
Nonlinear problems with blow-up solutions:
Numerical integration based on differential and

nonlocal transformations, and differential constraints ∗

Andrei D. Polyanina,b,c,∗, Inna K. Shingarevad,∗∗

aInstitute for Problems in Mechanics, Russian Academy of Sciences,
101 Vernadsky Avenue, bldg 1, 119526 Moscow, Russia

bBauman Moscow State Technical University,
5 Second Baumanskaya Street, 105005 Moscow, Russia

cNational Research Nuclear University MEPhI, 31 Kashirskoe Shosse, 115409 Moscow, Russia
dUniversity of Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo C.P. 83000, Sonora, México

Abstract

Several new methods of numerical integration of Cauchy problems with blow-up
solutions for nonlinear ordinary differential equations of the first- and second-
order are described. Solutions of such problems have singularities whose posi-
tions are unknown a priori (for this reason, the standard numerical methods for
solving problems with blow-up solutions can lead to significant errors). The first
proposed method is based on the transition to an equivalent system of equations
by introducing a new independent variable chosen as the first derivative, t = y′x,
where x and y are independent and dependent variables in the original equation.
The second method is based on introducing a new auxiliary nonlocal variable of
the form ξ =

∫ x

x0
g(x, y, y′x) dx with the subsequent transformation to the Cauchy

problem for the corresponding system of ODEs. The third method is based on
adding to the original equation of a differential constraint, which is an auxiliary
ODE connecting the given variables and a new variable. The proposed meth-
ods lead to problems whose solutions are represented in parametric form and do
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not have blowing-up singular points; therefore the transformed problems admit
the application of standard fixed-step numerical methods. The efficiency of these
methods is illustrated by solving a number of test problems that admit an exact
analytical solution. It is shown that: (i) the methods based on nonlocal transfor-
mations of a special kind are more efficient than several other methods, namely,
the method based on the hodograph transformation, the method of the arc-length
transformation, and the method based on the differential transformation, and (ii)
among the proposed methods, the most general method is the method based on
the differential constraints. Some examples of nonclassical blow-up problems are
considered, in which the right-hand side of equations has fixed singular points or
zeros. Simple theoretical estimates are derived for the critical value of an inde-
pendent variable bounding the domain of existence of the solution. It is shown by
numerical integration that the first and the second Painlevé equations with suit-
able initial conditions have non-monotonic blow-up solutions. It is demonstrated
that the method based on a nonlocal transformation of the general form as well
as the method based on the differential constraints admit generalizations to the
n th-order ODEs and systems of coupled ODEs.

Keywords: blow-up solutions, nonlinear ordinary differential equations, Cauchy
problem, numerical integration, nonlocal transformations, Painlevé equations

1. Introduction

1.1. Preliminary remarks. Blow-up solutions
We will consider Cauchy problems for ordinary differential equations (briefly,

ODEs), whose solutions tend to infinity at some finite value of the independent
variable x = x∗, where x∗ does not appear explicitly in the differential equation
under consideration and it is not known in advance. Similar solutions exist on a
bounded interval (hereinafter in this article we assume that x0 ≤ x < x∗) and are
called blow-up solutions. This raises the important question for practice: how to
determine the position of a singular point x∗ and the solution in its neighborhood
using numerical methods.

In the general case, the blow-up solutions that have a power singularity can be
represented in a neighborhood of the singular point x∗ in the form

y ≃ A(x∗ − x)−β, β > 0, (1)

where A and β are some constants. For these solutions we have lim
x→x∗

|y| = ∞ and

lim
x→x∗

|y′x| = ∞.
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Differentiating (1), we obtain the derivatives near the singular point

y′x ≃ Aβ(x∗ − x)−β−1, y′′xx ≃ Aβ(β + 1)(x∗ − x)−β−2. (2)

It follows from (1) and (2) that the approximate relations

y′x
y

≃ β

x∗ − x
,

yy′′xx
(y′x)

2
≃ β + 1

β
(3)

are valid near the singular point x∗. From the first relation in (3) we have the
limiting property lim

x→x∗
(y′x/y) = ∞, which is common for any blow-up solution.

The second relation in (3) can be used for computing the exponent β in performing
numerical calculations.

The formulas (1)–(3) remain valid also for non-monotonic blow-up solutions
if there is a neighborhood on the left of the singular point (x1 ≤ x < x∗, where
x0 ≤ x1), in which the solution is monotonic.

Example 1. Consider the test Cauchy problem for the first-order nonlinear ODE with
separable variables

y′x = y2 (x > 0), y(0) = 1. (4)

The exact solution of this problem has the form

y =
1

1− x
. (5)

It has a power-type singularity (a first-order pole) at the point x∗ = 1 and does not exist
for x > x∗.

The Cauchy problem (4) is a particular case of the three-parameters problem

y′x = byγ (x > 0), y(0) = a, (6)

where a, b, and γ are arbitrary constants. If the inequalities

a > 0, b > 0, γ > 1 (7)

are valid, then the exact solution of the problem (6) is given by the formula

y = A(x∗ − x)−β, (8)

where

A = [b(γ − 1)]
1

1−γ , x∗ =
1

aγ−1b(γ − 1)
, β =

1

γ − 1
> 0.

This solution exists on a bounded interval 0 ≤ x < x∗, where x∗ is a singular point
of the pole-type solution, and does not exist for x ≥ x∗. In this case, the solution (8)
coincides with its asymptotic behavior in a neighborhood of the singular point (compare
(1) with (8)).
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There exist problems that have blow-up solutions with a different type of sin-
gularity (that differs from (1)). In particular, solutions with a logarithmic singu-
larity at the point x∗ have the form

y ≈ A ln
[
B(x∗ − x)

]
,

where A and B > 0 are some constants.

Example 2. The test Cauchy problem with exponential nonlinearity

y′x = bey (x > 0), y(0) = a (9)

admits the exact solution with a logarithmic singularity

y = − ln(e−a − bx) (10)

for a ≥ 0 and b > 0. This solution exists on the interval 0 ≤ x < x∗ = e−a/b and does
not exist for x ≥ x∗.

1.2. Problems arising in numerical solutions of blow-up problems
The direct application of the standard fixed-step numerical methods to blow-

up problems leads to certain difficulties because their solutions have a singularity
and the range of variation of the independent variable is unknown in advance [1].
The difficulties arising in the application of the classical Runge–Kutta methods
for solving the test Cauchy problem (6) are described below (the results of [2] are
used).

The qualitative behavior of the numerical blow-up solution for equations of
the form (6) for a > 0, b > 0, and γ > 1 is significantly different for the explicit
and implicit Runge–Kutta methods (the explicit methods up to the fourth-order of
approximation and the Euler implicit method have been tested in [2]).

All the explicit methods provide monotonically increasing solutions; and the
higher order of the approximation method, the faster growth of the numerical
solution. Soon after passing through the singular point x∗, in which the exact
solution has a pole, an overflow occurs in the calculation and further computing
is impossible. Such qualitative behavior is unpleasant, since it is difficult for the
researcher to determine the cause of the overflow.

For the implicit methods, the picture is different. First, the solution increases,
but even before the pole it breaks down to the region of negative values. The cal-
culation of the right-hand side of (6) for fractional values of γ becomes impossible
(because a fractional power of a negative number occurs).
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Various special methods have been proposed in the literature for numerical
integration of problems that have blow-up solutions.

One of the basic ideas of numerical integration of blow-up problems consists
in the application of an appropriate transformation at the initial stage, which leads
to the equivalent problem for one differential equation or a system of coupled
equations whose solutions have no singularities at a priori unknown point (after
such transformations, the unknown singular point x = x∗ usually goes to the
infinitely remote point for the new independent variable).

Currently, two methods based on this idea are most commonly used. The
first method, based on the hodograph transformation, x = ȳ, y = x̄ (where the
independent and dependent variables are interchanged) was proposed in [3]. The
second method of this kind, called the method of the arc-length transformation, is
described in [4] (for details, see below Item 2◦ in Sections 3.1 and 7.1, as well as
reference [5]). This method is rather general and it can be applied for numerical
integration of systems of ordinary differential equations.

The methods based on the hodograph and arc-length transformations for blow-
up solutions with a power singularity of the form (1) lead to the Cauchy problems
whose solutions tends to the asymptote with respect to the power law for large
values of the new independent variable. This creates certain difficulties in some
problems, since one has to consider large intervals of variation of the independent
variable in numerical integration.

Based on other ideas, some special methods of numerical integration of blow-
up problems are described, for example, in [1, 2, 5–9, 11–14]. In particular, it was
suggested in [8, 13] to investigate such problems via compactifications, which
are point transformations of the special form (whose inverse transformations have
singularities).

In this paper, we propose several new methods of numerical integration of
Cauchy problems for the first- and second-order nonlinear equations, which have
blow-up solutions. These methods are based on differential and nonlocal transfor-
mations, and also on differential constraints, allowing us to obtain the equivalent
problems for systems of equations whose solutions do not have singularities at
a priori unknown point. Some special methods based on nonlocal transforma-
tions and differential constraints lead to the Cauchy problems whose solutions,
which are found in parametric form by numerical integration, tend exponentially
to the asymptote for large values of the new independent variable. Therefore,
these methods are more effective than the methods based on the hodograph and
arc-length transformations, which lead to solutions that are quite slowly (by the
power law) tend to the asymptote for large values of the independent variable.
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The presentation of the material is widely illustrated with test problems that admit
an exact solution. Two-sided theoretical estimates are established for the critical
value of the independent variable x = x∗, when an unlimited growth of the so-
lution occurs as approaching it. It is shown that the method based on a nonlocal
transformation of the general form as well as the method based on the differential
constraints admit generalizations to the n th-order ordinary differential equations
and systems of differential equations.

Remark 1. The works [14, 15] are devoted to investigation of problems with oscil-
lating blow-up solutions (having an infinite set of local extrema) for some classes of the
second-order equations. More complicated problems (described by fourth-order nonlin-
ear ordinary differential equations) with oscillating blow-up solutions were considered in
[16, 17]. The solutions of these problems in the neighborhood of the blow-up points have
asymptotic behavior that substantially differs from (1). In this article, such problems are
not considered.

2. Problems for first-order equations. Differential transformations

2.1. Solution method based on introducing a differential variable
The Cauchy problem for the first-order differential equation has the form

y′x = f(x, y) (x > x0), (11)
y(x0) = y0. (12)

In what follows we assume that f = f(x, y) > 0, x0 ≥ 0, y0 > 0, and also
f/y1+ε → ∞ as y → ∞, where ε > 0. In such problems, blow-up solutions
arise when the right-hand side of a nonlinear equation is quite rapidly growing as
y → ∞.

First, we represent the nonlinear ODE (11) in the form of an equivalent system
of differential-algebraic equations

t = f(x, y), y′x = t, (13)

where y = y(x) and t = t(x) are unknown functions to be determined.
By applying (13) and assuming that y = y(t) and x = x(t), we derive a system

of ODEs of the standard form. By taking the full differential of the first equation
of (13) and multiplying the second equation by dx, we get

dt = fx dx+ fy dy, dy = t dx, (14)
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where fx and fy denote the corresponding partial derivatives of the function f =
f(x, y). Eliminating first dy and then dx from (14), we arrive at the ODE system
of the first order

x′t =
1

fx + tfy
, y′t =

t

fx + tfy
(t > t0), (15)

which must be supplemented by the initial conditions

x(t0) = x0, y(t0) = y0, t0 = f(x0, y0). (16)

Conditions (16) are derived from (12) and the first equation of (13).
Assuming that the conditions fx+tfy > 0 are valid at t0 < t <∞, the Cauchy

problem (15)–(16) can be integrated numerically, for example, by applying the
Runge–Kutta method or other standard fixed-step numerical methods (see, for
example, [18–26]). In this case, the difficulties (described in Section 1.2) will not
occur because of the presence of a singularity in the solutions (since x′t → 0 as
t → ∞). In view of (13), the singular point x∗ of the solution corresponds to
t = ∞, therefore the required value x∗ is determined by the asymptotic behavior
of the function x = x(t) for large t.

Remark 2. Taking into account the first equation of (13), the system (15) can be
represented in the form

x′t =
1

fx + tfy
, y′t =

f

fx + tfy
(t > t0). (17)

Another equivalent system of ODEs can be obtained by replacing t by f in (17).

2.2. Test problem and numerical solutions
Let us illustrate the method described in Section 2.1 with a simple example.

Example 3. Consider the test Cauchy problem (6)–(7). By introducing a new variable
t = y′x in (6), we obtain the following Cauchy problem for the system of equations:

x′t =
1

bγtyγ−1
, y′t =

1

bγyγ−1
(t > t0);

x(t0) = 0, y(t0) = a, t0 = aγb,

(18)

which is a particular case of the problem (15)–(16) for f = byγ , x0 = 0, and y0 = a. The
exact solution of the problem (18) has the form

x =
1

b(γ − 1)

[
a1−γ −

( b
t

)γ−1
γ

]
, y =

( t
b

) 1
γ

(t ≥ aγb). (19)
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Figure 1: a)—the dependences x = x(t) and y = y(t) obtained by numerical solution of the
problem (18) for a = b = 1 and γ = 2 (ν = 30); b)—exact solution (5) (solid line) and numerical
solution of the problem (18) for a = b = 1 and γ = 2 (circles).

It has no singularities; the function x = x(t) increases monotonically with t > aγb,

tending to the desired limiting value x∗ = lim
t→∞

x(t) =
1

aγ−1b(γ − 1)
, and the function

y = y(t) monotonously increases with increasing t. The solution (19) for the system (18)
is a solution of the original problem (6)–(7) in parametric form.

In Fig. 1, we compare the exact solution (5) of the Cauchy problem for one equa-
tion (4) with the numerical solution of the transformed problem for the system of equa-
tions (18) for a = b = 1 and γ = 2, obtained by the classical numerical method, e.g. the
Runge–Kutta method of the fourth-order of approximation with a fixed step of integration,
equal to 0.2 (here and in what follows in the figures, for the sake of clarity, a scale factor
ν = 30 is introduced for the functions x = x(t) or x = x(ξ)). In this case, the maximum
error of the numerical solution does not exceed 0.017% for y ≤ 50.

Remark 3. Here and in what follows, the numerical integration interval for the new
variable t (or ξ) is usually determined, for demonstration calculations, from the condition
Λm = 50, where

Λm = min[y, y′x/y] (for y0 ∼ 1 and y1 = y′x(x0) ∼ 1). (20)

In a few cases, the condition Λm = 100 or Λm = 150 is used, which is specially stipulated.
For first-order ODE problems of the form (11)–(12), this definition of Λm can be replaced
by the equivalent definition Λm = min[y, f/y].
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Conditions y0 ∼ 1 and y1 ∼ 1 in (20) are not strongly essential, since the substitution
y = y0−1+(y1−1)(x−x0)+ ȳ leads to an equivalent problem with the initial conditions
ȳ(x0) = ȳ′x(x0) = 1.

2.3. Modified differential transformation
The solution (19) tends rather slowly to the asymptotic values x → x∗ as

t → ∞ (in particular, for s = 2 and large t we have x∗ − x ∼ t−1/2). To speed
up the process of approaching the asymptotic behavior with respect to x in the
system (15) is useful additionally to make the exponential-type substitution

t = t0 exp(λτ), τ ≥ 0, (21)

where

τ =
1

λ
ln

t

t0
=

1

λ
ln
y′x
t0

(22)

is a new independent variable and λ > 0 is a numerical parameter that can be
varied. Transformations with a new independent variable of the form (22) will be
called the modified differential transformations.

Example 4. As a result of the substitution (21), the Cauchy problem (18) is trans-
formed to the form

x′τ =
λ

bγyγ−1
, y′τ =

aγλeλτ

γyγ−1
(τ > 0);

x(0) = 0, y(0) = a,

(23)

and its exact solution is given by the formulas

x =
1

aγ−1b(γ − 1)

{
1− exp

[
−λ(γ − 1)

γ
τ

]}
, y = a exp

(
λ

γ
τ

)
, τ ≥ 0. (24)

Let a = b = 1, γ = 2 and the stepsize is equal to 0.4. For numerical integration
of the test problem (23) for λ = 1 and λ = 2 with the maximum error 0.002%, it is
required to take, respectively, the interval [0, 8] and [0, 4] with respect to τ to approach
the asymptote (however, for numerical integration of the related problem (18) with the
maximum error 0.016%, it is required to take an essentially larger interval [0, 2980] with
respect to t).
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3. Problems for first-order equations. Nonlocal transformations and
differential constraints

3.1. Solution method based on introducing a nonlocal variable
Introducing a new nonlocal variable [27–29] according to the formula,

ξ =

∫ x

x0

g(x, y) dx, y = y(x), (25)

leads the Cauchy problem for one equation (11)–(12) to the equivalent problem
for the autonomous system of equations

x′ξ =
1

g(x, y)
, y′ξ =

f(x, y)

g(x, y)
(ξ > 0);

x(0) = x0, y(0) = y0.

(26)

Here g = g(x, y) is a regularizing function that depends on the solution of the
problem (11)–(12) and can be varied. This function has to satisfy the following
conditions:

g > 0 for x ≥ x0, y ≥ y0; g → ∞ as y → ∞; f/g = k as y → ∞, (27)

where k = const > 0 (moreover, the limiting case k = ∞ is also allowed).
From (25) and the second condition (27) it follows that x′ξ → 0 as ξ → ∞.

The Cauchy problem (26) can be integrated numerically applying the Runge–
Kutta method or other standard numerical methods with a fixed stepsize in ξ.

Let us consider some possibilities for choosing the regularizing function g =
g(x, y) in the Cauchy problem (26) on concrete examples.

1◦. The special case
g = f

is equivalent to the hodograph transformation with an additional shift of the
dependent variable, which gives ξ = y − y0.

2◦. Setting
g =

√
1 + f 2,

we arrive at the method of the arc-length transformation [4]. In this case,
the Cauchy problem (26) takes the form

x′ξ =
1√

1 + f 2(x, y)
, y′ξ =

f(x, y)√
1 + f 2(x, y)

;

x(0) = x0, y(0) = y0.

(28)
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3◦. Choosing
g = 1 + |f |,

we obtain the Cauchy problem

x′ξ =
1

1 + |f(x, y)|
, y′ξ =

f(x, y)

1 + |f(x, y)|
;

x(0) = x0, y(0) = y0.

(29)

Note that we use here the absolute value sign to generalize the results, since
the system (29) can also be used in the case f < 0 for numerical integration
of the problems having solutions with a root singularity [2].

4◦. We can also take the function

g = c1 +
(
c2 + |f |s

)1/s
for c1 ≥ 0, c2 ≥ 0 (|c1|+ |c2| ̸= 0), and s > 0, which is a generalization of
the functions in Items 2◦ and 3◦.

5◦. A very convenient problem for analysis can be obtained if we take

g = f/y (30)

in (26). In this case, the second equation of the system is immediately
integrated and, taking into account the initial condition, we get y = y0e

ξ.
In addition, the variable x tends exponentially rapidly to a blow-up point x∗
with increasing ξ. This transformation will be called the special exp-type
transformation.

Remark 4. From Items 1◦ and 2◦ it follows that the method based on the hodograph
transformation and the method of the arc-length transformation are particular cases of the
method based on a nonlocal transformation of the general form (25).

Remark 5. The functions g in Items 1◦–4◦ correspond to the value k = 1 in (27), and
the function g in Item 5◦ gives k = ∞.

Remark 6. Nonlocal transformations of a special form were used in [29–32] to obtain
exact solutions and to linearize some second-order ODEs.
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Figure 2: a)—the dependences x = x(ξ) and y = y(ξ), obtained by numerical solution of
the problem (31) (ν = 30); b)—exact solution (5) (solid line) and numerical solution of the
problem (31) (circles).

3.2. Test problems and numerical solutions
Example 5. For the test Cauchy problem (4) with f = y2, the equivalent problem for

the system of equations (28) takes the form

x′ξ =
1√

1 + y4
, y′ξ =

y2√
1 + y4

; x(0) = 0, y(0) = 1. (31)

The second equation of this system is an equation with separable variables whose solution
is not expressed in elementary functions.

The numerical solution of the Cauchy problem (31) in parametric form and its com-
parison with the exact solution (5) are shown in Fig. 2.

Example 6. For the test Cauchy problem (4), the equivalent the problem for the sys-
tem of equations (29) admits an exact solution, which is expressed in terms of elementary
functions in a parametric form as follows:

x = 1 + 1
2 ξ −

1
2

√
ξ2 + 4, y = 1

2 ξ +
1
2

√
ξ2 + 4 (ξ ≥ 0). (32)

This solution satisfies the initial conditions x(0) = 0 and y(0) = 1 and has no singulari-
ties. The function x(ξ) is bounded, increases monotonically, and tends to its limiting value
x∗ = lim

ξ→∞
x(ξ) = 1. The function y(ξ) increases monotonically and tends to infinity as

ξ → ∞. At large ξ we have x ≈ 1− ξ−1 and y ≈ ξ + ξ−1.
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The curves x = x(ξ) and y = y(ξ), determined by the exact solution (32) (and
also the curves obtained by numerical integration of the corresponding system (29) with
f = y2, x0 = 0, and y0 = 1), are very close to the curves shown in Fig. 2 (they almost
merge with them and therefore are not presented here).

Example 7. Consider the test problem (6)–(7), where f = byγ , and take g = f/y =
byγ−1 (see Item 5◦ in Section 3.1). Substituting these functions into (26), we obtain the
Cauchy problem

x′ξ =
1

byγ−1
, y′ξ = y (ξ > 0);

x(0) = 0, y(0) = a,

(33)

where a > 0, b > 0, and γ > 1. The exact solution of the problem (33) is written as
follows:

x =
1

aγ−1b(γ − 1)

[
1− e−(γ−1)ξ

]
, y = aeξ. (34)

It can be seen that the unknown function x = x(ξ) tends exponentially to the asymptotic

value x∗ =
1

aγ−1b(γ − 1)
as ξ → ∞.

Let b = 1 and γ = 2. The numerical solutions of the problems (18) and (33), obtained
by the Runge–Kutta method of the fourth-order of approximation, are shown in Fig. 3
for a = 1 and a = 2 and the same step of integration, equal to 0.2. We note that for
this stepsize, the maximum difference between the exact solution (34) and the numerical
solution of the system (33) is 0.0045% (and for stepsize 0.4, respectively, 0.061%).

It can be seen (see Figs. 1 and 3) that the numerical solutions are in a good agreement,
but the rates of their approximation to the required asymptote x = x∗ are significantly
different. For example, for the system (18), in order to obtain a good approximation to the
asymptote, it is required to consider the interval t ∈ [1, 2980], and for the system (33) it
suffices to take ξ ∈ [0, 4]. Therefore, there is reason to believe that the method described
in Item 5◦ (a special case of the transformation (25)) is more efficient than the method
based on the differential transformation (see Section 2.1).

For comparison, similar calculations were also performed applying the method based
on the hodograph transformation (see Section 3.1, Item 1◦), and the method of the arc-
length transformation (see Section 3.1, Item 2◦). For both of these methods, in order
to obtain a good approximation to the asymptote, it is required to consider the interval
ξ ∈ [0, 49]. To control a numerical integration process, the calculations were carried out
with the aid of the three most important and powerful mathematical software packages:
Maple (2016), Mathematica (11), and MATLAB (2016a). It was found that the method
based on the use of a special case of the system (26) with g = f/y (see Item 5◦) is
essentially more efficient than the method based on the hodograph transformation and the
method of the arc-length transformation.
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Figure 3: a)—the dependences x = x(ξ) and y = y(ξ), obtained by numerical solution of the
problem (33) for b = 1, γ = 2 with a = 1 (solid lines) and a = 2 (dashed lines) (ν = 30); b)—
numerical solution of the problem (18) for b = 1, γ = 2 (circles) and numerical solution of the
problem (33) for b = 1, γ = 2 (points); for left curves a = 2 and for right curves a = 1.

Example 8. We now consider the Cauchy problem (9) for b = 1, which is determined
by the exponential f = ey. Substituting the function g = f/y = ey/y (see Item 5◦ in
Section 3.1) into the system (26), we obtain

x′t = ye−y, y′t = y;

x(0) = 0, y(0) = a.

The exact solution of this problem in a parametric form is defined by the formulas

x = e−a − exp(−a et), y = aet (t ≥ 0),

which do not have singularities. The function x = x(t) is bounded, monotonically in-
creases with increasing t and very rapidly tends to the asymptote x∗ = lim

t→∞
x(t) = e−a,

and the function y = y(t) is unbounded and grows exponentially with respect to t.

3.3. Generalizations based on the use of differential constraints
Let us show that the method based on introducing a nonlocal variable (25)

allows a further generalization.
We add to the equation (11) a first-order differential constraint of the form

ξ′x = g(x, y, ξ) (35)
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and the initial condition ξ(x = x0) = ξ0.
The differential constraint (35) connects a new (nonlocal) independent vari-

able ξ with the original variables x and y = y(x) by means of a given differential
equation. In a particular case, when the function g does not depend on ξ, the use
of the differential constraint (35), after integrating it over x, leads to the nonlocal
variable (25) for ξ0 = 0 (therefore, the method based on the differential constraint
generalizes the method based on introducing a nonlocal variable).

From (11) and (35) we obtain the following system of ordinary differential
equations:

x′ξ =
1

g(x, y, ξ)
, y′ξ =

f(x, y)

g(x, y, ξ)
. (36)

In a particular case,
g(x, y, ξ) = fx + ξfy,

the system (36) coincides with the system (17), in which the variable t must be
redenoted by ξ. If, in addition, we set ξ0 = f(x0, y0), then, up to renaming of
variables, we also obtain the initial conditions (16). It follows that the method
based on the differential constraint of general form (35) generalizes the method
based on introducing a differential variable (see Section 2.1).

3.4. Comparison of efficiency of various transformations for numerical integra-
tion of first-order ODE blow-up problems

In Table 1, a comparison of the efficiency of the numerical integration meth-
ods, based on various nonlocal transformations of the form (25) and differential
constraints of the form (35) is presented by using the example of the test blow-up
problem for the first-order ODE (4) with f = y2. The comparison is based on the
number of grid points needed to perform calculations with the same maximum
error (approximately equal to 0.1, 0.01, and 0.005). In the last line of Table 1 for
Example 4 we take a = b = 1 and s = 2.

It can be seen that for the first three transformations it is necessary to use a
lot of grid points (the hodograph transformation is the least effective). This is
due to the fact that in these cases x tends to the point x∗ rather slowly for large ξ
(x∗ − x ∼ 1/ξ, y ∼ ξ). The last three transformations require a significantly less
number of grid points; in these cases x tends exponentially fast to the point x∗ for
large ξ. In particular, the use of the exp-type transformation with g = t/y and the
nonlocal transformation with g =

√
1 + |f | gives rather good results. The most

effective analytical transformation is a modification of the method of differential
transformations (see Example 4 in Section 2.3).
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Errormax,% = 0.1

Transformation or Function g Max. interval Stepsize Grid points
differential constraint or Example ξmax h number N
Hodograph, Item 1◦ g=f 48.99 0.2300 213
Arc-length, Item 2◦ g=

√
1+f2 49.20 0.3000 164

Nonlocal, Item 3◦ g=1+|f | 50.00 0.4000 125
Special exp-type, Item 5◦ g=f/y 3.925 0.1570 25
Nonlocal g=

√
1 + |f | 4.170 0.1668 25

Differential constraint g=f/[y(1 + 2ξ)] 1.543 0.0643 24
Modified differential Example 4 with λ = 2 3.910 0.2300 17

Errormax,% = 0.01

Transformation or Function g Max. interval Stepsize Grid points
differential constraint or Example ξmax h number N
Hodograph, Item 1◦ g=f 49.01 0.130 377
Arc-length, Item 2◦ g=

√
1+f2 49.30 0.170 290

Nonlocal, Item 3◦ g=1+|f | 50.14 0.230 218
Special exp-type, Item 5◦ g=f/y 3.960 0.090 44
Nonlocal g=

√
1 + |f | 4.136 0.094 44

Differential constraint g=f/[y(1 + 2ξ)] 1.540 0.035 44
Modified differential Example 4 with λ = 2 3.900 0.130 30

Errormax,% = 0.005

Transformation or Function g Max. interval Stepsize Grid points
differential constraint or Example ξmax h number N
Hodograph, Item 1◦ g=f 49.035 0.1050 467
Arc-length, Item 2◦ g=

√
1+f2 49.266 0.1380 357

Nonlocal, Item 3◦ g=1+|f | 50.135 0.1850 271
Special exp-type, Item 5◦ g=f/y 3.9150 0.0725 54
Nonlocal g=

√
1 + |f | 4.1340 0.0780 53

Differential constraint g=f/[y(1 + 2ξ)] 1.5420 0.0291 53
Modified differential Example 4 with λ = 2 3.9140 0.1030 38

Table 1: Various types of analytical transformations applied for numerical integration of the prob-
lem (4) for f = y2 with a given accuracy (percent errors are 0.1, 0.01, and 0.005 for Λm ≤ 50)
and their basic parameters (maximum interval, stepsize, grid points number).
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Remark 7. Up to now it has been assumed that the right-hand side of the equation (11)
is positive. In cases where the right-hand side of equation (11) can change sign, for the
numerical integration of system (26) one can use the regularizing functions g =

√
1 + f2,

g = 1 + |f |, and g =
√

1 + |f |.

4. Problems for first-order equations, the right-hand side of which has
singularities or zeros

4.1. Blow-up problems for equations, the right-hand side of which has
singularities in x

In this section we will analyze several blow-up problems for equations of the
form (11), the right-hand side of which has a singularity at some x = xs, i.e.
lim
x→xs

f(x, y) = ∞.

We assume that the right-hand side of equation (11) can be represented as a
product of two functions

f(x, y) = fb(x, y)fs(x, y), (37)

where the function fb has the same properties as the function f in Section 2.1 (i.e.
that the problem (11)–(12), where the function f is replaced by fb, has a blow-up
solution).

Moreover, we will assume that the function fs has an integrable or non-inte-
grable singularity at x = xs, so that lim

x→xs
f(x, y) = ∞, and fs > 0 at x0 < xs.

It is interesting to see how the two singularities of this problem will interact:
the blow-up singularity and the coordinate singularity at x = xs.

For the sake of clarity, we give the following test problems and illustrative
examples.

Example 9. Consider the two-parameter test Cauchy problem:

y′x =
y2

b− x
; y(0) = a, (38)

where a > 0 and b > 0. For this problem, we have fb = y2 and fs = 1/(b − x). The
right-hand side of equation (38) has a pole of the first order at the point x = xs = b
(i.e., there exists a non-integrable singularity at this point); and the right-hand side of the
equation becomes negative if x > b.

The exact solution of the problem (38) has the form

y =

[
ln
(
1− x

b

)
+

1

a

]−1

. (39)
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The singular point of this solution is determined by the formula

x∗ = b
(
1− e−1/a

)
< b. (40)

Here the blow-up singularity “overtakes” the non-integrable singularity of the equation at
the point xs = b. If a→ ∞, we have x∗ → b.

Example 10. Consider the test Cauchy problem with a stronger coordinate singular-
ity:

y′x =
y2

(b− x)2
; y(0) = a, (41)

where a > 0 and b > 0. For this problem, we have fb = y2 and fs = 1/(b − x)2. The
right-hand side of equation (41) has a pole of the second order at the point xs = b (i.e.,
there exists a non-integrable singularity at this point); and right-hand side of this equation
is positive for all x.

The exact solution of the problem (41) is defined by the formula

y =
ab

a+ b

[
1 +

ab

b2 − (a+ b)x

]
. (42)

The blow-up point is determined as

x∗ =
b2

a+ b
< b. (43)

Here, as in Example 9, the blow-up singularity “overtakes” the non-integrable singularity
of the equation at the point xs = b.

Remark 8. A qualitatively similar picture will occur also for the problem (11)–(12)
with f = y2/

√
b− x, which has an integrable singularity at the point x = b. In this

problem, the right-hand side of the equation is defined only on a part of the x-axis.

The solution property, described in Examples 9 and 10, has a general charac-
teristic. Namely, let us assume that the right-hand side of equation (11) has the
form (37), where the functions fb and fs have the properties described at the be-
ginning of this section. Then the problem (11)–(12) has a blow-up solution, and
the domain of definition of this solution is located to the left of the point xs (i.e.,
x∗ < xs, where x∗ is the blow-up point).

The methods described in Sections 2 and 3 can be applied for solving this type
of problems with the coordinate singularity.

Example 11. For test problem (38) with f = y2/(b−x), we take (see Item 5◦ in Sec-
tion 3.1),

g =
f

y
=

y

b− x
.
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Figure 4: a)—numerical solutions of system (44), the dependences x = x(ξ) and y = y(ξ) (where
ν = 30); b)—exact solution (39), solid line, and the numerical solution of system (44) (a = b = 1
and x∗ = 0.6321).

By substituting these functions in (26), we arrive at the Cauchy problem for a system of
coupled ODEs

x′ξ =
b− x

y
, y′ξ = y (ξ > 0);

x(0) = 0, y(0) = a.

(44)

The exact solution of this problem reads

x = b

{
1− exp

[
− 1

a
(1− e−ξ)

]}
, y = aeξ. (45)

The numerical solution of the problem (44) with a = b = 1 is presented in Fig. 4a;
the dependences x = x(ξ) and y = y(ξ) are obtained by the fourth-order Runge–Kutta
method. Fig. 4b shows a comparison of the exact solution (39) of the Cauchy prob-
lem (38) for one equation with the numerical solution of the problem for the system of
two equations (44).

Note that a form of the right-hand side of equation (11) with a coordinate
singularity at the point xs can mislead the researcher, inexperienced in blow-up
problems. As a result, the researcher will start to refine a mesh (making it thinner)
in the neighborhood of the point xs (what should not to do).

4.2. Blow-up problems for equations, the right-hand side of which has zeros
In this section we will analyze blow-up problems for equations of the form

(11), the right-hand side of which vanishes at some x = xz, i.e. f(xz, y) = 0.
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Let us assume that the right-hand side of equation (11) can be represented as
a product of two functions

f(x, y) = fb(x, y)fz(x, y), (46)

where the function fb has the same properties as the function f in Section 2.1
(i.e., the problem (11)–(12), where the function f is replaced by fb, has a blow-up
solution). Moreover, we will assume that the function fz vanishes at x = xz, so
that f(xz, y) = 0, and fz > 0 at x0 < xz.

Example 12. Consider the test two-parameter Cauchy problem

y′x = y2(b− x); y(0) = a, (47)

where a > 0 and b > 0. For this problem, we have fb = y2 and fz = b − x. The
right-hand side of equation (47) becomes zero at the point x = xz = b; and the right-hand
side of the equation becomes negative if x > b.

It is interesting to see how two features of different types of such problem will interact:
on the one hand, a possible blow-up singularity (which leads to an unlimited growth of
the right-hand side of the equation), and on the other hand, vanishing of the right-hand
side of the equation at x = xz.

The exact solution of the problem (47) has the form

y =
a

1
2ax

2 − abx+ 1
. (48)

The existence or absence of a blow-up singularity in this solution is determined by the
existence or absence of real roots of the quadratic equation 1

2ax
2−abx+1=0.

The elemental analysis shows that there are two qualitatively different cases:

(i) If 0 < b <
√

2/a, there exists a smooth continuous solution of the problem for all
x ≥ 0. It is monotonically increasing on the interval 0 ≤ x < b, reaches the
maximum value ym =

a

1− 1
2ab

2
, and decreases for x > b.

(ii) If b ≥
√

2/a, formula (48) defines a monotonically increasing blow-up solution with
the singular point

x∗ = b−
√
b2 − 2

a
. (49)

Therefore in this example the existence or absence of a blow-up solution is determined
by a simple relation between the parameters a and b: if b ≥

√
2/a, then there exists a
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Figure 5: Exact solutions (48) of the Cauchy problem (47) for various values of the parameters:
a = 1, b = 1.38 (dashed line); a = 1, b = 2 (solid line); and a = 1, b =

√
2 (dashed-dot line).

The results of numerical solutions of this problem for the same values of the defining parameters
for g =

√
1 + |f | are denoted by circles.

blow-up solution, otherwise there is no a blow-up solution. The value b =
√

2/a is a
point of bifurcation of the two-parameter problem (47).

The exact solutions of the problem (47) obtained by formula (48) are presented in
Fig. 5 for various values of the parameters: a = 1 and b = 1, b = 2, and b =

√
2 (the

critical value at which there exists blow-up solutions).
For numerical integration of such problems, solutions of which can be qualitatively

different in a wide range of changes of the determining parameters, one can use nonlocal
transformations of the form (25) with regularizing functions of the form g =

√
1 + f2,

g = 1 + |f |, and g =
√

1 + |f |. The results of the corresponding numerical solutions of
the problem (47) for g =

√
1 + |f | are shown by circles in Fig. 5.

Remark 9. A formal replacing b−x to (b−x)2 in the problem (47) leads to a blow-up
solution for any a > 0 and b > 0.
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5. Problems for first-order equations. Two-sided estimates of
the critical value

5.1. Autonomous equations. Analytical formula for the critical value
We consider the Cauchy problem for an autonomous equation of the general

form

y′x = f(y) (x > 0), y(0) = a. (50)

We assume that a > 0 and f(y) > 0 is a continuous function that is defined for all
y ≥ a. An exact solution of the Cauchy problem (50) for x > 0 can be represented
implicitly as follows:

x =

∫ y

a

dξ

f(ξ)
. (51)

This solution is a blow-up solution if and only if there exists a finite definite inte-
gral in (51) for y = ∞. In this case, the critical value x∗ is calculated as follows:

x∗ =

∫ ∞

a

dξ

f(ξ)
. (52)

Let the conditions formulated after the problem (50) be satisfied.
A necessary criterion for the existence of a blow-up solution is:

lim
y→∞

f(y)

y
= ∞.

Sufficient criterion of the existence of a blow-up solution. Let the conditions
formulated above are also satisfied and the limiting ratio,

lim
y→∞

f(y)

y1+κ
= s, 0 < s ≤ ∞, (53)

takes place for some parameter κ > 0. Then the solution of the Cauchy prob-
lem (50) is a blow-up solution.

If f(y) is a differentiable function, then instead of (53) we can propose an
equivalent sufficient criterion of the existence of a blow-up solution:

lim
y→∞

f ′
y(y)

yκ
= s1, 0 < s1 ≤ ∞ (κ > 0).
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5.2. Non-autonomous equations. One-sided estimates
We consider the Cauchy problem for a first-order non-autonomous equation

of the general form

y′x = f(x, y) (x > 0), y(0) = a. (54)

We assume that f(x, y) is a continuous function and the conditions

f(x, y) ≥ g(y) > 0 for all y ≥ a > 0, x ≥ 0 (55)

are satisfied. We also assume that there exists a finite integral

Ig =

∫ ∞

a

dξ

g(ξ)
<∞. (56)

Then the solution y = y(x) of the Cauchy problem (54) is a blow-up solution, and
the critical value x∗ satisfies the inequality

x∗ ≤ Ig. (57)

This estimate follows from the inequality (see, for example, the corresponding
comparison theorems in [33, 34]):

y(x) ≥ yg(x), (58)

where y(x) is the solution of the Cauchy problem (54), and yg(x) is the solution
of the auxiliary Cauchy problem

y′x = g(y) (x > 0), y(0) = a. (59)

Example 13. We consider the Cauchy problem for the Abel equation of the first kind

y′x = y3 + h(x) (x > 0); y(0) = 1. (60)

If h(x) ≥ 0 for x ≥ 0, then the inequality is valid

f(x, y) ≡ y3 + h(x) ≥ g(y) ≡ y3 > 0 for all y > 1.

Calculating the integral (56) with g(y) = y3, we obtain

Ig =

∫ ∞

1

dξ

ξ3
=

1

2
<∞. (61)

Therefore, the solution of the Cauchy problem (60) for h(x) ≥ 0 is a blow-up solution,
and x∗ ≤ 1

2 .
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5.3. Non-autonomous equations. Two-sided estimates
We consider two cases in which the one-sided estimate (57) can be improved.

We introduce the notations

I1 =

∫ ∞

y0

dξ

f(0, ξ)
, I2 =

∫ ∞

y0

dξ

f(I1, ξ)
. (62)

Case 1◦. Let fx ≥ 0. Suppose that the integral I1 in (62) exists and is finite.
Suppose also that the conditions,

f(x, y) > 0, fx(x, y) ≥ 0 for all 0 ≤ x ≤ I1, y ≥ y0 > 0, (63)

are satisfied. Then the integral I2 exists and the inequalities are valid:

f(0, y) ≤ f(x, y) ≤ f(I1, y) for 0 ≤ x ≤ I1 (64)

and

y1(x) ≤ y(x) ≤ y2(x) for 0 ≤ x ≤ I2 ≤ I1. (65)

Here y(x) is the solution of the Cauchy problem (54), and y1(x) and y2(x) are the
solutions of the corresponding auxiliary Cauchy problems:

y′x = f(0, y) (x > 0), y(0) = y0; (66)
y′x = f(I1, y) (x > 0), y(0) = y0. (67)

The solutions y1(x) and y2(x) can be represented implicitly as follows:

x =

∫ y

y0

dξ

f(0, ξ)
, x =

∫ y

y0

dξ

f(I1, ξ)
. (68)

For the critical value x∗, the two-sided estimate

I2 ≤ x∗ ≤ I1 (69)

is valid.
Case 2◦. Let fx ≤ 0. Suppose that the integrals I1 and I2 in (62) exist and are

finite. Suppose also that the conditions,

f(x, y) > 0, fx(x, y) ≤ 0 for all 0 ≤ x ≤ I2, y ≥ y0 > 0, (70)
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are satisfied. Then the following inequalities are valid:

f(I1, y) ≤ f(x, y) ≤ f(0, y) for 0 ≤ x ≤ I2 (71)

and

y2(x) ≤ y(x) ≤ y1(x) for 0 ≤ x ≤ I1 ≤ I2, (72)

where y(x) is the solution of the Cauchy problem (54), and y1(x) and y2(x) are
the solutions of the corresponding auxiliary Cauchy problems (66) and (67). The
last two solutions can be represented implicitly (68). For the critical value x∗, the
two-sided estimate

I1 ≤ x∗ ≤ I2 (73)

is valid.

Example 14. We consider the Cauchy problem for the Riccati equation

y′x = y2 + h(x) (x > 0); y(0) = a > 0. (74)

Let us consider the two cases.
Case 1◦. Let h(x) ≥ 0 and h′x(x) ≥ 0. In this case, the first auxiliary Cauchy

problem (66) is written as follows:

y′x = y2 + h(0) (x > 0), y(0) = a. (75)

The exact solution of the problem (75) admits an implicit form of representation with the
help of the first relation (68) for y0 = a and f(0, y) = y2 + h(0). After elementary
calculations and transformations, this solution can be written in the explicit form

y =
√
b
a cos(

√
b x) +

√
b sin(

√
b x)√

b cos(
√
b x)− a sin(

√
b x)

, b = h(0). (76)

The singular point of this solution, I1, which is the zero of the denominator and is equal
to the improper first integral in (62) for y0 = a and f(0, y) = y2 +h(0), is defined by the
formula

I1 =
1√
b
arctan

√
b

a
, b = h(0).

The solution of the second auxiliary Cauchy problem (67) is given by the formula
(76), in which h(0) must be replaced by h(I1). As a result, we obtain the two-sided
estimate of the critical value x∗:

I2 ≤ x∗ ≤ I1,

I1 =
1√
h(0)

arctan

√
h(0)

a
, I2 =

1√
h(I1)

arctan

√
h(I1)

a
.

(77)
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Figure 6: a)—the dependences x = x(ξ) and y = y(ξ) obtained numerically after the transfor-
mation of the Cauchy problem for one equation (74) for a = 1, h(x) = x2 to the problem for the
system of equations (26) for f = y2 + x2, g = f/y (ν = 30); b)—the exact solution of the prob-
lem (74) (points), the numerical solution of this problem (circles), and the majorizing functions
y1(x) and y2(x) (solid lines).

In particular, setting a = 1, h(x) = xm and m > 0 in (74), we find that I1 = 1
and I2 = arctan 1. Substituting these values into (77), we obtain the two-sided estimate
0.785 ≤ x∗ ≤ 1 for the critical value x∗.

In Fig. 6 we present the results of the numerical solution of the Cauchy problem (74)
for a = 1 and h(x) = x2 in parametric form, as well as a comparison of the numerical
and exact solutions of this problem (the latter is expressed in terms of the Bessel functions
and is omitted here), and also the majorizing functions y1 = 1/(1 − x) and y2 = y2(x),
which are the solutions of the auxiliary Cauchy problems (66) and (67) (the solution of
the Cauchy problem under consideration is located between these functions). The func-
tion y2(x) is determined by the formula (76), in which the parameter b must be replaced
by 1/a.

We note that if h(x) = const > 0, then the inequalities (77) give the exact result
x∗ = I1 = I2.

Case 2◦. Let h(x) ≥ 0 and h′x(x) ≤ 0. In this case, the solution of the first auxiliary
Cauchy problem (75) is also given by the formula (76), and the solution of the second
auxiliary Cauchy problem is obtained from (76) by a formal replacement of h(0) by h(I1).
As a result, we obtain the two-sided estimate for the critical value x∗:

I1 ≤ x∗ ≤ I2,
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where the integrals I1 and I2 are determined by the formulas (77).

Remark 10. It should be noted that in Case 2◦ it does not matter how the function
f(x, y) and its derivative fx(x, y) behave for x > I2; in particular, the right-hand side of
the equation (54) can be negative for x > I2.

Example 15. To illustrate what was said in Remark 10, we consider the test Cauchy
problem

y′x = (2− x)y2 (x > 0); y(0) = 1, (78)

which corresponds to Case 2◦, where f(x, y) < 0 for x > 2.
Calculating the integrals (62), we have I1 = 1

2 and I2 = 2
3 . Substituting these values

into (73), we obtain the two-sided estimate for the singular point

1
2 < x∗ <

2
3 .

The exact solution of the problem (78) is given by the formula

y =
2

x2 − 4x+ 2
. (79)

The zero of the denominator, equal to x∗ = 2 −
√
2 ≈ 0.5858, determines the singular

point of the solution (first-order pole).

6. Problems for second-order equations. Differential transformations

6.1. Solution method based on introducing a differential variable
The Cauchy problem for the second-order differential equation has the form

y′′xx = f(x, y, y′x) (x > x0); (80)
y(x0) = y0, y′x(x0) = y1. (81)

We note that the exact solutions of equations of the form (80), which can be
used for the formulation of test problems with blow-up solutions, can be found in
[34–36].

Let f(x, y, u) > 0 if y > y0 ≥ 0 and u > y1 ≥ 0, and the function f
increases quite rapidly as y → ∞ (for example, if f does not depend on y′x, then
lim
y→∞

f/y1+ε = ∞, where ε > 0).

First, as in Section 2.1, we represent the ODE (80) as an equivalent system of
differential-algebraic equations

y′x = t, y′′xx = f(x, y, t), (82)
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where y = y(x) and t = t(x) are the unknown functions.
Taking into account (82), we derive a standard system of ODEs for the func-

tions y = y(t) and x = x(t). To do this, differentiating the first equation of the
system (82) with respect to t, we obtain (y′x)

′
t = 1.

Taking into account the relations y′t = tx′t (it follows from the first equa-
tion (82)) and (y′x)

′
t = y′′xx/t

′
x = x′ty

′′
xx, we have

x′ty
′′
xx = 1. (83)

Eliminating here the second derivative y′′xx by using the second equation (82), we
arrive at the first-order equation

x′t =
1

f(x, y, t)
. (84)

Considering further the relation y′t = tx′t, we transform (84) to the form

y′t =
t

f(x, y, t)
. (85)

Equations (84) and (85) represent a system of coupled first-order differential equa-
tions for the unknown functions x = x(t) and y = y(t). The system (84)–(85)
should be supplemented by the initial conditions

x(t0) = x0, y(t0) = y0, t0 = y1, (86)

which are derived from (81) and the first equation (82).
The Cauchy problem (84)–(86) has a solution without blow-up singularities

and can be integrated by applying the standard fixed-step numerical methods (see,
for example, [18–26]).

Remark 11. Systems of differential-algebraic equations (13) and (82) are particu-
lar cases of parametrically defined nonlinear differential equations, which are considered
in [37, 38]. In [38], the general solutions of several parametrically defined ODEs were
constructed via differential transformations based on introducing a new differential inde-
pendent variable t = y′x.

6.2. Test problems and numerical solutions
Example 16. We consider a test Cauchy problem for the second-order nonlinear ODE

y′′xx = bγyγ−1y′x (x > 0); y(0) = a, y′x(0) = aγb, (87)
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which is obtained by differentiating equation (6). For a > 0, b > 0, and γ > 1, the exact
solution of this problem is defined by the formula (8).

Introducing a new variable t = y′x in (87), we obtain the Cauchy problem, which
exactly coincides with the problem (18). The exact solution of this problem is determined
by the formulas (19).

Example 17. Let us now consider another Cauchy problem

y′′xx = b2γy2γ−1 (x > 0); y(0) = a, y′x(0) = aγb, (88)

which is obtained by excluding the first derivative from the equations (6) and (87) (we
recall that the second equation is a consequence of the first equation). The exact solution
of the problem (88) is determined by the formula (8).

Introducing a new variable t = y′x, we transform (88) to the Cauchy problem for the
system of the first-order ODEs

x′t =
1

b2γy2γ−1
, y′t =

t

b2γy2γ−1
(t > t0);

x(t0) = 0, y(t0) = a, t0 = aγb,

(89)

which is a particular case of the problem (84)–(86) with f = b2γy2γ−1, x0 = 0, and
y0 = a. The exact solution of the problem (89) is given by formulas (19).

Figure 7 shows a comparison of the exact solution (5) of the Cauchy problem for
one equation (4) with the numerical solution of the related problem for the system of
equations (89) for a = b = 1 and γ = 2, obtained by applying the Runge–Kutta method
of the fourth-order of approximation.

The function x(t) slowly tends to the asymptotic value x∗. Therefore to accelerate
this process in the system (89) is useful additionally to make the exponential-type substi-
tution (21).

For completeness of the picture, we also give an example of a blow-up problem
whose solution has a logarithmic singularity.

Example 18. An exact solution of the Cauchy problem with exponential nonlinearity

y′′xx = e2y (x > 0); y(0) = 0, y′x(0) = 1, (90)

has the form

y = ln
( 1

1− x

)
= − ln(1− x). (91)

This solution has a logarithmic singularity at the point x∗ = 1 and does not exist for
x > x∗.
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Figure 7: a)—the dependences x = x(t) and y = y(t) obtained by numerical solution of the
problem (89) for a = b = 1 and γ = 2 (ν = 30); b)—exact solution (5) (solid line) and numerical
solution of problem (89) (circles).

Introducing the differential variable t = y′x, we transform the problem (90) to the
following Cauchy problem for a system of equations:

x′t = e−2y, y′t = te−2y (t > 1);

x(1) = 0, y(1) = 0 (t0 = 1),
(92)

which is a particular case of the system (84)–(85). The exact analytical solution of the
problem (92) is determined by the formulas

x = 1− 1

t
, y = ln t (t ≥ 1),

which do not have singularities; the function x = x(t) increases monotonically with t > 1
and tends to its limiting value x∗ = lim

t→∞
x(t) = 1, and the function y = y(t) is unlimited

and increases monotonically with respect to the logarithmic law.
The function x(t) slowly tends to the asymptotic value x∗. Therefore to accelerate

this process in the system (92) is useful additionally to make the exponential-type substi-
tution (21).
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7. Problems for second-order equations. Nonlocal transformations and
differential constraints

7.1. Solution method based on introducing a nonlocal variable
First, we represent the equation (80) as the equivalent system of two equations

y′x = t, t′x = f(x, y, t),

and then we introduce a nonlocal variable [27, 28] of the form

ξ =

∫ x

x0

g(x, y, t) dx, y = y(x), t = t(x). (93)

As a result, the Cauchy problem (80)–(81) is transformed to the following
problem for the autonomous system of three equations:

x′ξ =
1

g(x, y, t)
, y′ξ =

t

g(x, y, t)
, t′ξ =

f(x, y, t)

g(x, y, t)
(ξ > 0);

x(0) = x0, y(0) = y0, t(0) = y1.

(94)

For a suitable choice of the regularizing function g = g(x, y, t) (not very
restrictive conditions of the type (27) must be imposed on it, see also Section 7.2),
we obtain the Cauchy problem (94), the solution of which will not have blow-up
singularities; therefore this problem can be integrated by applying the standard
fixed-step numerical methods [18–26].

Remark 12. From the formula (93) for small increments of the argument ∆x, we get
∆ξ = g(x, y, t)∆x. It follows that the choice of a fixed stepsize for the new nonlocal
variable ∆ξ = h is equivalent to using a variable stepsize for the original independent
variable ∆x = h/g.

Let us consider various possibilities for choosing the regularizing function g
in the system (94).

1◦. The special case g = t is equivalent to the hodograph transformation with an
additional shift of the dependent variable, which gives ξ = y − y0.

2◦. We can take g =
(
c+ |t|s + |f |s

)1/s for c ≥ 0 and s > 0. The case c = 1 and
s = 2 corresponds to the method of the arc-length transformation [4].
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3◦. Setting g = f , and then integrating the third equation (94), we obtain the
problem (84)–(86) in which the variable t = ξ + y1. Therefore the method
based on the nonlocal transformation (93) generalizes the method based on
the differential transformation, which is described in Section 6.1.

4◦. We can take g = t/y (or g = kt/y, where k > 0 is a numerical parameter that
can be varied). In this case, the system (94) is much simplified, since the
second equation is directly integrated, and taking into account the second
initial condition, we obtain y = y0e

ξ. As a result, there remains a system of
two equations for the determination of the functions x = x(ξ) and t = t(ξ).
Taking into account the relation t = y′x, we also have

ξ =

∫ x

x0

t

y
dx =

∫ x

x0

y′x
y
dx = ln

y

y0
.

Therefore, the nonlocal transformation (93) with g = t/y and the subse-
quent transition to the system (94) is equivalent to a point transformation
ξ = ln(y/y0), z = x, which is a combination of two more simple point
transformations: 1) the transformation x̄ = x, ȳ = ln(y/y0) and 2) the
hodograph transformation ξ = ȳ, z = x̄, where z = z(ξ).

5◦. Also, we can take g = f/t (or g = kf/t, where k > 0 is a free numerical
parameter). In this case, the system (94) is also much simplified, since the
third equation is directly integrated, and taking into account the third initial
condition, we obtain t = y1e

ξ. As a result, there remains a system of two
equations for the determination of the functions x = x(ξ) and y = y(ξ). For
the nonlocal transformation (93) with g = f/t, the new independent vari-
able is expressed in terms of the derivative by the formula ξ = ln(y′x/y1)
(that is, this transformation coincides with the modified differential trans-
formation, see Section 2.3).

Remark 13. The transformations corresponding to the last two cases, 4◦ and 5◦, will
be called special exp-type transformations, they lead to the solutions, in which the vari-
able x tends exponentially rapidly to a blow-up point x∗.

Remark 14. From Items 1◦, 2◦, and 3◦ it follows that the method based on the hodo-
graph transformation, the method of the arc-length transformation, and the method based
on the differential transformation are particular cases of the nonlocal transformation of the
general form (93), which leads to the Cauchy problem for the system of equations (94).

Remark 15. It is not necessary to calculate the integrals (93) (or (25)) when using
nonlocal transformations.
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7.2. Conditions that the regularizing functions must satisfy. Examples of
regularizing functions

Since the transformed problem (94) must not have blow-up singularities, it is
necessary that its solution y = y(x), t = t(x) satisfies the following condition:

lim
x→x∗

I = ∞, I =

∫ x

x0

g(x, y, t) dx. (95)

We have

I = I1 + I2, I1 =

∫ x1

x0

g(x, y, t) dx, I2 =

∫ x

x1

g(x, y, t) dx, (96)

where x1 > 0 is a point sufficiently close to the blow-up point x∗ (x1 < x∗). The
convergence or divergence of the integral I is determined by the convergence or
divergence of the integral I2 as x→ x∗.

1◦. Regularizing functions of the first type. First, we consider regularizing
functions of the form g = g(|t|) > 0, which in addition to the normalization
condition g(0) = 1 satisfy the asymptotic condition of power growth for large |t|:

g(|t|) → C|t|α as |t| → ∞ with α > 0 (C > 0). (97)

We use the asymptotics (2) and (97) to analyze the convergence or divergence
of the integral I2 in (96). We have

I2 ≃ |Aβ|αC
∫ x

x1

(x∗ − x)−α(β+1) dx. (98)

Hence it follows that the integral I2 diverges if α(β + 1) ≥ 1 that is equivalent to
the condition:

α ≥ 1

β + 1
. (99)

For the most common singularity of the solution that has a first-order pole, which
corresponds to the value β = 1, we should choose α ≥ 1

2
. Since β > 0, then

α = 1 is suitable for any blow-up solution of the power (and logarithmic) type.
The asymptotics, as |t| → ∞, of regularizing functions of the form

g = (1 + k|t|p)q (k > 0, p > 0, q > 0) (100)

is determined by the value α = pq in (97).

Let us consider two special types of the functions (100):
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1. For the function (100) with p = 2 and q = 1/2 we have α = 1 and the
inequality (99) holds for any positive β.

2. For the function (100) with p = 1 and q = 1/2 we have α = 1/2. The
inequality (99) holds for a first-order pole, which is determined by the value
β = 1, and also for all β ≥ 1 (that is, for integer poles of any order).

2◦. Regularizing functions of the second type. We now consider regularizing
functions of the form g = g(|f |) > 0, where f = f(x, y, t) is the right-hand side
of the equation (80). In addition to the normalization condition g(0) = 1, let the
regularizing function also satisfy the asymptotic condition of power growth for
large |f |:

g(|f |) → C|f |α as |f | → ∞ with α > 0 (C > 0). (101)

We use the asymptotics (2) and (101) to analyze the convergence or divergence
of the integral I2 in (96). Taking into account that f = y′′xx, we have

I2 ≃ |Aβ(β + 1)|αC
∫ x

x1

(x∗ − x)−α(β+2) dx. (102)

It follows that the integral I2 diverges if α(β + 2) ≥ 1, or

α ≥ 1

β + 2
. (103)

For the most common singularity of the solution that has a first-order pole, which
corresponds to the value β = 1, we should choose α ≥ 1/3. Since β > 0, then
α ≥ 1/2 is suitable for any blow-up solution of the power (and logarithmic) type.

The asymptotics, as |f | → ∞, of regularizing functions of the form

g = (1 + k|f |p)q (k > 0, p > 0, q > 0) (104)

is determined by the value α = pq in (101).

Let us consider two special types of the functions (104):

1. For the function (104) with p = 1 and q = 1/2 or p = 1/2 and q = 1 we have
α = 1/2 and the inequality (103) holds for any positive β.

34



2. For the function (104) with p = 1 and q = 1/3 or p = 1/3 and q = 1 we
have α = 1/3. The inequality (103) holds for a first-order pole, which is
determined by the value β = 1, and also for all β ≥ 1 (that is, for integer
poles of any order).

Remark 16. A comparison of the exact solutions of a number of test problems and
the corresponding numerical solutions obtained in this article by the method of nonlocal
transformations shows that the most efficient regularizing functions are those that have
the least admissible value of α, the exponent in the asymptotics (97) and (101), and are
determined by the equality sign in (99) and (103).

3◦. Regularizing functions of the mixed type. In a similar way, we can de-
fine the domain of divergence of regularizing functions of the mixed type g =
g(|t|, |f |), starting from the asymptotics of this function as |t|+ |f | → ∞. In par-
ticular, the function g = (1+ |t|+ |f |)1/3 can be used if a solution has a singularity
in the form of a pole of any integer order (β = 1, 2, . . . ).

7.3. Test problems and numerical solutions
Example 19. For the test problem (88), in which f = b2γy2γ−1, we set g = t/y (see

Item 4◦ in Section 7.1). Substituting these functions into (94), we arrive at the Cauchy
problem

x′ξ =
y

t
, y′ξ = y, t′ξ =

b2γy2γ

t
(ξ > 0);

x(0) = 0, y(0) = a, t(0) = aγb.

(105)

The exact solution of this problem in parametric form is determined by the formulas

x =
1

aγ−1b(γ − 1)

[
1− e−(γ−1)ξ

]
, y = aeξ, t = aγbeγξ. (106)

It can be seen that the required function x = x(ξ) exponentially tends to the asymptotic

value x∗ =
1

aγ−1b(γ − 1)
as ξ → ∞.

The numerical solutions of the problems (89) and (105) for b = 1, γ = 2, obtained
by the Runge–Kutta method of the fourth-order of approximation, are shown in Fig. 8 for
a = 1 and a = 2. For a fixed step of integration, equal to 0.2, the maximum difference
between the exact solution (5) and the numerical solution of the related problem (105) is
0.0045%. For larger stepsizes, equal to 0.4 and 0.6, the maximum error in the numerical
solutions is 0.061% and 0.24%, respectively. It can be seen that the numerical solutions
of the problems (89) and (105) are in a good agreement, but the rates of their approxi-
mation to the required asymptote x = x∗ are significantly different. For example, for the
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Figure 8: a)—the dependences x = x(ξ), y = y(ξ), t = t(ξ), obtained by numerical solution of
the problem (105) for b = 1, γ = 2 with a = 1 (solid lines) and a = 2 (dashed lines) (ν = 30);
b)—numerical solutions of the problems (89) for b = 1, γ = 2 (circles) and (105) (points); for
left curves a = 2 and for right curves a = 1.

system (89), in order to obtain a good approximation to the asymptote, it is required to
consider the interval t ∈ [1, 2400], and for the system (105) it suffices to take ξ ∈ [0, 4].
Therefore, it should expect that the method based on the use of the system (94) with
g = t/y is much more efficient than the method based on the differential transformation.

For comparison, similar calculations were performed using Maple (2016), and apply-
ing the method based on the hodograph transformation (see Section 7.1, Item 1◦) and the
method of the arc-length transformation (see Section 7.1, Item 2◦ for c = 1 and s = 2).
In order to obtain a good approximation to the asymptote, applying the method based on
the hodograph transformation, it is required to consider the interval ξ ∈ [0, 49], while
using the method of the arc-length transformation leads to a significantly larger interval
ξ ∈ [0, 2500]. To control a numerical integration process, the calculations were carried
out with the aid of two other most important and powerful mathematical software pack-
ages: Mathematica (11), and MATLAB (2016a). It was found that the method based on
the use of the system (105) with g = t/y is essentially more efficient than the method
based on the hodograph transformation and the method of the arc-length transformation.

Example 20. For the test problem (88), in which f = b2γy2γ−1, we set g = f/t (see
Item 5◦ in Section 7.1). Substituting these functions into (94), we arrive at the Cauchy
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problem

x′ξ =
t

b2γy2γ−1
, y′ξ =

t2

b2γy2γ−1
, t′ξ = t (ξ > 0);

x(0) = 0, y(0) = a, t(0) = aγb.

(107)

The exact solution of this problem in parametric form is

x =
1

aγ−1b(γ − 1)

[
1− e−(γ−1)ξ/γ

]
, y = aeξ/γ , t = aγbeξ. (108)

The required value x = x(ξ) tends exponentially to the asymptotic value x∗ =
1

aγ−1b(γ − 1)
as ξ → ∞. However, in comparison with the method applied in Exam-

ple 19, in this case the rate of approximation of the parametric solution to the asymptote is
less (which is not important for application of the standard numerical methods for solving
similar problems). Note that the solution (108) coincides with (106) if we redenote ξ by
γξ.

7.4. Generalizations based on the use of differential constraints
The method of numerical integration of the Cauchy problems with blow-up

solutions, which based on introducing a nonlocal variable, can be generalized if
the relation (93) is replaced by the first-order differential constraint

ξ′x = g(x, y, t, ξ) (109)

with the initial condition ξ(x = x0) = ξ0.
If we set ξ0 = 0, then the use of the differential constraint (109) leads to the

problem (94), where the function g(x, y, t) must be replaced by g(x, y, t, ξ) in the
equations.

Using differential constraints increases the possibilities for numerical analysis
of blow-up problems.

In particular, if we choose a differential constraint of the form (109) with

g(x, y, t, ξ) =
t

φ(ξ)y + ψ(ξ)
, (110)

where φ(ξ) and ψ(ξ) are given functions, then the second equation of the sys-
tem (94) is reduced to the linear equation for y = y(ξ), the solution of which is
well known. As a result, the considered system, consisting of three equations, is
simplified and reduced to two equations.
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If we choose a differential constraint of the form (109) with

g(x, y, t, ξ) =
f(x, y, t)

φ(ξ)t+ ψ(ξ)
, (111)

then the third equation of the system (94) is reduced to the linear equation for
t = t(ξ). In this case, the system under consideration also is reduced to two
equations.

Example 21. For the test Cauchy problem (88) with b = 1 and γ = 2, we take the
differential constraint (109) with the function (111), where f = 2y3, φ(ξ) = 2(1 + 2ξ),
and ψ(ξ) = 0. As a result, we arrive at the following problem for the ODE system:

x′ξ =
t(1 + 2ξ)

y3
, y′ξ =

t2(1 + 2ξ)

y3
, t′ξ = 2t(1 + 2ξ) (ξ > 0);

x(0) = 0, y(0) = a, t(0) = a2.

(112)

The exact solution of the problem in parametric form is

x =
1

a

(
1− e−ξ−ξ2

)
, y = aeξ+ξ2 , t = a2e2(ξ+ξ2). (113)

It can be seen that the required function x = x(ξ) tends much faster to the asymptotic
value x∗ = 1/a as ξ → ∞ than in Examples 19 and 20.

7.5. Comparison of efficiency of various transformations for numerical integra-
tion of second-order blow-up ODE problems

In Table 2, a comparison of the efficiency of the numerical integration meth-
ods, based on various nonlocal transformations of the form (93) and differential
constraints of the form (109) is presented by using the example of the test blow-up
problem for the second-order ODE (88) with a = b = 1 and γ = 2. The compar-
ison is based on the number of grid points needed to make calculations with the
same maximum error (approximately equal to 0.1 and 0.005).

It can be seen that the arc-length transformation is the least effective, since
the use of this transformation is associated with a large number of grid points. In
particular, when using the last four transformations, you need 150–200 times less
of a number of grid points. The hodograph transformation has an intermediate
(moderate) efficiency. The use of the exp-type transformation with g = t/y gives
rather good results.

The maximum absolute and relative errors of numerical integration of the
problem (88) for a = b = 1 and γ = 2 by introducing a nonlocal variable (93)
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Errormax,% = 0.1

Transformation or Regularizing function Max. interval Stepsize Grid points
differential constraint g ξmax h number N
Arc-length g=

√
1+t2+f2 2500.000 0.4150 6024

Nonlocal, Item 2◦ g=1+|t|+|f | 2544.000 0.7550 3369
Hodograph g=t 49.200 0.4510 109
Special exp-type, Item 5◦ g=f/t 7.807 0.2110 37
Nonlocal g=(1+|f |)1/3 5.052 0.1486 34
Diff. constraint, p.c. of (111) g=f/[2t(1 + 2ξ)] 1.550 0.0470 33
Nonlocal g=(1+|t|+|f |)1/3 5.217 0.1581 33
Nonlocal g=

√
1+|t| 4.135 0.1334 31

Special exp-type, Item 4◦ g=t/y 3.900 0.1300 30
Diff. constraint, p.c. of (110) g=t/[2(ξ + 1)e2ξ+ξ2 ] 1.218 0.0435 28

Errormax,% = 0.005

Transformation or Regularizing function Max. interval Stepsize Grid points
differential constraint g ξmax h number N
Arc-length g=

√
1+t2+f2 2500.000 0.2000 12500

Nonlocal, Item 2◦ g=1+|t|+|f | 2544.000 0.3500 7268
Hodograph g=t 49.000 0.1250 392
Special exp-type, Item 5◦ g=f/t 7.821 0.0990 79
Diff. constraint, p.c. of (111) g=f/[2t(1 + 2ξ)] 1.550 0.0210 74
Nonlocal g=(1+|f |)1/3 4.970 0.0700 71
Nonlocal g=(1+|t|+|f |)1/3 4.970 0.0738 70
Nonlocal g=

√
1+|t| 4.134 0.0608 68

Special exp-type, Item 4◦ g=t/y 3.900 0.0600 65
Diff. constraint, p.c. of (110) g=t/[2(ξ + 1)e2ξ+ξ2 ] 1.220 0.0200 61

Table 2: Various types of analytical transformations applied for numerical integration of the prob-
lem (88) for a = b = 1 and γ = 2 with a given accuracy (percent errors are 0.1 and 0.005
for Λm ≤ 50) and their basic parameters (maximum interval, stepsize, grid points number). The
abbreviation “p.c.” stands for “particular case” and the notation f = 2y3 is used.

with the regularizing function g = (1 + |t|)1/2 for different values of stepsize h
and Λm are given in Table 3. It can be seen that reducing the stepsize by one-half
reduces the percent errors of numerical solutions by more than a factor of 23, and
increasing Λm leads to an almost linear increasing of percent errors (increasing
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Λm by a factor of 6 increases the percent errors by a factor of 6.15, for h = 0.02,
or 4.07, for h = 0.01).

Stepsize h = 0.02 Stepsize h = 0.01

Λm ξmax |error|max errormax,% Λm ξmax |error|max errormax,%
50 4.14 0.000031237 0.000062344 50 4.14 0.000001980 0.000003951

100 4.84 0.000127968 0.000126838 100 4.84 0.000008111 0.000008039
150 5.24 0.000285740 0.000189849 150 5.24 0.000018111 0.000012033
200 5.54 0.000521560 0.000256717 200 5.53 0.000032401 0.000016108
300 5.94 0.001162662 0.000383607 300 5.93 0.000032401 0.000016108

Table 3: The maximum absolute and percent errors of numerical solutions of the problem (88)
for a = b = 1 and γ = 2 by introducing a nonlocal variable (93) with the regularizing function
g = (1 + |t|)1/2 for various values of Λm and stepsize h.

So far, we have studied problems that have monotonic blow-up solutions. In
the next section, we consider examples of more complex problems that have non-
monotonic blow-up solutions.

7.6. Painlevé equations and their non-monotonic blow-up solutions
The Painlevé equations (whose solutions have movable singular points) and

their properties play an important role not only in the theory of ODEs [35, 39–
41], but also in the theory of nonlinear PDEs [39, 42].

It will be shown below that the first and the second Painlevé equations with
suitable initial conditions have non-monotonic blow-up solutions. It is impor-
tant to note that for problems having non-monotonic blow-up solutions, a method
based on the hodograph transformation is inappropriate (since the inverse func-
tion is multivalued in such cases) and methods based on special exp-type trans-
formations (see Remark 13) are also inappropriate. In the case of non-monotonic
solutions, we must choose regularizing functions that satisfy the inequality g > 0.

Consider a Cauchy problem for the first Painlevé equation [35]

y′′xx = 6y2 + x (x > 0); y(0) = a, y′x(0) = b. (114)

For a > 0 and b < 0, the problem (114) has non-monotonic blow-up solutions.
Similarly, a Cauchy problem for the second Painlevé equation

y′′xx = 2y3 + xy + c (x > 0); y(0) = a, y′x(0) = b, (115)
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for a > 0 and b < 0, can have non-monotonic blow-up solutions.
Numerical solution of the problem (114) for the first Painlevé equation with

a = 1 and the three values of the parameter b (b = 0, b = −10, b = −40) and
numerical solution of the problem (115) for the second Painlevé equation with c =
0, a = 2 and the three values of the parameter b (b = 0, b = −2, b = −3), which
are obtained by integrating the transformed system with g = (1 + |t|+ |f |)1/3 by
the Runge–Kutta method of the fourth-order approximation for the fixed stepsize
h = 0.01 are shown by circles in Fig. 9a and Fig. 9b (the non-monotonic behavior
of the solutions is presented in more detail on the corresponding lower figures).
For example, if b = −40 and b = −2, the solutions of the first and second Painlevé
equations have a non-monotonic character and exist in the finite regions 0 ≤ x <
x∗ = 1.0577704 and 0 ≤ x < x∗ = 0.8383873, respectively. Reducing the
stepsize by one-half, the maximum module of difference between the numerical
solutions (with h = 0.01 and h = 0.005) for problem (114) with b = −40 is equal
to 0.0000018 and for the problem (115) with b = −2 is equal to 0.0000101. It
should be noted that min y = y(xm) = −7.3590292 with xm = 0.2829016 for
b = −40 and min y = y(xm) = 1.8621645 with xm = 0.1429965 for b = −2.

8. Second-order autonomous equations. Solution of the Cauchy problem.
Simple estimates

We consider the Cauchy problem for the second-order autonomous equation
of the general form

y′′xx = f(y) (x > 0), y(0) = a, y′x(0) = b. (116)

We assume that a > 0, b ≥ 0 and f(y) > 0 is a continuous function that is defined
for all y ≥ a.

It is not difficult to show that, the equation (116) admits a first integral. As a
result, with allowance for the initial conditions, we arrive at the Cauchy problem
for the first-order autonomous equation

y′x = F (y) (x > 0), y(0) = a;

F (y) =

[
2

∫ y

a

f(z) dz + b2
]1/2

,
(117)

which coincides with the problem (50), up to obvious modifications in notations.
Therefore, we can use the results of Section 5.1.
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Figure 9: a)—numerical solutions of the problem (114) for the first Painlevé equation with a = 1,
regularizing function g = (1 + |t| + |f |)1/3, and h = 0.01; b)—numerical solutions of the
problem (115) for the second Painlevé equation with c = 0 and a = 2, regularizing function
g = (1 + |t|+ |f |)1/3, and h = 0.01.

42



The exact solution of the Cauchy problem (117) is determined by the for-
mula (51), in which the function f(y) should be replaced by F (y). In blow-up
problems, the critical value x∗ is found by the formula (52), where the function
f(y) also must be replaced by F (y).

Sufficient criterion of the existence of a blow-up solution. Suppose that for some
κ > 0 we have the limiting relation

lim
y→∞

F (y)

y1+κ
= s, 0 < s ≤ ∞. (118)

Then the solution of the Cauchy problem (116), when the above conditions are
satisfied, is a blow-up solution.

The condition (118) is inconvenient, since it contains the function F (y), which
is rather complexly connected with the right-hand side f(y) of the original equa-
tion (116). This condition can be simplified and transformed to a more convenient
form:

lim
y→∞

f(y)

y1+κ1
= s1, 0 < s1 ≤ ∞,

where κ1 is a positive number.
By applying the sufficient criterion, we obtain the following useful result.

The Cauchy problem (116) for an autonomous equation with power nonlin-
earity, f(y) = cyσ (c > 0), has a blow-up solution if σ > 1.

9. Blow-up problems for systems of ODEs

9.1. Method based on nonlocal transformations
We consider the Cauchy problem for a system consisting of n first-order cou-

pled ODEs of the general form

dym
dx

= fm(x, y1, . . . , yn), m = 1, . . . , n (x > x0), (119)

with the initial conditions

ym(x0) = ym0, m = 1, 2, . . . , n. (120)

In blow-up problems, the right-hand side of at least one of the equations (119)
(after substituting the solution into it) tends to infinity as x → x∗, where the
value x∗ is unknown in advance.
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In the general case, the functions fm may have different signs. Further, we

assume that
n∑

m=1

|fm| > 0.

We associate the system (119) with the equivalent system of equations con-
sisting of (n+ 1) equations

dx

dξ
=

1

g(x, y1, . . . , yn)
,
dym
dξ

=
fm(x, y1, . . . , yn)

g(x, y1, . . . , yn)
, m=1, . . . , n (ξ>0) (121)

with the initial conditions

x(0) = x0, ym(0) = ym0, m = 1, 2, . . . , n. (122)

Here ξ is a nonlocal variable defined by the formula

ξ =

∫ x

x0

g(x, y1, . . . , yn) dx, ym = ym(x), m = 1, . . . , n (ξ ≥ 0). (123)

In (121), it is assumed that g > 0 if
n∑

m=1

|ym| > 0. Below we will describe

some possible ways of choosing the function g = g(x, y1, . . . , yn).

9.2. Special cases of nonlocal transformations
Let us consider some possible ways of choosing the function g in the sys-

tem (121).

1◦. We can take

g =
[
c0+

n∑
m=1

cm|fm(x, y1, . . . , yn)|s
]1/s

, c0 > 0, cm > 0, s > 0. (124)

In particular, if we set c0 = cm = s = 1 (m = 1, . . . , n) in (124), then the
system (121) takes the form

dx

dξ
=

1

1+
n∑

m=1

|fm(x, y1, . . . , yn)|
,
dym
dξ

=
fm(x, y1, . . . , yn)

1+
n∑

m=1

|fm(x, y1, . . . , yn)|
, (125)

where m = 1, . . . , n.
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Unlike the right-hand sides of the original system (119), the right-hand sides
of the system (121) with (124) have no singularities since all the derivatives are
bounded, |(ym)′ξ| ≤ 1 (m = 1, . . . , n); we recall that for blow-up solutions at least
one of the derivatives (ym)′x tends to infinity as x→ x∗.

The numerical solution of the problem (121)–(122) with (124) can be ob-
tained, for example, applying the Runge–Kutta method or other standard numeri-
cal methods, see above.

2◦. For the system (121) with

g =
[
1 +

n∑
m=1

f 2
m(x, y1, . . . , yn)

]1/2
, (126)

we get the method of the arc-length transformation [4] (the function (126) is
a particular case of (124) with c0 = cm = 1 and s = 2). Therefore for blow-
up problems, the method based on introducing the nonlocal variable (123)
is more general than the method of the arc-length transformation.

3◦. In the general case, it is not known in advance whether the solution of the
Cauchy problem (119)–(120) is a solution with usual properties, or is a
blow-up solution. Therefore, in the first stage, the problem (119)–(120) can
be solved by any standard fixed-step numerical method, for example, by the
Runge–Kutta method. If one of the components, for example, yk, begins to
grow very rapidly (and increases faster than exponential and faster than the
other components), then a hypothesis arises that the corresponding solution
is a blow-up solution. Numerical confirmation of this hypothesis is a rapid
growth of the ratio |fk/yk| with increasing of the integration region with
respect to x. In this case, it is reasonable to choose the function g in (121),
for example, as follows:

g =
1

yk
fk(x, y1, . . . , yn). (127)

As a result, the (k + 1)-th equation of the system (121) is easily integrated
and, taking into account the corresponding initial condition (122), we arrive
at the dependence

yk = yk0e
ξ. (128)
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Substituting the relations (127) and (128) into the remaining equations of
the system (121), we obtain the Cauchy problem

dx

dξ
=

yk
fk(x, y1, . . . , yn)

,
dym
dξ

=
ykfm(x, y1, . . . , yn)

fk(x, y1, . . . , yn)
,

m = 1, . . . , n; m ̸= k (ξ > 0),

(129)

with the initial conditions (122).

In the right-hand sides of the system (129), the function yk should be re-
placed by the right-hand side of the formula (128).

The numerical solution of the system (129) with (128) and the initial con-
ditions (122) can be obtained, for example, by applying the Runge–Kutta
method or the other standard numerical methods with a sufficiently large
stepsize in ξ.

Example 22. We consider the test Cauchy problem for the system of three equations

dy1
dx

= −y1y2,
dy2
dx

= y42y3,
dy3
dx

= −2y1;

y1(0) = y2(0) = y3(0) = 1.
(130)

The exact solution of this problem has the form

y1 = 1− x, y2 =
1

1− x
, y3 = (1− x)2. (131)

A trial numerical integration of the problem (130) by the Runge–Kutta method shows
that the component y2 grows faster (in magnitude) that the other components. Using the
formulas (127) and (128), we obtain that g = y32y3 and y2 = eξ. Substituting these
functions into (129), and taking into account that f1 = −y1y2 and f3 = −2y1, we arrive
at the equivalent Cauchy problem

dx

dξ
=
e−3ξ

y3
,

dy1
dξ

= − e−2ξy1
y3

,
dy3
dξ

= − 2e−3ξy1
y3

;

x(0) = 0, y1(0) = y3(0) = 1.

(132)

Unlike the original problem (130), the problem (132) does not have blow-up singu-
larities. Its exact solution is written in parametric form as follows:

x = 1− e−ξ, y1 = e−ξ, y2 = eξ, y3 = e−2ξ. (133)

The numerical solution of the problem (132) is shown in Fig. 10. We do not present
here the exact dependences (133), since they almost coincide (up to the maximum er-
ror 0.025%) with the results of the numerical solution.
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Figure 10: a)—the dependences x = x(ξ), y1 = y1(ξ), y3 = y3(ξ), obtained by numerical
solution of the problem (132) (ν = 30), and y2 = eξ; b)—numerical solution of the problem (132):
y1(x) (circles), y2(x) (solid line), and y3(x) (points).

Remark 17. In the methods described in Items 1◦ and 2◦, the rate of approximation
of the function x = x(ξ) to the asymptote, that determines the singular point x∗, will be
power-law behavior with respect to ξ, while the method presented in Item 3◦, yields the
exponential rate of approximation of the singular point.

Remark 18. For systems of equations (119) of polynomial type, the most growing
component yk can be determined by substituting the approximate functions y1 = α1z

−β1 ,
. . . , yn = αnz

−βn with z = x∗ − x into the equations. Then, from the analysis of
the obtained linear algebraic relations (in the right-hand sides of these relations only the
principal terms of the expansion in z must be taken into account), the largest exponent
βk = max[β1, . . . , βn] is found, where βk > 0. The component yk is used in formula
(127) for the function g.

Example 23. Consider the problem (130). The solution in the neighborhood of the
singular point is sought in the form

y1 = α1(x∗ − x)−β1 , y2 = α2(x∗ − x)−β2 , y3 = α3(x∗ − x)−β3 . (134)

Substituting the expressions (134) into (130), we obtain a simple system of linear alge-
braic equations for the exponents βm (m = 1, 2, 3). The solution of the system is

β1 = −1, β2 = 1, β3 = −2.

The maximum exponent is β2. Therefore, the component y2 should be used for the func-
tion g in formula (127).
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Remark 19. If the two components, yk and yj , simultaneously have a blow-up behav-
ior (with the same or different rate of approaching to infinity as x → x∗), then we also
can choose, for example, g = c+ |fk|+ |fj | or g = c1 +

√
c2 + f2k + f2j in (121). Here

c, c1, and c2 are some non-negative constants.

Remark 20. The technique developed in Section 9 can also be used in Cauchy prob-
lems for partial differential equations (PDEs) with blow-up solutions, if to apply the nu-
merical methods in which the PDEs are approximated by ODE systems (for example, in
projection methods and the method of lines [43, 44]).

9.3. Method based on differential constraints
For the Cauchy problems that are described by the systems of ODEs and have

blow-up solutions, the method of numerical integration, based on introducing a
nonlocal variable, can be generalized if, instead of the relation (123) to take the
first-order differential constraint

ξ′x = g(x, y1, . . . , yn, ξ) (135)

with the initial condition ξ(x = x0) = ξ0.
If we set ξ0 = 0, then the use of the differential constraint (135) leads to

the problem (121), where the function g(x, y1, . . . , yn) must be replaced by the
function g(x, y1, . . . , yn, ξ) in the equations.

10. Blow-up problems for higher-order ODEs

10.1. Reduction of higher-order ODEs to a system of first-order ODEs
Consider the Cauchy problem for the n th-order ODE:

y(n)x = f(x, y, y′x, . . . , y
(n−1)
x ) (x > x0);

y(x0) = y0, y′x(x0) = y
(1)
0 , . . . , y(n−1)

x (x0) = y
(n−1)
0 ,

(136)

where y(k)x = dky/dxk (k = 3, . . . , n).
The Cauchy problem for one n th-order ODE (136) is equivalent to the Cauchy

problem for a system of n coupled first-order equations of the special form

y′1 = y2, y′2 = y3, . . . , y′n−1 = yn, y′n = f(x, y1, y2, . . . , yn);

y1(x0) = y0, y2(x0) = y
(1)
0 , . . . , yn(x0) = y

(n−1)
0 ,

(137)

where the prime denotes the derivative with respect to x and y1 ≡ y.
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The problem (137) is a particular case of the Cauchy problem (119)–(120)
and the general methods described in Sections 9.1 and 9.2 are applicable to it.
As before, we introduce a new nonlocal independent variable ξ by means of an
integral

ξ =

∫ x

x0

g(x, y1, y2, . . . , yn) dt, yk = yk(x) ≡ y(k)x , (138)

where g = g(x, y1, y2, . . . , yn) is a regularizing function that can be varied. Then,
by using (138), we pass from x to a new independent variable ξ in (137). As a
result, the Cauchy problem for one equation of the n th order (136) is transformed
to the following problem for a system consisting of (n+ 1) st equation of the first
order:

x′ =
1

g
, y′1 =

y2
g
, y′2 =

y3
g
, . . . , y′n−1 =

yn
g
, y′n =

f

g
;

x(0) = t0, y1(0) = y0, y2(0) = y
(1)
0 , . . . , yn(0) = y

(n−1)
0 ,

(139)

where f = f(x, y1, y2, . . . , yn), g = g(x, y1, y2, . . . , yn), and the prime denotes
the derivative with respect to ξ.

10.2. Examples of regularizing functions for n th-order equations
From (1), we obtain an approximate formula for the derivative of an arbitrary

order in a neighborhood of the singular point t∗:

y(n)x ≃ An(x∗ − x)−β−n, An = Aβ(β + 1) · · · (β + n− 1). (140)

We consider regularizing functions of the form g = g(|f |) > 0, where f is the
right-hand side of the equation (136). Suppose, in addition to the normalization
condition g(0) = 1, that the function g satisfies the asymptotic condition of power
growth for large |f |:

g(|f |) → C|f |α as |f | → ∞ with α > 0 (C > 0). (141)

The asymptotics (140) and (141) are needed to determine the conditions for
the convergence or divergence of the integral in the right-hand side of (138). Using
the same reasoning as in Section 7.2, it can be shown that the integral diverges if
the following condition is satisfied:

α ≥ 1

β + n
. (142)
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Since β > 0, then α = 1/n is suitable for any blow-up power-type solution.
For the most common singularity of the solution that has a first-order pole, which
corresponds to the value β = 1, we can choose α = 1/(n + 1) (this value of α is
also suitable for a pole of any integer order).

The asymptotics, as |f | → ∞, of regularizing functions of the form

g = (1 + k|f |p)q (k > 0, p > 0, q > 0) (143)

is determined by the value α = pq in (141).

Let us consider two special types of suitable functions of the form (143):

1. For the function (143) with p = 1 and q = 1/n or p = 2 and q = 1/(2n) we
have α = 1/n and the inequality (142) holds for any positive β.

2. For the function (143) with p = 1 and q = 1/(n + 1) or p = 1/(n + 1) and
q = 1 we have α = 1/(n + 1). The inequality (142) holds for a first-order
pole, which is determined by the value β = 1, and also for all β ≥ 1 (that
is, for integer poles of any order).

10.3. Blow-up problems for third-order ODEs
Let us consider the Cauchy problem for the nonlinear third-order ODE of the

general form

y′′′xxx = f(x, y, y′, y′′xx) (x > 0); y(0) = y0, y
′
x(0) = y1, y

′′
xx(0) = y2. (144)

The problem for one third-order ODE (144) is equivalent to the following
problem for the system of three coupled first-order equations:

y′x = t, t′x = w, w′
x = f(x, y, t, w) (x > 0);

y(0) = y0, t(0) = y1, w(0) = y2.
(145)

The introduction of the nonlocal variable (123) transforms the system (145) to the
form

x′ξ =
1

g
, y′ξ =

t

g
, t′ξ =

w

g
, w′

ξ =
f

g
(ξ > 0);

x(0) = 0, y(0) = y0, t(0) = y1, w(0) = y2,

(146)

where f = f(x, y, t, w) and g = g(x, y, t, w).

Let us consider various possibilities for choosing the function g in the sys-
tem (146).
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1◦. We can take g =
(
c1 + c2|t|s + c3|w|s + c4|f |s

)1/s for cm > 0 and s > 0.
The case c1 = c2 = c3 = c4 = 1 and s = 2 corresponds to the method of
the arc-length transformation [4].

2◦. We can take g = t/y (or g = kt/y, where k > 0 is a constant). In this
case, the system (146) is simplified, since the second equation is directly
integrated, and taking into account the second initial condition, we obtain
y = y0e

ξ.

3◦. We can take g = w/t (or g = kw/twith k > 0). In this case, the system (146)
is simplified, since the third equation is directly integrated, and we obtain
t = y1e

ξ. Taking into account the relations (145), we also have

ξ =

∫ x

x0

w

t
dx =

∫ x

x0

y′′xx
y′x

dx = ln
y′x
y1
.

Thus, this nonlocal transformation coincides with the modified differential
transformation, which was considered in Section 2.3.

4◦. We can take g = f/w (or g = kf/w with k > 0). In this case, the sys-
tem (146) is also simplified, since the fourth equation is directly integrated,
and we obtain w = y2e

ξ.

5◦. Also, we can take g=(1 + |f |)1/3 and g=(1 + |f |)1/4 (see Section 10.2 for
n = 3).

The transformations corresponding to the last three cases, 2◦, 3◦, and 4◦, will
be called the special exp-type transformations, they lead to the solutions, in which
the variable x tends exponentially rapidly to a blow-up point x∗.

Example 24. We consider in more detail the test Cauchy problem of the form

y′′′xxx = 6y4 (x > 0); y(0) = y′x(0) = 1, y′′xx(0) = 2. (147)

The exact solution of this problem is determined by the formula (5).
In Table 4, a comparison of the efficiency of the numerical integration methods, based

on various nonlocal transformations of the form (93) is presented by using the example of
the test blow-up problem for the third-order ODE (147). The comparison is based on the
number of grid points needed to make calculations with the same maximum error (e.g.,
equal to 0.1 and 0.01).

It can be seen that the arc-length transformation is the least effective, since the use of
this transformation is associated with a large number of grid points. In particular, when
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Errormax,% = 0.1

Transformation Regularizing function g Max. interval Stepsize Grid points
ξmax h number N

Arc-length, Item 1◦ g=
√

1+t2+w2+f2 249600.000 0.78000 320000
Nonlocal, Item 1◦ g=1+|t|+|w|+ |f | 252000.000 1.40000 180000
Hodograph g=t 49.010 0.16900 290
Nonlocal, Item 5◦ g=(1 + |f |)1/3 14.654 0.21550 68
Special exp-type, Item 4◦ g=f/w 11.741 0.24980 47
Nonlocal, Item 5◦ g=(1 + |f |)1/4 6.132 0.14600 42
Special exp-type, Item 2◦ g=t/y 3.912 0.09780 40
Special exp-type, Item 3◦ g=w/t 7.828 0.20600 38

Errormax,% = 0.01

Transformation Regularizing function g Max. interval Stepsize Grid points
ξmax h number N

Arc-length, Item 1◦ g=
√

1+t2+w2+f2 252000.000 0.45000 560000
Nonlocal, Item 1◦ g=1+|t|+|w|+ |f | 253580.000 0.81800 310000
Hodograph g=t 49.020 0.09500 516
Nonlocal, Item 5◦ g=(1 + |f |)1/3 14.669 0.11830 124
Special exp-type, Item 4◦ g=f/w 11.738 0.13810 85
Nonlocal, Item 5◦ g=(1 + |f |)1/4 6.160 0.08000 77
Special exp-type, Item 2◦ g=t/y 3.920 0.05600 70
Special exp-type, Item 3◦ g=w/t 7.827 0.12230 64

Table 4: Various types of analytical transformations applied for numerical integration of the prob-
lem (147) with a given accuracy (percent errors are 0.1 and 0.01 for Λm ≤ 50) and their basic
parameters (maximum interval, stepsize, grid points number).

using the last three transformations, you need 6580–8750 times less of a number of grid
points. The hodograph transformation has an intermediate (moderate) efficiency. The use
of the last two special exp-type transformations with g = t/y and g = w/t gives rather
good results. Note that an even smaller number of grid points can be obtained by using
suitable differential constraints.

11. Elementary approaches allowing one to find the form of new variables

We now describe an elementary approach, based on simple semi-geometric
considerations, which allows us to find the form of new variables that transform
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the original blow-up problem to a problem, more suitable for numerical integra-
tion, that does not have blow-up singularities.

11.1. Combination of point transformation and hodograph transformation
Let us consider the approximate relation (1) as an equation connecting the

variables x and y. Solving it with respect to x (for concreteness, we assume that
A > 0), we obtain

x = x∗ −B1y
−1/β, B1 = A1/β. (148)

It is seen that x tends to the blow-up point x∗ slowly enough as y → ∞ (by
the power law ∼ y−1/β). If we make the substitution y = eξ, then the rate of
approximation to the desired asymptotic value x∗ will become exponential with
respect to the new variable ξ (i.e., will increase significantly). It is convenient to
represent the described procedure in the form of a transformation

ξ = ln y, z = x, (149)

where z = z(ξ) is the new unknown function. As a result, we arrive at the depen-
dence z = x∗ −B1e

−ξ/β , which can be written in the parametric form

x = x∗ −B1e
−ξ/β, y = eξ. (150)

The transformation (149) is a combination of two simple point transformations:
1) the non-linear transformation x̄ = x, ȳ = ln y and 2) the hodograph transfor-
mation ξ = ȳ, z = x̄. The transformation (149) is equivalent to the transforma-
tion (25) if g = f/y (see Section 3.1, Item 5◦) and to the transformation (93) if
g = t/y (see Section 7.1, Item 5◦).

11.2. Combination of transformation, based on a differential variable, and point
transformation

Differentiating the asymptotics (1), we have the following relations:

y′x = Aβ(x− x∗)
−β−1, y = A

(
y′x
Aβ

) β
β+1

(151)

(the second relation is obtained from the first one after elimination of x by means
of (1)).
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Excluding y from (148) with the help of the second relation (151), we obtain

x = x∗ −B2(y
′
x)
− 1

β+1 , B2 = (Aβ)
1

β+1 . (152)

It is seen that x tends to the blow-up point x∗ slowly enough as y′x → ∞ (in
accordance with the power law ∼ (y′x)

−1/(β+1)).
If we make the substitution y′x = eξ, then the rate of approximation to the

desired asymptotic value x∗ will become exponential with respect to the new vari-
able ξ (i.e., will increase significantly). The described procedure can be repre-
sented as a modified differential transformation

ξ = ln y′x, x = x(ξ), y = y(ξ), (153)

which is based on a combination of the differential transformation t = y′x (see
Sections 2.1 and 6.1) and the point transformation ξ = ln t.

The transformation (153) determines the asymptotics of the solution (1) in a
neighborhood of the blow-up singularity in the parametric form

x = x∗ −B2e
− 1

β+1
ξ, y = AB−β

2 e
β

β+1
ξ. (154)

In Section 2.3, apart from other considerations, it was described how one can
obtain a transformation of the type (153).

11.3. Relation allowing one to control the calculation process
We now derive a useful formula that makes it possible to control the calcula-

tion process.
Taking into account the relations (1) and (151), we differentiate the relation

y/y′x. After elementary transformations, we obtain

1

β
=

yy′′xx
(y′x)

2
− 1 =

y

y′ξ

(
y′′ξξ
y′ξ

−
x′′ξξ
x′ξ

)
− 1, (155)

where x = x(ξ), y = y(ξ) is the representation of the solution in the parametric
form.

For blow-up problems with a power singularity, the constant β must be greater
than zero. Therefore, for numerical representation of solutions in the parametric
form, for large values of ξ the right-hand side of (155) must tend to a positive
constant (asymptote), which allows us to control the calculation process.
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12. Brief conclusions

Three new methods of numerical integration of Cauchy problems for non-
linear ODEs of the first and second-order, which have a blow-up solution, are
described. These methods are based on differential and nonlocal transformations,
and also on differential constraints, that lead to the equivalent problems for sys-
tems of equations, whose solutions are represented in parametric form and have
no singularities.

It is shown that:

(i) the method based on a nonlocal transformation of the general form includes
themselves, as particular cases, the method based on the hodograph trans-
formation, the method of the arc-length transformation, and the methods
based on the differential and modified differential transformations;

(ii) the methods based on the exp-type and modified differential transformations
are much more efficient than the method based on the hodograph transfor-
mation, the method of the arc-length transformation, and the method based
on the differential transformation;

(iii) the method based on the differential constraints is the most general of the
proposed methods.

In the Cauchy problems described by the first-order equations, two-sided the-
oretical estimates are established for the critical value of the independent vari-
able x = x∗, when an unlimited growth of the solution occurs as approaching
it.

It is shown that the method based on a nonlocal transformation of the general
form as well as the method based on the differential constraints admit general-
izations to the n th-order ordinary differential equations and systems of coupled
differential equations.
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[39] R. Conte (Ed.), The Painlevé Property, One Century Later, CRM Series in
Mathematical Physics, Springer, New York, 1999.
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