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Abstract

The paper presents a number of new functional separable solutions to nonlinear
reaction–diffusion equations of the form

c(x)ut = [a(x)ux]x + b(x)ux + p(x)f(u),

where f(u) is an arbitrary function. It is shown that any three of the four variable
coefficients a(x), b(x), c(x), p(x) of such equations can be chosen arbitrarily,
and the remaining coefficient can be expressed through the others. Examples
of specific equations and their exact solutions are given. The results obtained
are generalized to more complex multidimensional nonlinear reaction–diffusion
equations with variable coefficients. Also some functional separable solutions to
nonlinear reaction–diffusion equations with delay

ut = uxx + a(x)f(u,w), w = u(x, t− τ),

where τ > 0 is the delay time and f(u,w) is an arbitrary function of two argu-
ments, are obtained.

It is important to note that the exact solutions of nonlinear PDEs and delay
PDEs that contain arbitrary functions and therefore have sufficient generality are
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of the greatest practical interest for testing and evaluating the accuracy of various
numerical and approximate analytical methods for solving corresponding initial-
boundary value problems.

Keywords: nonlinear reaction–diffusion equations, reaction–diffusion equations
with delay, equations with variable coefficients, exact solutions, functional
separable solutions

1. Introduction

1.1. A brief review of the literature
Transformations and exact solutions of various classes of nonlinear reaction–

diffusion-convection equations (hereinafter briefly referred to as reaction–diffusion
equations)

ut = [f1(u)ux]x + f2(u)ux + f3(u) (1)

and some other nonlinear equations that do not depend explicitly on the variables
x, t, have been considered in many studies (see, for example, [1–19] and the
literature cited therein). To construct exact solutions, the most frequently used
methods were those based on the classical and nonclassical symmetry reductions
[1–3, 5, 7, 10, 14, 15, 17–19], on generalized and functional separation of vari-
ables [6, 9, 11, 14, 16, 17], and on differential constraints [6, 13, 14, 16, 17].

In the general case, equation (1) admits the traveling wave solution u =
U(kx − λt) [2] and for f2(u) = f3(u) = 0, it has the self-similar solution
u = U(xt−1/2) [1]. In addition to these cases, other exact solutions to equa-
tions of the form (1), in which at least one of the functions fn(u) is arbitrary, are
known [6, 10, 14, 16, 17].

A number of studies (e.g., see [8, 17, 20–23]) have been devoted to nonlinear
reaction–diffusion equations with variable coefficients,

c(x)ut = [a(x)f1(u)ux]x + b(x)f2(u). (2)

In particular, in [8, 12] (see also [17]) exact solutions to the following equations of
the form (2) containing one or two arbitrary functions of the space variable were
obtained:

ut = [a(x)ukux]x + b(x)uk+1 [8, 12],
ut = [a(x)ux]x + b1u lnu+ b2u [12],

ut = a1(u
−4/3ux)x + b(x)u−1/3 [8, 12],

ut = [a(x)eλuux]x + b(x)eλu [8, 12],
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where a(x) and b(x) are arbitrary functions, and a1, b1, b2, k, and λ are arbitrary
constants.

In [6, 17], the exact (functional separable) solutions of four equations of the
form

ut = x−n[xnf1(u)ux]x + f2(u), (3)

where the functions f1(u) and f2(u) are expressed in terms of an arbitrary function
φ(u) (n is any), were obtained. With the substitutions z = (n + 1)−n−1xn+1 (for
n ̸= −1) and z = −2 ln(x/2) (for n = −1), equation (3) can be reduced to an
equation of the form (2) with a power or exponential dependence on the spatial
coordinate:

ut = [zkf1(u)uz]z + f2(u), k = 2n/(n+ 1) (n ̸= −1);

ut = [ezf1(u)uz]z + f2(u) (n = −1).

In [20–22], the methods of group analysis were used to analyze and construct
exact solutions to equations of the form (2) with power and exponential nonlin-
earities.

In [23–29], symmetries and some exact solutions of nonlinear diffusion–convection
equations with variable coefficients

c(x)ut = [a(x)f1(u)ux]x + b(x)f2(u)ux

were described.
Other related and more complex nonlinear evolution equations were consid-

ered in [17, 30–34]. Exact solutions to a number of systems of coupled equations
of the reaction–diffusion type are described in [17, 35] (these books give an ex-
tensive list of publications on this topic), see also [36, 37].

It is also noteworthy that lately much attention has been paid to the study of
hereditary systems, which are modeled by the nonlinear reaction–diffusion equa-
tions

ut = auxx + f(u,w), w = u(x, t− τ),

where τ > 0 is the delay time. Exact solutions of such and more complicated
nonlinear equations (as well as systems of coupled equations with delay) were
obtained in [38–50].

The present paper deals with exact solutions allowed by nonlinear reaction–
diffusion equations of a fairly general form (including nonlinear delay PDEs) that
depend on one or more arbitrary functions.
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1.2. The concept of ‘exact solution’ for nonlinear PDEs
In what follows, the term exact solution with regard to nonlinear partial differ-

ential equations is used in the following cases:

(i) the solution is expressible in terms of elementary functions;

(ii) the solution is expressible in closed form with definite or/and indefinite inte-
grals;

(iii) the solution is expressible in terms of solutions to ordinary differential equa-
tions or systems of such equations.

Combinations of cases (i), (ii), and (iii) are also allowed.

Solutions of more complex nonlinear partial differential equations with delay,
which are expressed in terms of solutions of ordinary differential equations with
delay, will also be attributed to exact solutions.

2. Construction of exact solutions of one-dimensional nonlinear reaction–
diffusion equations

2.1. Class of equations under consideration. Reduction of nonlinear reaction–
diffusion equations to ODEs

The paper deals with the reaction–diffusion equations with a nonlinear source
and variable coefficients

c(x)ut = [a(x)ux]x + b(x)ux + p(x)f(u), (4)

where f(u) is an arbitrary function. Some of the four functional coefficients a =
a(x) > 0, b = b(x), c = c(x) > 0, and p = p(x) can be free, while the others
can be expressed through them as a result of the subsequent analysis (the free
coefficients can be chosen differently, see below). Without loss of generality, it
will be assumed that p > 0 (for p < 0, the functions p and f must be redefined as
−p and −f ).

Exact solutions to equation (4) will be sought in the form of a superposition
of functions

u = U(z), z = φ(x, t). (5)
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Substituting (5) in (4) gives the functional-differential equation

a(x)φ2
xU

′′
zz +

{
[a(x)φx]x + b(x)φx − c(x)φt

}
U ′
z + p(x)f(U) = 0. (6)

In the special case U(z) = z, equation (6) coincides with the original equation (4)
(so at this stage no solutions are lost).

Let the coefficients of the equation satisfy the relations

p(x) = a(x)s(φ)φ2
x, (7)

c(x)φt = [a(x)φx]x + b(x)φx + a(x)k(φ)φ2
x, (8)

where s(φ) and k(φ) are some functions (s ̸≡ 0). Then equation (6) reduces to
the ordinary differential equation

U ′′
zz − k(z)U ′

z + s(z)f(U) = 0. (9)

Exact solutions of the nonlinear ordinary differential equation (9) for some
functions k(z), s(z), f(U) can be found in [51, 52].

In the special case k(z) ≡ 0, which corresponds to the linear equation (8),
for s(z) = 1, the general solution of equation (9) for any function f(U) can be
written in an implicit form [51]:∫ [

C1 − 2

∫
f(U) dU

]−1/2

dU = C2 ± z, (10)

where C1 and C2 are arbitrary constants.
Equations (7)–(9) allow one to construct exact solutions for a wide class of

nonlinear reaction–diffusion equations of the form (4).

Remark 1. Looking for solutions in the form (5) corresponds to a special form [17] of
the Clarkson–Kruskal direct method for symmetry reductions [53, 54] (the use of the non-
classical method for symmetry reductions [54, 55] leads to more complex calculations).

Remark 2. In equation (4), without restriction of generality, two of four functional
coefficients a(x), b(x), c(x), p(x) can be set equal to unity. In particular, if one di-
vides both sides of the equation by c, and then changes from t, x to the new indepen-
dent variables t, y =

∫√
c/a dx, then one obtains an equation in the canonical form

ut = uyy + b1(y)uy + p1(y)f(u). It is not difficult to find a transformation t, ȳ = ȳ(x),
which reduces equation (4) to another canonical form ut = [a2(ȳ)uȳ]ȳ+p2(ȳ)f(u). How-
ever, dealing with the equation in general form (4) is more convenient because it includes
any canonical and noncanonical forms.

Remark 3. In equations (4), (6)–(8), the functions a(x), b(x), c(x), and p(x) can be
replaced with functions of two variables a(x, t), b(x, t), c(x, t), and p(x, t).
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2.2. A direct procedure for constructing exact solutions. Analysis and solutions
of the determining system of equations in the general case

A direct procedure for constructing exact solutions of nonlinear equations of
the form (4) suggests that the functions a(x), b(x), c(x), and f(u) are assumed
given, and the functions u = u(x, t) and p = p(x) are the desired ones. In this
case, having given in some way the functions k(φ) and s(φ), one has first to
find particular solutions p(x) and φ = φ(x, t) of the equations (7) and (8) (the
last equation can be linearized, see below). After this, with allowance for the
relation (7), the solution of equation (4) is determined by formula (5), where the
function U(z) is a solution of the ordinary differential equation (9).

In the general case, two equations (7) and (8) for given functions a = a(x),
b = b(x), c = c(x), p = p(x), k(φ), and s(φ) are an overdetermined nonlinear
system of coupled equations for one function φ (this system will be called the
determining system of equations). The properties of equations (7) and (8) will be
sequentially investigated.

Equation (7) is transformed to an equation with separable variables
√
s(φ)φx =

±
√
p(x)/a(x). Its general solution is given by the formula∫ √

s(φ) dφ = ±
∫ √

p(x)/a(x) dx+ ξ(t), (11)

where ξ(t) is an arbitrary function. Therefore, in the general case, the function φ
must have the form

φ = G(y), y = ξ(t) + θ(x). (12)

Note that solution (12) also admits another (but equivalent) representation of

φ = Ḡ(ȳ), ȳ = ξ̄(t)θ̄(x), (13)

where ȳ = ey, ξ̄ = eξ, and θ̄ = eθ. Solutions of the form (12) and (13) often occur
in mathematical physics and are called functional separable solutions [14, 17].

Nonlinear transformations

φ = F (ψ) (14)

retain the form of equations (7) and (8), once the functional coefficients k(φ) and
s(φ) are changed by the rule:

k(φ) =⇒ k(F (ψ))F ′
ψ(ψ) +

F ′′
ψψ(ψ)

F ′
ψ(ψ)

, s(φ) =⇒ s(F (ψ))[F ′
ψ(ψ)]

2. (15)
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The degenerate case k(φ) ≡ 0 corresponds to the linear PDE with variable
coefficients (8). For k(φ) ̸≡ 0, the nonlinear equation (8) can be reduced with the
help of the substitution

ψ = C1

∫
K(φ) dφ+ C2, K(φ) = exp

[∫
k(φ) dφ

]
, (16)

where C1 and C2 are arbitrary constants, to the linear equation

c(x)ψt = [a(x)ψx]x + b(x)ψx. (17)

In the special case k(ψ) = k = const, one can use the substitution

φ = k−1 ln |ψ|, (18)

which follows from (16).
Solutions of a linear equation with autonomous coefficients (17) can be con-

structed by the method of separation of variables. In particular, this equation has
solutions with additive and multiplicative separation of variables:

ψ = λt+ η(x), [a(x)η′x]
′
x + b(x)η′x − λc(x) = 0; (19)

ψ = exp(λt)ζ(x), [a(x)ζ ′x]
′
x + b(x)ζ ′x − λc(x)ζ = 0, (20)

where λ is an arbitrary constant. The equation for η in (19) is easily integrated by
the substitutionw(x) = ηx, and the solutions of the linear equation for ζ in (20) for
various functions a(x), b(x), and c(x) are given in [51, 52]. Other exact solutions
of equation (17) for certain functions a(x), b(x), and c(x) can be found in [56].

Since transformations of the form (14) change only the functional coefficients
k(φ) and s(φ) in equations (7) and (8), one can choose the function F , without
loss of generality, so as to simplify one of these equations. Three possible ways
of simplifying these equations are described below.

1◦. For s(φ) = 1 and k = k(φ), from formula (11) one finds

φ = ξ(t) + θ(x), (21)

which corresponds to G(y) = y in (12). In this case, p(x) = a(x)(θ′x)
2.

2◦. For s(φ) = φ−1 and k = k(φ), formula (11) gives

φ = ξ̄(t)θ̄(x), (22)

which corresponds to Ḡ(y) = y in (13).
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3◦. For s = s(φ) and k(φ) = 0, equation (8) is a linear PDE of an autonomous
form, the solutions of which are constructed by the method of separation of vari-
ables.

In what follows, the simplest representation of the solution in Item 1◦ will be
used. Substituting (21) into equation (8) yields the functional-differential equation

c(x)ξ′t = [a(x)θ′x]
′
x + b(x)θ′x + a(x)(θ′x)

2k(φ), φ = ξ(t) + θ(x). (23)

The intention is to find the admissible forms of the function k(φ) for which this
equation can have solutions, using the differentiation method [14, 17]. To this
end, first, dividing by c, allows us to represent equation (23) in the form

ξ′t = Q(x) +R(x)k(φ), φ = ξ(t) + θ(x), (24)

where Q(x) = [(aθ′x)
′
x + bθ′x]/c and R(x) = a(θ′x)

2/c. Differentiating both parts
of (24) with respect to t, we transform the obtained equation to the form ξ′′tt/ξ

′
t =

R(x)k′φ(φ). We logarithm both parts of this equation, and then again differentiate
by t. After dividing by ξ′t, we have [ln(ξ′′tt/ξ

′
t)]

′
t/ξ

′
t = [ln k′φ(φ)]

′
φ. Differentiating

further with respect to x, we obtain

[ln k′φ(φ)]
′′
φφ = 0.

The solutions of this ordinary differential equation are determined by the formulas

k(φ) = k1φ+ k2 (degenerate solution), (25)

k(φ) = k1e
−k2φ + k3 (non-degenerate solution), (26)

where k1, k2, and k3 are arbitrary constants. Formulas (25) and (26) define all
admissible functions k(φ) for which the functional-differential equation (23) can
have a solution.

Formulas (21), (25), and (26) will be used in the following sections to con-
struct exact solutions of nonlinear reaction–diffusion equations with autonomous
coefficients (4).

2.3. The construction of exact solutions for k(φ) = k and s(φ) = 1

Direct method of constructing exact solutions. In the simplest case, k(φ) =
k = const, which corresponds to the values k1 = 0 and k2 = k in (25), substituting
expression (21) into equation (23) gives ξ(t) = t (the constant factor is chosen
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equal to unity). Therefore, the class of equations (4) in this case admits exact
solutions with a functional separation of variables of the form (5), where

φ(x, t) = t+

∫
g(x) dx. (27)

Here, the function g(x) = θ′x(x) can be given by the researcher or determined
by further analysis (depending on the goal, see below). Substituting (27) into
equation (7) for s(φ) = 1 and equation (8) for k(φ) = k yields

p(x) = a(x)g2(x), (28)
c(x) = [a(x)g(x)]′x + b(x)g(x) + ka(x)g2(x). (29)

Relation (29) connects the first three functional coefficients of equation (4) and the
function g = g(x) in (27) (this relation is differential with respect to functions a
and g and algebraic with respect to functions b and c), and relation (28) is algebraic
and is used to determine the functional coefficient p(x).

If the three functions a(x), b(x), and c(x) are assumed to be given, then re-
lation (29) for k ̸= 0 is the Riccati equation for the function g = g(x). Let us
rewrite this equation in the standard form:

a(x)g′x + ka(x)g2 + [b(x) + a′x(x)]g − c(x) = 0. (30)

An extensive list of exact solutions of equation (30) for the functions a(x), b(x),
and c(x) of various forms can be found in [51, 52]. Two cases will be considered.

Degenerate case. For k = 0, the Riccati equation (30) degenerates in a linear
equation whose general solution has the form

g(x) =
1

a(x)
E(x)

[∫
c(x)

E(x)
dx+ C1

]
, E(x) = exp

[
−
∫

b(x)

a(x)
dx

]
, (31)

where C1 is an arbitrary constant.
Example 1. In the case of constant coefficients of the equation a = c = 1,

b = 0, using formulas (31) for C1 = 0, one finds g(x) = x. Substituting this
function in (27) and (28) for s(φ) = 1 gives φ(x, t) = t + 1

2
x2, p(x) = x2. It

follows that the nonlinear reaction–diffusion equation

ut = uxx + x2f(u) (32)

for an arbitrary function f(u) admits a functional separable solution

u = U(z), z = t+ 1
2
x2. (33)
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Here, the function U(z) is described by the autonomous ordinary differential
equation

U ′′
zz + f(U) = 0 (34)

(obtained by substituting the values k = 0 and s = 1 in (9)), whose general
solution can be represented implicitly (10).

Example 2. Consider a more complicated situation when one of the coefficient
of the equation depends in an arbitrary way on the spatial variable a = a(x), and
the other two are constants, b(x) = 0, c(x) = 1. Using formulas (31) with C1 = 0,
one finds that g(x) = x/a(x). Substituting this function in (27) and (28), for
s(φ) = 1 gives φ(x, t) = t+

∫
x

a(x)
dx, p(x) = x2/a(x). Therefore, the nonlinear

reaction–diffusion equation

ut = [a(x)ux]x +
x2

a(x)
f(u), (35)

depending on two arbitrary functions a(x) and f(u), admits an exact solution with
a functional separation of variables,

u = U(z), z = t+

∫
x

a(x)
dx, (36)

where the function U(z) is described by a solvable autonomous ordinary differen-
tial equation (34).

Substituting a(x) = xn, a(x) = eλx, a(x) = xeλx into (35) yields the nonlin-
ear equations

ut = (xnux)x + x2−nf(u), (37)

ut = (eλxux)x + x2e−λxf(u), (38)

ut = (xeλxux)x + xe−λxf(u), (39)

which admit exact solutions for an arbitrary function f(u).
It is interesting to note that the equation ut = (xux)x + xf(u), which is a

special case of equation (37) for n = 1, has a noninvariant solution of the traveling
wave type, u = U(x+ t).

Nondegenerate case. For k = const (k ̸= 0), the substitution

g =
1

k

y′x
y

(40)
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reduces equation (30) to the second-order linear differential equation

a(x)y′′xx + [b(x) + a′x(x)]y
′
x − kc(x)y = 0. (41)

An extensive list of exact solutions of this equation for the functions a(x), b(x),
and c(x) of various forms can be found in [51, 52].

Example 3. In the case of constant coefficients a = c = 1, b = 0, the general
solution of equation (41) has the form

y =

{
C1 cosh(mx) + C2 sinh(mx) if k = m2 > 0,

C1 cos(mx) + C2 sin(mx) if k = −m2 < 0,
(42)

where C1 and C2 are arbitrary constants. Putting C1 = 1, C2 = 0, k = 1 in (42)
and using the formula (40), we find

g(x) = tanhx.

Substituting this function into (27) and (28), we have

φ(x, t) = t+ ln cosh x, p(x) = tanh2 x.

It follows that the nonlinear reaction–diffusion equation

ut = uxx + tanh2 xf(u) (43)

for an arbitrary function f(u) admits the functional separable solution

u = U(z), z = t+ ln cosh x, (44)

where the function U(z) is described by the autonomous ordinary differential
equation

U ′′
zz − U ′

z + f(U) = 0. (45)

The order of equation (45) can be reduced by one using the substitution U ′
z =

Φ(U), which leads to the Abel equation of the second kind in the canonical form.
Exact solutions of equation (45) for some dependences of f(U) are available in
[51, 52].

In Table 1 shows the nonlinear equations ut = uxx + p(x)f(u), where f(u)
is an arbitrary function, that admit exact solutions with a functional separation of
variables of the form u = U(z), z = φ(x, t) (the function φ is determined to

11



within an additive constant). For equations Nos. 1, 2, 4–7, the function φ(x, t) is
the sum of functions of different arguments (27). A traveling wave solution (see
equation No. 1) corresponds to a degenerate solution of equation (30) of the form
g = α = const. Solutions of some equations of this type with more complicated
functions p(x) can be obtained by using formulas (42) from Example 3. The
solution to the equation No. 3 is self-similar (see Example 4).

No. Function p(x) Function φ(x, t) Equation for the function U = U(z)

1 1 t+ αx α2U ′′
zz − U ′

z + f(U) = 0

2 x2 t+ 1
2x

2 U ′′
zz + f(U) = 0

3 x−2 xt−1/2 U ′′
zz +

1
2 zU

′
z + z−2f(U) = 0

4 tanh2(αx) t+ α−2 ln cosh(αx) U ′′
zz − α2U ′

z + α2f(U) = 0

5 coth2(αx) t+ α−2 ln | sinh(αx)| U ′′
zz − α2U ′

z + α2f(U) = 0

6 tan2(αx) t− α−2 ln | cos(αx)| U ′′
zz + α2U ′

z + α2f(U) = 0

7 cot2(αx) t− α−2 ln | sin(αx)| U ′′
zz + α2U ′

z + α2f(U) = 0

Table 1: Nonlinear equations ut = uxx + p(x)f(u) that admit exact solutions of the form u =
U(z), z = φ(x, t). Here, f(u) is an arbitrary function and α is an arbitrary constant (α ̸= 0).

Other ways of constructing exact solutions. We now consider other possibil-
ities for constructing exact solutions of equations of the form (4) for k(φ) = k,
s(φ) = 1 without integrating the Riccati equation (30). To do this, we assume that
g(x) and any two of the three functions a(x), b(x), and c(x) are given, and the re-
maining function will be found on the basis of (30). Table 2 describes the possible
situations and provides formulas for determining the required function. The final
form of the nonlinear reaction–diffusion equation is determined by substituting
the function p(x) = a(x)g2(x) in (4).

No. Functions that are known Function we are looking for
1 a = a(x), b = b(x), g = g(x) c(x) = ag′x + kag2 + (b+ a′x)g

2 a = a(x), c = c(x), g = g(x) b(x) = g−1(c− ag′x)− a′x − kag

3 b = b(x), c = c(x), g = g(x) a(x) = g−1E
[∫

(c− bg)E−1dx+ C1

]
, E = exp

(
−k

∫
g dx

)
Table 2: Different ways of specifying the functional coefficients of equation (4) for p(x) =
a(x)g2(x). Here, k and C1 are arbitrary constants and g−1 = 1/g.

Example 4. We use the third way described in Table 2, with b = 0, c = 1 for
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an alternative representation of the equations and their exact solutions. There are
two possible cases.

1. Degenerate case for k = 0. From Table 2, line No. 3, we find a(x) =
xg−1(x), p(x) = x2/a(x), which leads to the equation (35).

2. Nondegenerate case for k ̸= 0. From Table 2, line No. 3, with k ̸= 0,
C1 = 0 we have a(x) = g−1E

∫
E−1dx. We introduce a new function h = h(x)

by putting h =
∫
E−1dx. Differentiating this expression and taking into account

the formula E = exp
(
−k

∫
g dx

)
, we express the function g in terms of h. As

a result of simple calculations, we finally get g = k−1h′′xx/h
′
x, a = kh/h′′xx, p =

k−1hh′′xx/(h
′
x)

2. It follows that the equation

ut = [a(x)ux]x + p(x)f(u), a(x) = k
h

h′′xx
, p(x) =

1

k

hh′′xx
(h′x)

2
, (46)

where f(u) and h = h(x) are arbitrary functions, and k ̸= 0 is an arbitrary
constant, admits an exact solution with the generalized separation of variables

u = U(z), z = t+
1

k
ln |h′x|.

Here, the function U(z) is determined from the ordinary differential equation
U ′′
zz − kU ′

z + f(U) = 0.
Assuming, for example, in (46) h = sinh(αx), k = α2, we obtain equation

No. 4 from Table 1.
Substituting h = ln(αx), k = −1 in (46), we arrive at the equation

ut = [x2 ln(αx)ux]x + ln(αx)f(u), (47)

which admits an exact solution of the form u = U(z), where z = t+ ln x.

2.4. The direct construction of exact solutions for k(φ) ̸= const
1. Case k(φ) = k1φ, s(φ) = 1. For k(φ) = k1φ, which corresponds to the

value of k2 = 0 in (25), substituting expression (21) in equation (23), we obtain
ξ(t) = eλt. Therefore, in this case the class of equations (4) admits exact solutions
with functional separation of variables of the form (5), where

φ(x, t) = eλt + θ(x). (48)

Substituting (48) into relation (7) for s(φ) = 1 and equation (23) for k(φ) = k1φ
we obtain

c(x) =
k1
λ
a(x)(θ′x)

2, p(x) = a(x)(θ′x)
2. (49)
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In this case, the functions a(x) and b(x) remain arbitrary, and the function θ =
θ(x) is determined by solving the ordinary differential equation

[a(x)θ′x]
′
x + b(x)θ′x + k1a(x)θ(θ

′
x)

2 = 0. (50)

The substitution η =
∫
exp

(
1
2
k1θ

2
)
dθ reduces equation (50) to the linear equation

[a(x)η′x]
′
x + b(x)η′x = 0, whose general solution is defined by the formula η =

C1

∫
1
a
exp

(
−
∫

b
a
dx

)
dx+ C2.

2. Case k(φ) = k1e
−k2φ + k3, s(φ) = 1. For k(φ) = k1e

−k2φ + k3, which
corresponds to the use of the dependence (26), substituting expression (21) into
equation (23), we obtain ξ(t) = k−1

2 ln t. In this case, the class of equations (4)
admits exact solutions with a functional separation of variables of the form (5),
where

φ(x, t) =
1

k2
ln t+ θ(x). (51)

Substituting (51) into relation (7) for s(φ) = 1 and equation (23) for k(φ) =
k1e

−k2φ + k3, we get

p(x) = a(x)(θ′x)
2, c(x) = k1k2a(x)e

−k2θ(θ′x)
2. (52)

The functions a(x) and b(x) remain arbitrary, and the function θ = θ(x) is deter-
mined by solving the nonlinear ordinary differential equation

[a(x)θ′x]
′
x + b(x)θ′x + k3a(x)(θ

′
x)

2 = 0. (53)

This equation is easily integrated, since the substitution ζ(x) = θ′x leads it to the
Bernoulli equation. In particular, for k3 = 0, the general solution of equation (53)
is given by the formula

θ(x) = C1

∫
1

a
exp

(
−
∫

b

a
dx

)
dx+ C2.

Example 5. Let

a(x) = 1, b(x) = 0, k1 = − 1
2
, k2 = −2, k3 = 1. (54)

In this case, equation (53) has a solution θ = ln x. Substituting this function into
formulas (51) and (52), and taking (54) into account, we obtain

φ(x, t) = − 1
2
ln t+ ln x, p(x) = x−2, c(x) = 1. (55)
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Therefore, the equation

ut = uxx + x−2f(u) (56)

admits the self-similar solution

u = U(z), z = − 1
2
ln t+ ln x ≡ ln(xt−1/2), (57)

where the function U(z) satisfies the ordinary differential equation

U ′′
zz + ( 1

2
e2z − 1)U ′

z + f(U) = 0. (58)

Note that in applications usually use an alternative representation of similar so-
lutions, which is based on the introduction of the self-similar variable z̄ = ez =
xt−1/2 and reduces equation (58) to the equation U ′′

z̄z̄ +
1
2
z̄U ′

z̄ + z̄−2U = 0 (see
equation No. 3 in the Table 1).

Example 6. Equations (52) and equation (53) are satisfied if we set

a(x) = 1, b(x) = 0, c(x) = e−x, p(x) = 1, θ(x) = x, k1 = k2 = 1, k3 = 0.

Therefore, the equation e−xut = uxx + f(u) admits an exact solution of the form
u = U(z), where z = x+ ln t.

3. Multidimensional equations and equations with delay

3.1. Nonlinear reaction–diffusion equations with several spatial variables
The results obtained in Sections 2.1 and 2.2 can be generalized to the case of

a multidimensional reaction–diffusion equation with a nonlinear source

cut =
N∑
n=1

∂

∂xn

(
an

∂u

∂xn

)
+

N∑
n=1

bn
∂u

∂xn
+ pf(u), (59)

whose coefficients depend on spatial coordinates and time: an = an(x, t), bn =
bn(x, t), c = c(x, t), p = p(x, t), x = (x1, . . . , xn), n = 1, . . . , N .

We seek exact solutions of equation (59) in the form of a superposition of
functions

u = U(z), z = φ(x, t). (60)
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We require that the coefficients of equation (59) and the function φ be related by
two relations

p = s(φ)
N∑
n=1

an

(
∂φ

∂xn

)2

, (61)

cφt =
N∑
n=1

∂

∂xn

(
an

∂φ

∂xn

)
+

N∑
n=1

bn
∂φ

∂xn
+ k(φ)

N∑
n=1

an

(
∂φ

∂xn

)2

, (62)

where s(φ) and k(φ) are certain functions (s ̸≡ 0). Then equation (59) reduces to
the ordinary differential equation

U ′′
zz − k(z)U ′

z + s(z)f(U) = 0. (63)

The nonlinear transformation φ = F (ψ) preserves the form of equations (61)
and (62), and the functional coefficients k(φ) and s(φ) vary according to rule (15).
The transformation (16) leads the nonlinear equation (62) to the linear equation

cψt =
N∑
n=1

∂

∂xn

(
an

∂ψ

∂xn

)
+

N∑
n=1

bn
∂ψ

∂xn
. (64)

For the equation (59) with autonomous coefficients an = an(x), bn = bn(x),
c = c(x), and p = p(x), the solution of equation (61) has the form φ = G(y),
where y = ξ(t) + θ(x). Without limiting generality, by putting s(φ) = 1, the
exact solutions of equations (61) and (62) can be found as a function with additive
separation of variables

φ = ξ(t) + θ(x). (65)

Substituting (65) in equation (62), we obtain a functional differential equation that
allows solutions only for coefficients k(φ) of the form (25) and (26) (the analysis
is carried out in the same way as it was done in Section 2.2).

Example 7. It is easy to verify that for an = 1, bn = 0 (n = 1, . . . , N ), c = 1,
k(φ) = 0, s(φ) = 1, equations (61) and (62) can be satisfied if put p = |x|2,
φ = Nt + 1

2
|x|2, where |x|2 = x21 + · · · + x2n. Therefore, the N -dimensional

nonlinear reaction–diffusion equation

ut = ∆u+ |x|2f(u) (66)
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(∆ is the Laplace operator), depending on an arbitrary function f(u), admits an
exact solution with a functional separation of the variables

u = U(z), z = Nt+ 1
2
|x|2. (67)

Here, the function U(z) is described by an autonomous ordinary differential equa-
tion U ′′

zz + f(U) = 0, whose general solution can be written in implicit form (10).

Remark 4. The functional coefficients an in equation (59) can have different signs.
In particular, for a1 = −1, an > 0 (n = 2, . . . , N ), c = 0, equation (59) is an equation of
hyperbolic type.

3.2. Nonlinear equations of reaction–diffusion type with delay
The results obtained in Section 2 can also be generalized to the case of more

complicated nonlinear reaction–diffusion equations with a delay of the form

c(x)ut = [a(x)ux]x + b(x)ux + p(x)f(u,w), w = u(x, t− τ), (68)

where τ > 0 is the delay time, f(u,w) is an arbitrary function of two arguments.
Let us show how the solutions of the nonlinear reaction–diffusion equation

without delay (4), which are determined by formulas (5) and (27), can be used to
construct exact solutions of the nonlinear equation with delay (68). Let equation
(4) admit a solution with a functional separation of the form

u = U(z), z = t+ θ(x), (69)

where the function U(z) satisfies the ordinary differential equation (9). Then the
equation with delay (68) admits an exact solution of the form (69), where the
function U(z) satisfies the ordinary differential equation with delay

U ′′
zz − k(z)U ′

z + s(z)f(U,W ) = 0, W = U(z − τ). (70)

Equations (32), (35), (37)–(39), (47), as well as equations Nos. 4–7 of the
Table 1 (obtained for k(z) = 0, s(z) = 1), have solutions of the form (69). There-
fore, more complex nonlinear reaction–diffusion equations with delay, which are
obtained from these equations by replacing the function f(u) by the function
f(u,w), also admit exact solutions of the form (69).

Example 8. Nonlinear reaction–diffusion equation with delay

ut = uxx + x2f(u,w), w = u(x, t− τ), (71)
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which is a generalization of equation (32), for an arbitrary function f(u,w) admits
an exact solution with functional separation of variables

u = U(z), z = t+ 1
2
x2, (72)

where the function U(z) is described by the delay ordinary differential equation

U ′′
zz + f(U,W ) = 0, W = U(z − τ). (73)

Note that for f(U,W ) = Ug(W/U), the equation (73) admits an exact the
solution of the form U = Ceλz, where C is an arbitrary constant, and λ is deter-
mined from the transcendental equation λ2 + g(e−τλ) = 0.

4. Brief conclusions

To summarize, the paper has presented a number of exact functional separable
solutions to nonlinear reaction–diffusion equations of the form

c(x)ut = [a(x)ux]x + b(x)ux + p(x)f(u),

where f(u) is an arbitrary function. Solutions were sought in the form u = U(z)
with z = φ(x, t), where the functions U(z) and φ(x, t) are determined in the
course of further analysis. It has been shown that any three of the four functional
coefficients a(x), b(x), c(x), p(x) of the reaction–diffusion equation can be chosen
arbitrarily. Examples of specific equations and their exact solutions are given. The
results are to extend to multidimensional nonlinear reaction–diffusion equations
with variable coefficients. Also some exact solutions with a functional separation
of variables of nonlinear reaction–diffusion equations with delay

ut = uxx + a(x)f(u,w), w = u(x, t− τ),

where τ > 0 is the delay time and f(u,w) is an arbitrary function of two argu-
ments, have been obtained.
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