization for 1/P , where P is a
polynomial in the variable x ∈ R.

14.1. Example. Consider the regularization of the function 1/x.
In other words, find the functional f ∈ D#(R) which satisfies the
condition: x · f = 1. Note (see (12.6)) that

〈
v.p.

1
x
, ϕ

〉
=

∞∫
−∞

1
x
ϕ(x) dx ∀ϕ ∈ C∞0 (R \ 0).

Thus, the functional v.p.(1/x) regularizes the function 1/x. Since
〈δ, ϕ〉 = 0 ∀ϕ ∈ C∞0 (R\0), it follows that v.p.(1/x)+C · δ(x), where
C ∈ C; therefore, (see (12.7)) functional 1/(x ± i0) also regularize
the function 1/x.

14.2.P. Check that〈
v.p.

1
x
, ϕ

〉
=

∞∫
−∞

ϕ(x)− ϕ(−x)
2x

dx ∀ϕ ∈ C∞0 (R).
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14.3.P. Let m ≥ 1, and a ∈ C∞0 (R). Define, for k ≥ 2, the
functional v.p.(1/xk) ∈ D#(R) by the formulae:〈

v.p.
1
xk
, ϕ

〉

=

∞∫
0

1
xk

{
ϕ(x) + ϕ(−x)− 2

[
ϕ(0) + · · ·+ xk−2

(k − 2)!
ϕ(k−2)(0)

]}
dx

for k = 2m and〈
v.p.

1
xk
, ϕ

〉
=

∞∫
0

1
xk

{
ϕ(x)

+ ϕ(−x)− 2
[
xϕ′(0) + · · ·+ xk−2

(k − 2)!
ϕ(k−2)(0)

]}
dx

for k = 2m+ 1.
Show that the functional v.p.(1/xk) regularizes the function 1/xk.

14.4.P. (Compare with P.16.25). Find the solution f ∈ D#(R)
of the equation P (x)f = 1. In other words, regularize the integral∫∞
−∞ P−1(x)ϕ(x)dx, where P is a polynomial.

15. Generalized functions with a point support. The Borel
theorem

It has been shown in Section 14 that the mean value problem for
a function locally integrable everywhere in Ω ⊂ Rn except a point
ξ ∈ Ω leads to the question on the general form of the functional
f ∈ D#(Ω) concentrated at the point ξ, i.e., satisfying the condition:
supp f = ξ. It is clear (see P.13.16), that a finite sum of the δ-
function and its derivatives concentrated at the point ξ, i.e., the
sum ∑

|α|≤N

cαδ
(α)(x− ξ), cα ∈ C, N ∈ N (15.1)

is an example of such a functional.
However, is the sum (15.1) the general form of a functional f ∈

D#, whose support is concentrated at the point ξ? One can show
that the answer to this question is negative, however, the following
theorem holds.
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15.1. Theorem. If f ∈ D# and f =
∑
α
cαδ

(α)(x − ξ), then

cα = 0 for |α| > Nf for some Nf .

Proof. According to the Borel theorem below, there exists a
function ϕ ∈ C∞0 (Ω) such that, for any α

∂αϕ(x)
∣∣
x=ξ

= (−1)|α|/cα, if cα 6= 0

and
∂αϕ(x)

∣∣
x=ξ

= 0, if cα = 0.

For such a function ϕ, we have
〈∑

α
cαδ

(α)(x− ξ), ϕ
〉

=
∑
α

1, where

the sum is taken over α for which cα 6= 0. �

15.2. Theorem (E. Borel). For any set of numbers aα ∈ C,
parametrized by the multiindices α = (α1, . . . , αn), and for any point
ξ ∈ Ω ⊂ Rn, there exists a function ϕ ∈ C∞0 (Ω) such that ∂αϕ

∣∣
x=ξ

=
aα ∀α.

Proof. Without loss of generality, we can assume that ξ = 0 ∈
Ω. If the coefficients aα grow not very fast as |α| → ∞, more exactly,
if there exist M > 0 and ρ > 0 such that

∑
|α|=k

aα ≤ Mρ−k ∀k ∈ N,

then the existence of the function required is obvious. Actually, since
in the case considered the series

∑
α
aαx

α/α!, where α! = α1! · · · · ·αn!,

converges in the ball Bρ = {x ∈ Rn | |x| < ρ}, we can take as the
required function the following one

ϕ(x) = ψ(x/ρ)
∑
α

aαx
α/α! ∈ C∞0 (Bρ) ⊂ C∞0 (Ω),

where

ψ ∈ C∞0 (Rn), ψ = 0 for |x| > 1, ψ = 1 for |x| < 1/2.

However, in the general case, the series
∑
α
aαx

α/α! can diverge

in Bρ. What is the reason of the divergence? Obviously, because it
is impossible to guarantee the sufficiently fast decrease of aαx

α/α!
as |α| → ∞ for all x belonging to a fixed ball Bρ. One can try to
improve the situation, by considering the series∑

α

ψ(x/ρα) · aαx
α/α!, (15.2)
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where ρα converges sufficiently fast to zero as |α| → ∞. If it occurs
that series (15.2) converges to a function ϕ ∈ C∞, then, as one
can easily see, ϕ ∈ C∞0 (Ω) and ∂αϕ

∣∣
x=0

= aα. Indeed, setting
γ = (γ1, . . . , γn) ≤ β = (β1, . . . , βn) by definition, if γk ≤ βk ∀k, and
β − γ = (β1 − γ1, . . . , βn − γn), we have

∂αϕ
∣∣
x=0

=
∑

β

(aβ/β!)

∑
γ≤α

α!
γ!(α− γ)!

(
∂a−γψ

) ∣∣
x=0

(
∂γxβ

) ∣∣
x=0


=
∑

β

(aβ/β!)
(
∂αxβ

∣∣
x=0

)
=
∑
β 6=α

(aβ/β!)
(
∂αxβ

∣∣
x=0

)
+ aα = aα.

It remains to show that series (15.2) converges to ϕ ∈ C∞(Ω). Note
that since

∑
α

=
∑
|α|≤k

+
∑
|α|>k

, it is sufficient to verify that there exist

numbers ρα < 1 such that

∑
j>k

∑
|α|=j

ψ(x/ρα)aαx
α/α! ∈ Ck(Ω) ∀k.

Let us try to find ρα = ρj depending only on j = |α|. If we can
establish that ∀β such that |β| ≤ k, the following inequality holds

∣∣∂β(ψ(x/ρ|α|)aαx
α/α!

∣∣ ≤ Cαρα, (15.3)

where Cα = Cα(ψ) < ∞, then, taking ρj = 2−j

( ∑
|α|=j

Cα

)−1

, we

obtain

∑
j>k

∑
|α|=j

∣∣∂β(ψ(x/ρ|α|)aαx
α/α!

∣∣ ≤∑
j>k

ρj

∑
|α|=j

Cα

 ≤ 1.
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Thus, it remains to prove (15.3). For |α| > k ≥ |β|, we have∣∣∣∣∂β
x (ψ

(
x

ρ|α|

)
aαx

α

α!
)
∣∣∣∣ ≤|aα|

α!

∑
γ≤β

β!
γ!(β − γ)!

∣∣∣∣∂γ
xψ

(
x

ρ|α|

)∣∣∣∣ · |∂β−γxα|

≤|aα|xα

α!

∑
γ≤β

β!
γ!(β − α)!

(
1
ρ|α|

)|γ|
×
∣∣∣∂γ

t ψ(t)
∣∣
t=x/ρ|α|

· xα−β+γ
∣∣∣ · α

≤|aα|
∑
γ≤β

β!
γ!(β − α)!

·
∣∣∣∂γ

t ψ(t)
∣∣
t=x/ρ|α|

∣∣∣ · ρ|α|.
�

Now return to the question on the general form of the generalized
function f ∈ D#(Ω) with the support at the point ξ = 0 ∈ Ω. First
of all, note (see P.13.19) that, for any function a ∈ C∞0 (Ω) such
that a ≡ 1 in a neighbourhood of the point ξ = 0, the formula
〈f, ϕ〉 = 〈f, aϕ〉 ∀ϕ ∈ C∞(Ω) is valid. In particular, the functional
f is defined on the polynomials. Setting cα = (−1)|α|〈f, xα/α!〉, we
obtain

〈f, ϕ〉 =
∑
|α|<N

cα〈δ(α), ϕ〉+ 〈f, rN 〉 ∀N,

where

rN (x) = a

(
x

εN

)ϕ(x)−
∑
|α|<N

ϕ(α)(0)xα/α!

 , 0 < εN < 1.

(15.4)
It is rather tempting to assume that, for an appropriate sequence
{εN}∞N=1, 0 < εN < 1, the following condition holds:

〈f, rN 〉 −→ 0 as N −→∞, (15.5)

because in this case Theorem 15.1 implies the obvious

15.3. Proposition. If f ∈ D#(Ω), supp f = 0 ∈ Ω and (15.5)
is valid, then ∃N ∈ N such that f =

∑
|α|≤N

cαδ
(α).

However, in general, condition (15.5) does not hold, if f ∈ D#.
An appropriate example can be constructed with the help of so-called
Hamel basis (see, for instance, [36]).
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16. The space D′ of generalized functions (distributions by
L. Schwartz)

The wish seems natural to have a theory of generalized functions
in which condition (15.5) is satisfied, hence, Proposition 15.3 holds.
This modest wish (leading, as one can see below, to the theory of
the Schwartz distributions) suggests the following:

1) introduce a convergence in the space C∞0 (Ω) such that for
this convergence

lim
N→∞

rN = 0 ∈ C∞0 (Ω), (16.1)

where rN is defined in (15.4) for some suitable εN ∈]0, 1[;
2) consider below only the functionals f ∈ D#(Ω), which are

continuous with respect to the convergence introduced.
It is clear that one can introduce different convergences accord-

ing to which rN → 0 as N → ∞. Which one should be chosen?
Considering this question, one should take into account that the
choice of one or another convergence also determines the subspace
of linear functionals on C∞0 that are continuous with respect to this
convergence. Therefore, it seems advisable to add to items 1) and
2) above the following requirement:

3) the space of functionals continuous with respect to the
convergence introduced must include the space D[ of the
Sobolev derivatives (since this space, as has been shown,
plays very important role in the problems of mathematical
physics).

According to Theorem 16.1 below, requirement 3) uniquely de-
termines the convergence in the space C∞0 ; moreover, (see Proposi-
tion 16.10) condition (16.1) is also satisfied.

16.1. Theorem. Let {ϕj} be a sequence of functions ϕj ∈
C∞0 (Ω). Then the following two conditions are equivalent:

1◦. 〈f, ϕj〉 → 0 as j →∞ ∀f ∈ D[(Ω);
2◦. a) there exists a compact K ⊂ Ω such that suppϕj ⊂ K

∀j;
b) max

x∈Ω
|∂αϕj(x)| → 0 as j →∞ ∀α.

Proof. The implication 2◦ =⇒ 1◦ is obvious. The converse
assertion follows from Lemmas 16.2–16.5 below. �
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16.2. Lemma. ∀α ∃Cα such that max
x∈Ω
|ϕ(α)

j (x)| ≤ Cα ∀j.

Proof. For any α, consider the sequence of functionals

ϕ
(α)
j : L1(Ω) 3 f 7−→

∫
Ω

f(x)∂αϕj(x)dx, j ≥ 1,

defined on the space L1(Ω). The functionals ϕ(α)
j are, obviously,

linear and continuous, i.e., (by the Riesz theorem 9.14) ϕ(α)
j ∈ L∞.

According to condition 1◦, 〈ϕ(α)
j , f〉 → 0 as j →∞ ∀f ∈ L1. There-

fore, by virtue of the Banach–Steinhaus theorem1) there exists a
constant Cα such that ‖ϕ(α)

j ‖∞ ≤ Cα ∀j. �

1) The Banach–Steinhaus theorems (1927) asserts the following
(see, for instance, [36] or [56]). Let X be a Banach space and {ϕj} be a
family of linear continuous functionals on X. If for any x ∈ X there exists
Cx <∞ such that |〈ϕj , x〉| ≤ Cj ∀j, then there exists a constant C <∞
such that |〈ϕj , x〉| ≤ C for ‖x‖ ≤ 1 and ∀j.

Proof. Suppose the contrary be true and note that if a sequence of
functionals ϕj is not bounded for ‖x‖ ≤ 1, then it is not also bounded
in the ball Br(a) = {x ∈ X | ‖x − a‖ ≤ r}. Let us take a point x1 ∈
B1(0), a functional ϕk1 and a number r1 < 1 such that |〈ϕk1 , x〉| > 1 for
x ∈ Br1(x1) ⊂ B1(0). Then we take a point x2 ∈ Br1(x1), a functional
ϕk2 and a number r2 < r1 such that |〈ϕk2 , x〉| > 2 for x ∈ Br2(x) ⊂
Br1(x1). Continuing this construction, we obtain a sequence of closed
balls Brk (xk) embedded in each other, whose radii tend to zero. In this
case, |〈ϕkj , x0〉| > j for x0 ∈ ∩Brk (the intersection ∩Brk is non-empty
by virtue of completeness of X). �

16.3. Lemma. ∀α ∀x0 ∈ Ω ∂αϕj(x0) −→ 0 as j −→∞.

Proof. ∂αϕj(x0) = 〈δ(α)(x − x0), (−1)|α|ϕj(x)〉 → 0, since
δ(α)(x− x0) ∈ D[(Ω). �

16.4. Lemma. There exists a compact K ⊂ Ω such that for all
j we have suppϕj ⊂ K.
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Proof. Suppose the contrary is true. Let Kj =
⋃

k<j

suppϕk.

We can assume that the intersection (suppϕj) ∩ (Ω \ K) is non-
empty, i.e., ∃xj ∈ Ω\Kj such that ϕj(xj) 6= 0. For any j, we choose
λj > 0 such that

|ϕj(x)|
|ϕj(xj)|

>
1
2
∀x ∈ Vj = {|x− xj | < λj} ⊂Mj = suppϕj \Kj .

(16.2)
Note that Vj ∩ Vk is empty for j 6= k and consider the function
f ∈ L1

loc(Ω) which is equal to zero outside ∪j≥1Vj and such that

f(x) = aj |ϕj(xj)|−1 exp[−i argϕj(x)] for x ∈ Vj , j ≥ 1, (16.3)

where aj > 0 are constants which will be chosen such that we obtain
an inequality contradicting2) inequality∣∣∣∣∣∣

∫
Ω

fϕjdx

∣∣∣∣∣∣ ≥ j. (16.4)

Note that supp fϕj ⊂ (Vj ∪ Kj), because suppϕj ⊂ (Mj ∪ Kj).
Therefore, the last integral in the equality∫

Ω

fϕj dx =
∫
Vj

ϕj dx+
∫

(supp fϕj)\Vj

fϕj dx

can be estimated by
∣∣∣∫Kj

fϕjdx
∣∣∣ ≤ max

Ω
|ϕj |

∫
Kj
|f |dx ≤ Aj , where

Aj = C
∑
k<j

|ak| · µ(Vk). Taking aj = 2(Aj + j), we obtain (16.4),

since, by virtue of (16.2)–(16.3),
∫

Vj
fϕjdx ≥ aj/2. �

2) Inequality (16.4) contradicts the initial condition 1◦.

16.5. Lemma. For any α, ε > 0, x0 ∈ Ω there exist λ, ν ≥ 1
such that |ϕ(α)

j (x)| < ε for |x− x0| < λ and j ≥ ν.

Proof. Suppose the contrary is true. Then ∃α ∃ε0 > 0 ∃x0 ∈ Ω
such that, for any j, ∃xj ∈ {x ∈ Ω | |x − x0| < 1/j} such that the
inequality |ϕ(α)

j (xj)| ≥ ε0 holds. However, on the other hand,

|ϕ(α)
j (xj)| ≤ |ϕ(α)

j (xj)− ϕ(α)
j (x0)|+ |ϕ(α)

j (x0)| −→ 0,
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because

|ϕ(α)
j (xj)− ϕ(α)

j (x0)| ≤ C|xj − x0| → 0, and ∂αϕj(x0)→ 0,

according to Lemmas 16.2 and 16.3. �

16.6. Remark. Actually, we have proved a bit more than has
been stated in Theorem 16.1. Namely, condition 2◦ follows from the
proposition: 〈f, ϕj〉 → 0 as j → ∞ for any f ∈ L1

loc(Ω) and for any
Sobolev derivative f = ∂αg, where g ∈ L1(Ω).

Now we can define the spacesD andD′ introduced by L. Schwartz
[54].

16.7. Definition. The space D(Ω), which is sometimes called
the space of test functions (compare with Section 1) is the space
C∞0 (Ω) in which the following convergence of sequence of functions
ϕj ∈ C∞0 (Ω) to a function ϕ ∈ C∞0 (Ω) is introduced:

a) there exists a compact K such that suppϕj ⊂ K ∀j;
b) ∀β = (β1, . . . , βn) ∀σ > 0 ∃ N = N(β, σ) ∈ N such that

|∂βϕj(x)− ∂βϕ(x)| < σ ∀x ∈ Ω for j ≥ N.
In this case we write ϕj → ϕ in D as j → ∞ (or limj→∞ ϕj = ϕ in
D).

16.8. Remark. It is clear that D(Ω) =
⋂

s≥0

Ds(Ω), where Ds(Ω)

is the space of functions Cs
0(Ω) equipped with a convergence which

differs from the one introduced in Definition 16.7 only by the fact
that the muliindex in condition b) satisfies the condition |β| ≤ s.
One can show (see P.16.23) that D[(Ω) =

⋃
s≥0

D′s(Ω) (i.e., f ∈

D[ ⇐⇒ ∃s ≥ 0 such that f ∈ D′s), where D′s(Ω) is the space
of linear functional on Ds(Ω) continuous with respect to this con-
vergence in Ds(Ω). The spaces Ds and D′s have been introduced by
Sobolev [61].

16.9. Definition. The space D′(Ω) of the Schwartz distribu-
tions (called also the space of generalized functions) is the space of
linear continuous functional on D(Ω), i.e., of linear functionals on
D(Ω) which are continuous in the convergence introduced in D(Ω).

16.10. Proposition. There exists a sequence {εN}∞N=1, 0 <
εN < 1, such that lim

N→∞
rN = 0 in D, where rN is defined in (15.4).
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Proof. By the Teylor formula,

rN (x) = a

(
x

εN

) ∑
|α|=N+1

N + 1
α!

xα

1∫
0

(1− t)(N)ϕ(α)(tx)dt.

This and the Leibniz formula imply that |∂βrN (x)| ≤ CN (εN )N−|β| ≤
(1/2)N/2 for N ≥ N0 = 2|β|, if εN ≤ 1

2C
−2/N
N . �

Propositions 15.3 and 16.10 imply

16.11. Theorem (L. Schwartz). If f ∈ D′(Ω), supp f = 0 ∈ Ω,
then there exist N ∈ N and cα ∈ C such that f =

∑
|α|≤N

cαδ
(α).

16.12.P. Let fk ∈ D′(R), where k = 0 or k = 1, and x·fk(x) = k.
Show (compare with Example 14.1) that f0(x) = Cδ(x), f1(x) =
v.p. 1

x + Cδ(x), where C ∈ C.

The following series of exercises P.16.13–P.16.25 concerns the
question on the structure (general form) of distributions. Some hints
are given at the end of the section.

16.13.P. Verify that the following assertions are equivalent:
a) f is a distribution with a compact support, i.e., f ∈ D′(Ω)

and supp f is a compact in Ω;
b) f ∈ E ′(Ω), i.e., f is a linear continuous functional on E(Ω),

i.e., on the space C∞(Ω) with the following convergence:
lim

j→∞
ϕj = ϕ in E ⇐⇒ lim

j→∞
aϕj = aϕ in D ∀a ∈ C∞0 (Ω).

16.14.P. Prove that f ∈ D′(Ω) if and only if f ∈ D#(Ω) and
for any compact K ⊂ Ω there exist constants C = C(K, f) > 0 and
N = N(K, f) ∈ N such that

|〈f, ϕ〉| ≤ C · pK,N (ϕ)

∀ϕ ∈ C∞0 (K,Ω) = {ψ ∈ C∞0 (Ω) | suppψ ⊂ K}, (16.5)

where
pK,N (ϕ) =

∑
|α|≤N

sup
x∈K
|∂αϕ(x)|. (16.6)

16.15.P. (Compare with P.16.14). Let ∪N≥1KN = Ω, where
KN are compacts in Rn. Show that f ∈ E ′(Ω) (see P.16.13) if and
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only if f ∈ D#(Ω) and there exist constants C = C(f) > 0 and
N = N(f) ≥ 1 such that |〈f, ϕ〉| ≤ C · pN (ϕ) ∀ϕ ∈ C∞0 (Ω), where

pN (ϕ) =
∑
|α|≤N

sup
x∈KN

|∂αϕ(x)|. (16.7)

16.16.P. (Continuation). Let f ∈ E ′(Ω), supp f ⊂ ω b Ω ⊂ Rn.
Using (16.7) and noting that |ψ(x)| ≤

∫
Ω

∣∣∣ ∂n

∂x1...∂xn
ψ(x)

∣∣∣ dx ∀ψ ∈
C∞0 (Ω), show that there exist numbers C > 0 and k ≥ 1 such that

|〈f, ϕ〉| ≤ C
∫
Ω

∣∣∣∣ ∂nm

∂xm
1 . . . ∂xm

n

ϕ(x)
∣∣∣∣ dx ∀ϕ ∈ C∞0 (ω). (16.8)

16.17.P. (Continuation). Checking that the function ϕ ∈ C∞0 (ω)
can be uniquely recovered from its derivative ψ = ∂nm

∂xm
1 ...∂xm

n
ϕ, show

that the linear functional l : ψ 7→ 〈f, ϕ〉 defined on the subspace
Y = {ψ ∈ C0(ω) | ψ = ∂nm

∂xm
1 ...∂xm

n
ϕ, ϕ ∈ C∞0 )} of the space L1(ω) is

continuous.

16.18.P. (Continuation). Applying the Hahn–Banach theorem
on continuation of linear continuous functionals (see, for instance,
[36]), show that there exists a function g ∈ L∞(ω) such that∫

ω

g(x)
∂nm

∂xm
1 . . . ∂xm

n

ϕ(x)dx = 〈f, ϕ〉 ∀ϕ ∈ C∞0 (ω).

16.19.P. (Continuation). Show that the following theorems hold.

16.20. Theorem. (on the general form of distributions with
a compact support). Let f ∈ E ′(Ω). Then there exist a function
F ∈ C(Ω) and a number M ≥ 0 such that f = ∂αF , where α =
(M, . . . ,M), i.e.,

〈f, ϕ〉 = (−1)|α|
∫
Ω

F (x)∂αϕ(x)dx ∀ϕ ∈ C∞0 (Ω).

16.21. Theorem (on the general form of distributions). Let f ∈
D′(Ω). Then there exists a sequence of functions Fα ∈ C(Ω), para-
metrized by multiindices α ∈ Zn

+, such that f =
∑
α
∂αFα. More

exactly, Fα =
∞∑

j=1

Fαj
, Fαj

∈ C(Ω), and
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(1) suppFαj
⊂ Ωj, where {Ωj}j≥1 is a locally finite cover of

Ω;
(2) ∀j ≥ 1 ∃Mj ≥ 1 such that Fαj = 0 for |α| > Mj.

16.22.P. (Peetre [47]). Let A : E(Ω)→ E(Ω) be a linear continu-
ous operator with the localization property, i.e., supp(Au) ⊂ supp(u)
∀u ∈ E(Ω). Then A is a differential operator, more exactly: there
exists a family {aα}α∈Zn

+
of functions aα ∈ C∞(Ω) such that, for

u ∈ E(Ω), (Au)(x) =
∑

|α|≤m(x)

aα(x)∂αu(x), where m(x) ≤ N(K) <

∞ for any compact K ⊂ Ω.

16.23.P. (See Remark 16.8). Check that D[(Ω) =
⋃
s
D′s(Ω).

16.24. Remark. We say that a functional f ∈ D′ has a finite
order of singularity, if there exist k ≥ 1 and functions fα ∈ L1

loc,
where |α| ≤ k, such that f =

∑
|α|=k

∂αfα. The least k, for which such

a representation of f is possible, is called its order of singularity.
In these terms, the space of Sobolev derivatives D[ is, according
to Definition 12.2, the space of all distributions which have a finite
order of singularity.

16.25.P. Resolve the following paradox. On one hand, the dis-
continuous function

f(x, y) =

{
< exp(−1/z4) for z 6= 0, z = x+ iy ∈ C,
0 for z = 0

(16.9)

(being the real part of a function analytic in C \ 0 with zero second
derivative with respect to x and y at the origin) is a solution of
the Laplace equation on the plane. On the other hand, by virtue of
Theorem 16.20 and a priori estimate (21.6) (see also Corollary 22.24
and [22, no 2, § 3, item 6]): if f ∈ D′(Ω) and ∆f ≡ 0 in Ω, then
f ∈ C∞(Ω).

16.26.P. Show that E is metrizable and D is non-metrizable.

16.27. Remark. One can introduce in D (respectively, in E) a
structure of so-called (see [36, 51]) linear locally convex topological
space (LLCPS3) and such that the convergence in this space coincides
with the one introduced above. For instance, the neighbourhood of
zero in D can be defined with the help of any finite set of everywhere
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positive functions γm ∈ C(Ω) (m = 0, 1, . . . ,M ;M ∈ Z+) as the set
of all the functions ϕ ∈ C∞0 (Ω) such that |∂αϕ| < γ|α|, if |α| ≤ M .
The topology in E can be defined by introducing the distance by the
formulae given in the hint to P.16.26. Thus, E is the Frechét space,
i.e., a complete metric LLCTS. One can extend to the Frechét spaces
(see, for instance, [51]) the Banach–Steinhaus theorem: a space of
linear continuous functionals on a Frechét space (in particular, the
space E ′) is complete relatively the weak convergence. Although D
is not a Frechét space (by virtue of P.16.26), D′ is also complete
relatively the weak convergence (the direct proof see, for instance,
in [22]).

3) A linear space X is called a linear locally convex topological space, if

this space is topological [36], the operations of addition and multiplication

by a number are continuous and, moreover, any neighbourhood of zero in

X contains a convex neighbourhood of zero.

Hints to P.16.13–P.16.26:
16.13. If we suppose that b) does not imply a), then there exists

a sequence of points xk such that xk → ∂Ω, and f 6= 0 in the vicinity
of xk.

16.14. If f ∈ D′ but estimate (16.5) is not valid, then ∃K =
K̄ ⊂ Ω ∀N ≥ 1 ∃ϕ ∈ C∞0 (Ω), suppϕ ⊂ KN , and |〈f, ϕN 〉| ≥
N

∑
|α|≤N

sup
K
|ϕ(α)

N |. We have ψN = ϕN · |〈f, ϕN 〉|−1 → 0 in D but

|〈f, ψN 〉| = 1.
16.15. Since 〈f, ϕ〉 = 〈f, ρϕ〉, where ρ ∈ C∞0 , ρ ≡ 1 on supp f ,

it follows that K = supp ρ. Warning: in general case, K 6= supp f .
Indeed, following [54, vol. 1, p. 94], consider the functional f ∈ E ′(R)
defined by the formula

〈f, ϕ〉 = lim
m→∞

∑
ν≤m

ϕ(1/ν)

−mϕ(0)− (lnm)ϕ′(0)

 .
Obviously, supp f is the set of the points of the form 1/ν, ν ≥ 1,
together with their limit point x = 0. Consider the sequence of
functions ϕj ∈ C∞0 (R) such that ϕj(x) = 0 for x ≤ 1

j+1 , ϕj(x) =
1/
√
j for 1/j ≤ x ≤ 1. Taking K = supp f in (16.6), we have

pK,N (ϕj)→ 0 as j →∞ ∀N ≥ 1, while 〈f, ϕ〉 = j/
√
j →∞.
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16.16. sup
K
|∂αϕ(x)| ≤ Cj(K) sup

K

∣∣ ∂
∂x∂

αϕ(x)
∣∣.

16.17. Apply (16.8).
16.18. By the Riesz theorem (see Theorem 9.14), (L1)′ = L∞.
16.20. Complete the definition of g outside ω by zero (see

P.16.18) and take F (x) = (−1)mn
∫

y<x
g(y) dy.

16.21. Let
∑
ψj ≡ 1 be a partition of unity. We have

〈f, ϕ〉 =
∑

j

〈ψjf, ϕ〉 =
∑

j

∑
|α|≤Mj

〈∂αFαj
, ϕ〉 =

∑
α

〈∂α
∑

j

Fαj
, ϕ〉.

16.22. Verify that the functional Aa : E 3 u 7→ Au
∣∣
x=a

belongs
to E ′ and suppAa = a. Thus, Au

∣∣
x=a

=
∑

|α|≤m(a)

(aα(x)∂αu)
∣∣
x=a

Using the Banach–Steinhaus theorem (see note 1 in Section 16),
prove that sup

a∈K
m(a) < ∞ for any K ⊂ K̄ ⊂ Ω. Applying A to

(y − x)α/α!, show that a ∈ C∞(Ω).
16.23. Apply Theorem 16.21.
16.25. Function (16.9) does not belong to D′ (i.e., does not admit

the regularization in D′) as well as any other function f ∈ C∞(R\0)
which for any m ∈ N and C > 0 does not satisfies the estimate
|f(x)| ≤ C|x|−m for 0 < |x| < ε, where 1/ε � 1. The last fact
can be proved, by constructing a sequence of numbers εj > 0 such
that , for the function ϕj(x) = εjϕ(jx), where ϕ ∈ C0(R), ϕ = 0
outside the domain {1 < |x| < 4},

∫
ϕ = 1, the following conditions

are satisfied:
∫

Rn f(x)ϕj(x)dx → ∞ as j → ∞ but ϕj → 0 in D as
j →∞.

16.26. The distance in E can be given by the formula ρ(ϕ,ψ) =

d(ϕ − ψ), where d(ϕ) =
∞∑
1

2−N min(pN (ϕ), 1), and pN is defined

in (16.7). D is non-merizable since for the sequence ϕk,m(x) =
ϕ(x/m)/k, where ϕ ∈ D(R), the following property, which is valid
in any metric space, does not hold: if ϕk,m → 0 as k →∞, then ∀m
∃k(m) such that ϕk(m),m → 0 as m→∞.



CHAPTER 3

The spaces Hs. Pseudodifferential
operators

17. The Fourier series and the Fourier transform. The
spaces S and S ′

In 1807, Jean Fourier said his word in the famous discussion (go-
ing from the beginning of 18th century) on the sounding string [50].
Luzin wrote [42] that he accomplished a discovery which “made a
great perplexity and confusion among all the mathematicians. It
turned over all the notions” and became a source of new deep ideas
for development of the concepts of a function, an integral, a trigono-
metric series and so on. Fourier’s discovery (however strange it seems
at first sight) consists in the formal rule of calculations of the coef-
ficients

ak =
1
p

p/2∫
−p/2

u(y)e−
◦
ı(k/p)ydy,

◦
ı = 2πi, i =

√
−1 (17.1)

(which are called the Fourier coefficients) in the “expansion”

u(x) ∼
∞∑

k=−∞

ake
◦
ı(k/p)x, |x| < p/2 (17.2)

of an “arbitrary” function u : Ω 3 x 7−→ u(x) ∈ C, where Ω =
]− p/2, p/2[, by the harmonics

e
◦
ı(k/p)x = cos 2π(k/p)x+ i sin 2π(k/p)x, k ∈ Z. (17.3)

The trigonometric series (17.2) is called the Fourier series of the
function u (more exactly, the Fourier series of the function u in the
system of functions (17.3)1)). The first result concerning the conver-
gence of the Fourier series was obtained by 24 years old L. Dirichlet

81
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in 1829 (see, for instance, [72]): if u is piecewise continuous on
[−p/2, p/2] and the number of its intervals of monotonicity is finite,
then the Fourier series of the function u converges to u at every
point of continuity of u; moreover, if the function f is continuous
and u(−p/2) = u(p/2), then series (17.2) converges to u uniformly.
Although the Fourier coefficients (17.1) are defined for any function
u ∈ L1, the Fourier series can diverge at some points even for contin-
uous functions (see, for instance, [36, 56]; also compare with P.17.9).
As for integrable functions, in 1922, 19 years old A.N. Kolmogorov
constructed [37] the famous example of a function u ∈ L1, whose
Fourier series diverges almost everywhere (and later an example of
the Fourier series, everywhere diverging, of an integrable function).

1) See in this connection formulae (17.17)–(17.18).

The following theorem (see, for instance, [56]) on convergence
of the Fourier series in the space L2 is of great importance: “for any
u ∈ L2(Ω), where Ω =] − p/2, p/2[, series (17.2) converges to u in
L2(Ω)”, i.e.,

‖u−
∑
|k|≤N

akek‖L2 −→ 0 as N −→∞, (17.4)

where

ek : Ω 3 x 7−→ ek(x) = exp
(
◦
ı
k

p
x

)
. (17.5)

This theorem shows the transparent geometric meaning of the Fourier
coefficients. Actually, consider in L2(Ω)×L2(Ω) the complex-valued
functional

(u, v) =

p/2∫
−p/2

u(x)v̄(x)dx,

where v̄ is the complex-conjugate function to v. Obviously, this
functional defines a scalar product2) in the space L2(Ω) with respect
to which (one can readily see) functions (17.5) are orthogonal, i.e.,

(ek, em) = 0 for k 6= m. (17.6)

Therefore, by choosing N ≥ |m| and multiplying scalarly the func-
tion (u −

∑
|k|≤N

akek) by em, we obtain |(u, em) − am · (em, em)| =
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|(u−
∑

|k|≤N

akek, em)| ≤ ‖u−
∑

|k|≤N

akek‖L2‖em‖L2 . This and (17.4)

imply that
am = (u, em)/(em, em), m ∈ Z. (17.7)

Thus, the coefficient ak is the algebraic value of the orthogonal pro-
jection of the vector u ∈ L2(Ω) onto the direction of the vector ek.

2) This means that the functional (u, v) is linear in the first argument

and (u, u) > 0, if u 6= 0, and (u, v) = (v, u), where the bar denotes the

complex conjugation. Note that the function u 7−→ ‖u‖ =
p

(u, u) is a

norm (see note 5 in Section 8), and |(u, v)| ≤ ‖u‖·‖v‖ (compare with (9.3)

for p = 2). Recall also that the Banach space X (see note 5 in Section 8)

with a norm ‖ · ‖ is called a Hilbert space, if in X there exists a scalar

product (·, ·) such that (x, x) = ‖x‖2 ∀x ∈ X. Thus, L2(Ω) is a Hilbert

space.

When the geometric meaning of the Fourier coefficients became
clear, it might seem surprising that, as Luzin wrote, “neither sub-
tle analytical intellect of d’Alembert nor creative efforts of Euler,
D. Bernoulli and Lagrange can solve this most difficult problem3),
i.e., the problem concerning the formulae for the coefficients ak in
(17.2). However, one should not forget that the geometric trans-
parency of formulae (17.7) given above became possible only thanks
to the fact that the Fourier formulae (17.1) put on the agenda the
problems whose solution allowed to give an exact meaning to the
words such as “function”, “representation of a function by a trigono-
metric series” and many, many others.

3) The reason of arising this question is historically connected with
the problem of a sounding string (see [42, 50]) — the first system with
an infinite number of degrees of freedom which was mathematically in-
vestigated. As far back as in 1753, D. Bernoulli came to the conclusion
that the most general motion of a string can be obtained by summing the
principal oscillations. In other words, the general solution u = u(x, t) of
the differential equation of a string

utt − uxx = 0, |x| < p/2, t > 0 (17.8)

which satisfies, for instance, the periodicity condition

u(−p/2, t)− u(p/2, t) = 0, ux(−p/2, t)− ux(p/2, t) = 0 (17.9)
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can be represented in the form of a sum of harmonics propagating to the
right and to the left (along the characteristics x ± t = 0, compare with
Section 11), more exactly:

u(x, t) =
X
k∈Z

[a+
k e

iλk(x+t) + a−k e
iλk(x−t)], (17.10)

where a±k ∈ C, and λk = 2πk/p. Indeed, equation (17.8) and the boundary
conditions (17.9) are linear and homogeneous. Therefore, a linear com-
bination of functions satisfying (17.8)–(17.9) satisfies these conditions as
well. This fact suggests an idea to find the general solution of problem
(17.8)–(17.9), by summing (with indeterminate coefficients) the particu-
lar solutions of equation (17.8), which satisfy the periodicity conditions
(17.9). Equation (17.8) belongs to those which have an infinite series of
particular solutions with separated variables, i.e., non-zero solutions of the
form ϕ(x)ψ(t). Actually, substituting this function into (17.8), we obtain
ϕxx(x)ψ(t) = ϕ(x)ψtt(t). Hence,

ϕxx(x)/ϕ(x) = ψtt(t)/ψ(t) = const . (17.11)

The periodicity condition (17.9) implies that ϕ ∈ X, where

X = {ϕ ∈ C2(Ω) ∩ C1(Ω̄) | ϕ(− p
2
, t) = ϕ( p

2
, t), ϕ′(− p

2
, t) = ϕ′( p

2
, t)}.
(17.12)

Thus, the function ϕ necessarily (see (17.11)) must be an eigenfunction of
the operator

− d2/dx2 : X −→ L2(Ω), Ω =]− p/2, p/2[. (17.13)

This means that ϕ is a non-zero function of the space X, satisfying the
condition

− d2ϕ/dx2 = µ · ϕ, (17.14)

for a constant µ ∈ C, that is called the eigenvalue of operator (17.13).
Since ϕ belongs to the space X, it follows that the number µ can be only
positive (because otherwise ϕ ≡ 0). Let us denote µ by λ2. Then (17.14)
implies that ϕ(x) = aeiλx, λ ∈ R, a ∈ C \ {0}. Obviously, this formula is
consistent with the condition ϕ ∈ X if and only if λ = λk = 2kπ/p, k ∈ Z.
Thus, taking into account (17.11), we obtain

ϕk(x)ψk(t) = a+
k e

iλkxeiλkt + a−k e
iλkxe−iλkt, α±k ∈ C,

and, hence, D. Bernoulli’s formula (17.10) is established.
The Bernoulli formula brought into use the principle of composition

of oscillations as well as put many serious mathematical problems. One of
them is connected with the finding of the coefficients a±k in formula (17.10)
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for any specific oscillation that (compare with P.11.21) is determined by
the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), (17.15)

i.e., by the initial deviation of the string from the equilibrium position
and by the initial velocity of the motion of its points. In other words, the
Bernoulli formula posed the question of finding the coefficients a±k from
the conditionX

k∈Z

(a+
k + a−k )eiλkx = f(x),

X
k∈Z

iλk(a+
k − a−k )eiλkx = g(x).

It is interesting that in 1759, i.e., in six years after the work by
D. Bernoulli, formulae (17.1) answering the formulated question were al-
most found by 23-year Lagrange. It remained to him only to make in
his investigations the rearrangement of the limits in order to obtain these
formulae. However, as Luzin writes, “Lagrange’s thought was directed in
another way and he, almost touching the discovery, so little realized it
that he flung about D. Bernoulli the remark “It is disappointing that such
a witty theory is inconsistent.”

As has been said, half a century later the answer to this question was
given by Fourier who wrote formulae (17.1). This is the reason why the
method, whose scheme was presented on the example of solution of prob-
lem (17.8)–(17.9), (17.15), is called the Fourier method (see, for instance,
[25, 68]). The term is also used (by obvious reasons) the method of sep-
aration of variables. This method is rather widespread in mathematical
physics.

The reader can easily find by the Fourier method the solution of the
Dirichlet problem for the Laplace equation in a rectangle, by considering
preliminary the special case:

∆u(x, y) = 0, (x, y) ∈]0, 1[2; u
˛̨
x=0

= u
˛̨
x=1

= 0;

u
˛̨
y=0

= f(x), u
˛̨
y=1

= g(x).

Equally easy one can obtain by the Fourier method the solution

u(x, t) = uN (x, t) +

∞X
k>N

2 sinλk

λk[1 + σ sin2 λk]
e−λ2

kt cosλkx, N ≥ 0, u0 ≡ 0

(17.16)
of problem (6.11) for the heat equation. In formula (17.16), λ2

k is the kth
(k ∈ N) eigenvalue of the operator

−d2/dx2 : Y −→ L2(Ω), Ω =]0, 1[,

defined on the space

Y = {ϕ ∈ C2(Ω) ∩ C1(Ω̄) | (ϕ± σϕ′)
˛̨
x=±1

= 0},
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where σ ≥ 0 is the parameter of problem (6.11). Note that λk ∈](k −
1)π, (k − 1/2)π] is the kth root of the equation cotanλ = σλ and the
eigenfunctions ϕk(x) = cosλkx of operator (17.16) satisfy (compare with
(17.6)) the orthogonality condition:

(ϕk, ϕm) =

1Z
−1

ϕk(x)ϕm(x)dx = 0 for k 6= m. (17.17)

Indeed, integrating by parts (or applying the Ostrogradsky–Gauss for-
mula in the multidimensional case) and taking into account the boundary
conditions (ϕ± σϕ′)

˛̨
x=±1

= 0 and the fact that −ϕ′′k = λ2
kϕk, we have

(λ2
k − λ2

m)(ϕk, ϕm) =

1Z
−1

(ϕkϕ
′′
m − ϕmϕ

′′
k) dx

= ϕkϕ
′
m

˛̨1
−1
−

1Z
−1

ϕ′kϕ
′
m − ϕmϕ

′
k

˛̨1
−1

+

1Z
−1

ϕ′kϕ
′
m = 0.

One can show (see, for instance, [68]) that the eigenfunctions ϕk, k ∈ N,
form (compare with (17.4)) a complete system in L2 = Ȳ , i.e., ∀u ∈
L2 ∀ε > 0 there exist N ≥ 1 and numbers a1, . . . , aN such that ‖u −
NP

k=1

akϕk‖L2 < ε. Therefore, (compare with (17.2)–(17.7)) the formal

series
∞X

k=1

(u, ϕk)

(ϕk, ϕk)
ϕk, (17.18)

which is called by the Fourier series of the function u in the orthogonal
(by virtue of (17.17)) system of functions ϕk, converges to u in L2. The
reader can easily verify that (1, ϕk)/(ϕk, ϕk) = 2 sinλk/(λk[1+σ sin2 λk])
as well as that series (17.16) converges uniformly together with all its
derivatives for t ≥ ε for any ε > 0 and determines a smooth (except the
angle points (x, t) = (±1, 0)) and unique (see, for instance, [20]) solution
of problem (6.11).

Let us note one more circumstance. Series (17.16) converges quickly
for large t. One can show that, for any k ≥ 1,

|u(x, t)− uN (x, t)| < 10−k/N for t > k/(4.3N2). (17.19)

However, for small t, series (17.16) converges very slowly. Therefore, for

small t, it is advisable to use another representation of the solution of
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problem (6.11) that is obtained below in Section 18 with the help of con-

cept of dimensionality (see Section 6) and the so-called Laplace transform.

Substituting formally (17.1) into (17.2), we obtain

u(x) =
∞∑

k=−∞

1
p
e
◦
ı(k/p)x

p/2∫
−p/2

e−
◦
ı(k/p)yu(y)dy. (17.20)

Tending p to infinity and passing formally in (17.20) to the limit,
we obtain, as a result, for the “arbitrary” function u : R → C the
(formal) expression

u(x) =

∞∫
−∞

e
◦
ıxξ
( ∞∫
−∞

e−
◦
ıyξu(y)dy

)
dξ. (17.21)

From these formal calculations we may give the exact

17.1. Definition. Let ξ ∈ Rn, x ∈ Rn, xξ =
n∑

k=1

xkξk, i.e.,

xξ = (x, ξ) is the scalar product of x and ξ. The function

ũ(ξ) =
∫

Rn

e−
◦
ıxξu(x)dx,

◦
ı = 2πi, i =

√
−1 (17.22)

is called the Fourier transform of the function u ∈ L1(Rn), and the
mapping F : L1(Rn) 3 u 7−→ ũ = Fu ∈ C is called the Fourier
transformation (in L1(Rn)).

17.2. Lemma. If u ∈ L1(Rn), then Fu ∈ C(Rn) and ‖Fu‖C ≤
‖u‖L1 .

Proof. It follows from the (Lebesgue) theorem 8.20 that ũ =
Fu ∈ C(R); moreover, |ũ(ξ)| ≤

∫
Rn |u(x)| dx. �

17.3. Example. Let u±(x) = Θ±(x)e∓ax, where x ∈ R, a > 0,
and Θ± is defined in (12.5). Then ũ±(ξ) = 1

a±◦ıξ
. Let us note that

ũ± /∈ L1 although u± ∈ L1. Note as well that the function ũ± can
be analytically continued into the complex half-plane C∓.

Below, in Theorem 17.6 we give some conditions under which
expression (17.21) acquires the exact meaning of one of the most
important formulae in analysis. Preliminary, we give
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17.4. Definition. Let p ≥ 1 and k ∈ Z. We say that a function
u ∈ Lp(Ω) belongs to the Sobolev space W p,k(Ω), if all its Sobolev
derivatives ∂αu, where |α| ≤ k, belong to Lp(Ω). The convergence
in the space W p,k is characterized by the norm

‖u‖W p,k =
∑
|α|≤k

‖∂αu‖Lp , (17.23)

i.e., uj → u in W p,k as j →∞, if ‖u− uj‖W p,k → 0 as j →∞.

One can readily verify that W p,k is a Banach space.
17.5. Lemma. 4) W 1,n(Rn) ⊂ C(Rn), i.e., for any element

{u} ∈ W 1,n there exists a unique function u ∈ C which coincides
almost everywhere with any representative5) of the element {u}, and
‖u‖C ≤ ‖u‖W 1,n .

4) Lemma 17.5 is a simple special case of the Sobolev embedding
theorem (see, for instance, [8, 40, 62, 70]). Note that the embedding
W p,k(Rn) ⊂ C(Rn), valid for n/p < k, does not hold if p > 1 and n/p = k
(see, in particular, Section 20, where the special case p = 2 is considered).

5) See note 1 in Section 9.

Proof. It follows from the (Fubini) theorem 8.24 and Theo-
rem 8.27 that the function u admits the representation in the form

u(x) =

x1∫
−∞

 x2∫
−∞

. . .

 xn∫
−∞

∂nu(y1, . . . yn)
∂y1∂y2 . . . ∂yn

dyn

 . . . dy2
 dy1,

x = (x1, . . . xn),

that implies its continuity and the estimate ‖u‖C ≤
∫
|∂

nu(x) dx
∂x1...∂xn

|. �

17.6. Theorem. Let u ∈W 1,n(Rn). Then, for any x ∈ Rn,

u(x) = lim
N→∞

uN (x), where uN (x) =

N∫
−N

. . .

N∫
−N

e
◦
ıxξũ(ξ)dξ1 . . . dξn,

(17.24)
and ũ = Fu is the Fourier transform of the (continuous6)) function
u.



17. THE FOURIER SERIES AND THE FOURIER TRANSFORM 89

6) By virtue of Lemma 17.5.

Proof. It follows from the Fubini theorem that

uN (x) =

∞∫
−∞

. . .
 ∞∫
−∞

 ∞∫
−∞

u(y)
∂θN (y1 − x1)

∂y1
dy1


× ∂θN (y2 − x2)

∂y2
dy2

]
. . .

]
∂θN (yn − xn)

∂yn
dyn,

where θN (σ) =
∫ σ

−1
δN (s)ds and δN (s) =

∫ N

−N
e
◦
ısξdξ = sin 2πNs

πs .
Note (compare with P.4.3 and P.13.11) that θN (σ) → θ(σ), σ ∈ R,
and ∀N |θN (σ)| ≤ const. Actually, setting λk =

∫ (k+1)/2N

k/2N
δN (σ)dσ

for k ∈ Z+, we have that λk does not depend on N , |λk| ↓ 0 as k →
∞, moreover, λ2k > −λ2k+1 and

∞∑
k=0

λk = 1
π

∫∞
0
x−1 sinx dx = 1

2 .

Therefore, θN (σ) → θ(σ) and |θN (σ)| ≤ 2λ0. Then (as in the proof
of Lemma 13.10) we should integrate by parts, apply the Lebesgue
theorem and obtain that uN (x)→ u(x). �

17.7. Remark. The proof of the theorem containing, in par-
ticular, the solution of Exercise P.4.3 (and P.13.11) shows (taking
into account the proof of Lemma 17.5) that the assertion of The-
orem 17.6 is valid under more broad hypotheses: it is sufficient to
require that the function u and n its derivatives ∂ku/∂x1∂x2 . . . ∂xk,
k = 1, . . . , n, be integrable in Rn.

17.8. Remark. Of course, the assertion of Theorem 17.6 makes
the sense only for u ∈ L1 ∩ C. However, this necessary condition is
not sufficient for validity of (17.24), as it follows from

17.9.P. Constructing (compare with [36]) a sequence of functions
ϕN ∈ L1(R) ∩ C(R), such that

∫∞
−∞ y−1 sinNyϕN (y)dy → ∞ (as

N → ∞) and ‖ϕN‖L1 + ‖ϕN‖C ≤ 1 and applying the Banach–
Steinhaus theorem (see note 1 in Section 16), show that there exists
a function ϕ ∈ L1(R) ∩ C(R), for which equality (17.24) does not
hold at least at one point x ∈ R.

Formal expression (17.21) and Theorem 17.6 suggest the idea on
expediency of introducing the transformation

F−1 : L1(R) 3 ũ 7−→ F−1ũ ∈ C,
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defined by the formula

(F−1ũ)(x) =
∫

Rn

e
◦
ıxξũ(ξ)dξ,

◦
ı = 2πi, i =

√
−1, x ∈ Rn. (17.25)

This formula differs from formula (17.22) by the sign of the expo-
nent. The transformation F−1 is called the inverse Fourier trans-
form, since u = F−1Fu, if u ∈W 1,n(Rn) and Fu ∈ L1(R).

Define (following L. Schwartz [54]) the space of rapidly decreas-
ing functions S = S(Rn) ⊂ W 1,n(Rn). In the space S (see Theo-
rem 17.16 below), the transformations F−1 and F are automorphisms
(i.e., linear invertible mappings from S onto itself).

17.10. Definition. The elements of the space S(Rn) are the
functions u ∈ C∞(Rn) that satisfy the following condition: for any
multiindices α = (α1, . . . , αn) and β = (β1, . . . , βn), there exists a
number Cαβ <∞ such that ∀x = (x1, . . . , xn) ∈ Rn

|xα∂β
xu(x)| ≤ Cαβ , where xα = xα1

1 . . . xαn
n , ∂β

x =
∂|β|

∂xβ1
1 . . . ∂xβn

n

.

In this case, we say that the sequence of functions uj ∈ S converges
in S to u (uj → u in S) as j → ∞, if ∀ε > 0 ∀m ∈ N ∃j0 ∈ N
∀j ≥ j0 the following inequality holds: pm(uj − u) ≤ ε, where

pm(v) = sup
x∈Rn

 ∑
|α|≤m

(1 + |x|)m|∂αv(x)|


Obviously, e−x2 ∈ S(R) but e−x2

sin(ex2
) /∈ S(R).

17.11.P. Check that the space S is a Frechét space (see Re-
mark 16.27) in which the distance ρ can be defined by the formula:

ρ(u, v) = d(u− v), where d(ϕ) =
∞∑

m=1

2−m inf(1, pm(ϕ)).

17.12.P. Show (see P.16.13) that D(Rn) ⊂ S(Rn) ⊂ E(Rn).
In particular, show that the convergence in D (in S) implies the
convergence in S (in E). Verify that D is dense in S and S is dense
in E.

17.13.P. Integrating by parts, verify that the following lemma
holds.
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17.14. Lemma. For any multiindices α, β and any u ∈ S

(−◦ı)|β|F[∂α
x (xβu(x))](ξ) = (

◦
ı)|α|ξα∂β

ξ ũ(ξ), ũ = Fu. (17.26)

17.15. Corollary. FS ⊂ S, i.e., Fu ∈ S, if u ∈ S.

Proof. Since u ∈ S, it follows that for any fixed N ∈ N and
any α, β ∈ Zn

+ there exists dαβ > 0 such that |∂α
x (xβu(x))| ≤ dαβ(1+

|x|)−N . Therefore, by virtue of Lemma 17.14,

|ξα∂α
ξ ũ(ξ)| ≤ ‖F[∂α

x (xβu)]‖C ≤ Dαβ sup
x
|∂α

x (xβu)|. (17.27)

Thus, ũ ∈ S. �

17.16. Theorem. The mappings F : S → S and F−1 : S → S
are reciprocal continuous automorphisms of the space S.

Proof. F is linear and, by Theorem 17.6, monomorphic. Let
us check that ∀ũ ∈ S ∃u ∈ S such that Fu = ũ. Let u0 = Fũ.
Since u0 ∈ S, according to Theorem 17.6 ũ = F−1Fũ = F−1u0.
Consider the function u(x) = u0(−x). We have ũ = F−1u0 = Fu.
Definition 17.10 immediately implies that Fuj → 0 in S, if uj → 0
in S. The same arguments are valid for F−1. �

17.17. Lemma (the Parseval equality). Let f and g ∈ S(Rn).
Then

(Ff,Fg)L2 = (f, g)L2 , i.e.,
∫

Rn

f̃(ξ)¯̃g(ξ) dξ =
∫

Rn

f(x)ḡ(x) dx.

(17.28)
Moreover,

〈Ff, g〉 = 〈f,Fg〉, i.e.,
∫

Rn

f̃(ξ)g(ξ)dξ =
∫

Rn

f(x)g̃(x)dx. (17.29)

Proof. The Fubini theorem implies (17.29) since∫
Rn

f(x)g̃(x) dx =
∫

Rn

∫
Rn

f(x)e−
◦
ıxξg(ξ) dx dξ =

∫
Rn

f̃(ξ)g(ξ) dξ

Let h = Fg. Then g = Fh, since

g(ξ) = (F−1h̄)(ξ) =
∫
e
◦
ıxξh̄(x)dx =

∫
e−

◦
ıxξh(x)dx = (Fh)(ξ).
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Substituting g(ξ) = ¯̃
h(ξ) and g̃(x) = h̄(x) into (17.29), we obtain

(Ff,Fh)L2 = (f, h)L2 ∀h ∈ S, i.e., (up to the notation) (17.28). �

Note that both sides of equality (17.29) define linear continuous
functionals on S:

f : S 3 g̃ 7−→
∫
f(x)g̃(x) dx, f̃ : S 3 g 7−→

∫
f̃(ξ)g(ξ) dξ.

In this connection, we give (following L. Schwartz [54]) two defini-
tions.

17.18. Definition. S ′(Rn) is the space of tempered distribu-
tions, i.e., the space of linear continuous functionals f : S(Rn)→ C
equipped with the operation of differentiation

〈∂αf, ϕ〉 = (−1)|α|〈f, ∂αϕ〉,
where α ∈ Zn

+, and with the operation of multiplication 〈af, ϕ〉 =
〈f, aϕ〉 by any tempered function a, i.e., a function a ∈ C∞(Rn) sat-
isfying the condition ∀α ∃Cα < ∞ ∃Nα < ∞, such that |∂αa(x)| ≤
Cα(1 + |x|)Nα .

17.19. Definition. Let f ∈ S ′, g ∈ S ′. Then the formulae

〈Ff, ϕ〉 = 〈f,Fϕ〉 ∀ϕ ∈ S and 〈F−1g, ψ〉 = 〈g,F−1ψ〉 ∀ψ ∈ S
(17.30)

specify the generalized functions f̃ = Ff ∈ S ′ and F−1g ∈ S ′, which
are called the Fourier transform of the distribution f ∈ S ′ and the
inverse Fourier transform of the distribution g ∈ S ′.

17.20. Example. It is clear that δ ∈ S ′, 1 ∈ S ′. Find Fδ and
F1. We have

〈Fδ, ϕ〉 = 〈δ,Fϕ〉 = ϕ̃(0) = lim
ξ→0

∫
e−

◦
ıxξϕ(x)dx =

∫
ϕ(x)dx = 〈1, ϕ〉,

i.e., Fδ = 1. Similarly, F−1δ = 1. Furthermore, 〈F1, ϕ〉 = 〈1,Fϕ〉 =
〈F−1δ,Fϕ〉 = 〈δ,F−1Fϕ〉, i.e., F1 = δ. Similarly, F−11 = δ.

17.21.P. Verify (compare with P.17.12) that E ′(Rn) ⊂ S ′(Rn) ⊂
D′(Rn).

17.22.P. Prove (compare with P.16.19 and [57]) that f ∈ S ′(Rn)
if and only if there exists a finite sequence {fα}|α|≤N of functions
fα ∈ C(Rn) satisfying the condition |fα(x)| ≤ C(1 + |x|)m, where
C <∞, m <∞ and such that f =

∑
|α|≤N

∂αfα. Thus, S ′ ⊂ D′.



17. THE FOURIER SERIES AND THE FOURIER TRANSFORM 93

17.23.P. Verify that the mappings F : S ′ → S ′ and F−1 : S ′ →
S ′ are reciprocal automorphisms of the space S ′ which are continuous
relatively the weak convergence in S ′, i.e, if ν →∞, then 〈Ffν , ϕ〉 →
〈Ff, ϕ〉 ∀ϕ ∈ S ⇐⇒ 〈fν , ϕ〉 → 〈f, ϕ〉 ∀ϕ ∈ S.

17.24.P. Calculate Fδ and F1 (compare with Example 17.20),
by considering the sequence of functions

δν(x) = ν · 1[−1/ν,1/ν](x) and 1ν(x) = 1[−ν,ν](x),

where 1[a,b] = θ(x− a)− θ(x− b).

17.25.P. Considering the sequence of the functions

fν(x) = θ±(x)e∓x/ν , x ∈ R,

show (see (12.7)) that θ̃±(ξ) = ± 1
◦
ıξ ± 0

.

17.26. Remark. The space S ′ is complete with respect to the
weak convergence, since S is a Frechét space (see P.17.11 and Re-
mark 16.27).

17.27.P. Show that formula (17.26) is valid for any u ∈ S ′.

17.28. Lemma. Let7) f ∈ E ′(Rn). Then f̃ = Ff is a tempered
function (see Definition 17.18) and

f̃(ξ) = 〈f(x), e−
◦
ıxξ〉. (17.31)

7) Recall that the space E ′ is defined in P.16.13.

Proof. By virtue of Theorem 16.20, f =
∑

|α|≤m

∂αfα, where

fα ∈ C0(Rn). Therefore

〈f̃(ξ), ϕ(ξ)〉 =
∑
α

〈∂α
x fα(x), (Fϕ)(x)〉

=
∑
α

(−1)|α|〈fα(x), ∂α
x ϕ̃(x)〉

=
∑
α

(
◦
ı)|α|〈fα(x),F[ξαϕ(ξ)](x)〉

=
∑
α

(
◦
ı)|α|

∫
fα(x)

[∫
e−

◦
ıxξξαϕ(ξ)dξ

]
dx.



94 3. THE SPACES Hs. PSEUDODIFFERENTIAL OPERATORS

Since fα(x)e−
◦
ıxξξαϕ(ξ) ∈ L1(Rn

x × Rn
ξ ), it follows (by the Fubini

theorem) that

〈f̃(ξ), ϕ(ξ)〉 =
∫ [∫ ∑

α

(
◦
ı)|α|fα(x)e

◦
ıxξξαdx

]
ϕ(ξ)dξ

=
∫
〈
∑
α

fα(x), (∂x)αe−
◦
ıxξ〉ϕ(ξ)dξ

=
∫
〈f(x), e−

◦
ıxξ〉ϕ(ξ)dξ.

Thus (by virtue of P.13.19), f̃(ξ) = 〈f(x), e−
◦
ıxξ〉. Similarly,

∂β f̃(ξ) = 〈f(x), (−◦ıx)βe−
◦
ıxξ〉. (17.32)

Since f ∈ E ′ ⊂ S ′, it follows that (by virtue of Definition 17.10)
∃N ≥ 1 such that

|〈f(x), ψ(x)〉| ≤ N sup
x∈Rn

∑
|α|≤N

(1 + |x|)N · |∂αψ(x)| ∀ψ ∈ S.

Therefore, |∂β f̃(ξ)| = |〈f(x), σ(x)(−◦ıx)βe−
◦
ıxξ〉| ≤ C(1 + |ξ|)N . �

18. The Fourier–Laplace transform. The Paley–Wiener
theorem

Formula (17.26) proven in Section 17 (which is valid for u ∈ S′,
see P.17.27) contains an important property of the Fourier transfor-
mation, which is often expressed in the following words: “after ap-
plying the Fourier transformation the derivation operator becomes
the multiplication by the independent variable”. More exactly, the
following formula holds:

F(Dα
xu(x)) = ξαũ(ξ), (18.1)

where Dα
x = (

◦
ı)−|α|∂α

x , and ũ = Fu, u ∈ S′.
Property (18.1) allows us to reduce, in a sense, problems involv-

ing linear differential equations to algebraic ones. Thus, applying
the Fourier transformation to the differential equation

A(Dx)u(x) ≡
∑
|α|≤m

aαD
α
xu(x) = f(x), aα ∈ C, f ∈ S ′, (18.2)
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we obtain an equivalent “algebraic” equation

A(ξ) · ũ(ξ) ≡

 ∑
|α|≤m

aαξ
α

 · ũ(ξ) = f̃(ξ), f̃ ∈ S ′. (18.3)

As Hörmander [29] and Lojasiewicz [41] have proved, equation (18.3)
has always a solution ũ ∈ S ′ (see in this connection Remark 19.2).
Therefore, the formula u = F−1ũ determines a solution of differential
equation (18.2). Indeed, by virtue of (18.1) and Theorem 17.16,

f(x) = F−1(f̃(ξ)) = F−1(A(ξ) · ũ(ξ))
= A(Dx)F−1(ũ(ξ)) = A(Dx)u(x).

This approach to construction of a solution of a linear differential
equation with the help of the Fourier transformation is rather similar
to the idea of the operational calculus1) (see, for instance, [38]) using
the so-called Laplace transformation (introduced for the first time
(see [34]) by Norwegian Niels Abel who was a mathematical genius,
little-known while alive, and who died from consumption when he
was 26 years old). The Laplace transformation transfers a function
f of t ∈ R+ integrable with the “weight” e−st for any s > 0, into the
function

L[f ](s) =

∞∫
0

e−stf(t)dt, s > 0. (18.4)

1) Let us illustrate the idea of the calculus of variations on the example
of problem (6.11), restricting ourselves by the case σ = 0. In other words,
we consider the problem

ut = uxx, t > 0, |x| < 1; u
˛̨
x=±1

= 0; u
˛̨
t=0

= 1. (18.5)

As has been noted in Section 17, series (17.16) constructed by the Fourier
method, which gives the solution of this problem, converges very slowly
for small t. By the way, this can be foreseen, since the Fourier series
converges slowly for discontinuous functions, and the function u(x, t) is
discontinuous at the angle points of the half-strip {|x| < 1, t > 0}. In this
connection, consider preliminarily the problem

∂T

∂τ
= a

∂2T

∂ξ2
, ξ > 0, τ > 0; T

˛̨
ξ=0

= T1; T
˛̨
τ=0

= T0, (18.6)

which simulates the distribution of the temperature in the vicinity of an
angle point.
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Passing (see Section 6) to the dimensionless parameters in the stan-
dard way

r = ξ/
√
aτ, u = (T − T1)/(T0 − T1),

from (18.6) we obtain that u(τ, ξ) = f(r), where the function f satisfies
the following conditions:

f ′′(r) +
r

2
f ′(r) = 0, f(0) = 0, f(∞) = 1.

Hence, u(τ, ξ) = erf(ξ/(2
√
aτ)) = 1− erfc(ξ/(2

√
aτ)), where

erf(y) =
2√
π

yZ
0

e−η2
dη, erfc(y) = 1− erf(y).

These preliminary arguments suggest that the solution u(x, t) of problem
(18.5)for small t, seemingly, must be well approximated by the following
sum

1− [erfc((1− x)/2
√
t) + erfc((1 + x)/2

√
t)]. (18.7)

This point allows us to obtain the representation of the solution of problem
(18.5) in the form of a series rapidly converging for small t with the help of
the Laplace transformation. Denoting the function L[u(·, x)](s) by v(s, x),
where u is the solution of problem (18.5), we rewrite, taking into account
the two following obvious properties of the Laplace transformations:

L[1](s) = 1/s, L[f ′](s) = s · L[f ](s)− f(0), (18.8)

problem (18.5) in the form (“algebraic” in the variable s)

(s · v(s, x)− 1)− vxx(s, x) = 0, v(s, x)
˛̨
x=±1

= 0, s > 0.

This problem can be solved explicitly. Obviously, its solution is the func-
tion

v(s, x) =
1

s
− 1

s
· ch(

√
sx)/ ch(

√
s).

Thus, the solution u of problem (18.5) satisfies the relation

L[u(·, x)](s) =
1

s
− 1

s
· ch(

√
sx)/ ch(

√
s). (18.9)

Formulae (18.7) and (18.9) suggest that in order to obtain the represen-
tation of the solution of problem (18.5) in the form of a series rapidly
converging for small t we should

• first, find the Laplace transform of the function fk(t) = erfc(k/2
√
t);

• second, represent the right-hand side of formula (18.9) in the
form of a series whose members are function of the form L[fk].
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Below, it will be shown that

L[fk](s) =
1

s
exp(−k

√
s). (18.10)

On the other hand, expressing ch via exp and representing (1+q)−1, where
q = exp(−2

√
s) < 1, as the series 1− q + q2 − q3 + · · ·, we obtain that

− ch(
√
sx)

s · ch
√
s

=

∞X
n=0

(−1)n+1 exp[−
√
s(2n+ 1− x)] + exp[−

√
s(2n+ 1 + x)]

s
.

(18.11)
Basing on (18.8)–(18.11), one can show that the solution of problem (18.5)
can be represented as a series

u(x, t) = 1 +

"
NX

n=0

(−1)n+1an

#
+ rN , (18.12)

where an = erfc((2n + 1 − x)/2
√
t) + erfc((2n + 1 + x)/2

√
t) and rN =P

n>N

(−1)n+1an.

18.1.P. Show that in (18.12)

|rN | ≤
2
N

√
t

π
exp(−N2/t). (18.13)

18.2.P. By comparing estimate (18.13) with estimate (17.19),
show that, for t ≤ 1/4, it is more convenient to use the representation
of the solution of problem (18.5) in form (18.12), but for t ≥ 1/4, it
is better to use that form (17.16).

Let us establish formula (18.10). It follows from formula

L[f ′k](s) = exp(−k
√
s) (18.14)

and the second formula in (18.8), since

fk(0) = 0, f ′k(t) =
k

2
π−1/2t−3/2 exp(−k2/4t).
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As for formula (18.14), it can be proved, taking into account P.18.3,
in the following way

L[f ′k](s) =
k

2
√
π

∞∫
0

t−3/2 · e−k2/4t dt =
2√
π

∞∫
0

exp−[η2 +
k2s

4η2
]dη

=
2
π
e−k

√
s

∞∫
0

e−(η−a/η)2dη = e−k
√

s.

(The change of variables: η =
k

2
√
t
, a =

k

2
√
s.)

18.3.P. Let F (a) =
∫∞
0

exp[−(η − a
η )2]dη, where a > 0. Then

F ≡
√

π
2 .

Hint. F ′(a) ≡ 0.

There is a close connection between the Fourier and Laplace
transformations. It can be found, by analyzing the equality

∂β f̃(ξ) = 〈f(x), (−◦ıx)βe−
◦
ıxξ〉, f ′ ∈ E ′(Rn), β ∈ Zn

+,

which has been proved in Lemma 17.28. The right-hand side of this
equality is meaningful for any complex ξ ∈ Cn and is a continuous
function in Cn. Thus, as is known from the theory of functions of a
complex variable, the analytic function is defined

f̃ : Cn 3 ξ 7−→ f̃(ξ) = 〈f(x), e−
◦
ıxξ〉 ∈ C,

which can be treated as the Fourier transform in the complex do-
main. This function is sometimes called the Fourier–Laplace trans-
form. This name can be justified by the fact that, for instance, for
the function f = θ+f ∈ L1(R) (compare with Example 17.3), the
function

C− 3 ξ 7−→
∞∫

−∞

e−
◦
ıxξf(x)dx =

∞∫
0

e−
◦
ıxξf(x)dx ∈ C,

being analytic in the lower half-plane C−, is, for real ξ (respectively,
for imaginary ξ = −is/2π, where s > 0), the Fourier transform
(respectively, the Laplace transform) of the function f .

The important role of the Fourier–Laplace transformation con-
sists in the fact that, due to so-called Paley–Wiener theorems, certain
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properties of this analytic function allow to determine whether this
function is the Fourier–Laplace transform of a function f as well as
to characterize the properties of this function f . In Section 22 we
shall use (compare with Example 17.3)

18.4. Theorem (Paley–Wiener). Let f̃ be analytic in C− and

sup
η>0

∞∫
−∞

|f̃(ξ − iη)|2dξ <∞.

Then f̃ is the Fourier transform in C− of the function f = θ+f ∈
L2(R).

The proof of this theorem and of the inverse one see in [71].

19. Fundamental solutions. Convolution

At the beginning of Section 18 it was noted that the differential
equation

A(Dx)u(x) ≡
∑
|α|≤m

aα∂
α
x u(x) = f(x), aα ∈ C, f ∈ E ′, (19.1)

has a solution u ∈ S ′. In contrast to equation (18.2), the function f
in (19.1) belongs to E ′ ⊂ S ′. This fact allows us to give an “explicit”
formula for the solution of equation (19.1), in which the role of the
function f is emphasized. In this connection note that the formula

u(x) =
1
4π

∫
R3

f(y)
exp(−q|x− y|)
|x− y|

dy, q ≥ 0, f ∈ E ′ ∩ PCb, (19.2)

giving (compare with (7.8)–(7.9)) a solution of the equation −∆u+
q2u = f , is meaningless for q = 0, if supp f is not compact (for
instance, f = 1).

In order to deduce the desired “explicit” formula for the solution
u of equation (19.1), first, we represent the function ũ = Fu in the
form ũ(ξ) = f̃(ξ)ẽ(ξ), where ẽ ∈ S ′ is a solution of the equation
A(ξ) · ẽ(ξ) = 1 (see Remark 19.2 below). Then, it remains to express
the function u = F−1(f̃ · ẽ) via f = F−1f̃ and the function e = F−1ẽ
satisfying (by virtue of the relation A(ξ)ũ(ξ) ≡ 1) the equation

A(Dx)e(x) = δ(x). (19.3)
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19.1. Definition. A function E ∈ D′ is called a fundamental
solution of the operator A(Dx), if A(Dx)E(x) = δ(x).

19.2. Remark. Any differential operator with constant coeffi-
cients has (as has been proved in [29, 41]) a fundamental solution
in the class S ′. However, the presence of the space D′ in Defini-
tion 19.1 is justified by the fact that, for some differential operators,
it is possible (as has been shown by Hörmander) to construct in D′
a fundamental solution locally more smooth than the fundamental
solution in S ′. (Note that the two fundamental solutions E1 and E2

of the operator A(Dx) differ by a function v = E1 − E2 satisfying
the equation A(Dx)v = 0.)

IfA(ξ) 6= 0 for any ξ ∈ Rn, then the formula E(x) = F−1(1/A(ξ)),
obviously, determines a fundamental solution of the operator A(Dx).
In this case, E ∈ S ′, because 1/A(ξ) ∈ S ′. In the general case, the
fundamental solution can be constructed, for instance, with the help
of regularization of the integral

∫
ϕ̃(ξ)dξ/A(ξ) (compare with P.14.4)

that can be most simply made for ϕ ∈ D, since in this case the regu-
larization (by virtue of analyticity of the function ϕ̃ = Fϕ) is possible
by passing of ξ into the complex domain, where A(ξ) 6= 0 (see, for
instance, [57]).

19.3. Examples. It follows from P.7.1 that function (7.9) is the
fundamental solution of the Laplace operator. According to P.12.8,
the function θ(t − |x|)/2 is the fundamental solution of the string
operator. For the heat operator ∂t − ∂xx, the fundamental solution
is E(x, t) = θ(t)P (x, t), where the function P is defined in (6.15).
Indeed, by virtue of the properties of the function P proven in Sec-
tion 6, for any ϕ ∈ D(R2), we have

〈Et − Exx, ϕ〉 = −〈E,ϕt + ϕxx〉 = − lim
ε→+0

∞∫
ε

∫
R

(ϕt + ϕxx)E dxdt

= lim
ε→+0

 ∞∫
ε

∫
R

(Pt − Pxx)ϕdx dt+

∞∫
−∞

P (x, t)ϕ(x, t) dx


= ϕ(x, t)

∣∣
x=t=0

.

Before representing the solution u = F−1(f̃ ·ẽ) of equation (19.1)
via f ∈ E ′ and the fundamental solution e ∈ S ′ of the operator
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A(Dx), we express the function F−1(f̃ · g̃) via f and g in the as-
sumption that g = F−1g̃ ∈ E ′. According to Theorem 16.20, there
exist multiindices α and β and continuous functions fα and gβ with
compact supports such that f = Dα

xfα, g = Dβ
xgβ . Therefore,

F−1(f̃(ξ) · g̃(ξ)) = F−1(ξα+β f̃α(ξ) · g̃β(ξ)) = Dα+β
x F−1(f̃α · g̃β).

Let us calculate F−1(f̃α · g̃β). We have

f̃α · g̃β =
∫∫

e−
◦
ı(y+σ)ξfα(y)gβ(σ) dy dσ.

Setting y+σ = x and using the compactness of supp fα and supp gβ ,
we obtain f̃α · g̃β = F[fα ∗ gβ ], where ϕ ∗ ψ denotes (see note 4 in
Section 5) the convolution of the two functions ϕ and ψ, i.e.,

(ϕ ∗ ψ)(x) =
∫
ϕ(y)ψ(x− y)dy.

19.4.P. Verify that if ϕ ∈ C |α|0 , ψ ∈ C |α|0 , then ϕ ∗ ψ = ψ ∗ ϕ,
Dα(ϕ ∗ ψ) = (Dαϕ) ∗ ψ = ϕ ∗ (Dαψ).

19.5. Definition. (Compare with P.19.4). The convolution f∗g
of two generalized functions f = Dαfα ∈ E ′ and g = Dβgβ ∈ E ′,
where fα, gβ ∈ C0(Rn), is the generalized function Dα+β(fα ∗ gβ).

Note that for f ∈ E ′ and g ∈ E ′ the following formula holds:

F−1(f̃ · g̃) = f ∗ g. (19.4)

Indeed, F[Da+β(fa ∗ gβ)] = ξa+βF(fa ∗ gβ) = (ξaf̃a)(ξβ g̃β).
Let us find F−1(f̃ · g̃) in the case when f ∈ E ′ and g ∈ S ′.

19.6.P. Let f ∈ E ′, g ∈ S ′. Setting gν(x) = ϕ(x/ν)g(x), where
ϕ ∈ C∞0 (Rn), ϕ ≡ 1 for |x| < 1, verify that gν ∈ E ′; gν → g in S ′;
f̃ · g̃ν → f̃ · g̃ in S ′, and 〈f ∗ gν , ϕ〉 → 〈F−1(f̃ · g̃), ϕ〉 ∀ϕ ∈ S.

On the base of P.19.6, generalizing formula (19.4), we give

19.7. Definition. The convolution f ∗g of two generalized func-
tions f ∈ E ′ and g ∈ S ′ is the function from S ′, given by the formula
f ∗ g = F−1(f̃ · g̃). (Note that f̃ ∈ C∞, g̃ ∈ S ′.)

19.8.P. (Compare with P.19.4). f ∈ E ′, g ∈ S ′ =⇒ f ∗g = g ∗f ;
Dα(f ∗ g) = (Dαf) ∗ g = f ∗ (Dαg); δ ∗ g = g.

It follows from abovesaid that the following theorem holds.
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19.9. Theorem (compare with (19.2) and note 4 in Sect. 5).
The desired “explicit” formula for the solution of equation (19.1)
has the form u = f ∗ e, where e ∈ S ′ is the fundamental solution of
the operator A(Dx).

19.10.P. Prove the Weierstrass theorem on uniform approxima-
tion of a continuous function f ∈ C(K) by polynomials on a compact
K ⊂ Rn: ∀ε > 0 ∃ a polynomial p such that ‖f(x)− p(x)‖C(K) < ε.

Hint. Let Ω be a neighbourhood of K. Following the scheme
of the proof of Lemma 13.10 and taking into account P.4.4, set

p(x) =
∫
Ω

f(y)δν(x− y)dy,

where

δν(x) =
n∏

m=1

[
ν√
π

(1− 1
ν
x2

m)ν3
]
, x = (x1, . . . , xn).

19.11. Lemma. Let u ∈ L1 ∩ C, v ∈ L2. Then u ∗ v ∈ L2 and

‖u ∗ v‖L2 ≤ ‖u‖L1 · ‖v‖L2 . (19.5)

Proof.
∣∣∫ u(ξ − η)v(η)dη∣∣2 ≤ (∫ |u(ξ − η)|dη) ·A(ξ) = ‖u‖L1 ·

A(ξ), whereA(ξ) =
∫
|u(ξ−η)|·|v(η)|2dη. However, (see Lemma 8.26)∫

A(ξ)dξ = ‖v‖2L2 · ‖u‖L1 . �

20. On spaces Hs

The study of generalized solutions of equations of mathematical
physics leads in a natural way to the family of Banach spaces W p,m

introduced by Sobolev. Recall Definition 17.4 of the space W p,m(Ω).
For p ≥ 1 and m ∈ Z+, the space W p,m(Ω) is the Banach space of
the functions u ∈ Lp(Ω) whose norm

‖u‖W p,m(Ω) =

∫
Ω

∑
|α|≤m

|∂αu|pdx

1/p

(20.1)
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is finite. Here, ∂αu is the generalized derivative of the function u,
i.e.,

∂αu = v ∈ L1
loc(Ω) and∫

Ω

v · ϕdx = (−1)|α|
∫
Ω

u∂αϕdx ∀ϕ ∈ C∞0 (Ω). (20.2)

S.L. Sobolev called the function v satisfying conditions (20.2) the
weak derivative of order α of the function u. Maybe, this is the
reason, why letter W appeared in the designation of the Sobolev
spaces.

For p = 2, the spaces W p,m are Hilbert spaces (see note 4 in
Section 17). They are denoted (apparently, in honour of Hilbert) by
Hm. These spaces play a greatly important role in modern analysis.
Their role in the theory of elliptic equations is outlined in Section 22.
A detailed presentation of the theory of these spaces can be found,
for instance, in [8, 70]; a brief one is given below.

20.1.P. Using formula (18.1), verify that the space Hm(Rn) in-
troduced above for m ∈ Z+ is the space of u ∈ S ′(Rn) such that
(1 + |ξ|)m(Fu)(ξ) ∈ L2(Rn).

20.2. Definition. Let s ∈ R. The space Hs = Hs(Rn) consists
of u ∈ S ′ = S ′(Rn) for which the norm

‖u‖s = ‖〈ξ〉s · ũ(ξ)‖L2(Rn), where 〈ξ〉 = 1 + |ξ|, ũ = Fu.

is finite.

20.3.P. Verify that if α > β, then S ⊂ Hα ⊂ Hβ ⊂ S ′ and the
operators of embedding are continuous and their images are dense.

20.4. Theorem (Sobolev embedding theorem). If s > n/2+m,
then the embedding Hs(Rn) ⊂ Cm

b (Rn) holds and there exists C <∞
such that

‖u‖(m) ≤ C‖u‖s ∀u ∈ Hs, (20.3)

where
‖u‖(m) =

∑
|α|≤m

sup
x∈Rn

|∂αu(x)|.

Proof. We have to prove that ∀u ∈ Hs(Rn) ∃v ∈ Cm
b (Rn) such

that v = u almost everywhere and ‖v‖(m) ≤ C‖u‖s. It is sufficient
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to prove it for m = 0. The inequality

|u(ξ)| =
∣∣∣∣∫ ũ(ξ)〈ξ〉s · 〈ξ〉−se

◦
ıxξdξ

∣∣∣∣ ≤ ‖u‖s(∫ 〈ξ〉−2sdξ

)1/2

,

where u ∈ S(R), implies estimate (20.3). If u ∈ Hs, un ∈ S and
‖un − u‖s → 0, then by virtue of (20.3) ∃v ∈ C0 such that ‖un −
v‖(0) → 0 and ‖v‖(0) ≤ C‖u‖s. Since ‖u−v‖L2(Ω) ≤ CΩ(‖u−un‖s +
‖un − v‖(0))→ 0, we have u = v almost everywhere. �

20.5.P. Let u(x) = ϕ(2x) ln | ln |x||, where x ∈ R2 and ϕ is the
function from Example 3.6. Show that u ∈ H1(R2). Thus, Hn/2(Rn)
cannot be embedded into C(Rn).

20.6.P. Verify that δ ∈ Hs(Rn) for s < −n/2.

20.7. Theorem (of Sobolev on traces). Let s > 1/2. Then,
for any (in general, discontinuous) function u ∈ Hs(Rn) the trace
γu ∈ Hs−1/2(Rn−1) is defined, which coincides, for a continuous
function u, with the restiction u

∣∣
xn=0

of the function u onto the
hyperplane xn = 0. Moreover, ∃C <∞ such that

‖γu‖′s−1/2 ≤ C‖u‖s ∀u ∈ Hs(Rn), (20.4)

where ‖ · ‖′σ is the norm in the space Hσ(Rn−1).

Proof. Let x = (x′, xn) ∈ Rn−1 × R. For u ∈ S(Rn), we have
u(x′, 0) =

∫
Rn−1 e

◦
ıx′ξ′

[∫
R ũ(ξ

′, ξn)dξn
]
dξ′; therefore, (‖γu‖′s−1/2)

2 =∫
Rn−1〈ξ′〉2s−1

∣∣∫
R ũ(ξ

′, ξn)dξn
∣∣2 dξ′. Then∣∣∣∣∫ ũ(ξ′, ξn)dξn

∣∣∣∣2 ≤ A(ξ′)
∫
〈ξ〉2s|ũ(ξ)|2dξn,

where A(ξ′) =
∫
〈ξ〉−2sdξn ≤ Cs〈ξ′〉−s+1/2, and Cs = C

∫
(1 +

z2)−sdz < ∞ for s > 1/2; (z = ξn(1 + |ξ′|2)−1/2). Therefore,
‖γu‖′s−1/2 ≤ C‖u‖s for u ∈ S. If u ∈ Hs(Rn) and ‖un − u‖s →
0 as n → ∞ and un ∈ S, then ∃w ∈ Hs−1/2(Rn−1) such that
‖γun − w‖′s−1/2 → 0; w does not depend on the choice of the se-
quence {un}. By definition, γu = w; and estimate (20.4) is also
valid. �

20.8. Definition. The operator P = PΩ : D′(Rn) 3 f 7−→
Pf ∈ D′(Ω), where Ω is a domain in Rn and 〈Pf, ϕ〉 = 〈f, ϕ〉 ∀ϕ ∈
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D(Ω), is called the restriction operator of generalized functions given
in Rn onto the domain Ω.

20.9. Definition. Let Hs(Ω) denote the space PΩH
s(Rn) with

the norm
‖f‖s,Ω = inf ‖Lf‖s, f ∈ Hs(Ω), (20.5)

where the infimum is taken over all continuations Lf ∈ Hs(Rn) of
the function f ∈ Hs(Ω) (i.e., PΩLf = f). If it is clear from the
context that a function f ∈ Hs(Ω) is considered, then we may omit
index Ω write ‖f‖s and instead of ‖f‖s,Ω.

20.10. Definition. The space Hs(Γ), where Γ = ∂Ω is the
smooth boundary of a domain Ω b Rn, is the completion of the
space C∞(Γ) in the norm

‖ρ‖′s,Γ =
K∑

k=1

‖ϕkρ‖′s. (20.6)

Here, ‖ · ‖′s is the norm of the space Hs(Rn−1),
K∑

k=1

ϕk ≡ 1 is the

partition of unity (see Section 3) subordinate to the finite cover
K⋃

k=1

Γk = Γ, where Γk = Ωk ∩ Γ, and Ωk is a n-dimensional do-

main, in which the normal to Γ do not intersect. Furthermore, the
function ϕkρ ∈ C∞0 (Rn−1) is defined by the formula (ϕkρ)(y′) =
ϕk(σ−1

k (y′)) ·ρ(σ−1
k (y′)), where σk is a diffeomorphism of Rn, (affine

outside a ball and) “unbending” Γk. This means that, for x ∈ Ωk,
the nth coordinate yn = yn(x) of the point y = (y′, yn) = σk(x) is
equal to the coordinate of this point on the inward normal to Γ. If
it is clear from the context that we deal with a function ρ ∈ Hs(Γ),
then equally with ‖ρ‖′s,Γ we also write ‖ρ‖′s.

20.11. Remark. Definition 20.10 of the space Hs(Γ) is correct,
i.e., it does not depend on the choice of the cover, the partition
of unity and the diffeomarphism σk. In the book [59] this fact is
elegantly proven with the help of the technics of pseudodifferential
operators.

20.12.P. Let s > 1/2. Show that the operator C(Ω̄) ∩Hs(Ω) 3
u 7−→ u

∣∣
Γ
∈ C(Γ) can be continued to a continuous operator γ :

Hs(Ω)→ Hs−1/2(Γ).
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20.13. Remark. The function γu ∈ Hs−1/2(Γ), where s > 1/2,
is called the boundary value of the function u ∈ Hs(Ω). One can
rather easily show (see, for instance, [70]) that Hs−1/2(Γ), where
s > 1/2, is the space of boundary values of functions from Hs(Ω).
The condition s > 1/2 is essential, as the example of the function
u ∈ H1/2(R+) given (compare with P.20.5) by the formula u(x) =
ϕ(2x) ln | ln |x|| shows.

20.14. Remark. The known Arzelà theorem (see [36, 71]) as-
serts that if a family {fn} of functions fn ∈ C(Ω̄) defined in Ω b Rn

is uniformly bounded (i.e., sup
n
‖fn‖ <∞) and equicontinuous (∀ε >

0 ∃δ > 0 such that |fn(x)−fn(y)| < ε ∀n, if |x−y| < δ), then one can
choose from this sequence a subsequence converging in C(Ω̄). With
the help of this theorem one can prove (see, for instance, [8, 70])
that the following theorem is valid.

20.15. Theorem (on compactness of the embedding). Let Ω b
Rn, and a sequence {un} of functions un ∈ Hs(Ω) (respectively,
un ∈ Hs(∂Ω)) be such that ‖un‖s ≤ 1 (respectively, ‖un‖′s ≤ 1).
Then one can choose from this sequence a subsequence converging in
Ht(Ω) (respectively, in Ht(∂Ω)), if t < s.

21. On pseudodifferential operators (PDO)

The class of PDO is more large than the class of differential
operators. It includes the operators of the form

Au(x) =
∫
Ω

K(x, x− y)u(y)dy, u ∈ C∞0 (Ω).

Here, K ∈ D′(Ω×Rn) and K ∈ C∞(Ω× (Rn \ 0)). If K(x, x− y) =∑
|α|≤m

aα(x) · δ(α)(x− y), then Au(x) =
∑

|α|≤m

aα(x)∂αu(x). Another

example of PDO is the singular integral operators [45]. However,
the exclusive role of the theory of PDO in modern mathematical
physics (which took the shape in the middle sixties [30, 35, 66])
is determined even not by the specific important examples. The
matter is that PDO is a powerful and convenient tool for studying
linear differential operators (first of all, elliptic one).
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Before formulating the corresponding definitions and results, we
would like to describe briefly the fundamental idea of the applica-
tions of PDO. Consider the elliptic differential equation in Rn with
constant coefficients

a(D)u ≡
∑
|α|≤m

aαD
αu = f. (21.1)

The ellipticity means that

am(ξ) ≡
∑
|α|=m

aαξ
α 6= 0 for |ξ| 6= 0.

This is equivalent to the condition

|a(ξ)| ≡

∣∣∣∣∣∣
∑
|α|≤m

aαξ
α

∣∣∣∣∣∣ ≥ C|ξ|m for |ξ| ≥M � 1. (21.2)

Now prove the following result on the smoothness of the solutions
of equation (21.1). If u ∈ Hs−1 and a(D)u ∈ Hs−m for some s, then
u ∈ Hs. Of course, this fact can be established by constructing the
fundamental solution of the operator and a(D) and investigating its
properties (see, for instance, [31]). However, instead of solving the
difficult problem on mean value of the function 1/a(ξ), where ξ ∈ Rn,
(this problem arises after application the Fourier transformation to
equation (21.1) written in the form F−1a(ξ)Fu = f) it is sufficient
to note “only” two facts. The first one is that, taking into account
(21.2), we can “cut out” the singularity of the function 1/a by a
mollifier ρ ∈ C∞ such that ρ ≡ 1 for |ξ| ≥M +1, ρ ≡ 0 for |ξ| ≤M .
The second is that

(F−1(ρ/a)F)(F−1aF)u = u+ (F−1τF)u, τ = ρ− 1. (21.3)

Therefore, by virtue of obvious inequalities

|ρ(ξ)/a(ξ)| ≤ C(1+ |ξ|)−m, |τ(ξ)| ≤ CN (1+ |ξ|)−N ∀N ≥ 1, (21.4)

which imply the inequalities

‖(F−1(ρ/a)F)f‖s ≤ C‖f‖s−m, ‖(F−1τF)u‖s ≤ C‖u‖s−N , (21.5)

as a result, we have a so-called a priori estimate

‖u‖s ≤ C (‖f‖s−m + ‖u‖s−1) , f = a(D)u, u ∈ Hs, (21.6)

where C does not depend on u. The above-mentioned result on the
smoothness of the solution of elliptic equation (21.1) follows from
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(21.6). Here the word “a priori” for estimate (21.6) of the solution
of equation (21.1) means that the solution was obtained before the
investigation of solvability of equation (21.1), i.e., a priori.

The simplicity of the deduction of the a priori estimate (21.6)
characterizes brightly enough the role of the operators of the form
F−1aF. Such operators are called pseudodifferential operators con-
structed by the symbol a = a(ξ). We shall also denote them by
Op(a(ξ)) or a(D). Depending on the class of symbols, one or another
class of PDO is obtained. If a(x, ξ) =

∑
aα(x)ξα, then a(x,D)u(x) =

Op(a(x, ξ))u(x) =
∑
aα(x)Dα

xu(x). If a(x, ξ) is a function positively
homogeneous of zero order in ξ, i.e., a(x, tξ) = a(x, ξ) for t > 0, then
a(x,D) = Op(a(x, ξ)) is the singular integral operator [45], namely,

Op(a(x, ξ))u(x) = b(x)u(x) + lim
ε→0

∫
|x−y|>ε

c(x, x− y)
|x− y|n

u(y)dy.

Here, c(x, tz) = c(x, z) for t > 0 and
∫
|z|=1

c(x, z) dz = 0. In partic-
ular, in the one-dimensional case, when a(ξ) = a+θ+(ξ) + a−θ−(ξ),
where θ+ is the Heaviside function and θ− = 1− θ+, we have

Op(a(x, ξ))u =
a+ + a−

2π
u(x) +

i

2π
v.p.

∫
a+ − a−
x− y

u(y)dy,

that follows from P.17.25 and (12.7).
Let us introduce a class of symbols important in PDO.

21.1. Definition. Let m ∈ R. We denote by Sm = Sm(Rn) the
class of functions a ∈ C∞(Rn × Rn) such that a(x, ξ) = a0(x, ξ) +
a1(ξ) and ∀α ∀β ∃Cαβ ∈ S(Rn) ∃Cβ ∈ R such that

|∂α
x ∂

β
ξ a0(x, ξ)| ≤ Cαβ(x) · 〈ξ〉m−|β|,

|∂β
ξ a1(ξ)| ≤ Cβ〈ξ〉m−|β| , 〈ξ〉 = 1 + |ξ|. (21.7)

If a ∈ Sm, then the operator a(x,D) given by the formula

Op(a(x, ξ))u(x) =
∫
e
◦
ıxξa(x, ξ)ũ(ξ)dξ, ũ = Fu (21.8)

and defined, obviously, on C∞0 , can be continued to a continuous
mapping fromHs(Rn) intoHs−m(Rn), as the following lemma shows.



21. ON PSEUDODIFFERENTIAL OPERATORS (PDO) 109

21.2. Lemma (on continuity). Let a ∈ Sm. Then ∀s ∈ R ∃C > 0
such that

‖a(x,D)u‖s−m ≤ C‖u‖s ∀u ∈ C∞0 (Rn). (21.9)

Proof. If a(x, ξ) = a1(ξ), then estimate (21.9) is obvious. There-
fore, it is sufficient to establish this estimate for a = a0 (see Defini-
tion 21.1). Setting A0v = a0(x,D)v, we note that

(Ã0v)(ξ) =
∫ (∫

e
◦
ı(x,ξ−η)a0(x, η)dx

)
ṽ(η)dη.

By virtue of (21.1) and Lemma 17.14, we have

|(Ã0v)(ξ)| ≤ Cα

∫
〈η〉m〈ξ − η〉−|α||ṽ(η)|dη, |α| � 1.

The triangle inequality |ξ| ≤ |η|+ |ξ−η| implies the Peetre inequality

〈ξ〉s ≤ 〈η〉s〈ξ − η〉|s|. (21.10)

Therefore, 〈ξ〉s−m|(Ã0v)(ξ)| ≤ Cα

∫
〈η〉s〈ξ − η〉|s−m|−|α||ṽ(η)|dη. It

remains to apply inequality (19.5). �

21.3. Example. Let a(ξ) = ε+1/(|ξ|2 +q2), ε ≥ 0, q > 0. Then
a ∈ S0 for ε > 0 and a ∈ S−2 for ε = 0. Moreover, (compare with
(19.2)) for n = 3, a(D)u(x) = εu(x) + π

∫
R3 |x− y|−1 exp(−2πq|x−

y|)u(y)dy, u ∈ C∞0 . Indeed, set f = Op(1/(|ξ|2 + q2))u that is
equivalent to u = (|D|2+q2)f , i.e., −∆f+(2πq)2f = 4π2u. By virtue
of the estimate ‖f‖s ≤ C‖u‖s+2, the solution of the last equation
is unique in Hs. It can be represented in the form f = 4π2G ∗ u,
where (compare with P.7.1) G(x) = exp(−2πq|x|)/4π|x| ∈ H0 is the
fundamental solution of the operator −∆ + (2πq)2.

21.4. Definition. Let a ∈ Sm. An operator Op(a(x, ξ)) is
called elliptic if there exist M > 0 and C > 0 such that

|a(x, ξ)| ≥ C|ξ|m ∀x ∈ Rn and |ξ| ≥M
(compare with (21.2)).

21.5.P. Following the above proof of estimate (21.6) and using
Lemma 21.6, prove that, for the elliptic operator Op(a(x, ξ)) with
the symbol a ∈ Sm the prior estimate

‖u‖s ≤ C(‖a(x,D)‖s−m + ‖u‖s−N ) ∀u ∈ Hs, C = C(s,N), N ≥ 1,
(21.11)
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holds.

Hint. Setting R = Op(ρ(ξ)/a(x, ξ)), where ρ ∈ C∞, ρ ≡ 1 for
|ξ| ≥ M + 1, ρ ≡ 0 for |ξ| ≤ M , show that R · Op(a(x, ξ))u =
u+Op(τ(x, ξ))u, where τ ∈ Sm−1.

21.6. Lemma (on composition). Let a ∈ Sk, b ∈ Sm. Then
∀N ≥ 1

a(x,D) ·Op(b(x, ξ)) =
∑
|α|<N

Op
[
(∂α

ξ a(x, ξ)(D
α
x b(x, ξ)

]
/α! + TN ,

where ‖TNv‖s+N−(k+m) ≤ C‖v‖s ∀v ∈ Hs.

The proof see, for instance, in [35].

21.7. Definition. An operator T : C∞0 → S ′ is called smooth-
ing , if ∀N ≥ 1 ∀s ∈ R ∃C > 0 such that ‖Tu‖s+N ≤ C‖u‖s ∀u ∈ Hs.

21.8.P. Let there be a sequence of functions aj ∈ Smj , where
mj ↓ −∞ as j ↑ +∞. Then there exists a function a ∈ Sm1 such
that (a−

∑
j<N

aj) ∈ SmN ∀N > 1.

Hint. Following the idea of the proof of the Borel theorem 15.2,
one can set

a(x, ξ) =
∞∑

j=1

ϕ(ξ/tj)aj(x, ξ),

where ϕ ∈ C∞(Rn), ϕ(ξ) = 0 for |ξ| ≤ 1/2, ϕ(ξ) = 1 for |ξ| ≥ 1,
and choose tj tending to +∞ as j →∞ so rapidly that, for |x| ≤ 1
and |α|+ |β|+ 1 ≤ j, the following inequality holds:∣∣∂α

ξ D
β
x(ϕ(ξ/tj)aj(x, ξ)

∣∣ ≤ 2−j〈ξ〉mj−1

Solution see, for instance, in [59].

21.9. Definition. An operator A : C∞0 → S ′ is called pseudo-
differential of class L, if A = Op(a(x, ξ)) + T , where a ∈ Sm for
some m ∈ R, and T is a smoothing operator. Any function σA ∈ Sm

such that (σA − a) ∈ S−N ∀N is called the symbol of the operator
A ∈ L.

21.10.P. Applying Lemma 21.6, show that the operator A ∈
L has (compare with P.16.22) the pseudolocality property, in other
words, if ϕ and ψ belong to C∞0 and ψ = 1 on suppϕ, then ϕA(1−ψ)
is a smoothing operator.
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21.11. Remark. The class L is invariant with respect to the
composition operation (see Lemma 21.6 and P.21.8) as well as with
respect to the change of variables. The following lemma is valid (see,
for instance, [30, 59]).

21.12. Lemma (on change of variables). Let a ∈ Sm. Then the
operator a(x,Dx) = Op(a(x, ξ)) in any coordinate system given by a
diffeomorphism (affine outside a ball) σ : x 7−→ y = σ(x), for any
N ≥ 1, can be represented in the form∑

|α|<N

Op
[
ϕα(y, η)(∂α

ξ a(x, ξ)
∣∣
ξ=tσ′(x)η; x=σ−1(y)

]
+ TN , (21.12)

where tσ′(x) is the matrix transpose to σ′(x) = ∂σ/∂x, and ϕα(y, η)
is a polynomial in η of degree ≤ |α|/2 given by the formula

ϕα(y, η) =
1
α!
Dα

z exp
[
◦
ı(σ(z)− σ(x)− σ′(x)(h− x), η)

] ∣∣
z=x,x=σ−1(y)

.

Moreover, ‖TNv‖s+[N/2+1]−m ≤ C‖v‖s ∀v ∈ Hs.

22. On elliptic problems

In Section 5 we have considered (for some domains Ω) the sim-
plest elliptic problem, namely, the Dirichlet problem for the Laplace
equation. One can reduce to this problem the investigation of an-
other important elliptic problem – the problem with the directional
(the term skew is also used) derivative in a disk Ω = {(x, y) ∈ R2 |
x2 + y2 < 1} for the Laplace equation

∆u = 0 in Ω, ∂u/∂λ = f on Γ = ∂Ω, f ∈ C∞(Γ). (22.1)

Here, ∂/∂λ = (a∂/∂x− b∂/∂y) is the differentiation along the direc-
tion λ (possibly, “sloping” with respect to the normal to the bound-
ary Γ). This direction depends on the smooth vector field

σ : Γ 3 s 7−→ σ(s) = (a(s), b(s)) ∈ R2, a2(s) + b2(s) 6= 0 ∀s ∈ Γ.

Let us identify a point s ∈ Γ with its polar angle ϕ ∈ [0, 2π]. If
σ(ϕ) = (cosϕ,− sinϕ), then λ = ν is the (outward) normal to Γ;
if σ(ϕ) = −(sinϕ, cosϕ), then λ = τ is the tangent to Γ. All these
cases as well as others are important in applications. However, our
interest in problem (22.1) is caused, first of all, by the fact that it
well illustrates the set of general elliptic problems.
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It turns out that the solvability of problem (22.1) depends (see
P.22.1–P.22.4 below) on the so-called degree of the mapping σ rela-
tively the origin, namely, on the integer

N = {arg[a(2π) + ib(2π)]− arg[a(0) + ib(0)]}/2π.

It is clear that N is the number of revolutions with the sign, made
by the point σ(ϕ) around the origin, when it moves along the closed
curve σ : [0, 2π] 3 ϕ 7−→ σ(ϕ) = (a(ϕ), b(ϕ)).

For N ≥ 0, problem (22.1) is always solvable but non-uniquely:
the dimension α of the space of solutions of the homogeneous problem
is equal to 2N + 2.

If N < 0, then for solvability of problem (22.1), it is necessary
and sufficient that the right-hand side f is “orthogonal” to a certain
subspace of dimension β = 2|N |−1. More exactly, there exist (2|N |−
1) linear independent functions Φj ∈ L2(Γ) such that problem (22.1)
is solvable if and only if∫

Γ

fΦjdΓ = 0 ∀j = 1, . . . , β = 2|N | − 1.

In this case the dimension α of the space of solutions of the homo-
geneous problem is equal to 1. A special case of problem (22.1),
when λ = ν is the normal to Γ, is called the Neuman problem for
the Laplace equation. In this case, N = −1, since a(ϕ) + ib(ϕ) =
exp(−iϕ). The Neuman problem is solvable if and only if

∫
Γ
fdΓ = 0;

and the solution is defined up to an additive constant. Indeed, if∫
Γ
fdΓ = 0, then a continuous function

g(s) = g(s0) +

s∫
s0

f(ϕ)dϕ.

is defined on Γ. Using the function g, we construct a solution v of the
Dirichlet problem ∆v = 0 in Ω, v = g on Γ. Then the real part of the
analytic function u+iv, i.e., the function u (defined up to an additive
constant) is a solution of the considered Neuman problem, because
∂u/∂ν = ∂v/∂τ = f , where ∂/∂τ is the differentiation along the
tangent to Γ. Conversely, if u is a solution of the Neuman problem,
then the “orthogonality” condition

∫
Γ
fdΓ = 0 holds. This follows1)

immediately from the Gauss formula (7.5). Finally, the first Green
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formula (7.3) implies1) that if u1, u2 are two solutions of the Neuman
problem, then u = u1 − u2 = const, since∫

Ω

(u2
x + u2

y)dxdy = 0, i.e., ux = uy ≡ 0⇐⇒ u = const .

1) Under the additional condition u ∈ C2(Ω̄). This condition is valid

for f ∈ C∞(Γ) by virtue of prior estimates for elliptic problems (see

below). By the way, the assertion is also valid without this additional

condition (see, for instance, [48, § 28 and § 35]).

Now consider the general elliptic (see Definition 21.4) differential
equation

a(x,D)u ≡
∑
|α|≤m

aα(x)Dαu = f, u ∈ Hs(Ω) (22.2)

in a domain Ω b Rn with a smooth boundary Γ. The example of the
problem with directional derivative shows that, first, it is advisable
to ask the following question: how many boundary conditions

bj(x,D)u
∣∣
Γ
≡

∑
|β|≤mj

bjβ(x)Dβu
∣∣
Γ

= gj on Γ, j = 1, . . . , µ (22.3)

should be imposed (i.e., what is the value of the number µ) and
what kind the boundary operators2) bj should be of in order that
the following two conditions hold:

1) problem (22.2)–(22.3) is solvable for any right-hand side

F = (f, g1, . . . , gµ) ∈ Hs,M = Hs,m(Ω)×
µ∏

j=1

Hs−mj−1/2(Γ), (22.4)

which is, possibly, orthogonal to a certain finite-dimensional
subspace Y0 ⊂ Hs,M ;

2) the solution u of problem (22.2)–(22.3) is determined uniquely
up to a finite-dimensional subspace X0 ⊂ Hs(Ω).

2) The example of the problem ∆u = f in Ω, ∆u = g on Γ shows that

one cannot assign arbitrary boundary operators (22.3).

Below we answer this question in terms of algebraic conditions
on the leading terms of the symbols of differential operators. These
conditions are sufficient as well as necessary (at least, for n ≥ 3) for
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solvability of problem (22.2)–(22.3) in the above-mentioned sense.
However, before considering these conditions, we formulate a series
of exercises relating to the problem with directional derivative.

22.1.P. Setting U = ux, V = −uy, show that a solution u of
problem (22.1) determines the solution W of the following Hilbert
problem: to find a function W = U + iV analytic in Ω, continuous
in Ω̄ and satisfying the boundary condition aU + bV = f on Γ. Con-
versely, the solution W of this Hilbert problem determines uniquely,
up to an additive constant, the solution u of problem (22.1).

22.2.P. Verify that on Γ = {z = |z| exp(iϕ), |z| = 1} the con-
tinuous function g(ϕ) = arg[a(ϕ) + ib(ϕ)] − Nϕ is defined. Then,
constructing in Ω = {|z| < 1} the analytic function p + iq by the
solution of the Dirichlet problem: ∆q = 0 in Ω, q = g on Γ, show
that the function c(z) = zN ·exp(p(x, y)+ iq(x, y)), where z = x+ iy,
analytic in Ω, satisfies on Γ the condition: c = ρ · (a + ib), where
ρ = ep/|a+ ib| > 0.

22.3.P. Let N ≥ 0 and ζ = ξ + iη be a function analytic in Ω
and such that

<ζ = ρ · f/|c|2 on Γ. (22.5)

Setting U + iV = c(z)ζ(z), verify that

ρ(aU + bV ) = (<c)U + (=c)V = |c|2<(U + iV )ζ(z) = ρf on Γ,

i.e., (aU+bV ) = f on Γ. Show that, for N ≥ 0, the general solution
of the Hilbert problem is representable in the form c(z)[ζ(z)+W0(z)],
where W0 = 0 for |z| = 1, W0 is analytic for 0 < |z| < 1 and has a
pole at z = 0 of multiplicity ≤ N . Using Theorem 5.16, prove that

W0(z) = iµ0 +
−1∑

k=−N

[(λk + iµk)zk − (λk − iµk)z−k],

where λk ∈ R, µk ∈ R, i.e., W0(z) is a linear combination of 2N +1
linear independent functions.

22.4.P. Let N < 0. Verify that if U + iV is the solution of
the Hilbert problem, then the function ζ(z) = (U + iV )/c(z) satis-
fies condition (22.5). Then, representing the function <ζ(z) har-
monic for |z| < 1 in the form of the Poisson integral (5.10) and
expanding the function <ζ(z) for |z| = 1 into the Fourier series,
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prove that ζ(z) = (λ0/2 + ic) +
∞∑

k=1

(λn − iµn)zn for |z| < 1, where

c ∈ R, λn = 1
π

2π∫
0

f(ϕ)ρ(ϕ) cos(nϕ)dϕ
a2(ϕ)+b2(ϕ) , µn = 1

π

2π∫
0

f(ϕ)ρ(ϕ) sin(nϕ)dϕ
a2(ϕ)+b2(ϕ) .

Using this result and taking into account the fact that the function
ζ(z) has at z = 0 zero of multiplicity ≥ |N | ≥ 1, show that, for
N < 0, there exists at most one solution of the Hilbert problem,
and the necessary and sufficient condition of the solvability of the
Hilbert problem for N < 0 is the following one: λ0 = · · · = λ|N |−1 =
µ1 = · · · = µ|N |−1 = 0, i.e., “orthogonality” of the function f to the
(2|N | − 1)-dimensional space.

22.5. Remark. The solution of problems P.22.1–P.22.4 is pre-
sented, for instance, in § 24 of the textbook [25].

Let us go back to the boundary-value problem (22.2)–(22.3) in
the domain Ω b Rn, representing it in the form of the equation
Au = F for the operator

A : Hs(Ω) 3 u 7−→ Au ∈ Hs,M , (22.6)

where Au ≡ (a(x,D)u, γb1(x,D)u, . . . , γbµ(x,D)u). Here, γ is the
operator of principal values on Γ (see P.20.12), and Hs,M is the
Banach space functions F = (f, g1, . . . , gµ) introduced in (22.4) with
the norm

‖F‖s,M = ‖f‖s−m +
µ∑

j=1

‖gj‖′s−mj−1/2. (22.7)

Considering the operator equation Au = F , we use the following
standard notation. If X and Y are linear spaces and A a linear
operator from X into Y , then

KerA = {x ∈ X | Ax = 0}, CokerA = Y/ ImA,

where ImA = {y ∈ Y | y = Ax, x ∈ X} is the image of the operator
A, and Y/ ImA is the factor-space of the space Y by ImA, i.e., the
linear space of the cosets with respect to ImA (see [36]). Recall that
the linear spaces KerA and CokerA are called the kernel and the
cokernel of the operator A, respectively. Also recall that if X and
Y are Banach spaces, then by L(X,Y ) we denote the space of linear
continuous operators from X into Y .
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As has been said, we are going to find conditions on the symbols
of the operators a(x,D) and bj(x,D) under which

α = dim KerA <∞, β = dim CokerA <∞. (22.8)

Below we shall write property (22.8) briefly:

indA = α− β <∞, (22.9)

and call the number indA ∈ Z by the index of the operator A. Two
most important results of the elliptic theory are connected with this
concept: Theorem 22.23 on finiteness of the index and Theorem 22.27
on its stability.

22.6. Remark. It follows from P.22.7 and Lemma 22.8 that
ImA is closed in the Hilbert space Hs,M . Therefore, CokerA is
isomorphic to the orthogonal complement of ImA in Hs,M .

22.7.P. For any s ∈ R, prove the existence of a continuous
continuation operator

Φ : Hs(Ω) −→ Hs(Rn), PΦu = u (22.10)

and show that operator (22.6) is continuous for s > max
j

(mj) + 1/2.

Hint. For Ω = Rn
+, we can take as Φ the operator

Φf = Op(〈η−〉−s)θ+Op(〈η−〉s)Lf, 〈η−〉 = η− + 1, η− = −iηn + |η′|,
(22.11)

where L : Hs(Ω) → Hs(Rn) is any continuation operator, and θ+
is the characteristic function of Rn

+. By virtue of the Paley–Wiener
theorem 18.4, the function θ+Op(〈η−〉s)Lf does not depend on L,
since the function 〈η−〉s(L̃1f−L̃2f) can be analytically continued by
ηn into C+ ⇒ Op(〈η−〉s)(L1f − L2f) = θ−g ∈ L2. Therefore, (see
(20.5)) ‖Φf‖s,Rn ≤ C inf

L
‖θ+Op(〈η−〉s)Lf‖0,Rn ≤ C inf

L
‖Lf‖s,Rn =

C‖f‖s,Rn
+
. If Ω̄ is a compact in Rn, then Φf = ϕ·f+

K∑
k=0

ψk·Φk(ϕk·f),

where
K∑

k=0

ϕk ≡ 1 in Ω, ϕk ∈ C∞0 (Ωk), and
K⋃

k=1

Ωk is a cover of the

domain Ω such that
K⋃

k=1

Ωk ⊃ Γ; ψk ∈ C∞0 (Ωk), ψkϕk = ϕk, and

Φk is the operator given by formula (22.11) in the local coordinates
y = σk(x) “unbending” Γ (see Definition 20.10).
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22.8. Lemma (L. Schwartz). Let A ∈ L(X,Y ) and

dim CokerA <∞.

Then ImA is closed in Y .

Explanation. Consider an example. Let A be the operator of
embedding of X = C1[0, 1] into Y = C[0, 1]. Obviously, ImA 6=
Y = ImA. According to Lemma 22.8, dim CokerA = ∞. This can
readily be understood directly. Indeed, let ϕα(t) = |t − α|, where
α ∈]0, 1[, t ∈ [0, 1]. We have ϕα /∈ ImA, ϕα − ϕβ /∈ ImA for α 6= β,
i.e., the elements ϕα are the representatives of linear independent
vectors in Y/ ImA. Thus, dim(Y/ ImA) =∞.

The proof of Lemma 22.8 is based on the Banach theorem on
the inverse operator3). It is presented, for instance, in [59].

3) Let X and Y be Banach spaces, A ∈ L(X,Y ). If KerA = 0, then

∃A−1 : ImA → X. However, as the example given in the clarification to

the lemma shows, the operator A−1 can be discontinuous. The Banach

theorem (see [36]) asserts that A−1 is continuous, if ImA = Y .

22.9. Lemma. If indA <∞, then ∃C > 0 such that

‖u‖s ≤ C(‖Au‖s,M + ‖u‖s−1) ∀u ∈ Hs(Ω). (22.12)

Proof. Let X1 be the orthogonal complement in Hs,M to X0 =
KerA. We have A ∈ L(X1, Y1), where Y1 = ImA, and A is an iso-
morphism ofX1 and Y1. The space Y1 is closed (Lemma 22.8), hence,
it is a Banach space. By the Banach theorem, A−1 ∈ L(Y1, X1). Let
p denote the orthogonal projector of X onto X0. Then

‖u‖s ≤ ‖pu‖s + ‖(1− p)u‖s = ‖pu‖s + ‖A−1A(1− p)u‖s
≤ ‖pu‖s + C1‖A(1− p)u‖s,M

≤ ‖pu‖s + C1‖Au‖s,M + C2‖pu‖s.

It remains to note that ‖pu‖s ≤ C‖u‖s−1. This is true, because pu ∈
X0, dimX0 < ∞, hence, ‖pu‖s ≤ C‖pu‖s−1 (since the continuous
function ‖v‖s is bounded on the finite-dimensional sphere ‖v‖s−1 =
1, v ∈ X0). �

22.10. Lemma. (22.12)⇒ dim KerA <∞.
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Proof. Suppose that dim KerA = ∞. Let {uj}∞j=1 be a or-
thonormed sequence in X0 = KerA. Then ‖uk − um‖2s = 2. It fol-
lows from (22.12) that ‖uk−um‖s =

√
2 ≤ C‖uk−um‖s−1, because

(uk−um) ∈ X0. Therefore, ‖uk−um‖s−1 ≥
√

2/C. Hence, one can-
not choose from the sequence {uj} bounded in Hs(Ω) a subsequence
converging in Hs−1(Ω). However, this contradicts the compactness
of the embedding of Hs(Ω) into Hs−1(Ω) (see Theorem 20.15). �

22.11. Remark. Lemmas 22.9 and 22.10 show the role of a priori
estimate (22.12). A way to its proof is suggested by the proof of a
priori estimate (21.11) in Rn (see hint to P.21.5). Moreover, the
following lemma is valid.

22.12. Lemma. Let R ∈ L(Hs,M ,Hs),

R · Au = u+ Tu, ‖Tu‖s+1 ≤ C‖u‖s (22.13)

and

A ·RF1 = F1 + T1F1, ‖T1F1‖s+1,M ≤ C‖F1‖s,M . (22.14)

Then indA <∞.

Proof. Obviously, (22.13) ⇒ (22.12). Therefore, dimKerA <
∞. Furthermore, T1 : Hs,M → Hs,M is a compact (in other terms,
totally continuous) operator [36], i.e., T1 maps a bounded set in
Hs,M in a compact one that follows from (22.14) and the com-
pactness of the embedding of Hs+1,M into Hs,M (Theorem 20.15).
Hence, by the Fredholm theorem (see [36, 56]) the subspace Y1 =
Im(1 + T1) is closed in Hs,M , where dim CokerY1 < ∞, and the
equation (1+T1)F = F has a solution for any F ∈ Y1. It remains to
note that ImA = Im(1+T1), and the equation Au = F has ∀F ∈ Y1

the solution u = RF1. �

22.13. Definition. The operator R, which satisfies (22.13) and
(22.14), is called the regulizer of the operator A.

22.14.P. Let Γ = ∂Ω, where Ω b Rn+1. A pseudodifferential
operator4) A : Hs(Γ) → Hs−m(Γ) of the class Lm on the closed
variety Γ is called elliptic, if its symbol4) a satisfies the condition
|a(x, ξ)| ≥ C|ξ|m for x ∈ Γ and |ξ| � 1. Prove that indA <∞.

4) Let ξ = (ξ1, . . . , ξn) ∈ Rn be the coordinate representation of a

linear functional v on the tangent space to Γ at a point p ∈ Γ with the
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local coordinates x = (x1, . . . , xn). The functional (vector) v is called

cotangent . The set of such vectors id denoted by T ∗p Γ. It is isomorphic

to Rn. The value of v on the tangent vector gradx = (∂/∂x1, . . . , ∂/∂xn)

is calculated by the formula (ξ, gradx) = ξ1∂/∂x1 + · · · + ξn∂/∂xn. If

y = σ(x) is another local system of coordinates of the same point p ∈ Γ

and η = (η1, . . . , ηn) is the corresponding coordinate representation for the

cotangent vector v, then, by virtue of the equality (ξ, gradx) = (η, grady),

the relation ξ = tσ′(x)η holds, where tσ′(x) is defined in Lemma 21.12. In

the set
S

p∈Γ

T ∗p Γ a structure of a smooth variety is introduced in a natural

way. It is called the cotangent bundle. Let a function a ∈ C∞(T ∗p Γ) be

such that, for the points of Γk ⊂ Γ with local coordinates x, the function

a coincides with a function ak ∈ Sm. Let
P
ϕk ≡ 1 be a partition

of unity subordinate to the cover ∪Γk = Γ, and ψk ∈ C∞0 (Γk), where

ψkϕk = ϕk. Lemma 21.12 on the choice of variables implies that the

formula A : Hs(Γ) 3 u 7−→ Au =
P
ϕkOp(ak(x, ξ))ψku ∈ Hs−m(Γ)

uniquely, up to the operator T ∈ L(Hs(Γ), Hs−m+1(Γ)), determines a

linear continuous operator that is called pseudodifferential of the class Lm

with the symbol a.

Hint. Let
∑
ϕk ≡ 1 be a partition of unity subordinate to a

finite cover ∪Γk = Γ, and ψk ∈ C∞0 (Γk), where ψkϕk = ϕk. Show
(compare with the hint to P.21.5), that the operator4)

Rf =
∑

ψkOp(ρk(ξ)/ak(x, ξ))ϕkf, f ∈ Hs−m(Γ), (22.15)

where ρ ∈ C∞(Rn), ρ = 1 for |ξ| ≥M + 1 and ρ = 0 for |ξ| ≤M , is
the regulizer for A.

We continue the investigation of the boundary-value problem
(22.2)–(22.3). Always below we assume that the following condition
holds.

22.15. Condition. If dim Ω = 2, then the leading coefficients of
the operator a(x,D) are real.

22.16. Lemma. The principal symbol am(x, ξ) =
∑

|α|=m

aα(x)ξα

of the operator a(x,D) under Condition 22.15 always admits a fac-
torization [66], i.e., the function

am(y, η) =
∑
|α|=m

aα(x)ξα
∣∣
ξ=tσ′(x)η; x=σ−1(y)

,
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where σ is defined in (21.12), can be represented in the form

am(y, η) = a+(y, η) · a−(x, η), η = (η′, ηn) ∈ Rn−1 × R. (22.16)

Here, the function a±(y, η) as well as the function a−1
± (y, η) is con-

tinuous for η 6= 0 and, for any η′ 6= 0, can be analytically continued
by ηn into the complex half-plane C∓. In this case

a±(y, tη) = tµa±(y, η) for t > 0, (η′, ηn) ∈ Rn−1 × C∓,

where the number µ is integer5). Moreover, m = 2µ.

5) We shall see below that the number µ equal to the degree of ho-

mogeneity of the function a+(y, η) in ηn and called by the index of factor-

ization of the symbol am is intendedly denoted by the same letter as the

required number of boundary operators bj(x,D) in problem (22.2)–(22.3).

Proof. If the coefficients aα(x) for |α| = m are real, then, for
η′ 6= 0, the equation am(y, η) = 0, where η = (η′, ηn) ∈ Rn−1×R, has
with respect to ηn only complex-conjugate roots ηn = ±iλk(y, η′) ∈
C±, where k = 1, . . . , µ. Therefore, m = 2µ is an even integer and

a±(y, η) = c±(y)
µ∏

k=1

(±iηn + iλk(y, η′)), c±(x) 6= 0. (22.17)

For n ≥ 3, formula (22.16) is always valid. Indeed, for ηn 6= 0, with
every root ηn = ±iλ(y, η′) ∈ C± of the equation am(u, η) = 0, where
η = (η′, ηn), by virtue of the homogeneity of am(u, η) with respect
to η, the root ηn = ∓λ(y,−η′) ∈ C∓ is associated. It remains to
note that the function λ(y, η′) is continuous with respect to η′ 6= 0,
and the sphere |η′| = 1 is connected for n ≥ 3. �

22.17. Remark. It is clear that the symbol |η|2 of the Laplace
operator admits the factorization |η|2 = η+η−, where η± = ±iηn +
|η′|. However, the symbol of the operator (∂/∂y2 + i∂/∂y1)m is not
factorizable, since (ηn + iη′)−m can be analytically continued with
respect to ηn in C+ (in C−) only for η′ > 0 (η′ < 0).

Let us formulate the conditions imposed on the symbols of the
operators bj(x,D). We fix a point x0 ∈ Γ. Take the leading parts
of the symbols of the operators a(x0, D) and bj(x0, D), written in
the coordinates y = (y′, yn) ∈ Rn−1 × R which locally “unbend” Γ.
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This means that near the point x0 the boundary Γ is given by the
equation yn = 0, where y is the inward normal to Γ. Thus, consider
the polynomials in η:

am(x0, η) =
∑
|α|=m

aαξ
α and

bmj (x0, η) =
∑

|β|=mj

bjβ(x0)ξβ , j = 1, . . . ,
m

2
,

where (according to Lemma 21.12) ξ = tσ′(x0)η, and σ : x 7−→ y is
the diffeomorphism “unbending” Γ near the point x0. Let η′ 6= 0.
Suppose that Condition 22.15 holds, i.e., am(x0, η) = a+(x0, η) ·
a−(x0, η). Let

µ∑
k=1

bjk(η′)ηk
n ≡ bmj

(x0, η) mod a+(x0, η) (22.18)

denote the remainder of division of bmj (x0, η) by a+(x0, η) (where
bmj

and a+ are considered as polynomials in ηn).

22.18. Condition. (of complementability [2], or the Shapiro–
Lopatinsky condition [3, 19]). Polynomials (22.18) are linear inde-
pendent, i.e.,

det(bjk(x, η′)) 6= 0 ∀x ∈ Γ, ∀η′ 6= 0. (22.19)

In other words, the principal symbols bmj
(x, η) of the boundary opera-

tors, considered as polynomials in ηn, are linear independent modulo
the function a+(x0, η) which is a polynomial in ηn.

22.19. Remark. In the case of a differential operator a(x,D) or
in the case of a pseudodifferential operator a(x,D) with a rational
symbol, as in Example 21.3, we have a+(η′, ηn) = (−1)µa−(−η′,−ηn).
Therefore, the function a+(x0, η) in Condition 22.18 can be replaced
by a−(x0, η). By the same reason, in these cases it is unessential
whether yn is the inward normal or the outward normal to Γ.

22.20. Definition. Problem (22.2)–(22.3) and the correspond-
ing operator A are called elliptic, if Conditions 22.15 and 22.18 hold.

22.21. Example. Let a(x,D) be an elliptic operator of order
m = 2µ. Let Bj(x,D) = ∂j−1/∂νj−1 + . . . , j = 1, . . . , µ, where ν is
the normal to Γ, and dots denote an operator of order < j−1. Then
(under Condition 22.15) det(bjk(x, η′)) = 1 for any a(x,D).
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22.22.P. Let λ be a smooth vector field on Γ = ∂Ω, where Ω̄ is
a compact in Rn. Show that the Poincaré problem

a(x,D)u ≡
∑
|α|≤2

aα(x)Dαu = f in Ω, ∂u/∂λ+ b(x)u = g on Γ

(22.20)
for an elliptic operator a(x,D) is elliptic in the case n ≥ 3 if and
only if the field λ at none point Γ is tangent to Γ. Verify also that in
the case n = 2 problem (22.20) is elliptic (under Condition 22.15)
for any nondegenerate field λ.

22.23. Theorem. Let the operator A : Hs,M (Ω) → Hs(Ω) as-
sociated with the differential boundary-value problem (22.2)–(22.3):

a(x,D)u ≡
∑
|α|≤m

aα(x)Dαu = f in Ω b Rn,

bj(x,D)u
∣∣
Γ
≡
∑

|β|≤mj

bjβ(x)Dβu
∣∣
Γ

= gj on Γ, j = 1, . . . , µ = m/2,

be elliptic. Let (compare with P.22.7) s > max
j

(mj) + 1/2. Then

indA <∞. Moreover,

‖u‖s ≤ C(‖a(x,D)u‖s−m +
µ∑

j=1

‖bj(x,D)u
∣∣
Γ
‖′s−mj−1/2 + ‖u‖s−1).

(22.21)

Proof. We outline the proof whose details can be found in
[2, 14, 66]. Using the partition of unity (as has been suggested in
hints to P22.7 and P.22.14) and taking into account P.21.5, we can
reduce the problem of construction of the regulizer for the operator
A to the case, when Ω = Rn

+, and the symbols a(x, ξ) and bj(x, ξ) do
not depend on x. In this case, we define the operator R : Hs,M → Hs

by the formula

RF = P+Op(r+/a+)θ+Op(r−/a−)Lf +
µ∑

j=1

P+Op(cj)(gj − fj),

(22.22)
where P+ is the operator of contraction on Rn

+, L : Hs(Rn
+) →

Hs(Rn) is any operator of continuation; by r± we denote the func-
tions ξµ

±/〈ξ±〉µ, “removing” the singularities of the symbols 1/a± at
the point ξ = 0, since ξ± = ±iξn + |ξ′|, and 〈ξ±〉 = ξ± + 1. Note
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that (in contrast to the analogical function ρ in (21.3)) the func-
tion r± can be analytically continued by ξn ∈ C∓. Furthermore,

cj(ξ) =
µ∑

k=1

cjk(ξ′)(ξk−1
n /a+(ξ)), where (ckj(ξ′)) is the inverse (see

(22.19)) matrix for (bjk(ξ′)) and

fj = γBj(D) ·R0f, where R0f = P+Op(r+/a+)θ+Op(r−/a−)Lf.

Using the Paley–Wiener theorem 18.4, one can readily verify that
the function R0f does not depend on L (compare with P.22.7) and
vanishes at xn = 0 together with the derivatives with respect to xn

of order j < µ.
Note that Au = P+Op(a−)Op(a+)u+, where u+ ∈ H0(Rn) is

the continuation by zero for xn < 0 of the function u ∈ Hs(Rn). By
virtue of the Paley–Wiener theorem, θ+Op(r−/a−)Op(a−)f− = 0
∀f− ∈ H0(Rn), if P+f− = 0. Therefore,

R0Au = P+Op(r+/a+)θ+Op(r−/a−)Op(a−)Op(a+)u+

= P+Op(r+/a+)θ+Op(a+)u+ + T1u

= u+ T2u, where ‖Tju‖s+1 ≤ C‖u‖s.

The operator R0 is the regulizer for the operator corresponding to
the Dirichlet problem with zero boundary conditions. Similarly, one
can prove that, in the case of the half-space, the operator (22.22) is
the regulizer for A. �

Estimate (22.21) immediately implies

22.24. Corollary. If u ∈ Hs−1(Ω), Au ∈ Hs,M (Ω), then u ∈
Hs(Ω). In particular, if u ∈ Hs(Ω) is the solution of problem (22.2)–
(22.3) and f ∈ C∞(Ω̄), gj ∈ C∞(Γ), then u ∈ C∞(Ω̄).

22.25. Proposition. Under the conditions of Theorem 22.23,
KerA, CokerA, hence, also indA do not depend on s.

Proof. If u ∈ Hs and Au = 0, then, by virtue of Corol-
lary 22.24, u ∈ Ht ∀t > s, i.e., KerA does not depend on s. Then,
since Hs,M is the direct sum A(Hs)+̇Q, where Q is a finite dimen-
sional subspace, and since Ht,M is dense in Hs,M for t > s, it follows
(see Lemma 2.1 in [26]) that Q ⊂ Ht,M . Therefore, (accounting
Corollary 22.24)

Ht,M = Ht,M ∩Hs,M = Ht,M ∩ A(Hs)+̇Ht,M ∩Q = A(Ht)+̇Q,
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i.e., CokerA does not depend on s. �

22.26. Remark. KerA and CokerA do not depend on s, but
when perturbing the operator A by an operator of lower order6)

or by an operator with arbitrarily small norm6), dim KerA and
dim CokerA can vary. This can bee seen (the reader can easily
verify) even in the one-dimensional case. Nevertheless, indA =
dim KerA− dim CokerA does not depend on these perturbations.

6) The elliptic theory has been constructed with the help of such

operators

Moreover, the following theorem is valid (see, for instance, [7,
26, 59]).

22.27. Theorem (on stability of the index). Let Ω b Rn, and
let the family of elliptic operators

At : Hs(Ω)→ Hs,M (Ω), where t ∈ [0, 1],

be continuous with respect to t, i.e.,

‖Atu−Aτu‖s,M ≤ C(t, τ)‖u‖s, where C(t, τ) −→ 0 as t −→ τ.

Then indA0 = indA1.

22.28. Remark. Theorem 22.27 gives us a convenient method
for investigation of solvability of elliptic operators Au = F . Actually,
assume that, for a family of elliptic operators

At = (1− t)A+ tA1 : Hs −→ Hs,M

it is known that indA1 = 0. Then indA = 0. If, moreover, we can
establish that KerA = 0, then the equation Au = F is uniquely
solvable. If dim KerA = 1, then the equation Au = F is solvable for
any F orthogonal in Hs,M to a non-zero function, and the solution
is determined uniquely up to the one-dimensional KerA.

Let us give (following [4]) an example of an elliptic operator of
a rather general form, whose index is equal to zero.

22.29. Example. Let Ω b Rn be a domain with a smooth
boundary Γ and

Aq = (a(x,D), b1(x,D)
∣∣
Γ
, . . . , bµ(x,D)

∣∣
Γ
) : Hs(Ω) −→ Hs,M (Ω).
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Here,

a(x, ξ) =
∑

|α|+k≤2µ

aα(x)ξαqk, bj(x, ξ) =
∑

|β|+l≤mj

bjβ(x)ξβql,

where q ≥ 0. Suppose that the ellipticity with a parameter holds,
i.e.,

a2µ(x, ξ, q) ≡
∑

|α|+k=2µ

aα(x)ξαqk 6= 0 ∀(ξ, q) 6= 0 ∀x ∈ Ω̄.

Then a2µ(x, η, q) admits (see Lemma 22.16) the factorization

a2µ(x, η, q) = a+(x, η, q)a−(x, η, q).

Suppose also that the analogue of the Shapiro–Lopatinsky condition
22.18 holds. Namely, for any x ∈ Γ, the principal symbols

bj(x, ξ) =
∑

|β|+l≤mj

bjβ(x)ξβql
∣∣
ξ=tσ′(x)η

, j = 1, . . . , µ

of the boundary operators, considered as polynomials in ηn, are lin-
early independent modulo the function a+(x, η, q), considered as a
polynomial in ηn.

We repeat the proof of Theorem 22.23, preliminarily replacing
〈ξ〉 = 1 + |ξ| in the definition of the norm in the space Hs (see
Definition 20.2) by 〈ξ〉 = 1 + q + |ξ|. Then, by virtue of obvious
inequality

‖(1 + q + |ξ|)sũ(ξ)‖L2(Rn) ≤
1
q
‖(1 + q + |ξ|)s+1‖L2(Rn),

we obtain that the regulizer R of the operator Aq (see the proof of
Theorem 22.23) satisfies the relations

R · Aqu = u+ Tu, ‖Tu‖s ≤
1
q
‖u‖s

and

Aq ·RF = F + T1F, ‖T1F‖s,M ≤
1
q
‖F‖s,M .

Therefore, the operators 1 + T and 1 + T1 are for q � 1 automor-
phisms of the appropriate spaces, and the equation Aqu = F for
q � 1 is uniquely solvable. Thus, indAq = 0 for any non-negative q
by Theorem 22.27.
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The following proposition easily follows from Remark 22.28 and
Example 22.29.

22.30. Proposition. Let A : Hs → Hs,M be the operator cor-
responding to the problem from Example 22.21 (for instance, the
Dirichlet problem

a(x,D)u ≡
∑
|α|=2µ

aα(x)Dαu = f in Ω b Rn,

∂j−1u

∂νj−1
= gj on Γ, j = 1, . . . , µ

for the elliptic operator a(x,D) which satisfies condition (22.14))
or to the elliptic Poincaré problem (considered in P.22.22). Then
indA = 0.

22.31. Corollary. (Compare with P.5.17). The Dirichlet prob-
lem

∆u = f ∈ Hs−2(Ω), u = g ∈ Hs−1/2(Γ), s ≥ 1
in a domain Ω b Rn with a sufficiently smooth boundary Γ is uniquely
solvable. In this case,

‖u‖s ≤ C(‖f‖s−2 + ‖g‖′s−1/2). (22.23)

Proof. By virtue of the maximum principle (Theorem 5.13),
KerA = 0. Therefore, CokerA = 0, since indA = 0. Furthermore,
since KerA = 0, the general elliptic estimate (22.21) implies esti-
mate (22.23). Indeed, arguing by contradiction, we take a sequence
{un} such that ‖un‖s = 1 and ‖Aun‖s,M → 0. By virtue of the com-
pactness of the embedding Hs(Ω) in Hs−1(Ω) and estimate (22.21),
we can assume that un converges in Hs to u ∈ Hs. Since ‖un‖s = 1,
we have ‖u‖s = 1. On the other hand, ‖u‖s = 0, since KerA = 0
and ‖Au‖s,M = lim ‖Aun‖s,M = 0. �

22.32. Corollary. The Neuman problem

∆u = f ∈ Hs−2(Ω),
∂u

∂ν
= g ∈ Hs−3/2(Γ), s > 3/2 (22.24)

in a domain Ω b Rn with a sufficiently smooth boundary Γ is solvable
if and only if ∫

Ω

f(x)dx−
∫
Γ

g(γ)dΓ = 0. (22.25)

In this case, the solution u is determined up to a constant.
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Proof. The necessity of (22.25) immediately follows from the
Gauss formula (7.5). The first Green formula (or the Giraud–Hopf–
Oleinik lemma 5.23) implies that KerA consists of constants. Hence,
dim CokerA = 1, since indA = 0. Therefore, problem (22.24) is
solvable, if the right-hand side F = (f, g) satisfies one and only one
condition of orthogonality. Thus, the necessary condition (22.25) is
also sufficient for solvability of problem (22.24). �

22.33. Remark. The method for investigation of the solvability
of elliptic equations described in Remark 22.28 can be applied in
more general situations, for instance, for problems with conditions
of conjunction on the surfaces of discontinuity of coefficients [14].

22.34. Remark. The theory of elliptic boundary-value problems
for differential operators considered in this section allows a natural
generalization onto pseudodifferential operators (see [19, 66]). In
particular, one can show [15] that the equation

ε2u(x) +
1
4π

∫
Ω

e−q|x−y|

|x− y|
u(y) dy = f(x), Ω b R3

for the operator considered in Example 21.3 has, for ε ≥ 0 and q ≥ 0,
the unique solution u ∈ H−1(Ω) for any f ∈ C∞(Ω̄). If ε = 0, then

u = u0 + ρ · δ
∣∣
Γ
, u0 ∈ C∞(Ω̄), ρ ∈ C∞(Γ),

where δ
∣∣
Γ

is the δ-function concentrated on Γ. For ε > 0, we have
u ∈ C∞(Ω̄) and

u(x) = u0(x) +
1
ε
ρ(y′)ϕe−yn/ε + r0(x, ε),

where ‖r0‖L2 ≤ C
√
ε, yn is the distance along the normal form x to

y′ ∈ Γ and ϕ ∈ C∞(Ω̄), ϕ ≡ 1 in a small neighbourhood of Γ (and
ϕ ≡ 0 outside a slightly greater one).





Addendum
A new approach to the theory

of generalized functions
(Yu.V. Egorov)

1. Deficiencies of the distribution theory. The distribution the-
ory of L. Schwartz was created, mainly, to 1950 and fast has won
popularity not only among mathematicians, but also among repre-
sentatives of other natural sciences. This can be explained to a large
degree by the fact that fundamental physical principles can be laid
in the basis of this theory; hence its application becomes quite nat-
ural. On the other hand, a lot of excellent mathematical results was
obtained in last years just due to wide use of the distribution theory.
However, it was soon found out that this theory has two essential de-
ficiencies, which seriously hinder its application both in mathematics
and in other natural sciences.

The first of them is connected with the fact that in the general
case, it is impossible to define the operation of multiplication of
distributions so that this operation were associative. It can be seen,
for example, from the following reasoning due to L. Schwartz: a
product (δ(x) · x) · (1/x) is defined, since each distribution can be
multiplied by an infinitely differentiable function, and is equal to 0.
On the other hand, the product δ(x) · (x · (1/x)) is also defined and
equal to δ(x).

Moreover, L. Schwartz has proved the following theorem.

Theorem. Let A be an associative algebra, in which a derivation
operator (i.e., a linear operator D : A→ A such that D(f · g) = f ·
D(g)+D(f)·g) is defined. Suppose that the space C(R) of continuous
functions on the real line is a subalgebra in A, and D coincides with

129



130 Yu.V. Egorov

the usual derivation operator on the set of continuously differentiable
functions, and the function, which is identically equal to 1, is the
unit of the algebra A. Then A cannot contain an element δ such
that x · δ(x) = 0.

Let us show that the product δ · δ is not defined in the space
of distributions. Let ω(x) be a function from C∞0 (R) such that∫
ω(x) dx = 1, ω(0) = 1; suppose that ωε(x) = ω(x/ε)/ε. It is natu-

ral to assume that δ·δ = limω2
ε ; hence, (δ·δ, ϕ) = lim

∫
ω2

ε(x)ϕ(x) dx.
However, (ω2

ε , ω) =
∫
ω2

ε(x)ω(x) dx = ε−1
∫
ω2(x)ω(εx) dx → ∞ as

ε → 0, that proves our statement. Thus, the distribution theory
practically cannot be applied for solution of nonlinear problems.

Another essential deficiency of the distribution theory is con-
nected with the fact that even linear equations with infinitely differ-
entiable coefficients, which are “ideal” for this theory, can have no
solutions. For example, this property holds for the equation

∂u/∂x+ ix∂u/∂y = f(x, y).

It is possible to select an infinitely differentiable function f with a
compact support on the plane of variables x, y such that this equation
has no solutions in the class of distributions in any neighbourhood
of the origin. Actually, such functions f are rather numerous: they
form a set of the second category in C∞0 (R2)!

2. Shock waves. In gas dynamics, in hydrodynamics, in the elas-
ticity theory and in other areas of mechanics, an important role is
played by the theory of discontinuous solutions of differential equa-
tions. Such solutions are usually considered when studying the shock
waves. By the shock wave we mean a phenomenon, when basic char-
acteristics of a medium have different values on different sides of a
surface, which is called the front of the wave. Although, these magni-
tudes actually vary continuously, their gradient in a neighbourhood
of a wavefront is so great that it is convenient to describe them with
the help of discontinuous functions.

For example, in gas dynamics a jump of pressure, density and
other magnitudes occurs at distances of order 10−10 m. The equa-
tions of gas dynamics have the form:

ρt + (ρv)x = 0 (continuity equation), (1)
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(ρv)t + (ρv2 + p)x = 0 (equation of motion), (2)

p = f(ρ, T ) (equation of state). (3)

Here ρ is the density of the gas, v is the velocity of particles of the
gas, p is the pressure, T is the temperature. The form of the first two
equations is divergent that allows one to define generalized solutions
with the help of integrations by parts, as it is done in the distribution
theory. In this case, it is usually assumed that

ρ = ρl + θ(x− vt)(ρr − ρl), p = pl + θ(x− vt)(pr − pl),

where θ is the Heavyside function, which is equal to 0 for nega-
tive values of the argument and equal to 1 for positive values, and
smooth functions ρl, pl, ρr, pr are values of the density and pressure,
respectively, to the left and to the right from the surface of the wave
front.

The essential deficiency of this exposition is the use of only one,
common Heavyside function. If we replace it by a smooth function
θε, for which the passage from zero value to unit one is carried out
on a small segment of length ε, then condition (3) will be broken in
this passage area and it can affect the results of calculations!

The analysis of this situation suggests a natural solution: for
description of the functions ρ and p we should use different functions
θε. In the limit, as ε → 0, these functions tend to one common
Heavyside function, but for ε 6= 0, these functions should be such
that condition (3) holds.

Actually, such situation occurs in applied mathematics rather
often: for proper, adequate description of a phenomenon with the
use of discontinuous functions, it is necessary to remember the way
of approximation of these discontinuous functions by smooth ones.
It is in this impossibility of such remembering, principal for the dis-
tribution theory, the main deficiency of this theory consists, which
does not allow one to use it in nonlinear problems.

We are now going to describe a new theory which includes the
distribution theory and at the same time is free from the deficiency
indicated.

Such a theory was constructed firstly by J.-F. Colombeau (see
[10] and [11]). We give here another version of this theorem which
is simpler and more general.
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3. A new definition of generalized functions. How large a space
of generalized functions were, the space of infinitely differentiable
functions must be dense in it. This quite natural convention is gen-
erally accepted, it is quite justified by practical applications, and
we have no reasons to abandon it. Therefore, it is natural to define
the space of generalized functions as the completion of the space of
infinitely differentiable functions in some topology, which in effect
defines the required space. For example, the space of distributions
can be defined, by considering all sorts of sequences of infinitely dif-
ferentiable functions {fj} such that any sequence

∫
fj(x)ϕ(x) dx has

a finite limit as j →∞, if ϕ ∈ C∞0 .
Let Ω be a domain in the space Rn. Consider the space of

sequences {fj(x)} of functions infinitely differentiable in Ω. Two
sequences {fj(x)} and {gj(x)} from this space are called equivalent,
if for any compact subset K of Ω there exists N ∈ N such that
fj(x) = gj(x) for j > N , x ∈ K. The set of sequences which are
equivalent to {fj(x)} is called a generalized function. The space of
generalized functions is designated G(Ω).

If a generalized function is such that, for some its representative
{fj(x)} and any function ϕ from D(Ω) there exists

lim
∫
fj(x)ϕ(x) dx,

then we can define a distribution corresponding to this generalized
function. Conversely, any distribution g ∈ D′(Ω) is associated with
a generalized function which is defined by the representative fj(x) =
g · χj ∗ ωε, where ε = 1/j, χj is a function from the space C∞0 (Ω),
which is equal to 1 at points located at distance ≥ 1/j from the
boundary of the domain Ω. Thus, D′(Ω) ⊂ G(Ω).

If a generalized function is defined by a representative {fj(x)},
then its derivative of order α is defined as a generalized function,
which is given by the representative {Dαfj(x)}. The product of two
generalized functions, given by representatives {fj(x)} and {gj(x)}
is defined as the generalized function corresponding to the represen-
tative {fj(x)gj(x)}.

If F is an arbitrary smooth function of k complex variables, then
for any k generalized functions f1, . . . , fk, the generalized function
F (f1, . . . , fk) is defined. Moreover, such function can also be defined
in the case, when F is a generalized function in R2k. For example,
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the generalized function “δ ”, which is defined by the sequence {j ·
ω(jx)}, where ω ∈ C∞0 (Ω),

∫
ω(x) dx = 1, corresponds to the Dirac

δ-function. Therefore, the generalized function “δ“(“δ”(x)) can be
defined as a class containing the sequence {j · ω(j2(jx))}. Let us
note that the product x · “δ”(x) 6= 0, contrary to the distribution
theory. It is essential, if we recall the theorem of L. Schwartz, which
has been given above.

The generalized function have a locality property. If Ω0 is a
subdomain of Ω, then for any generalized function f its restriction
f
∣∣
Ω0
∈ G(Ω0) is defined. Moreover, the restriction can be defined

on any smooth subvariety contained in Ω, and even a value f(x) is
defined for any point of Ω. One should only to understand that such
restriction is a generalized function on an appropriate subvariety. In
particular, the values of generalized functions at a point make sense
only as generalized complex numbers. These numbers are defined as
follows.

Consider the set of all sequences of complex numbers {cj}. One
can introduce a relation of equivalence in this set such that two
sequences are equivalent, if they coincide for all sufficiently large
values of j. Obtained classes of equivalent sequences are also called
generalized complex numbers.

A generalized function f is equal to 0 in Ω0, if there are N ∈ N
and a representative {fj(x)} such that fj(x) = 0 in Ω0 for j > N .
The smallest closed set, outside of which f = 0, is called the support
of f . Note, however, that there are paradoxes from the viewpoint of
the distribution theory here: it can, for example, happen that the
support of f consists of one point, but the value of f at this point is
equal to zero!

If the domain Ω is covered with a finite or countable set of do-
mains Ωj and generalized functions fj are defined in each of these
domains, respectively, so that fi − fj = 0 on the intersection of the
domains Ωi and Ωj , then a unique generalized function f is defined
whose restriction on Ωj coincides with fj .

4. Weak equality. By analogy with the distribution theory, a
notion of weak equality can be naturally introduced in the theory
of generalized functions. Namely, generalized function f and g are
weakly equal, f ∼ g, if for some their representatives {fj(t)} and
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{gj(x)} the following condition holds:

lim
j→∞

∫
[fj − gj ]ϕ(x) dx = 0,

for any function ϕ from C∞0 . In particular, two of generalized com-
plex numbers, which are defined by sequences {aj} and {bj}, are
weakly equal, a ∼ b, if lim(aj − bj) = 0 as j → ∞. It is clear that
for distributions, the weak equality coincides with the usual one. If
f ∼ g, then Dαf ∼ Dαg for any α. The weak equality is not “too
weak”, as the following statement shows.

Theorem. If f ∈ G(R) and f ′ ∼ 0, and for some function h
from C∞0 (R) such that

∫
h(x) dx = a 6= 0, there exists a finite limit

lim
∫
fj(x)h(x) dx = C,

then f ∼ const.

Proof. By condition, we have

lim
∫
fj(x)ϕ′(x) dx = 0

for any function ϕ from C∞0 (R). Therefore,

lim
∫
fj(x) ·

[
σ(x)− a−1h(x)

∫
σ(x) dx

]
dx = 0

for any function σ from C∞0 (R), i.e.,

lim
∫
fj(x)σ(x) dx = Ca−1

∫
σ(x) dx.

�

The proven theorem implies, for example, that systems of ordi-
nary differential equations with constants coefficients have no weak
solutions except classical ones.

If f and g are functions continuous in a domain Ω, then their
product fg is weakly equal to the product of generalized functions
corresponding to the functions f and g.

A more general theorem is also valid: if F ∈ C∞(R2p) and
f1, . . . , fp are continuous functions, then the continuous function
F (f1, . . . , fp) is weakly equal to the generalized function F (g1, . . . , gp),
where gk is a generalized function which is weak equal to fk.
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Note that the concept of weak equality can generate theorems
paradoxical from the viewpoint of classical mathematics: for exam-
ple, the following system of equations is solvable:

y ∼ 0, y2 ∼ 1.

Its solution is, for example, the generalized function which corre-
sponds to f(ε, x) =

√
2 · sin(x/ε).

Consider now the Cauchy problem:

∂u/∂t ∼ F (t, x, u, . . . ,Dαu, . . . ), u(0, x) ∼ Φ(x), |α| ≤ m.
Here, u = (u1, . . . , uN ) is an unknown vector, F and Φ are

given generalized functions. It is possible to show that such problem
has (and unique) a weak solution in the class of generalized func-
tions without any assumptions concerning the type of the equations.
Namely, we let us take any representatives {Φj} and {Fj} of the
classes Φ and F and consider the Cauchy problem:

∂v/∂t = Fj(t, x, v(t− ε, x), . . . , Dαv(t− ε, x), . . . ),
v(t, x) = Φj(x) for − ε ≤ t ≤ 0,

where ε = 1/j. It is clear, that

v(t, x) = Φj(x) +

t∫
0

Fj(s, x,Φj(x), . . . , DαΦj(x) . . . )ds

for 0 ≤ t ≤ ε. Further, in the same way, one can find v(t, x) for
ε ≤ t ≤ 2ε and so on. The obtained function v(x, t) = vj(t, x) is
uniquely defined for 0 ≤ t ≤ T and is also a smooth function. Thus,
we have constructed a generalized function, which is called a weak
solution. If this generalized function belongs to the class Cm, where
m is the maximal order of derivatives of u on the right-hand side of
the equation, then it satisfies the equation in the usual sense. If the
function F is linear in u and in its derivatives, and depends smoothly
on t, so that one can consider solutions of the Cauchy problem in the
class of distributions, and if the generalized function obtained is a
distribution, then it is also a solution in the sense of the distribution
theory.
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