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Preface

Linear and nonlinear differential equations with delay (ordinary and partial) or, sim-

ply, delay differential equations∗ are often used for mathematical modeling of phe-

nomena and processes in various areas of theoretical physics, mechanics, control the-

ory, biology, biophysics, biochemistry, medicine, ecology, economics, and technical

applications.

Let us list a few factors that lead one to introduce delay into mathematical models

described by differential equations. For example, in biology and biomechanics,

delays are due to the limited speed of transmission of nerve and muscle reactions in

living tissues. In medicine, when one deals with the spread of infectious diseases,

the delay time is determined by the incubation period (the time interval between

initial contact with an infectious agent and appearance of the first signs or symptoms

of the disease). In population dynamics, delays arise because individuals participate

in reproduction only after reaching a certain age. In control theory, delays are

usually associated with the finite speed of signal propagation and the limited speed

of technological processes.

The presence of a delay in mathematical models and differential equations is a

complicating factor, which, as a rule, leads to a narrowing of the stability region of

the solutions obtained. Studying and solving ordinary differential equations (ODEs)

with delay is comparable in complexity to studying and solving partial differential

equations (PDEs) without delay.

The book details qualitative features of delay differential equations and presents

typical statements of initial value and initial-boundary value problems for them.

Exact, approximate analytical, and numerical methods for solving such equations are

described. In addition to differential equations with constant delay, equations with

proportional delay (of the pantograph type) are studied, as well as more complex

equations with a general variable delay or several delays. The presentation of the

theoretical material comes with examples of the practical application of the methods

to obtain desired solutions.

The book reviews the most common mathematical models with delay used in

population theory, biology, medicine, and other applications.

Analytical solutions to Cauchy-type linear problems for first- and second-order

ODEs and systems of ODEs with constant or proportional delays are presented.

Some classes of nonlinear first-order delay ODEs that admit linearization or exact

solutions are considered. The issues of stability and instability of solutions to ODEs

with delay are discussed.

The most common analytical and numerical methods for solving initial and

boundary value problems for ODEs with constant or variable delay are described.

∗In the literature, there is also a longer alternative name: differential equations with delayed argument.
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xii PREFACE

These include the method of steps, methods of integral transforms, method of regular

expansion in a small parameter, method of matched asymptotic expansions, iterative

methods, Adomian decomposition method, homotopy analysis method, collocation

method, Galerkin-type projection methods, Euler and Runge–Kutta methods, shoot-

ing method, methods based on the use of the Mathematica package, and more.

We use the method of separation of variables to obtain Fourier series solutions

in space variables of linear initial-boundary value problems for parabolic and hyper-

bolic PDEs with constant or proportional delay and different boundary conditions.

Numerical methods for solving initial-boundary value problems for linear and non-

linear delay PDEs are also presented. The most attention is paid to the method of

lines, which relies on reducing a delay PDE to a system of delay ODEs. Finite-

difference methods based on an implicit scheme, a weighting scheme, a scheme of

increased order of accuracy, and more are considered. The time domain decompo-

sition method, which generalizes the method of steps used to solve delay ODEs,

is also discussed. We formulate the basic principles for constructing and selecting

test problems for assessing the adequacy and estimating the accuracy of numerical

methods and approximate analytical methods for solving delay PDEs.

The general solutions to nonlinear delay PDEs cannot be obtained even in the

simplest cases. Therefore, when studying such equations, one usually has to search

and analyze their particular solutions, usually called exact solutions.

The book pays much attention to the description and practical application of

methods for constructing exact solutions to nonlinear equations of mathematical

physics with delay. These are the methods of generalized and functional separa-

tion of variables, the method of functional constraints, the method of generating

equations, the principle of the analogy of solutions, and others. Notably, the vast

majority of analytical methods that successfully allow one to find exact solutions

of nonlinear partial differential equations without delay are either inapplicable to

constructing exact solutions of nonlinear PDEs with constant or variable delay or

have a minimal area of applicability. Equations of mathematical physics with two

independent variables and a delay have the following essential qualitative features:

(i) PDEs with constant delay do not admit self-similar solutions, unlike PDEs without

delay, many of which do, and (ii) PDEs with proportional delay in either independent

variable do not have traveling wave solutions, unlike simpler PDEs without delay,

which often have.

The book considers many nonlinear reaction-diffusion and wave-type equations

with delay dependent on one or several arbitrary functions or involving several free

parameters. Such equations are the most difficult to analyze, and their exact solutions

can be used to test numerical and approximate analytical methods for solving related

initial-boundary value problems and estimate the errors of the methods.

The book contains much new material that has not previously been published in

monographs.

The authors tried to avoid using special terminology whenever possible to maxi-

mize the circle of potential readers with different mathematical backgrounds. There-

fore, some results are described in a schematic and simplified manner, which suffices

for practical applications. Many sections can be read independently, making it easier
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to work with the material. A detailed table of contents allows the reader to find the

desired information quickly.

The authors thank A.V. Aksenov for the discussions and valuable remarks.

The authors hope that the book will be helpful for a wide range of scientists,

university professors, and graduate and postgraduate students specializing in applied

mathematics, mathematical physics, computational mathematics, mechanics, control

theory, biology, biophysics, biochemistry, medicine, chemical technology, and ecol-

ogy. In addition, individual sections of the book, methods and examples can be used

in teaching applied mathematics, mathematical physics, and functional differential

equations to deliver special courses and perform practical exercises.

Authors
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Notations and Remarks

Latin Characters

a, a1, a2 diffusion coefficients (dimensional or dimensionless) in

reaction-diffusion type equations;

C1, C2, . . . arbitrary constants;

cosd(t, τ) delayed cosine function, see formula (1.2.2.3);

coss(t, p) stretched cosine function, coss(t, p)=
∞∑
n=0

(−1)npn(2n−1) t2n

(2n)!
;

expd(t, τ) delayed exponential function, expd(t, τ)≡
[t/τ ]+1∑
k=0

[t−(k−1)τ ]k

k!
;

exps(t, p) stretched exponential function, exps(t, p)≡
∞∑
n=0

p
n(n−1)

2
tn

n!
;

ImA imaginary part of the complex number A;

p, q scaling parameters of arguments (0<p< 1 and 0<q< 1 for

time-proportional delay differential equations);

ReA real part of the complex numberA;

sind(t, τ) delayed sine function, see formula (1.2.2.4);

sins(t, p) stretched sine function, sins(t, p)≡
∞∑
n=0

(−1)npn(2n+1) t2n+1

(2n+1)!
;

t time (independent variable);

u unknown function (dependent variable) at the current time t; for

equations with two independent variables, u= u(x, t);

W =W (z) Lambert W function, defined implicitly by z=WeW (z= x+ iy is a

complex variable);

Wp =Wp(x) principal branch of the Lambert W function (x≥−1/e,Wp ≥−1);

Wn =Wn(x) second branch of the Lambert W function (−1/e≤ x< 0,Wn ≤−1);

w unknown function at a preceding time, w= u(t−τ) (for ODEs with

constant delay) or w= u(pt) (for ODEs with proportional delay,

0<p< 1); for PDEs in two independent variables, w= u(x, t−τ),
w= u(x, pt), or w= u(px, qt);

wk unknown functions at preceding times, wk= u(t−τk) (for ODEs

with constant delays, k=1, . . . ,m); for PDEs in two independent

variables, wk= u(x, t−τk);
x, y space variable (Cartesian coordinates) or the real and imaginary parts

of the complex number z= x+ iy;

x1, . . . , xn Cartesian coordinates in an n-dimensional space;

x n-dimensional vector, x=(x1, . . . , xn).
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xvi NOTATIONS AND REMARKS

Greek Characters
∆ Laplace operator:

∆ = ∂2

∂x2 + ∂2

∂y2 in the two-dimensional space,

∆ =
n∑
k=1

∂2

∂x2
k

in the n-dimensional space;

τ delay time (τ > 0), which can be constant or time dependent, τ = τ(t);
τ1, . . . , τm delay times.

Short Notations for Derivatives and Operators

Partial derivatives of a function u = u(x, t):

ux=
∂u

∂x
, ut=

∂u

∂t
, uxx=

∂2u

∂x2
, uxt=

∂2u

∂x∂t
, utt=

∂2u

∂t2
, . . . , u(n)x =

∂nu

∂xn
.

Ordinary derivatives of a function f = f(t):

f ′
t =

df

dt
, f ′′

tt =
d2f

dt2
, f ′′′

ttt =
d3f

dt3
, f ′′′′

tttt =
d4f

dt4
, f

(n)
t =

dnf

dtn
for n > 4.

Sometimes alternative notations are also used for the first two derivatives:

f ′(t) = f ′
t f ′′(t) = f ′′

tt.

Diffusion term of a partial differential equation in the n-dimensional case:

div [f(u)∇u] =
n∑

k=1

∂

∂xk

[
f(u)

∂u

∂xk

]
, where f(u) is the diffusion coefficient.

Remarks

1. The book often uses the abbreviations ODE (or ODEs) and PDE (or PDEs),

which stand for an ‘ordinary differential equation’ (or ‘ordinary differential equa-

tions’) and a ‘partial differential equation’ (or ‘partial differential equations’).

2. Any arbitrary functions (usually denoted by f and g) included in the consid-

ered ODEs and PDEs with delay are considered to be continuous.

3. If a formula or a solution involves derivatives of some functions, it is assumed

that these derivatives exist.

4. If a formula or a solution involves indefinite or definite integrals, it is assumed

that these integrals exist.

5. In formulas and solutions that involve expressions like
f(t)
a−2 , it is often omitted

but implied that a 6= 2.

6. The symbols ◮ and ◭ mark the beginning and the end of an example given

in the text.
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1. Delay Ordinary Differential

Equations

1.1. First-Order Equations. Cauchy Problem.

Method of Steps. Exact Solutions

1.1.1. Preliminary Remarks

The simplest spatially homogeneous processes with aftereffect are described by de-

lay ordinary differential equations (delay ODEs). The analysis and solution of such

equations are commeasurable in complexity with those of partial differential equa-

tions without delay. Currently, the theory of delay ODEs and other functional differ-

ential and differential-difference equations, is reasonably well elaborated (e.g., see

[24, 37, 42, 71, 138, 144, 146, 182, 205, 275–277, 283, 284, 347, 348, 389, 482]).

Based on the cited literature and other sources, the present chapter briefly outlines the

most important theoretical findings on ODEs with constant or variable delay. These

include qualitative features of such equations, exact and approximate solutions to

linear and nonlinear delay ODEs, statements of and analytical solution methods for

main problems, and theorems on the existence, uniqueness and stability of solutions.

Remark 1.1. Section 5.1 deals with numerical methods for integrating delay ODEs, while
Section 6.1 treats mathematical models of various processes based on delay ODEs.

1.1.2. First-Order ODEs with Constant Delay. Cauchy
Problem. Qualitative Features

Equations with a single constant delay. Cauchy problem. We will look at first-

order delay ordinary differential equations of the form

u′t = f(t, u, w), w = u(t− τ), t > t0, (1.1.2.1)

where u = u(t) is the unknown function, t is time, f is a given continuous function,

τ > 0 is a constant delay, and t0 is some constant that will be called the initial time.

If f is implicitly independent of t, then equation (1.1.2.1) is called autonomous.

Delay ordinary differential equations (1.1.2.1) and related more complicated

delay equations arise in numerous applications and disciplines, including control

theory [226, 268, 477, 552, 585], neurodynamics [193, 265, 317], laser physics [18,

290, 535], radio physics [59, 131], nuclear physics [110, 186, 197], mathematical

ecology and biology [64, 94, 180, 182, 209, 259, 264, 283, 287, 460, 604], medicine

[4, 191, 331, 358, 469, 533], and economics [93, 96, 246, 326, 465, 605].
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2 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

The Cauchy problem for the delay ODE (1.1.2.1) is stated as follows: find a

solution of this equation that satisfies the initial condition

u = ϕ(t) for t0 − τ ≤ t ≤ t0, (1.1.2.2)

where ϕ(t) is a given continuous function. The limiting value τ = 0 in (1.1.2.1)–

(1.1.2.2) corresponds to the Cauchy problem for an ODE without delay (e.g., see

[255, 350, 423] for the properties and solution methods for such problems).

Qualitative features. Solution smoothing. Below we note some specific fea-

tures that distinguish Cauchy problems for delay ODEs from those for ODEs without

delay.

First, the initial condition is set on a closed interval Et0 = {t0 − τ ≤ t ≤ t0}
rather than at a single point t = t0, as for equations without delay. Most commonly,

one uses t0 = 0 as the initial times. Sometimes, t0 = τ can also be used. One seeks

a solution continuous at t0, which implies that u(t0 + 0) = ϕ(t0).
Secondly, even though the functions ϕ and f have continuous derivatives up to

an indefinitely high order, the solution u(t) of the initial problem (1.1.2.1)–(1.1.2.2)

will generally have jump discontinuities at t = t0 + (k − 1)τ , where k = 1, 2, . . . ,
in the kth-order derivatives. However, the lower-order derivatives will be continuous

at these points. This phenomenon is known as ‘solution smoothing’ or, sometimes,

‘propagation of discontinuities in derivatives’.

Let us consider problem (1.1.2.1)–(1.1.2.2). On the interval t0 ≤ t ≤ t0 + τ , we

have

u′t = f(t, u(t), ϕ(t− τ)).

On the preceding interval, t0 − τ ≤ t ≤ t0, the first derivative is calculated using the

initial condition (1.1.2.2):

u′t = ϕ′
t(t).

Then, to the right of t0, we get

u′t(t0 + 0) = f(t0, ϕ(t0), ϕ(t0 − τ)),

and to the left of t0,

u′t(t0 − 0) = ϕ′
t(t0).

Clearly, the continuity of u′t at t0 can only be ensured through a special selection of

the initial function ϕ by requiring that

ϕ′(t0) = f(t0, ϕ(t0), ϕ(t0 − τ)).

Therefore, the derivative u′t(t) is generally discontinuous at t0.

The first derivative of the solution is continuous at t0+τ . Indeed, it follows from

(1.1.2.1) that u′t(t) = f(t, u(t), w(t)), with the right-hand side being a continuous

function of t at t0 + τ , since w(t) = u(t− τ) is continuous at this point. However,

the second derivative

u′′tt = ft + fuu
′
t + fww

′
t
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1.1. First-Order Equations. Cauchy Problem. Method of Steps. Exact Solutions 3

is discontinuous at t0 + τ , since w′
t = u′t(t − τ) is discontinuous at this point. This

follows from the fact thatw′(t0+τ)=u
′
t(t0), with the discontinuity of u′t at t0 shown

above for the generic case. Yet at t = t0 + 2τ , the derivative u′′tt(t) is continuous,

since w′
t(t) and w(t) are both continuous at this point.

Continuing the reasoning, we notice that the derivative u(k)(t) is discontinuous

at t0 + (k − 1)τ , while the lower-order derivatives are all continuous, provided that

f is a sufficiently smooth function.

◮ Example 1.1. Consider the following Cauchy problem for a linear delay

ODE with a simple initial condition [555]:

u′(t) = u(t− 1), t > 0; (1.1.2.3)

u(t) = 1, −1 ≤ t ≤ 0. (1.1.2.4)

It follows from (1.1.2.4) that u′(t) = 0 on −1 ≤ t ≤ 0. At the same time, we

see from (1.1.2.3) in view of condition (1.1.2.4) that u′(t) = 1 on 0 < t ≤ 1. Hence,

u′(t) is discontinuous at t = 0.

Now let us look at the point t = k, where k is an integer. On differentiating

(1.1.2.3) k times, we get

u(k+1)(t) = u(k)(t− 1).

By induction we find that

u(k+1)(t) = u′(t− k).

It follows that the derivative u(k+1) is discontinuous at t = k. ◭

Equations with several constant delays. Equation (1.1.2.1) is the simplest

functional differential equation with a single delay. First-order ordinary differential

equations with several delays are more complicated and can be written as

u′t = f(t, u, w1, . . . , wm), wk = u(t− τk), k = 1, . . . ,m, (1.1.2.5)

where τk > 0 are given numbers.

The Cauchy problem for equation (1.1.2.5) is stated as follows: find a solution

to this equation that satisfies the initial condition

u = ϕ(t) at t0 − τmax ≤ t ≤ t0, (1.1.2.6)

where ϕ(t) is a given continuous function and τmax = max
1≤k≤m

τk is the maximum

delay.

Equations of neutral or advanced type. First-order functional differential

equations of the form

F (t, u, u′t, w, w
′
t) = 0, w = u(t− τ), (1.1.2.7)

also arise in the literature. These involve two derivatives, u′t and w′
t, and are called

equations of neutral type or neutral differential equations. More general equations

can include several delays, τ1, . . . , τm.
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4 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

Equations of advanced type or advanced differential equations are equations

(1.1.2.7) of a special form that contain w′
t but do not involve u′t.

Neutral and advanced differential equations are quite rare in applications and,

therefore, are not discussed in the present book. For theoretical treatment of such

equations, see, for example, [37, 144, 205, 275–277].

1.1.3. Exact Solutions to a First-Order Linear ODE with
Constant Delay. The Lambert W Function and Its
Properties

Exponential solutions to a first-order linear ODE with constant delay. The

Lambert W function. Let us consider the first-order linear homogeneous ordinary

differential equation with constant coefficients and a constant delay

u′t = au+ bw, w = u(t− τ), (1.1.3.1)

where a and b are real constants. Just as with ODEs without delay, equation (1.1.3.1)

has exponential exact solutions

u(t) = exp(λt). (1.1.3.2)

On substituting (1.1.3.2) into (1.1.3.1) and canceling by eλt, we arrive at a charac-

teristic equation for determining the parameter λ:

λ− a− be−λτ = 0. (1.1.3.3)

Equation (1.1.3.3) involves three free parameters: a, b, and τ . For τ = 0,

which corresponds to an ODE without delay, equation (1.1.3.3) is a linear algebraic

equation with the only root λ = a + b. The presence of delay, τ > 0 (with b 6= 0),

changes the situation qualitatively, since (1.1.3.3) becomes a transcendental equation

with indefinitely many complex conjugate roots, λm = Reλm ± i Imλm, i2 = −1,

m = 0, 1, 2, . . . , and, possibly, one or two real roots at certain values of the parame-

ters. By the superposition principle, any linear combination of exponentials (1.1.3.2),

with λ=λk being different roots of the characteristic equation (1.1.3.3), is a solution

of the linear delay ODE (1.1.3.1).

First, let us find conditions under which the characteristic equation (1.1.3.3)

has real roots. Solutions of equation (1.1.3.3) can be described using the Lambert

function W = W (z). For complex z = x + iy, it is defined implicitly by the

transcendental equation

WeW = z. (1.1.3.4)

For properties of this function and its applications, see, for example, [114, 139, 524,

568, 585].

The constant λ in the exponential solution (1.1.3.2) of the characteristic equation

(1.1.3.3) can be expressed in terms of the Lambert function as

λ = a+
1

τ
W (x), x = bτe−aτ . (1.1.3.5)
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1.1. First-Order Equations. Cauchy Problem. Method of Steps. Exact Solutions 5

The Lambert W function on the real axis. For real z = x, the function W (x)
is single-valued for x ≥ 0 and two-valued on the interval (−1/e, 0). For x ≥
−1/e and W ≥ −1, the single-valued branch of the Lambert function, which is

conventionally called the principal branch, will be denoted Wp(x). It is also known

as the positive branch. The other branch of W (x), which is characterized by the

inequalities −1/e ≤ x < 0 and W ≤ −1, will be denotedWn(x)
∗.

Figure 1.1 displays the two branches of the Lambert functionW (x), Wp andWn,

on the ray −1/e ≤ x < ∞. The logarithmic function ln(1 + x) is also shown for

comparison.

-1

0

-2

1 2 3 4 5 6

1

2
ln (1 + )x

W xp( )

x

-1/e

W xn( )

Figure 1.1. The real branches of the Lambert W function, Wp(x) and Wn(x).

In parametric form, the real branches Wp(x) and Wn(x) are defined as

x = ses, Wp = s, −1 ≤ s < +∞;

x = ses, Wn = s, −∞ < s ≤ −1.

The following Taylor series expansion, convergent for |x| < 1/e, holds:

Wp(x) =
∞∑

n=1

(−1)n−1 n
n−1

n!
xn

= x− x2 +
3

2
x3 − 8

3
x4 +

125

4
x5 − · · · . (1.1.3.6)

∗The real branches of the Lambert W function, Wp and Wn, are frequently denoted W0 and W−1

(e.g., see [114, 240]). However, the same notation, with a different meaning, is sometimes used to denote

complex branches of the Lambert function [114], which may lead to confusion. The present book uses

the more convenient notation Wp for the principal branch, introduced in [369] (the subscript ‘p’ stands

for principal or positive). The second branch is denoted Wn (the subscript ‘n’ stands for negative).
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6 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

The following asymptotic formulas are true [114, 369]:

Wp(x) = ζ1 − ln ζ1 +
ln ζ1
ζ1

+
ln2 ζ1
2ζ21

− ln ζ1
ζ21

+O

(
ln3 ζ1
ζ31

)
as x→ +∞,

ζ1 = lnx; (1.1.3.7)

Wn(x) = ζ2 − ln ζ2 −
ln ζ2
ζ2

− ln2 ζ2
2ζ22

− ln ζ2
ζ22

+O

(
ln3 ζ2
ζ32

)
as x→ −0,

ζ2 = ln(−1/x). (1.1.3.8)

Properties of the Lambert W function and its values at some points:

Wp(xe
x) = x (x ≥ −1), lnWp(x) = lnx−Wp(x) (x > 0),

Wp(x ln x) = lnx (x ≥ e−1), Wp(− lnx/x) = − lnx (0 < x ≤ e),

Wn(xe
x) = x (x ≤ −1), Wn(x lnx) = lnx (x ≤ e−1),

Wp(−1/e) = −1, Wp(0) = 0, Wp(e) = 1, Wp(e
1+e) = e.

The principal branch of the Lambert W function on the ray 0 ≤ x < ∞ is well

approximated by the simple explicit formula [557]:

Wp(x) = ln(1 + x)

[
1− ln(1 + ln(1 + x))

2 + ln(1 + x)

]
. (1.1.3.9)

It is accurate to two asymptotic terms as x→0 and x→∞ (see formulas (1.1.3.6) and

(1.1.3.7)). The relative error of the approximate formula (1.1.3.9) does not exceed

10−2 for any positive x.

In the range −e−1 ≤ x ≤ 1, the approximate formula [557]:

Wp(x) =
ex

1 +
[
(2ex+ 2)−1/2 + (e− 1)−1 − 2−1/2

]−1

also holds true. Its relative error does not exceed 10−3 in this range.

For other formulas suitable to approximate different portions of the branches of

the Lambert W function, see [33, 528].

With the above properties of the LambertW function and formula (1.1.3.5), one

can easily find conditions under which the characteristic equation (1.1.3.3) has real

roots. The results are summarized in Table 1.1.

The Lambert W function in the complex plane. The Lambert function W (z)
has infinitely many branches, Wm = Wm(z) (m = 0,±1,±2, . . . ), in the complex

plane z = x+ iy (i2 = −1).

The following asymptotic formula holds [114]:

Wm = ln z − ln ln z + 2πim+ (1 + i)o(1) as z → ∞. (1.1.3.10)

Substituting z=x+iy andW =ξ+iη into (1.1.3.4) and rearranging using Euler’s

formula eiy = cos y + i sin y, we arrive at the system of transcendental equations

eξ(ξ cos η − η sin η) = x,

eξ(ξ sin η + η cos η) = y.
(1.1.3.11)
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1.1. First-Order Equations. Cauchy Problem. Method of Steps. Exact Solutions 7

Table 1.1. The number of real roots of the characteristic of equation (1.1.3.3) at different

values of the determining parameters of the delay ODE (1.1.3.1).

Determining conditions Number of real roots Range of roots

−eaτ−1τ−1 < b < 0 Two roots, λ1 and λ2 a− τ−1 < λ1 < a, λ2 < a − τ−1

b ≥ 0 One root, λ1 λ1 > a if b > 0, λ1 = a if b = 0

b = −eaτ−1τ−1 One root, λ1 (double) λ1 = a− τ−1

b < −eaτ−1τ−1 No roots

By setting y = 0 in (1.1.3.11), we will study the complex values of the Lambert

W function on the real axis x. We note that the change of variable η to −η preserves

the equations (1.1.3.11). This means that the roots of W corresponding to real x are

complex conjugate. Therefore, it only suffices to look at the case η ≥ 0.

For y = 0, the second equation in (1.1.3.11) has two solutions. One is trivial,

η=0; it leads to real values of the LambertW function, which were discussed above.

The other solution, which determines complex values of the Lambert W function,

can be written as

ξ = −η cot η. (1.1.3.12)

The right-hand side of (1.1.3.12) tends to infinity as the points η = nπ, n = ±1,

±2, . . . , are approached. For nπ < η < (n + 1)π with n = 0, 1, 2, . . . , relation

(1.1.3.12) describes branches of the Lambert W function in the complex plane for

η ≥ 0. These curves are depicted in Figure 1.2.

On substituting (1.1.3.12) into the first equation of (1.1.3.11) and rearranging,

we obtain the relation

− η

sin η
exp(−η cot η) = x. (1.1.3.13)

It defines implicitly the imaginary part η of the Lambert W function as a function

of x. With formulas (1.1.3.12) and (1.1.3.13), we represent the complex-valued

branches Wm =Wm(x), x < 0, in the parametric form

W0 = ξ0 + iη0,

ξ0 = −s cot s, η0 = s, x = − s

sin s
exp(−s cot s), |s| < π;

Wm = ξm + iηm, m = ±1,±2, . . . ,

ξm = −s cot s, ηm = s signm, x = − s

sin s
exp(−s cot s),

2|m|π < s < (2|m|+ 1)π.

(1.1.3.14)

The point with coordinates x=−e−1 and ξ0 =−1, which corresponds to s= η0 =0,

is assigned to belong to W0.

Figure 1.3 displays a few real and imaginary branches of the LambertW function

as functions of x for x< 0 (solid lines). These are obtained using formulas (1.1.3.14)

by setting numeric values of the real parameter s in appropriate intervals. It is
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p
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W1 ( < 0)x
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W-1 ( > 0)x

W-2 ( > 0)x

W-1 ( < 0)x

W-2 ( < 0)x

W0 ( < 0)x

-1

Figure 1.2. Complex-valued branches of the Lambert W function described by formula

(1.1.3.12); ξ = ReW (x), η = ImW (x), y = 0. Solid lines indicate branches for x < 0,

while dashed lines show branches with x > 0.

apparent that ξm → −∞ (m = ±1,±2, . . . ) as x → −0. In addition, as the branch

number’s modulus |m| increases, the real part of the LambertW function decreases,

while the absolute value of the imaginary part of W increases. The real parts of

W±m(x) vanish at xm = − π
2 − 2π|m|, wherem= 0, 1, . . . For −π/2< x < 0, the

real parts of all branches of the Lambert W function are negative.

For x > 0, the complex-valued branches Wm = Wm(x) can be represented in

parametric form as

Wm = ξm + iηm, m = ±1,±2, . . . ;

ξm = −s cot s, ηm = s signm, x = − s

sin s
exp(−s cot s);

(2|m|+ 1)π < s < (2|m|+ 2)π.

(1.1.3.15)

Furthermore, Figure 1.3 displays a few real and imaginary branches of the Lam-

bert W function as functions of x for x > 0 (dashed lines). These are obtained using

formulas (1.1.3.15). One can see that ξm → −∞ (m = ±1,±2, . . . ) as x → +0.

Also, as the branch number’s modulus |m| increases, the real part of the Lambert

W function decreases, while the absolute value of the imaginary part increases. The
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x

x

p

-p

-2p

-1

-1/e

Re W x0 ( < 0)

5 10-10 -5 0

h

x

p

-1/e

2p

3p

4p

Re W x±1 ( < 0)

Re W x±2 ( < 0)

Re W x±1 ( > 0)

Re W x±2 ( > 0)

Re W x±3 ( > 0)

Im W x0 ( < 0)

Im W x1 ( < 0)

Im W x2 ( < 0)

Im W x1 ( > 0)

Im W x2 ( > 0)

(a)

(b)

Figure 1.3. Complex-valued branches of the Lambert W function for y = 0 as described by

formulas (1.1.3.14) and (1.1.3.15): (a) ξm =ReWm(x), (b) ηm = ImWm(x). The branches

with x < 0 are shown in solid lines, while those with x > 0 are shown in dashed lines.

real parts of W±m(x) vanish at xm = 3π
2 + 2π(|m| − 1). Although the real parts of

all branches W±m (m = ±1,±2, . . . ) are negative for 0 < x < 3π/2, there is one

real positive root on the principal branch Wp.

By taking the modulus of the real and imaginary parts of the complex represen-

tation of the Lambert W function (1.1.3.4), we obtain the following relation for real

z = x:

eξ(ξ2 + η2)1/2 = |x|. (1.1.3.16)

For a given x, it defines a contour line in the complex plane W = ξ + iη, where the

points of all branchesWk lie. It follows from (1.1.3.16) that the following inequality
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10 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

holds for nonnegative values of the real part of the Lambert W function, ξ ≥ 0:

(ξ2 + η2)1/2 ≤ |x| (the equality is attained at ξ = 0). (1.1.3.17)

This means that all points of the branches Wk located in the half-plane ξ > 0 lie

inside the circle of radius |x|. In other words, for any real x, the real parts of the

branches of the Lambert W function are limited by the quantity |x|: ReWm ≤ |x|.
More precisely, the maximum allowed value of ξ in the positive half-plane ξ ≥ 0
among all Wk is determined by η = 0 in (1.1.3.16), which implies that ξmax =
Wp(|x|).

Remark 1.2. The contour lines defined by the implicit relation (1.1.3.16) can be repre-
sented in parametric form as

ξ = s, η = ±
√

x2e−2s − s2, −∞ < s ≤Wp(|x|). (1.1.3.18)

Figure 1.4 depicts a few contour lines, defined by the implicit relation (1.1.3.16)

(or parametric formulas (1.1.3.18)), in the complex plane W = ξ + iη at x = ±0.5,

±1.0, and ±2.0. Open circles indicate points of intersection between contour lines

and respective branchesWm of the LambertW function for x> 0, while solid circles

indicate points of intersection for x < 0.

h

x
-3 -2 -1 10

-10

-5

5

10

W0 ( < 0)x

W1 ( > 0)x

W1 ( < 0)x

W-1 ( > 0)x

W-1 ( < 0)x

x = 0.5±

x = 1± x = 2±

Figure 1.4. Contour lines of the Lambert W function, |WeW | = |x|, defined by the implicit

relation (1.1.3.16) in the complex plane W = ξ + iη at x = ±0.5, ±1.0, and ±2.0. Open

circles indicate roots of the Lambert W function for x > 0, while solid circles indicate roots

for x < 0.

Table 1.2 lists a few complex values of the many-valued Lambert W function at

four real values of x.
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Table 1.2. The values of the Lambert function W (x) at a few real values of x on several first

branches Wm(x).

Branches

of W (x)
x=−π/2 x=−1 x=1 x= e

W±1(x) ± π
2
i −0.3181±1.3372 i −1.5339±4.3752 i −0.5321±4.5972 i

W±2(x) −1.6043±7.6472 i −2.0623±7.5886 i −2.4016±10.7763 i −1.3940±10.8680 i

W±3(x) −2.1983±13.9812 i −2.6532±13.9492 i −2.8536±17.1135 i −1.8490±17.1715 i

W±4(x) −2.5667±20.2945 i −3.0202±20.2725 i −3.1630±23.4277 i −2.1599±23.4702 i

W±5(x) −2.8349±26.5974 i −3.2878±26.5805 i −3.3987±29.7313 i −2.3966±29.7648 i

Approximate complex values of the principal branch W0(z) of the Lambert

W function can be evaluated using the explicit approximation formula [557]:

W0(z)=
2 ln(1+A1y)−ln[1+A2 ln(1+A3y)]+A4

1+[2 ln(1+A1y)+2A5]−1
, y=

√
2ez+2,

A1=0.8842, A2=0.9294, A3=0.5106, A4=−1.213, A5=2.344.

(1.1.3.19)

It provides exact asymptotics near the points z = 0 and z = −e−1 and at large

|z|. In the entire complex plane z, the maximum relative error of formula (1.1.3.19)

does not exceed 10−2 (the principal branches of
√
z and ln z must be used for the

calculations).

For the different aspects of the numerical computation of the branches of the

complex-valued Lambert W function, see, for example, [69, 240].

Some remarks. In general, the coefficient λ in the exponential solution (1.1.3.2)

of equation (1.1.3.3) can be expressed via the Lambert W function as (1.1.3.5),

where W on the right-hand side is understood as the set of all real and complex

branches of the LambertW function. Each pair of complex conjugate roots W±m =
ξm ± iηm defines a pair of exponential solutions to the delay ODE (1.1.3.1) of the

form

u±m(t) = e(λr,m±iλi,m)t = eλr,mt[cos(λi,mt)± i sin(λi,mt)],

λr,m = a+ τ−1ξm(x), λi,m = τ−1ηm(x), x = bτe−aτ ,
(1.1.3.20)

which are obtained using formulas (1.1.3.2) and (1.1.3.5). Since the delay ODE

(1.1.3.1) is linear and homogeneous, the real and imaginary parts of the complex

solutions (1.1.3.20),

u(1)m (t) = Reu±m(t) = eλr,mt cos(λi,mt),

u(2)m (t) = Imu±m(t) = eλr,mt sin(λi,mt),
(1.1.3.21)

are real solutions of the original equation (1.1.3.1).
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12 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

The following two simple statements hold true:

1◦. If the inequalities a < 0 and 0 < b < −a hold, all roots of the characteristic

equation (1.1.3.3) have a negative real part.

2◦. If b > −a, the characteristic equation (1.1.3.3) has at least one root with a

positive real part.

Remark 1.3. There are more general but more complicated conditions under which the
real parts of all roots of the characteristic equation (1.1.3.3) are negative. These conditions are
stated below in Subsection 1.3.2 (see the Hayes theorem [37]).

Notably, if

a = 0, b = k(−1)n+1, k =
(2n+ 1)π

2τ
, n = 0,±1,±2, . . . , (1.1.3.22)

equation (1.1.3.1) has periodic solutions of the form

u(t) = cos(kt+ δ), (1.1.3.23)

where δ is an arbitrary constant.

Remark 1.4. The change of variable u(t) = eatU(t) reduces equation (1.1.3.1) to the
simpler form

U ′
t = be−aτ Ū , Ū = U(t− τ ).

Remark 1.5. The first-order linear nonhomogeneous ODE with constant coefficients and
a constant delay

u′
t = au+ bw + c, w = u(t− τ ),

can be reduced, with the substitution u = v− c
a+b

for b 6= −a, to a homogeneous delay ODE
of the form (1.1.3.1). If b = −a, one should use the change of variable u = v + kt with
k = c

1−aτ
to obtain a homogeneous delay ODE.

1.1.4. First-Order Nonlinear ODEs with Constant Delay
That Admit Linearization or Exact Solutions

We describe below several simple first-order nonlinear ODEs with constant delay

that reduce to linear ODEs with constant delay or admit exact solutions representable

in terms of elementary functions. These equations and their solutions can be used

to test approximate analytical and numerical methods for solving nonlinear delay

ODEs.

Equation 1. The nonlinear ODE with constant delay

u′t = a(t)u+ b(t)u1/2 + c(t)u1/2w1/2, w = u(t− τ),

can be reduced, with the substitution u = v2 (v ≥ 0), to a linear ODE with constant

delay v′t =
1
2a(t)v +

1
2 c(t)v̄ +

1
2 b(t), where v̄ = v(t− τ).

Equation 2. The nonlinear ODE with constant delay

u′t = a(t)u+ b(t)u1−k + c(t)u1−kwk, w = u(t− τ),

can be reduced, with the substitution u = v1/k, to a linear ODE with constant delay

v′t = ka(t)kv + kc(t)v̄ + kb(t), where v̄ = v(t− τ).
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1.1. First-Order Equations. Cauchy Problem. Method of Steps. Exact Solutions 13

Equation 3. The nonlinear ODE with constant delay

u′t = a(t) + b(t)eλu + c(t)eλ(u−w), w = u(t− τ),

can be reduced, with the substitution v = e−λu, to a linear ODE with constant delay

v′t = −λa(t)v − λc(t)v̄ − λb(t), where v̄ = v(t− τ).
Equation 4. The nonlinear ODE with constant delay

u′t = a(t)u lnu+ b(t)u lnw + c(t)u, w = u(t− τ),

can be reduced, with the substitution u = ev, to a linear ODE with constant delay

v′t = a(t)v + b(t)v̄ + c(t), where v̄ = v(t− τ).

Remark 1.6. Exact solutions to the above nonlinear equations 1 to 4 with constant coeffi-
cients a, b, and c can be obtained using the substitutions specified and the results described in
Subsection 1.1.3.

Equation 5. The nonlinear ODE with constant delay

u′t = f(u− w), w = u(t− τ),

involves an arbitrary function f(z) and remains the same under the substitution of u
with u + const. This equation admits the exact solution u(t) = bt + C, where C is

an arbitrary constant and b is a root of the transcendental equation b = f(bτ).
Equation 6. The nonlinear ODE with constant delay

u′t = uf(w/u), w = u(t− τ),

involves an arbitrary function f(z) and remains the same under the substitution of u
with const · u. This equation admits the exact solution u(t) = Ceλt, where C is an

arbitrary constant and λ is a root of the transcendental equation λ = f(e−λτ ).

1.1.5. Method of Steps. Solution of the Cauchy Problem
for a First-Order ODE with Constant Delay

Method of steps for first-order ODEs with constant delay. The Cauchy problem

with constant delay (1.1.2.1)–(1.1.2.2) on a finite interval can be solved using the

method of steps. It suggests that the solution is obtained by successively integrating

simpler ODEs without delay on equal segments of length τ : t0 + nτ ≤ t ≤ t0 +
(n+ 1)τ , n = 0, 1, 2, . . . .

For n = 0, we find w(t) = u(t− τ) = ϕ(t− τ) on the interval t0 ≤ t ≤ t0 + τ .

As a result, we get

u′t = f(t, u, ϕ0(t− τ)), t0 ≤ t ≤ t0 + τ ;

u(t0) = ϕ0(t0).

Here, the function ϕ has been renamed ϕ0 for the convenience of subsequent pre-

sentation. Assuming that the solution u = ϕ1(t) of the problem exists on the entire
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14 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

interval t0 ≤ t ≤ t0 + τ , we similarly get

u′t = f(t, u, ϕ1(t− τ)), t0 + τ ≤ t ≤ t0 + 2τ ;

u(t0 + τ) = ϕ1(t0 + τ).

In general, the problem for each individual interval is written as

u′t = f(t, u, ϕn(t− τ)), t0 + nτ ≤ t ≤ t0 + (n+ 1)τ, n = 0, 1, 2, . . . ;

u(t0 + nτ) = ϕn(t0 + nτ).

The function ϕn(t) is the solution to the Cauchy problem on the preceding interval

t0 + (n− 1)τ ≤ t ≤ t0 + nτ , n = 1, 2, . . . .

Solution of linear problems with constant delay by the method of steps.

Below are a few examples illustrating the practical use of the method of steps for

solving Cauchy problems described by linear ODEs with constant delay.

◮ Example 1.2. Consider the following Cauchy problem for a linear ODE with

constant delay subject to a special initial condition:

u′t = bw, w = u(t− τ), t > 0;

u = 1 at −τ ≤ t ≤ 0,
(1.1.5.1)

where b is a free parameter (b 6= 0).

With the method of steps applied to problem (1.1.5.1), the first step gives

u′t = b, 0 < t ≤ τ (equation);

u = 1 at t = 0 (initial condition).

Integrating yields

u = 1 + bt, 0 ≤ t ≤ τ.

The next step leads to the problem

u′t = b[1 + b(t− τ)], τ < t ≤ 2τ (equation);

u = 1 + bτ at t = τ (initial condition).

Its solution is expressed as

u = 1 + bt+ 1
2 b

2(t− τ)2, τ ≤ t ≤ 2τ.

By repeating similar computations, one arrives at the following formula (e.g., see

[144]):

u = 1 + b
t

1!
+ · · ·+ bk

[t− (k − 1)τ ]k

k!
, (k − 1)τ ≤ t ≤ kτ, (1.1.5.2)

where k is any positive integer. ◭
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1.1. First-Order Equations. Cauchy Problem. Method of Steps. Exact Solutions 15

For what follows, it is convenient to introduce the delayed exponential function:

expd(t, τ) ≡
[t/τ ]+1∑

k=0

[t− (k − 1)τ ]k

k!
, (1.1.5.3)

where [A] stands for the integer part of the number A, and the subscript d indicates

delay. The following properties hold:

expd(0, τ) = 1, expd(t, 0) = et, [expd(t, τ)]
′
t = expd(t− τ, τ).

Figure 1.5 displays the delayed exponential function (1.1.5.3) for τ = 0.5, 1.0,

and 2.0. The ordinary exponential function et, which corresponds to τ = 0, is shown

by a dashed line.
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Figure 1.5. Graphs of the delayed exponential function expd(t, τ ) for τ = 0.5, 1.0, and 2.0 in

the ordinary Cartesian (left) and logarithmic (right) coordinates. The exponential function et

is shown by a dashed line; it corresponds to τ = 0.

Solution (1.1.5.2) to problem (1.1.5.1) is expressed in terms of the delayed ex-

ponential function (1.1.5.3) as

u = expd(bt, bτ). (1.1.5.4)

◮ Example 1.3. It is not difficult to verify that the function

u(t) = eat expd(λt, λτ), λ = e−aτb,

is an exact solution to the linear delay ODE with constant coefficients

u′t = au+ bw, w = u(t− τ), t > 0, (1.1.5.5)

subjected to the exponential initial condition u = eat at −τ ≤ t ≤ 0. ◭

Representations of solutions to linear problems using the delayed exponen-

tial function. Solutions to the more general, important problems specified below can

be represented using the delayed exponential function (1.1.5.3).
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16 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

Problem 1. The solution to the Cauchy problem for the linear homogeneous

delay ODE (1.1.5.5) subjected to the general initial condition

u = ϕ(t) at −τ ≤ t ≤ 0 (1.1.5.6)

can be written in a closed form [25]:

u(t) = ea(t+τ) expd(λt, λτ)ϕ(−τ)

+

∫ 0

−τ
ea(t−s) expd(λ(t− τ − s), λτ)[ϕ′

s(s)− aϕ(s)] ds, λ = e−aτb.

(1.1.5.7)

Another representation of the solution to the Cauchy problem for equation (1.1.5.5)

with a general initial condition set on the interval 0 ≤ t ≤ τ can be found in [144].

Problem 2. The solution to the Cauchy problem for the linear nonhomogeneous

delay ODE

u′t = au+ bw + f(t), w = u(t− τ), t > 0, (1.1.5.8)

subjected to the homogeneous initial condition

u = 0 at −τ ≤ t ≤ 0 (1.1.5.9)

can be represented using the delayed exponential function as [25]:

u(t) =

∫ t

0

ea(t−s) expd(λ(t − s), λτ)f(s) ds, λ = e−aτb. (1.1.5.10)

Remark 1.7. The sum of solutions (1.1.5.7) and (1.1.5.10) is a solution to the linear
nonhomogeneous delay ODE (1.1.5.8) with the general initial condition (1.1.5.6).

Solution of nonlinear problems with constant delay by the method of steps.

Below we will show how one can construct an exact solution to the Cauchy problem

for some classes of nonlinear ODEs with constant delay using the method of steps.

Problem 1. Consider the nonlinear delay ODE

u′t = f(t, w)u + g(t, w), w = u(t− τ), (1.1.5.11)

subjected to the general initial condition (1.1.2.2). In the special case of f(t, w) =
a(t) and g(t, w) = b(t)w + c(t), it is a linear ODE with a single delay and with

variable coefficients of a general form.

Since equation (1.1.5.11) is linear in u, we obtain in each step the following

Cauchy problem for a linear ODE without delay:

u′t = f(t, ϕn(t− τ))u + g(t, ϕn(t− τ)), t0 + nτ ≤ t ≤ t0 + (n+ 1)τ,

u(t0 + nτ) = ϕn(t0 + nτ),
(1.1.5.12)

where n = 0, 1, 2, . . . , and ϕn(t) is the solution to the Cauchy problem obtained in

the preceding step on the interval t0 + (n− 1)τ ≤ t ≤ t0 + nτ ; ϕ0(t) ≡ ϕ(t).
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1.1. First-Order Equations. Cauchy Problem. Method of Steps. Exact Solutions 17

The solution to problem (1.1.5.12) is expressed as (based on the results pre-

sented, for example, in [255, 350, 421, 423]):

u(t) = eF (t)

[
ϕn(t0 + nτ) +

∫ t

t0+nτ

e−F (t)g(ξ, ϕn(ξ − τ)) dξ

]
,

F (t) =

∫ t

t0+nτ

f(ξ, ϕn(ξ − τ)) dξ, t0 + nτ ≤ t ≤ t0 + (n+ 1)τ,

(1.1.5.13)

where n = 0, 1, 2, . . .
Problem 2. The Cauchy problem for the nonlinear delay ODE

u′t = f(t, w)u + g(t, w)uk, w = u(t− τ),

and the general initial condition (1.1.2.2) is reduced with the substitution y = u1−k

to Problem 1, where the functions f and g should be appropriately renamed.

Problem 3. The Cauchy problem for the nonlinear delay ODE

u′t = f(t, w) + g(t, w)eλu, w = u(t− τ),

and general initial condition (1.1.2.2) is reduced with the substitution y = e−λu to

Problem 1, where the functions f and g should be appropriately renamed.

Problem 4. The Cauchy problem for the nonlinear delay ODE

u′t = f(t, w)u+ g(t, w)u lnu, w = u(t− τ),

and general initial condition (1.1.2.2) is reduced with the substitution u = ey to

Problem 1, where the functions f and g should be appropriately renamed.

The method of steps for ODEs with several constant delays. The method

of steps is suitable for solving the Cauchy problem for the first-order ODE with

several delays (1.1.2.5) and the initial data (1.1.2.6). A solution to this problem

is constructed by successively integrating an ODE without delay on the intervals

t0 + nh ≤ t ≤ t0 + (n+1)h, n = 0, 1, 2, . . . . The integration step is determined by

the minimum delay h = min
1≤k≤m

τk (e.g., see [37]).

1.1.6. Equations with Variable Delay. ODEs with
Proportional Delay

ODEs with variable delay. Pantograph equation. So far, the book has been

concerned with ODEs with constant delay. However, many applications deal with

more complicated ODEs that involve a variable delay of the form τ = τ(t), where

τ(t) is a given positive continuous function that can vanish at one or more isolated

points. A variable delay may occur, for example, when the transmission rate of the

control signal from one object to another is finite and constant, and these objects are

moving away from each other at a constant or variable speed.

Let us first look at ordinary differential equations with a variable delay propor-

tional to the independent variable.
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18 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

◮ Example 1.4. The linear first-order functional differential equation

u′t = au+ bw, w = u(pt), (1.1.6.1)

with p > 0 (p 6= 1) is called a pantograph equation.

If 0 < p < 1, equation (1.1.6.1) describes the dynamics of a contact current

collector (pantograph) of an electric train [367] and is an important special case of

an ODE with variable delay where τ(t) = (1−p)t, since t− τ(t) = pt. The function

u(pt) appearing in the pantograph equation (1.1.6.1) differs from u(t) in stretching

along the t axis by a factor of 1/p. ◭

The pantograph equation and related more complex functional-differential equa-

tions that involve functions with an extended (0 < p < 1) or compressed (p > 1) ar-

gument arise in different models in biology [34, 128, 141, 206, 207, 591], population

dynamics [8], astrophysics [11], mechanics [367], number theory [332], stochastic

games [155], graph theory [454], risk and queuing theory [179], and neural network

theory [599].

The studies concerned with the analysis and approximate analytical solutions of

ODEs with proportional argument include, for example, [26, 166, 216, 232, 233,

260, 310, 367, 375, 451, 590]. Notably, although the majority of the studies deal

with the case 0 < p < 1, the equations in [11, 141, 206, 591] were derived for p > 1.

Nonlinear equations of the form

u′t = f(t, u, w), w = u(pt), 0 < p < 1, (1.1.6.2)

are also special cases of ODEs with variable delay with τ(t) = (1 − p)t. In what

follows, differential equations like the one above with a delay proportional to time

will be referred to as equations with proportional delay.

The Cauchy problem for ODEs with proportional delay. The initial data in

the Cauchy problem for equations (1.1.6.1) and (1.1.6.2) with 0 < p < 1 is specified

as follows:

u = ϕ(t) at pt0 ≤ t ≤ t0. (1.1.6.3)

It is apparent that the length of the initial interval, where the initial data (1.1.6.3) is

set, depends significantly on the choice of the initial point t0 and equalsL=(1−p)t0.

If t0 = 0, then the initial interval degenerates into a single point, t = 0. In this case,

the initial condition for the ODEs with proportional delay (1.1.6.1) and (1.1.6.2) is

set in exactly the same way as for the ODEs without delay at t = 0; it is this case

that occurs most often in this book and numerous publications.

◮ Example 1.5. Consider the Cauchy problem for the simple ODE with pro-

portional delay

u′t = bw, w = u(pt), t > 0; u(0) = c. (1.1.6.4)

Its solution can be represented as an infinite series convergent for any t [232, 260]:

u(t) = c exps(bt, p), exps(t, p) ≡
∞∑

n=0

p
n(n−1)

2
tn

n!
(0 < p < 1). (1.1.6.5)
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1.1. First-Order Equations. Cauchy Problem. Method of Steps. Exact Solutions 19

The function exps(t, p), whose properties are largely similar for t≥ 0 to the ordi-

nary exponential function, will be referred to as the stretched exponential function.∗

The following relations hold:

exps(0, p) = 1, exps(t, 0) = 1 + t, exps(t, 1) = et,

[exps(t, p)]
′
t = exps(pt, p), [exps(t, p)]

(n)
t = p

n(n−1)
2 exps(p

nt, p),
(1.1.6.6)

where n = 1, 2, . . . In addition, exps(t, p) > exps(t, q) if p > q and t > 0.
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Figure 1.6. Graphs of the stretched exponential function exps(t, p) for p = 0, 0.25, 0.50,

0.75, and 1.00 in Cartesian (left) and logarithmic (right) coordinates.

Figure 1.6 displays the stretched exponential function exps(t, p) for three values

of the parameter: p= 0.25, 0.50, and 0.75. The ordinary exponential function et and

linear function 1 + t, corresponding to p = 1 and p = 0, are shown by dash lines.

The maximum error of the approximate formula for the stretched exponential

exps(t, p) obtained by retaining the first five terms of the series (1.1.6.5) (up to n= 4
inclusive) does not exceed 1% over the range −1.1 ≤ t ≤ 2.3 for 0.2 ≤ p ≤ 0.8. ◭

We note below some qualitative features of the solution to the Cauchy problem

(1.1.6.4) for b < 0. To be specific, we substitute b = −1 and c = 1 into (1.1.6.5) to

obtain

u(t) = exps(−t, p) =
∞∑

n=0

(−1)np
n(n−1)

2
tn

n!
. (1.1.6.7)

Below are a few properties of the zeros of the function (1.1.6.7) (for details, see

[127, 291, 349, 543]).

1◦. The function (1.1.6.7) has countably many positive zeros: 0 < t0 < t1 <
t2 < · · · . The numerical values of the first six roots of the function exps(−t, 0.5) are

1.488, 4.881, 13.560, 34.775, 84.977, and 201.003.

∗In [491, 543], the term deformed exponential function was used instead. The term ‘stretched

exponential function’ is more precise, because deformations include both stretching (0 < p < 1) and

compression (p > 1). Furthermore, the term ‘deformed exponential function’ began to be used earlier in

a completely different sense in statistical physics (e.g., see [68, 356]). The cited studies did not use the

notation exps(t, p), where subscript s stands for stretching.
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20 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

2◦. For t > 0 (0 < p < 1), the function (1.1.6.7) describes oscillations with

monotonically increasing amplitudes (see Fig. 1.7). For example, for p = 0.5, it has

the extrema −0.262, 0.908, −9.139, 223.362, and −12,313.172 at t= 2.976, 9.762,

27.121, 69.551, and 169.955, respectively.
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Figure 1.7. Graphs of the stretched exponential function exps(−t, p) at p = 0, 0.25, 0.50,

0.75, and 1.00.

3◦. The ratio tn+1/tn decreases monotonically, with the following limit relation

holding: lim
n→∞

tn+1/tn = 1/p. In particular, for p = 0.5, we have t2/t1 = 2.778,

t12/t11 = 2.163, t52/t51 = 2.038, t102/t101 = 2.020, and t202/t201 = 2.010.

4◦. The zeros of the function (1.1.6.7) are described by the following asymptotic

formula [543]:

tn = np1−n
[
1 +O(n−2)] as n→ ∞.

Nonlinear ODEs with proportional delay admitting exact solutions. Below

are a few nonlinear first-order ODEs with proportional delay that have exact solutions

representable in terms of elementary functions. These solutions can be used to test

approximate analytical and numerical methods for solving nonlinear ODEs with

variable delays.

Equation 1. The nonlinear ODE with proportional delay

u′t = au+ bw2, w = u( 12 t),

admits the exact solution u(t) =Ce(a+bC)t satisfying the initial condition u(0) =C,

where C is an arbitrary constant.

Equation 2. The nonlinear ODE with proportional delay

u′t = au+ bw1/p, w = u(pt),

admits the exact solution

u(t) = C exp(λt), λ = a+ bC(1−p)/p,

satisfying the initial condition u(0) = C, where C is an arbitrary constant.
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1.1. First-Order Equations. Cauchy Problem. Method of Steps. Exact Solutions 21

Equation 3. The nonlinear ODE with proportional delay

u′t = f(w − pu), w = u(pt),

involving an arbitrary function f(z), admits the exact solution

u(t) = At+ C, A = f
(
(1 − p)C

)
,

which satisfies the initial condition u(0) = C, where C is an arbitrary constant.

Equation 4. The nonlinear ODE with proportional delay

u′t = uf(w/up), w = u(pt),

involving an arbitrary function f(z), admits the exact solution

u(t) = Ceλt, λ = f(C1−p),

which satisfies the initial condition u(0) = C, where C > 0 is an arbitrary constant.

Equation 5. The nonlinear ODE with proportional delay

u′t = ukf(w/u), w = u(pt),

involving an arbitrary function f(z), admits the exact solution

u(t) = at
1

1−k , a =
[
(1− k)f

(
p

1
1−k

)] 1
1−k

.

For 0 ≤ k < 1, this solution satisfies the initial condition u(0) = 0.

Equation 6. The nonlinear ODE with proportional delay

u′t = a− bw2, w = u( 12 t),

admits the exact solutions

u(t) =

√
2a

b
sin

(
b

√
a

2b
t

)
for ab > 0,

u(t) = −
√
− 2a

b
sinh

(
b

√
− a

2b
t

)
for ab < 0,

which satisfy the homogeneous initial condition u(0) = 0.

Remark 1.8. The modified nonlinear equations 1–4 from Subsection 1.1.4 in which the
constant delay is replaced with a proportional delay, so that w = u(pt), admit an exact
linearization with the same substitutions.

ODEs with several proportional delays. Let us look at equations of the form

u′t = f(t, u, w1, . . . , wm), wk = u(pkt), k = 1, . . . ,m, (1.1.6.8)

for 0 < pk < 1 and all k.
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22 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

The initial data in the Cauchy problem for equation (1.1.6.8) is specified as

follows:

u = ϕ(t) at pmint0 ≤ t ≤ t0, (1.1.6.9)

where pmin = min
k=1,...,m

pk. If t0 = 0, then the initial interval degenerates into a single

point, t = 0, in which case the initial condition is set in exactly the same way as for

ODEs without delay at t = 0.

With the new variables [76, 260]

x = ln t, y(x) = u(t),

equation (1.1.6.8) converts to the ODE with m constant delays

y′x = exf(ex, y, y1, . . . , ym), yk = y(x− τk), τk = ln
1

pk
> 0, k = 1, . . . ,m.

Equations with several variable delays. In the literature, there are also more

complex functional-differential equations that contain the desired function with one

or more delays dependent nonlinearly on time:

u′t = f(t, u, w1, . . . , wm), wk = u(t− τk(t)), k = 1, . . . ,m, (1.1.6.10)

where τk(t) > 0 are given functions. Such equations are known as ODEs with

variable delays.

In the statement of the Cauchy problem for equations with several variable delays

(1.1.6.10), the initial condition is written as

u = ϕ(t) for t ∈ Et0 . (1.1.6.11)

The initial interval Et0 consists of the point t0 and the values of t − τk(t) that are

less than t0 for t ≥ t0, so that

Et0 = {t∗ ≤ t ≤ t0}, t∗ = min
1≤k≤m

min
t≥t0

[t− τk(t)]. (1.1.6.12)

◮ Example 1.6. For ODEs with several constant delays (1.1.2.5), the use of

formula (1.1.6.12) gives the following initial interval:

Et0 = {t∗ ≤ t ≤ t0}, t∗ = t0 − τmax, τmax = max
1≤k≤m

τk. (1.1.6.13)

Its length, L, is independent of the choice of the initial point t0 and equals the

maximum delay: L= max
1≤k≤m

τk. In view of (1.1.6.13), the initial condition (1.1.6.11)

for equation (1.1.2.5) can be represented as (1.1.2.6). ◭

Remark 1.9. In the numerical solution of the Cauchy problem for equations with one or
more variable delays, the initial interval Et0 is sometimes replaced for simplicity with (any)
other interval that certainly contains the initial one; for example, one chooses (−∞, t0].

Remark 1.10. The studies [135, 136, 144] deal with more complicated ODEs with one or
more variable delays, τk, that depend not only on the independent variable t but also on the
desired function u, so that τk = τk(t, u).
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1.1. First-Order Equations. Cauchy Problem. Method of Steps. Exact Solutions 23

The method of steps for ODEs with variable delay. The method of steps is

also suitable for solving the Cauchy problem for ODEs with a variable delay of the

general form [144]:

u′t = f(t, u, w), w = u(t− τ(t)), τ(t) > 0.

In this case, the initial data is set on the interval (1.1.6.12) with m = 1, and the step

is chosen equal to h = min
t0≤t≤T

τ(t), where [t0, T ] is the interval where the solution

is sought.

This procedure is easy to generalize to ODEs with several variable delays.

Remark 1.11. For the pantograph equation (1.1.6.1) and more complex ODE with pro-
portional delay (1.1.6.2), we have τ (t) = (1 − p)t. The method of steps is inapplicable for
the Cauchy problem for this equation with the initial point t0 = 0, because h = 0.

1.1.7. Existence and Uniqueness of Solutions.
Suppression of Singularities in Solving Blow-Up
Problems

Existence and uniqueness of solutions. The method of steps enables one to prove

the existence and uniqueness of the solution to the Cauchy problem for constant

delay ODEs, since the well-known existence and uniqueness theorems apply to the

resulting ODEs without delay (e.g., see [350, 421, 423]). Therefore, a solution,

u= u(t), to problem (1.1.2.1)–(1.1.2.2) exists as long as the functions f = f(t, u, w)
and ϕ = ϕ(t) are continuous and it is unique if f(t, u, w) has a bounded first-order

partial derivative in u (or satisfies the Lipschitz condition in the second argument:

|f(t, u, w)− f(t, z, w)| ≤M |u− z|, where M is some positive number).

We now consider the more general Cauchy problem for ODE with several delays

u′t = f(t, u, w1, . . . , wm), wi = u(t− τi(t)), i = 1, . . . ,m,

u = ϕ(t) on interval Et0 ,
(1.1.7.1)

where Et0 is the initial interval, whose length is defined by formula (1.1.6.12).

The existence and uniqueness theorem for a solution to this problem is stated as

follows (e.g., see [144, 276]).

Theorem. Suppose that all delays τi(t) in equation (1.1.7.1) are continuous for

t0≤ t≤ t0+H (H>0) and nonnegative. Moreover, suppose the function f is contin-

uous in a neighborhood of the point (t0, ϕ(t0), ϕ(t0−τ1(t0)), . . . , ϕ(t0−τm(t0)))
and has bounded first-order partial derivatives in all arguments starting from the sec-

ond (or satisfies the Lipschitz conditions in these arguments) and the initial function

ϕ(t) is continuous on Et0 . Then there exists a unique solution, u = u(t), of the

Cauchy problem for equation (1.1.7.1) for t0 ≤ t ≤ t0 + h, where h is sufficiently

small.

The proof of this theorem is given, for example, in [144]. It is based on applying

the contraction mapping theorem.
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24 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

Remark 1.12. Equations of the neutral type (1.1.2.7) can also be solved with the method
of steps. Unlike delay ODEs, solutions to neutral differential equations cannot be smoothed
at the points t = t0 + nτ (n = 0, 1, 2, . . . ) (e.g., see [37, 144]).

Suppression of singularities in blow-up problems by introducing a delay.

For ODEs without delay, there are Cauchy problems whose solutions tend to infinity

(have a singularity) as they approach a finite time t = t∗. The singular point t∗ does

not appear in the equation explicitly and is unknown in advance. Such solutions exist

on a finite time interval t0 ≤ t < t∗ and are known as blow-up solutions [185, 421,

501].

◮ Example 1.7. Consider the Cauchy problem for the ODE without delay

u′t = u2, t > 0; u(0) = 1, (1.1.7.2)

which admits the exact solution

u =
1

1− t
. (1.1.7.3)

This solution exists on a limited time interval, 0 ≤ t < 1, and has a singularity at

t = t∗ = 1. ◭

Now consider the more general Cauchy problem for the autonomous first-order

ODE

u′t = f(u), t > 0; u(0) = a > 0, (1.1.7.4)

where f(u) > 0 is a continuous function defined for all u ≥ a.

Sufficient conditions for the existence of a blow-up solution. Suppose that for

some σ > 0, the limiting relation

lim
u→+∞

f(u)

u1+σ
= s, 0 < s ≤ ∞, (1.1.7.5)

holds [421]. Then the Cauchy problem (1.1.7.4) has a blow-up solution. If f(u) is

differentiable, then (1.1.7.5) can be replaced with the equivalent criterion

lim
u→+∞

[
u−σf ′

u(u)
]
= s1, 0 < s1 ≤ ∞ (σ > 0).

The studies [10, 405, 406, 501] (see also the literature cited in [405, 406]) de-

scribe some numerical methods for solving blow-up problems for nonlinear first-,

second-, and higher-order ODEs.

The complication of mathematical models by introducing a delay into the right-

hand side of ODEs in blow-up problems can suppress solution singularity (for con-

ditions of singularity existence or absence in solutions to delay ODEs, see, for

example, [65, 90, 150]). Below we will give two examples of delay problems that

become blow-up problems in the limit case τ = 0 (1.1.7.2) but do not have a solution

singularity for τ > 0.
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1.1. First-Order Equations. Cauchy Problem. Method of Steps. Exact Solutions 25

◮ Example 1.8. Consider the Cauchy problem for the delay ODE

u′t = w2, w = u(t− τ), t > 0; u(t) = 1, −τ ≤ t ≤ 0. (1.1.7.6)

The exact solution to problem (1.1.7.6) for τ = 1 on the interval −1 ≤ t ≤ 3 is

u=





1, −1≤ t≤ 0;

1+ t, 0< t≤ 1;
1
3 (5+ t3), 1< t≤ 2;
1

126 (−158+ 224t+168t2− 70t3− 35t4+42t5− 14t6+2t7), 2< t≤ 3.

Figure 1.8a shows the exact solution (1.1.7.3) of problem (1.1.7.2) and numerical

solutions of problem (1.1.7.6) at τ = 0.1 and τ = 0.5; the vertical axis is on the

logarithmic scale. ◭

◮ Example 1.9. Consider another Cauchy problem for the delay ODE

u′t = uw, w = u(t− τ), t > 0; u(t) = 1, −τ ≤ t ≤ 0. (1.1.7.7)

Figure 1.8b displays the exact solution (1.1.7.3) of problem (1.1.7.2) and numer-

ical solutions of problem (1.1.7.7) at τ = 0.1 and τ = 0.5. ◭

u
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Figure 1.8. Exact solution (1.1.7.3) of the problem without delay (1.1.7.2) (solid line) and

numerical solutions of two delay problems: (a) problem (1.1.7.6) and (b) problem (1.1.7.7) at

τ = 0.1 (dashed line) and τ = 0.5 (dot-and-dash line).

It is apparent from Figures 1.8a and 1.8b that the introduction of a delay in the

above blow-up problems suppresses the solution singularity entirely.

The following statement is true. Suppose the Cauchy problem for the ODE

without delay (1.1.7.4) has a blow-up solution. Then the solution to the modified

problem with delay

u′t = f(w), w = u(t− τ), t > 0; u(t) = a, −τ ≤ t ≤ 0,

where τ > 0, does not have singularities at finite t.
Suppression of singularities in blow-up problems by introducing a stretch-

ing parameter. In blow-up problems for ODEs, introducing a stretching parameter p
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26 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

in the argument of the unknown function, thus leading to an equation with propor-

tional delay, results in the suppression of solution singularities. Let us discuss this

matter in more detail.

Consider the Cauchy problem for the nonlinear equation with proportional delay

u′t = f(w), w = u(pt), t > 0; u(0) = a > 0, (1.1.7.8)

where f(u) > 0 and f ′
u(u) > 0 are continuous functions defined for all u ≥ a, and

0 < p < 1.

Let problem (1.1.7.8) with p = 1 have a blow-up solution with a singular point

t = t∗. We denote this solution by v = v(t) (0 ≤ t < t∗).

It can be easily shown that for small t, the solution to problem (1.1.7.8) is

representable in the form

u(t) = a+ f(a)t+ 1
2 pf(a)f

′
u(a)t

2 + o(t2). (1.1.7.9)

It follows that u(t) < v(t) for small t. Clearly, this inequality will also hold for any

range 0 ≤ t ≤ t◦, where t◦ < t∗.

Consider the sequence of points tn = p2−nt◦, where n = 1, 2, . . . On the first

interval, pt◦ ≤ t ≤ t◦, problem (1.1.7.8) does not have singularities. Assume that on

the nth interval, tn ≤ t ≤ tn+1, a solution of problem (1.1.7.8) is known and it does

not have singularities. Let us look at the (n + 1)st interval, tn+1 ≤ t ≤ tn+2. On

integrating equation (1.1.7.8) from tn+1 to t, we get

u(t) = u(tn+1) +

∫ t

tn+1

f(u(pt)) dt. (1.1.7.10)

The stretched argument x = pt of the unknown function on the interval tn+1 ≤ t ≤
tn+2 ranges over tn ≤ x ≤ tn+1, where (by assumption) the unknown function does

not have singularities. Therefore, the composite function f(u(pt)) does not have

singularities on the interval tn+1 ≤ t ≤ tn+2 either. Neither does the integral on the

right-hand side of (1.1.7.10); it can be evaluated as

∫ t

tn+1

f(u(pt)) dt =
1

p

∫ x/p

tn

f(u(x)) dx.

Since 0 < p < 1, we get tn = p2−nt◦ → ∞ as n → ∞. It follows that the solution

to problem (1.1.7.10) does not have singularities on a bounded time interval.

◮ Example 1.10. Consider the Cauchy problem for the ODE with proportional

delay

u′t = w2, w = u(pt), t > 0; u(0) = 1, (1.1.7.11)

where 0 < p < 1.

For small t, the solution to problem (1.1.7.11) can be approximated by the poly-

nomial

u = 1 + t+ pt2 + p2( 13 + 2
3 p)t

3 + p4( 12 + 1
6 p+

1
3 p

2)t4, (1.1.7.12)

whose error is O(t5).
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1.1. First-Order Equations. Cauchy Problem. Method of Steps. Exact Solutions 27

Figure 1.9 displays numerical solutions to problem (1.1.7.11) for p=0, 0.25, 0.5,

and 0.75 (shown in solid lines) and the approximate solutions computed by formula

(1.1.7.12) (dashed lines). The vertical axis is on the logarithmic scale. For p = 1,

the exact blow-up solution is computed by formula (1.1.7.3). It is apparent that the

introduction of stretching suppresses the blow-up singularity entirely in the problem.

Notably, for 0< p≤ 0.5 and 0≤ t≤ 2, the approximate formula (1.1.7.12) provides

high accuracy (the relative error at p = 0.5 and t = 2 is 0.0526).

u

p = 1
0.75

0.5

0.25

0

0 1 2 t
1

10

10
2

10
3

Figure 1.9. Solutions to problem (1.1.7.11) obtained by a numerical integration and using the

approximate formula (1.1.7.12) for p = 0, 0.25, 0.5, and 0.75.

◭

◮ Example 1.11. Consider the Cauchy problem for another ODE with propor-

tional delay

u′t = uw, w = u(pt), t > 0; u(0) = 1. (1.1.7.13)

Figure 1.10 displays numerical solutions to problem (1.1.7.11) for p = 0, 0.25,

0.5, and 0.75. The vertical axis is on the logarithmic scale. For p=1, the exact blow-

up solution is computed by formula (1.1.7.3). It is apparent that the introduction of

stretching suppresses the blow-up singularity entirely in the problem. ◭

A reasonably general proposition can be stated for more complicated problems

described by nonlinear ODEs with proportional delay

u′t = F (u,w), w = u(pt), t > 0; u(0) = a > 0, (1.1.7.14)

where 0 < p < 1.

Proposition. Let F (u,w) be a positive continuous function of two arguments in

the domainD = {a≤ u <∞, a≤ w <∞}. Then problem (1.1.7.14) has a blow-up

solution if and only if the simpler auxiliary problem for an ODE without a stretched

argument

u′t = F (u, a), t > 0; u(0) = a > 0, (1.1.7.15)

has a blow-up solution.
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u
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Figure 1.10. Solutions to problem (1.1.7.13) obtained by a numerical integration for p = 0,

0.25, 0.5, and 0.75.

Remark 1.13. This proposition also holds true if the proportional delay equation (1.1.7.14)
is replaced by a constant delay equation with w = u(t− τ ) and the initial condition u(t) = a
at −τ ≤ t ≤ 0 (τ > 0).

The solutions of the problems in Examples 1.10 and 1.11, as well as Examples

1.8 and 1.9, did not have singularities, because the simpler auxiliary problems de-

scribed by the ODEs u′t = a2 and u′t = au, respectively, did not have singularity

either.

◮ Example 1.12. Problem (1.1.7.14) with F (u,w) = (u/w)2 has a blow-up

solution, because the simpler auxiliary problem (1.1.7.15) with F (u, a) = u2/a2 has

a blow-up solution. ◭

1.2. Second- and Higher-Order Delay ODEs.

Systems of Delay ODEs

1.2.1. Basic Concepts. The Cauchy Problem

In general, an nth-order ordinary differential equation involving k constant delays

and solved for the highest derivative can be represented as

u
(n)
t = F

(
t, u, u′t, . . . , u

(n−1)
t , w1, w

′
1, . . . , w

(n1)
1 , . . . , wk, w

′
k, . . . , w

(nk)
k

)
,

u = u(t), wi = u(t− τi), τi > 0, i = 1, . . . , k,
(1.2.1.1)

where n > max(n1, . . . , nk). The symbol w
(j)
i denotes the jth derivative of the

function u(z) taken at z = t − τi. We assume that F is a continuous function of all

its arguments.

Suppose that an initial point t0 is given. Then each τi can be associated with

an initial set E
(i)
t0 = {t0 − τi ≤ t ≤ t0}. The entire initial set is defined as Et0 =

⋃k
i=1 E

(i)
t0 = {t0 − τmax ≤ t ≤ t0}, where τmax = max

1≤i≤k
τi is the maximum delay.
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1.2. Second- and Higher-Order Delay ODEs. Systems of Delay ODEs 29

The Cauchy problem for the ODE with constant delays (1.2.1.1) is formulated

as: find a solution u= u(t) having continuous derivatives up to u
(n−1)
t inclusive that

satisfies the initial conditions

u = ϕ0(t),

u′t = ϕ1(t),

· · ·
u
(n−1)
t = ϕn−1(t) at t0 − τmax ≤ t ≤ t0,

(1.2.1.2)

where ϕj(t) are given continuous functions.

In applications, one usually considers the case where the initial conditions in the

Cauchy problem for equation (1.2.1.1) are set in a consistent way with each other

using one function ϕ(t). Specifically, one chooses the initial conditions (1.2.1.2)

such that

ϕ0(t) = ϕ(t), ϕ1(t) = ϕ′
t(t), ϕj(t) = ϕ

(j)
t (t), j = 2, . . . , n− 1. (1.2.1.3)

In this case, the initial data (1.2.1.2)–(1.2.1.3) are customarily written in the short

form

u = ϕ(t) at t0 − τmax ≤ t ≤ t0. (1.2.1.4)

For more complicated ODEs with k variable delays in (1.2.1.1), one should set

τi = τi(t) (i = 1, . . . , k), where τi = τi(t) are given positive continuous functions.

The initial set Et0 in the Cauchy problem is then defined in the same way as for first-

order ODEs.

If n =max(n1, . . . , nk), then equation (1.2.1.1) is attributed to neutral differen-

tial equations. If n < max(n1, . . . , nk), it is an advanced differential equation.

1.2.2. Second-Order Linear Equations. The Cauchy
Problem. Exact Solutions

Solution of the Cauchy problem for second-order delay ODEs. Consider the

Cauchy problem for a second-order linear nonhomogeneous ODE with a constant

delay and consistent initial data of a general form:

u′′(t) + a2u(t− τ) = f(t), t > 0; (1.2.2.1)

u = ϕ(t) at −τ ≤ t ≤ 0. (1.2.2.2)

The solution to the Cauchy problem (1.2.2.1)–(1.2.2.2) can be represented using

two functions described below [269] (see also [129]).
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30 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

The delayed cosine and delayed sine functions are defined as

cosd(t, τ) =





0, t < −τ,
1, −τ ≤ t ≤ 0,

1− t2

2!
+ · · ·+ (−1)k

[t− (k − 1)τ ]2k

(2k)!
, (k − 1)τ < t ≤ kτ,

(1.2.2.3)

sind(t, τ) =






0, t < −τ,
t+ τ, −τ ≤ t ≤ 0,

t+ τ − t3

3!
+ · · ·+ (−1)k

[t− (k − 1)τ ]2k+1

(2k + 1)!
, (k − 1)τ < t ≤ kτ,

(1.2.2.4)

where k = 1, 2, . . .
The delayed cosine and sine functions are particular solutions of the homoge-

neous equation (1.2.2.1) with a = 1 and f(t) = 0.

It was shown in [129] that the solution of the Cauchy problem (1.2.2.1)–(1.2.2.2)

can be represented as

u(t) = ϕ(0) cosd(a(t− τ), aτ) + a−1ϕ′
t(0) sind(a(t− τ), aτ)

− a

∫ 0

−τ
sind(a(t− 2τ − s), aτ)ϕ(s) ds

+ a−1

∫ t

0

sind(a(t− τ − s), aτ)f(s) ds. (1.2.2.5)

An alternative but less convenient representation of the solution to the Cauchy

problem (1.2.2.1)–(1.2.2.2) can be found in [269].

Solution of the Cauchy problem for another second-order delay ODE. Con-

sider the following Cauchy problem for a general second-order linear homogeneous

ODE with a constant delay and consistent initial data:

u′′(t) = −α2u(t) + βu(t− τ), t > τ ; (1.2.2.6)

u = ϕ(t) at 0 ≤ t ≤ τ. (1.2.2.7)

The study [455] showed that the solution of the Cauchy problem (1.2.2.6)–

(1.2.2.7) with α 6= 0 in the region t > τ can be expressed via solutions of two simpler

problems as

u(t) =
ϕ(τ) − γϕ(0)

1− γ
u1(t)−

ϕ′(τ) − γϕ′(0)

1− γ

( τ

1− γ
u1(t)− u2(t)

)

+
γ

1− γ

∫ τ

0

( τ

1− γ
u1(t)− u2(t)

)
ϕ′′(t) dt, γ =

β

α2
, (1.2.2.8)

where u1(t) and u2(t) are solutions to problem (1.2.2.6)–(1.2.2.7) for ϕ(t) ≡ 1 and

ϕ(t) ≡ t, respectively.
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1.2. Second- and Higher-Order Delay ODEs. Systems of Delay ODEs 31

Below are the auxiliary functions u1(t) and u2(t) involved in equation (1.2.2.8)

that were obtained by the method of steps in [455].

1◦. The solution to problem (1.2.2.6)–(1.2.2.7) with ϕ(t)≡ 1 can be represented

on the interval mτ ≤ t ≤ (m+ 1)τ as

u1(t) = γm + (1− γ)
m∑

k=1

γk−1
k−1∑

n=0

Ak,n
[α(t − kτ)]n

n !
cos

[
α(t− kτ)− 1

2πn
]
,

(1.2.2.9)

where γ = β/α2. The constants Ak,n are defined as

Ak,0 = 1, Ak,n =

k−n−1∑

j=0

n

n+ 2j
2−n−2jCjn+2j , 1 ≤ n < k, (1.2.2.10)

with Cjn = n!
j ! (n−j)! being binomial coefficients. Notably, 0 < Ak,n ≤ 1.

2◦. The solution to problem (1.2.2.6)–(1.2.2.7) with ϕ(t) ≡ t on the interval

mτ ≤ t ≤ (m+ 1)τ can be represented as

u2(t) = γm(t−mτ) + τ

m∑

k=1

γk−1
k−1∑

n=0

Ak,n
[α(t − kτ)]n

n !
cos

[
α(t− kτ)− 1

2πn
]

+
1− γ

α

m∑

k=1

γk−1
k−1∑

n=0

Bk,n
[α(t− kτ)]n

n !
sin

[
α(t− kτ) − 1

2πn
]
,

(1.2.2.11)

where γ = β/α2. The constants Ak,n are computed by formulas (1.2.2.10), and the

constants Bk,n are obtained from

Bk,0 = 21−2kkCk2k,

Bk,n = 2n+1−2k
k−n−1∑

j=0

n(k − n− j)

n+ 2j
Cjn+2jC

k−n−j
2(k−n−j), 1 ≤ n < k.

Solution of the Cauchy problem for a second-order ODE with proportional

delay. Consider the Cauchy problem for the linear equation with proportional delay

u′′tt(t) = au(pt), t > 0; (1.2.2.12)

u(0) = b, u′t(0) = c. (1.2.2.13)

Following [308], we seek particular solutions of equation (1.2.2.12) in the form

u(t) = exps(βt, q), exps(t, q) ≡
∞∑

n=0

q
n(n−1)

2
tn

n!
(0 < q < 1), (1.2.2.14)

where exps(t, q) is the stretched exponential function (see Example 1.5), and q and β
are parameters to be determined. Applying the last formulas in (1.1.6.6) successively,

we find the first two derivatives of the function (1.2.2.14):

u′t = β exps(βqt, q), u′′tt = β2q exps(βq
2t, q).
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32 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

Substituting the second expression into equation (1.2.2.12) gives

β2q exps(βq
2t, q) = a exps(βpt, q).

This equation is satisfied if we set

β2q = a, q2 = p,

which leads to two sets of the unknown parameters: q =
√
p and β = ±

√
a/
√
p.

These values define two linearly independent particular solutions of the ODE with

proportional delay (1.2.2.12): u1,2(t) = exps(±a1/2p−1/4t, p1/2). Therefore, the

general solution of the linear homogeneous equation (1.2.2.12) is expressed as [308]:

u(t) = C1 exps(−a1/2p−1/4t, p1/2) + C2 exps(a
1/2p−1/4t, p1/2), (1.2.2.15)

where C1 and C2 are arbitrary constants.

On substituting (1.2.2.15) into the initial conditions (1.2.2.13), we find the con-

stantsC1 andC2. This results in an exact solution to the Cauchy problem (1.2.2.12)–

(1.2.2.13):

u(t) = 1
2 (b− ca−1/2p1/4) exps(−a1/2p−1/4t, p1/2)

+ 1
2 (b+ ca−1/2p1/4) exps(a

1/2p−1/4t, p1/2). (1.2.2.16)

Formulas (1.2.2.15) and (1.2.2.16) involve the quantity
√
a, which becomes pure

imaginary for a < 0. We will dwell on this case.

The formal substitution it for t in the formula for the stretched exponential

function (1.1.6.5) gives

exps(it, p) = coss(t, p) + i sins(t, p), i2 = −1 (0 < p < 1), (1.2.2.17)

where

coss(t, p) =

∞∑

n=0

(−1)npn(2n−1) t2n

(2n)!
,

sins(t, p) =
∞∑

n=0

(−1)npn(2n+1) t2n+1

(2n+ 1)!
.

(1.2.2.18)

By analogy with the stretched exponential function, the real functions coss(t, p)
and sins(t, p) will be referred to as the stretched cosine and stretched sine, respec-

tively; coss(t, p) is an even function and sins(t, p) is an odd function. These functions

were introduced in [308], where different notations and nomenclature were used.

They possess the properties

coss(0, p) = 1, coss(t, 1) = cos t,

sins(0, p) = 0, sins(t, 1) = sin t
(1.2.2.19)

and can be expressed in terms of the stretched exponential function as

coss(t, p) =
exps(it, p) + exps(−it, p)

2
, sins(t, p) =

exps(it, p)− exps(−it, p)
2i

.

(1.2.2.20)
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1.2. Second- and Higher-Order Delay ODEs. Systems of Delay ODEs 33

The following formulas for derivatives hold true:

[coss(t, p)]
′
t = − sins(pt, p), [sins(t, p)]

′
t = coss(pt, p),

[coss(t, p)]
′′
tt = −p coss(p

2t, p), [sins(t, p)]
′′
tt = −p sins(p

2t, p).
(1.2.2.21)

For p = 1, these coincide with the formulas for the derivatives of the ordinary

trigonometric functions.

It was shown in [308] that for 0 < p ≤ 1, the functions coss(t, p) and sins(t, p)
have infinitely many zeros on the real axis. The functions coss(z, p) and sins(z, p)
with the complex argument z = x+ iy only have zeros on the real axis x = t.

Considering the above, the general solution to the linear homogeneous equation

(1.2.2.12) for a < 0 can be represented as

u(t) = C1 coss(|a|1/2p−1/4t, p1/2) + C2 sins(|a|1/2p−1/4t, p1/2), (1.2.2.22)

where C1 and C2 are arbitrary constants. The corresponding solution to the Cauchy

problem (1.2.2.12)–(1.2.2.13) is

u(t) = b coss(|a|1/2p−1/4t, p1/2) + c|a|−1/2p1/4 sins(|a|1/2p−1/4t, p1/2).
(1.2.2.23)

Likewise, one can obtain exact solutions to the more general second-order linear

ODE with proportional delay

u′′tt(t) + a1u
′
t(pt) + a0u(p

2t) = 0

and the nth-order ODE with proportional delay

u
(n)
t (t) + an−1u

(n−1)
t (pt) + · · ·+ a1u

′
t(p

n−1t) + a0u(p
nt) = 0

in terms of the stretched exponential function. Particular solutions to these equations

should be sought in the form (1.2.2.14) (see [308] for details).

Solution of the Cauchy problem for a second-order ODE with two propor-

tional delays. We now consider the more general Cauchy problem, for a linear ODE

with two proportional delays:

u′′tt(t) = au(t) + bu(pt) + cu(qt), t > 0; (1.2.2.24)

u(0) = A, u′t(0) = B, (1.2.2.25)

where 0 < p < 1 and 0 < q < 1.

A solution to problem (1.2.2.24)–(1.2.2.25) can be sought as a power series in

the form of a linear combination of an even and an odd function:

u(t) = Au1(t) +Bu2(t), (1.2.2.26)

where

u1(t) = 1 +

∞∑

n=1

γ2nt
2n, γ2n =

1

(2n)!

n−1∏

k=0

(a+ bp2k + cq2k),

u2(t) = t+

∞∑

n=1

γ2n+1t
2n+1, γ2n+1 =

1

(2n+ 1)!

n−1∏

k=0

(a+ bp2k+1 + cq2k+1).

(1.2.2.27)
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34 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

The functions u1(t) and u2(t) satisfy the initial conditions

u1(0) = 1, u′1(0) = 0; u2(0) = 0, u′2(0) = 1.

For a = −1 and b = c = 0, these functions become the cosine and sine, respectively.

For a = 1 and b = c = 0, they become the hyperbolic cosine and hyperbolic sine.

1.2.3. Higher-Order Linear Delay ODEs

General linear ODEs with delays and their properties. In general, an nth-order

linear ordinary differential equation with variable coefficients and m variable delays

is expressed as

u
(n)
t (t) +

n−1∑

i=0

m∑

j=0

aij(t)u
(i)
t (t− τj) = f(t),

τ0 = 0, τj = τj(t) > 0, j = 1, . . . ,m,

(1.2.3.1)

where aij(t), τj(t), and f(t) are given continuous functions, and t > t0.

If f(t) ≡ 0, equation (1.2.3.1) is called homogeneous and if f(t) 6≡ 0, it is non-

homogeneous. Equation (1.2.3.1) can be conveniently written in the short notation

L[u] = f(t). (1.2.3.2)

The linear differential operator with delay L possesses the properties

L[u1 + u2] = L[u1] + L[u2],

L[Cu] = CL[u],

where C is an arbitrary constant, and u1 = u1(t), u2 = u2(t), and u = u(t) are

arbitrary functions that have continuous derivatives up to order n inclusive.

Linear homogeneous ODEs with delays of the formL[u] = 0 possess the follow-

ing properties [144]:

1◦. Any linear homogeneous equation has a trivial solution, u = 0.

2◦. The linearity and homogeneity of an equation are preserved under a linear

and homogeneous transformation u(t) = h(t)ū(t) of the unknown function, where

h(t) is a sufficiently smooth function.

3◦. Let u1 = u1(t), . . . , uk = uk(t) be any particular solutions of the linear

homogeneous equation L[u] = 0. Then the linear combination

u = C1u1 + · · ·+ Ckuk,

where C1, . . . , Ck are arbitrary constants, is also a solution of the equation. This

property of linear homogeneous equations is known as the principle of linear super-

position of solutions.
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1.2. Second- and Higher-Order Delay ODEs. Systems of Delay ODEs 35

Let {uk} be an infinite sequence of solutions to the linear homogeneous equation

L[u] = 0. Then the series
∑∞

k=1 uk is called, regardless of its convergence, a formal

solution of this equation. If the solutions uk are classical (n times continuously

differentiable functions) and the series
∑∞
k=1 uk and the respective series of the

derivatives of uk are uniformly convergent, then the sum of the series is a classical

solution to the homogeneous equation L[u] = 0.

Below are the simplest properties of solutions to the linear nonhomogeneous

equation (1.2.3.2):

1◦. If ũf(t) is a particular solution of the linear nonhomogeneous equation

(1.2.3.2) and ũ0(t) is a particular solution of the respective linear homogeneous

equation, with f(t) ≡ 0, then the sum

Cũ0(t) + ũf(t),

where C is an arbitrary constant, is also a solution of the nonhomogeneous equa-

tion (1.2.3.2). The following statement also holds: the general solution to a linear

nonhomogeneous equation is the sum of the general solution to the respective homo-

geneous equation and any particular solution to the nonhomogeneous equation.

2◦. Let u1 and u2 be solutions to nonhomogeneous linear equations with the

same left-hand sides but different right-hand sides:

L[u1] = f1(t), L[u2] = f2(t).

The function u = u1 + u2 is a solution to the equation

L[u] = f1(t) + f2(t).

Linear homogeneous ODEs with constant coefficients and constant delays.

Consider the following nth-order linear homogeneous ordinary differential equation

with constant coefficients and m constant delays:

u
(n)
t (t) +

n−1∑

i=0

m∑

j=0

aiju
(i)
t (t− τj) = 0,

τ0 = 0, 0 < τ1 < τ2 < · · · < τm,

(1.2.3.3)

where aij and τj are some real constants, and t > t0.

We look for particular solutions of equation (1.2.3.3) in the exponential form

u(t) = exp(λt), (1.2.3.4)

where λ is the desired constant.

On substituting (1.2.3.4) into (1.2.3.3) and cancelling by eλt, we arrive at a

characteristic equation for determining λ:

Φ(λ) = 0, where Φ(λ) ≡ λn +

n−1∑

i=0

m∑

j=0

aijλ
ie−λτj . (1.2.3.5)

The function Φ(λ) is called a characteristic quasi-polynomial.
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36 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

Equation (1.2.3.5) is transcendental and it has infinitely many roots. It can

have both real roots, λk , and complex conjugate roots, λk = αk ± iβk, where

i2 = −1. To each real or complex root λk of the characteristic equation (1.2.3.5),

there corresponds one or more solutions to the ordinary differential equation with

delays (1.2.3.3). The possible situations are described below:

1◦. If a root λk is real and has multiplicity 1, that is, Φ(λk) = 0 and Φ′
λ(λk) 6=0,

then equation (1.2.3.3) has a particular solution (1.2.3.4) at λ = λk.

2◦. If a root λk of the characteristic equation (1.2.3.5) is real and has multiplic-

ity rk, that is, Φ(λk) = Φ′
λ(λk) = · · · = Φ

(rk−1)
λ (λk) = 0 and Φ

(rk)
λ (λk) 6= 0, then

equation (1.2.3.3) has particular solutions of the form

uk(t) = Pk(t) exp(λkt), Pk(t) =

rk∑

j=1

Akjt
j−1, (1.2.3.6)

where Akj are arbitrary constants.

3◦. To a pair of complex conjugate roots λk = αk ± iβk of multiplicity 1 there

corresponds a pair of complex solutions e(αk±iβk)t of equation (1.2.3.3) or two real

solutions of this equation

uk1(t) = exp(αkt) cos(βkt), uk2(t) = exp(αkt) sin(βkt). (1.2.3.7)

To pure imaginary roots λk = iβk there correspond periodic solutions uk1(t) =
cos(βkt) and uk2(t) = sin(βkt).

4◦. To a pair of complex conjugate roots λk = αk ± iβk of multiplicity rk there

correspond real particular solutions to equation (1.2.3.3) of the form

uk1 = Pk(t) exp(αkt) cos(βkt), Pk(t) =

rk∑

j=1

Akjt
j−1,

uk2 = Qk(t) exp(αkt) sin(βkt), Qk(t) =

rk∑

j=1

Bkjt
j−1,

(1.2.3.8)

where Akj and Bkj are arbitrary constants.

By virtue of the principle of linear superposition, more complicated particular

solutions of equation (1.2.3.3) can be constructed using linear combinations of the

particular solutions described in Items 1◦–4◦ that correspond to different roots of the

characteristic equation (1.2.3.5).

◮ Example 1.13. Let us find conditions under which the nth-order ODE with

constant delay

u
(n)
t = au+ bw, w = u(t− τ), (1.2.3.9)

has periodic solutions.

On substituting u = eiβk into (1.2.3.9) and cancelling by eiβk , we get

(iβk)
n = a+ be−iβkτ . (1.2.3.10)
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1.2. Second- and Higher-Order Delay ODEs. Systems of Delay ODEs 37

Below we consider the cases of even and odd n separately.

1◦. For equations of an even order, with n = 2m (m = 1, 2, . . . ), we separate

the real and imaginary parts of (1.2.3.10) to obtain

(−1)mβ2m
k = a+ b cos(βkτ), sin(βkτ) = 0. (1.2.3.11)

It follows that

(−1)m(πk/τ)2m = a+ (−1)kb, k = 1, 2, . . . . (1.2.3.12)

The parameters a, b, and τ of equation (1.2.3.9) with n = 2m must satisfy condition

(1.2.3.12) for the equation to have periodic solutions uk1(t) = sin(βkt) and uk2(t) =
cos(βkt), where βk = πk/τ .

2◦. For equations of an odd order, with n= 2m+1 (m= 0, 1, . . . ), we separate

the real and imaginary parts of (1.2.3.10) to obtain

a+ b cos(βkτ) = 0, (−1)mβ2m+1
k = −b sin(βkτ). (1.2.3.13)

It follows from the first relation of (1.2.3.13) that for |a|> |b|, the odd-order equation

(1.2.3.9) does not have periodic solutions. Equation (1.2.3.13) implies that the lines

in the parametric plane a, b whose points correspond to periodic solutions of odd-

order equations (1.2.3.9) can be represented in parametric form as

a =
(−1)m

τ2m+1

ξ2m+1 cos ξ

sin ξ
, b =

(−1)m+1

τ2m+1

ξ2m+1

sin ξ
(ξ = τβk > 0). (1.2.3.14)

The ranges of the parameter ξ, πs < ξ < π(s + 1), where s = 0, 1, . . . , determine

different branches in the plane a, b for given τ > 0. ◭

The quasi-polynomial

Φ(z) ≡ zn +
n−1∑

i=0

m∑

j=0

aijz
ie−τjz , (1.2.3.15)

obtained from (1.2.3.5) with the substitution of z for λ, is an entire analytic function

of the complex variable z = x + iy. If Φ(z) does not degenerate into a polynomial,

implying that equation (1.2.3.3) involves at least one delay, then Φ(z) has infinitely

many zeros, with infinity being the only limit point. All the roots zk of the quasi-

polynomial Φ(z) lie in the left half-plane, Re zk ≤ x∗ [144].

Let us show that solutions of the nth-order linear homogeneous ODE with con-

stant delay

u
(n)
t (t) = bu(t− τ) (1.2.3.16)

can be expressed in terms of the Lambert W function (1.1.3.4).

Substituting (1.2.3.4) into (1.2.3.16) and rearranging, we arrive at the following

transcendental equation for the exponent λ:

λneτλ − b = 0. (1.2.3.17)
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38 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

For any b > 0, equation (1.2.3.17) has a real positive root expressible in terms of

the Lambert W function as

λp =
n

τ
Wp

( τb1/n
n

)
.

In general, the transcendental equation (1.2.3.17) can be reduced with the substi-

tution ζ = λeτλ/n to the algebraic equation ζn − b = 0, which has n complex roots

[402]:

ζk =




b1/n

(
cos 2(k−1)π

n + i sin 2(k−1)π
n

)
for b > 0,

|b|1/n
(
cos (2k−1)π

n + i sin (2k−1)π
n

)
for b < 0,

(1.2.3.18)

where k = 1, . . . , n and i2 = −1. Hence, the difference ζn− b can be factorized and

represented as the product
∏n
k=1(ζ−ζk)= 0, where ζ =λeτλ/n. The transcendental

equation (1.2.3.17) then breaks into n simpler independent equations

λeτλ/n − ζk = 0, k = 1, . . . , n. (1.2.3.19)

The solutions of these equations are expressed via the Lambert W function of a

complex argument as

λk =
n

τ
W

( τζk
n

)
, k = 1, . . . , n, (1.2.3.20)

where the numbers ζk (generally complex) are defined in (1.2.3.18), and W (z) is

understood as the set of all branches of the Lambert W function.

Linear nonhomogeneous ODEs with constant coefficients and constants de-

lays. Linear nonhomogeneous ordinary differential equations of the nth order with

constant coefficients and m constant delays have the form

u
(n)
t (t) +

n−1∑

i=0

m∑

j=0

aiju
(i)
t (t− τj) = f(t),

τ0 = 0, 0 < τ1 < τ2 < · · · < τm,

(1.2.3.21)

where aij and τj are some real constants, f(t) is a continuous function, and t > t0.

The general solution to equation (1.2.3.21) is the sum of the general solution

to the respective homogeneous equation (1.2.3.3) and any particular solution to the

nonhomogeneous equation.

Table 1.3 describes the structure of particular solutions for some functions on the

right-hand side of the linear nonhomogeneous equation (1.2.3.21).

1.2.4. Linear Systems of First- and Second-Order ODEs
with Delay. The Cauchy Problem. Exact Solutions

Linear systems of first-order ODEs with delay. A linear homogeneous system

of first-order ODEs with constant coefficients and a constant delay with n unknown
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1.2. Second- and Higher-Order Delay ODEs. Systems of Delay ODEs 39

Table 1.3. The structure of particular solutions of the linear nonhomogeneous equation with

constant delays (1.2.3.21) for some special forms of the function f(x).

Form of function f(t)
Roots of characteristic equation

λn +
∑n−1
i=0

∑m
j=0 aijλ

ie−λτj = 0
Form of particular

solution u = ũ(t)

zero is not a root of

characteristic equation
P̃m(t)

Pm(t)

zero is a root of

characteristic equation (multiplicity r)
tr P̃m(t)

α is not a root of

characteristic equation
P̃m(t)eαt

Pm(t)eαt

(α is a real number)
α is a root of

characteristic equation (multiplicity r)
trP̃m(t)eαt

iβ is not a root of

characteristic equation
P̃ν(t) cos βt

+ Q̃ν(t) sinβt
Pm(t) cos βt

+Qn(t) sinβt
iβ is a root of

characteristic equation (multiplicity r)
tr [P̃ν(t) cos βt

+ Q̃ν(t) sinβt]

α+ iβ is not a root of

characteristic equation
[P̃ν(t) cos βt

+ Q̃ν(t) sinβt]e
αt

[Pm(t) cos βt

+Qn(t) sinβt]e
αt

α+ iβ is a root of

characteristic equation (multiplicity r)
tr [P̃ν(t) cos βt

+ Q̃ν(t) sinβt]e
αt

Notation: Pm and Qn are polynomials of degree m and n with prescribed coefficients; P̃m, P̃ν ,

and Q̃ν are polynomials of degree m and ν whose coefficients are determined by substituting the

particular solution into the original equation; ν = max(m, n); α and β are real numbers, and

i2 = −1.

functions can be written in a matrix form as

u′
t(t) = Au(t) + Bu(t− τ), t > 0, (1.2.4.1)

where u = (u1, . . . , un)
T is a column vector (the superscript T indicates the trans-

pose), A and B are n × n square matrices with constant coefficients that satisfy the

commutative condition AB = BA.

The Cauchy problem is stated as follows: find a solution to the system of equa-

tions (1.2.4.1) that satisfies the initial condition

u = ϕ(t) at −τ ≤ t ≤ 0, (1.2.4.2)

where ϕ(t) = (ϕ1(t), . . . , ϕn(t))
T is a given continuous vector function.
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40 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

A solution of the Cauchy problem (1.2.4.1)–(1.2.4.2) can be represented using

two matrix functions as described below.

The exponential of a square matrix At is defined by the series

exp(At) = E+ At+ A
2 t

2

2!
+ A

3 t
3

3!
+ · · · = E+

∞∑

k=1

A
k t
k

k!
,

where E is an identity matrix with elements eij = δij , where δij is the Kronecker

delta (δij = 1 if i= j, δij = 0 if i 6= j). The delayed exponential function of a square

matrix At was introduced in [267] and is defined by the formulas

expd(At,Aτ) =





Θ, t < −τ,
E, −τ ≤ t < 0,

E+ A
t
1! + · · ·+ Ak

[t−(k−1)τ ]k

k! , (k − 1)τ ≤ t < kτ,

k = 1, 2, . . . ,

(1.2.4.3)

where Θ is a square zero matrix whose elements are all equal to zero.

It was proved in the studies [267, 268, 439] that the solution to the Cauchy

problem (1.2.4.1)–(1.2.4.2) can be represented as

u(t) = exp(A(t+ τ)) expd(B̃t, B̃τ)

+

∫ 0

−τ
exp(A(t− τ − s)) expd(B̃(t− τ − s), B̃τ) exp(Aτ)[ϕ′

s(s)− Aϕ(s)] ds,

(1.2.4.4)

where B̃ = exp(−Aτ)B. This formula was derived under the assumption that all

components of the vector function ϕ(t) are continuously differentiable on the inter-

val −τ ≤ t ≤ 0.

Linear systems of second-order ODEs with a single delay. Consider a special

linear nonhomogeneous system of second-order ODEs with constant coefficients and

a single delay which is written in a matrix form as

u′′
tt(t) = −B

2u(t− τ) + f(t), t > 0, (1.2.4.5)

u = ϕ(t), u′
t = ϕ′

t(t) at −τ ≤ t < 0, (1.2.4.6)

where u = (u1, . . . , un)
T is a column vector of the unknowns, B is an n× n square

nondegenerate matrix with constant coefficients, and f(t) = (f1(t), . . . , fn(t))
T and

ϕ(t) = (ϕ1(t), . . . , ϕn(t))
T are given continuous vector functions.

The solution to the Cauchy problem (1.2.4.5)–(1.2.4.6) can be represented using

two matrix functions as described below.
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1.2. Second- and Higher-Order Delay ODEs. Systems of Delay ODEs 41

The matrix delayed cosine and sine are defined as [269]:

cosd(Bt,Bτ)=





Θ, t<−τ,
E, −τ≤ t<0,

E−B
2 t

2

2!
+· · ·+(−1)kB2k [t−(k−1)τ ]2k

(2k)!
, (k−1)τ≤ t<kτ,

(1.2.4.7)

sind(Bt,Bτ)=





Θ, t<−τ,
B(t+τ), −τ≤ t<0,

(t+τ)B−B
3 t

3

3!
+· · ·+(−1)kB2k+1 [t−(k−1)τ ]2k+1

(2k+1)!
,

(k−1)τ≤ t<kτ,
(1.2.4.8)

where k = 1, 2, . . . The following relations for derivatives hold:

[cosd(Bt,Bτ)]
′
t = −B sind(B(t − τ),Bτ),

[sind(Bt,Bτ)]
′
t = B cosd(Bt,Bτ),

[cosd(Bt,Bτ)]
′′
tt = −B

2 cosd(B(t− τ),Bτ),

[sind(Bt,Bτ)]
′′
tt = −B

2 sind(B(t − τ),Bτ).

(1.2.4.9)

It was shown in [129] that the solution to the Cauchy problem (1.2.4.5)–(1.2.4.6)

can be represented as

u(t) = ϕ(0) cosd(B(t− τ),Bτ) + B
−1ϕ′

t(0) sind(B(t− τ),Bτ)

− B

∫ 0

−τ
sind(B(t− 2τ − s),Bτ)ϕ(s) ds

+ B
−1

∫ t

0

sind(B(t− τ − s),Bτ)f(s) ds. (1.2.4.10)

An alternative but less convenient representation of the solution to the Cauchy

problem (1.2.4.5)–(1.2.4.6) can be found in [269].

Remark 1.14. Consider the Cauchy problem for the system of second-order delay ODEs

u
′′
tt(t) = −Au(t− τ ) + f(t), t > 0, (1.2.4.11)

subjected to the initial conditions (1.2.4.6). Here, A is an n× n positive definite matrix.
The problem is solved in two stages. First, one finds the matrix B from the equation

B
2 = A. The matrix B is called the square root of the matrix A and denoted B = A

1/2.
A positive definite matrix always has exactly one positive definite square root, called the
arithmetic square root. By using eigenvalue decomposition, one can represent a positive
definite matrix as A = VDV

−1, where D is a diagonal matrix consisting of eigenvalues
λi > 0. Then the positive definite square root of A is determined by the formula B = A

1/2 =
VD

1/2
V

−1, where D
1/2 is a diagonal matrix consisting of eigenvalues

√
λi [178].

In the second stage, by setting A = B
2 in equation (1.2.4.11), one reduces the problem in

question to problem (1.2.4.5)–(1.2.4.6).
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42 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

1.3. Stability (Instability) of Solutions to Delay

ODEs

1.3.1. Basic Concepts. General Remarks on Stability of
Solutions to Linear Delay ODEs

Some definitions. Let us look at the Cauchy problem for the delay ODE

u′t = f(t, u, w1, . . . , wm), wi = u(t− τi(t)), i = 1, . . . ,m, (1.3.1.1)

with the initial data

u(t) = ϕ1(t) on Et0 , (1.3.1.2)

where Et0 is some initial set.

A solution u1(t) to problem (1.3.1.1), (1.3.1.2) is called stable if for any ε > 0,

there exists a δ(ε) > 0 such that if the inequality |ϕ1(t) − ϕ2(t)| < δ(ε) holds on

the initial set, then |u1(t) − u2(t)| < ε for all t ≥ t0, where u2(t) is a solution to

equation (1.3.1.1) under the initial condition u(t) = ϕ2(t) on Et0 .

Solutions that do not possess the above property are called unstable.

A stable solution u1 is called asymptotically stable if for any initial function

ϕ2(t) that satisfies the condition |ϕ1(t)− ϕ2(t)| < δ1 for sufficiently small δ1 > 0,

the limit relation limt→∞ |u1(t)− u2(t)| = 0 holds.

An asymptotically stable solution u1 is called globally asymptotically stable if

any other solution of the system in question tends to it as t → ∞ regardless of the

initial data. An asymptotically stable solution that is not globally asymptotically

stable is called a locally asymptotically stable solution.

When carrying out a stability analysis of a solution u0 to problem (1.3.1.1),

(1.3.1.2), one can use the change of variable v(t) = u(t) − u0(t) to reduce the

solution u0 to the trivial one, v(t) ≡ 0. Therefore, in what follows, we will only be

performing stability analyses of trivial solutions.

General remarks on solution stability for linear delay ODEs. Just as in

solutions of linear ODEs without delays, all solutions of linear ODE with delays

(with a fixed initial point t0) are either simultaneously stable or simultaneously

unstable. In particular, all solutions of a linear homogeneous equation behave, in the

sense of stability, as the trivial (zero) solution of the same equation.

Solutions to linear homogeneous ODEs with constant coefficients and constant

delays,

u
(n)
t (t) +

n−1∑

k=0

aku
(k)
t (t) +

n−1∑

k=0

m∑

j=1

bkju
(k)
t (t− τj) = 0, (1.3.1.3)

are the easiest to analyze for stability; here τj > 0 and t > t0. The stability or

instability of the trivial solution to this equation is determined by the position of the

roots of the respective characteristic equation

λn +

n−1∑

k=0

akλ
k +

n−1∑

k=0

m∑

j=1

bkjλ
ke−τjλ = 0, (1.3.1.4)
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which results from substituting the exponential function u = eλt into (1.3.1.3).

If all roots of the characteristic equation (1.3.1.4) have negative real parts, then

the zero solution to the linear homogeneous ODE with delays (1.3.1.3) is asymptoti-

cally stable. If at least one root of the characteristic equation (1.3.1.4) has a positive

real part, then the solution to the linear homogeneous ODE with delays (1.3.1.3) will

be unstable.

Therefore, the stability analysis for solutions to linear delay ODEs of the form

(1.3.1.3) reduces to a position analysis of the roots of the characteristic equation

(1.3.1.4) (this equation is transcendental and has infinitely many complex roots).

Subsection 1.3.2 below will discuss the issues of stability and instability of

solutions to specific linear delay ODEs that frequently arise in applications.

The case of small delays. If maximum delay, τmax = max
1≤j≤m

τj , in the linear

homogeneous ODE with m delays (1.3.1.3) is sufficiently small, then one would

naturally anticipate that many properties of solutions to equation (1.3.1.3) are close

to those of solutions to the simpler ODE without delays

u
(n)
t (t) +

n−1∑

k=0

aku
(k)
t (t) +

n−1∑

k=0

m∑

j=1

bkju
(k)
t (t) = 0, (1.3.1.5)

which is formally obtained from (1.3.1.3) by setting τj = 0 for all j = 1, . . . ,m.

In particular, the following statements are true [144]:

1◦. If the real parts of all roots of the characteristic equation for the ODE with-

out delays (1.3.1.5) are negative and, hence, the solutions to equation (1.3.1.5) are

asymptotically stable, then the solutions to the ODE with delays (1.3.1.3) are also

asymptotically stable for sufficiently small τmax.

2◦. If the characteristic equation for the ODE without delays (1.3.1.5) has at

least one root with a positive real part and, hence, the solutions to equation (1.3.1.5)

are unstable, then the solutions to the ODE with delays (1.3.1.3) are also unstable for

sufficiently small τmax.

3◦. If the characteristic equation for the ODE without delays (1.3.1.5) has a

simple root λ = 0 and the other roots have negative real parts, then the solution to

the ODE with delays (1.3.1.3) is stable for sufficiently small τmax.

1.3.2. Stability of Solutions to Linear ODEs with a Single
Constant Delay

First-order linear ODEs with constant delay. Let us revisit the first-order linear

ODE with constant coefficients and a constant delay discussed previously in Subsec-

tion (1.1.3) (see equation (1.1.3.1)):

u′t = au+ bw, w = u(t− τ). (1.3.2.1)

We look for particular solutions of equation (1.3.2.1) in the form u= eλt. As a result,

we arrive at the characteristic equation for the parameter λ:

λ− a− be−λτ = 0. (1.3.2.2)
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44 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

The linear delay ODE (1.3.2.1) will be asymptotically stable if all roots of the

characteristic equation (1.3.2.2) have negative real parts. The following theorem

holds.

Theorem (Hayes) [37]. All roots of the characteristic equation (1.3.2.2) with

real coefficients a and b (τ > 0) have a negative real part (Reλ < 0) if and only if

the following three inequalities hold simultaneously:

(i ) aτ < 1,

(ii ) a+ b < 0,

(iii ) bτ +
√
(aτ)2 + µ2 > 0,

(1.3.2.3)

where µ is a root of the transcendental equation µ= aτ tanµ satisfying the condition

0 < µ < π. If a = 0, one should set µ = π/2.

Figure 1.11 displays in white color the region of the plane (A,B), whereA= aτ
andB = bτ , in which all roots of the transcendental equation (1.3.2.2) have negative

real parts (Reλ < 0). In this region, the trivial (zero) solution of equation (1.3.2.1)

is asymptotically stable. The region of instability, where at least one root of the

transcendental equation (1.3.2.2) has a positive real part, is shaded in grey color.

-2 -1 0 1 2 3

-1

-2

2

1

B

A

A= 1

A B+ = 0

ÖA A B2 + m ( ) = 02
+

Stability region

Instability region

Figure 1.11. Regions of stability and instability for the trivial solution to the first-order ODE

with constant delay (1.3.2.1).

◮ Example 1.14. Let us look at how the region of stability changes as the delay

increases for the simplest two-term linear ODE with constant delay

u′t = bw, w = u(t− τ), (1.3.2.4)

which corresponds to a = 0 in (1.3.2.1).
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1.3. Stability (Instability) of Solutions to Delay ODEs 45

If there is no delay, τ =0, the region of stability of solutions to equation (1.3.2.4)

is the entire negative semi-axis −∞ < b < 0. For τ > 0, we substitute a = 0 into

conditions (1.3.2.3) to obtain the region of stability of solutions to equation (1.3.2.4)

in the form of a finite interval

− π

2τ
< b < 0. (1.3.2.5)

It is apparent that the region of stability shrinks as τ increases, with the size of the

region vanishing as τ →∞. In other words, the presence of a delay is a destabilizing

factor, and the increase of τ can lead to the instability of solutions of the equation.

Qualitatively, the same occurs in the overwhelming majority of ODEs and systems

of ODEs with constant delay. ◭

Remark 1.15. The trivial solution of the delay ODE

u′
t = au+ b(t)w, w = u(t− τ ),

where b(t) is a continuous function, is asymptotically stable if |b(t)| < −a [144].

Second-order linear ODEs with constant delay. Consider the second-order

linear ODE with constant coefficients and a constant delay

u′′tt(t) + a1u
′
t(t) + b1u

′
t(t− τ) + a0u(t) + b0u(t− τ) = 0. (1.3.2.6)

The associated characteristic equation is

λ2 + a1λ+ a0 + (b1λ+ b0)e
−τλ = 0. (1.3.2.7)

Note that for τ = 0, the trivial solution of equation (1.3.2.6) is asymptotically

stable if and only if a1 + b1 > 0 and a0 + b0 > 0.

An extensive literature is devoted to the analysis of stability and instability of

solutions to equation (1.3.2.6) and related delay ODEs (e.g., see [66, 79, 80, 104,

112, 182, 205, 208, 225, 283, 333, 500, 574, 587]).

For equation (1.3.2.6), the number of different pure imaginary roots (the roots

that only differ in sign are treated as the same) of the characteristic equation (1.3.2.7)

under the conditions a1 + b1 6= 0 and a0 + b0 6= 0 can be zero, one, or two. The

following three situations are possible [112]:

1. There are no imaginary roots. The stability of the trivial solution does not

alter as τ increases from zero to infinity.

2. There is one imaginary root. The trivial solution that is unstable at τ = 0
will never become stable. If the trivial solution is stable at τ = 0, it will become

unstable at the least τ for which there is an imaginary root and will remain unstable

as τ further increases.

3. There are two imaginary roots. As τ increases, the stability of the trivial

solution can alter finitely many times, and it will ultimately become unstable for

sufficiently large τ .
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46 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

Below are the simplest stability and instability conditions.

1◦. An equilibrium is unstable for all τ ≥ 0 if

(a) it is a saddle point at τ = 0 (i.e., for a0 + b0 < 0),

(b) it is an unstable node or unstable focus at τ = 0 (i.e., for a1 + b1 > 0 and

a0 + b0 > 0) and |a0| < |b0|.
2◦. An equilibrium is stable for all τ ≥ 0, if it is stable at τ = 0 (for a1 + b1 < 0

and a0 + b0 > 0) and

(a) (a21 − 2a0 − b21)
2 < 4(a20 − b20) or

(b) a21 > 2a0 + b21 and |a0| > |b0|.
Remark 1.16. The study [333] conducted a detailed and rather comprehensive position

analysis of the roots of the six-parameter transcendental equation

λ2 + a1λ+ a0 + (b2λ
2 + b1λ+ b0)e

λτ = 0

in the complex plane λ = Reλ + i Imλ. In the special case b2 = 0, this equation becomes
the characteristic equation (1.3.2.7).

Higher-order linear ODEs with constant delay. Consider the nth-order linear

homogeneous ODE with real constant coefficients and a single constant delay

u
(n)
t (t) +

n−1∑

j=0

aju
(j)
t (t) +

m∑

j=0

bju
(j)
t (t− τ) = 0 (1.3.2.8)

in more detail; here n > m, τ > 0, and t > t0.

The characteristic equation associated with (1.3.2.8) reads

Φ(z) ≡ P (z) +Q(z)e−τz = 0,

P (z) ≡ zn +

n−1∑

j=0

ajz
j , Q(z) ≡

m∑

j=0

bjz
j,

(1.3.2.9)

where z = x + iy (i2 = −1). The function Φ(z) in (1.3.2.9) is customarily called a

quasi-polynomial.

Following [67, 113], we will call the quasi-polynomial Φ(z) stable if all roots of

the transcendental equation Φ(z) = 0 have a negative real part, Re z < 0. The quasi-

polynomial Φ(z) will be called unstable if the equation Φ(z) = 0 has at least one

root with a positive real part, Re z > 0.

Below we describe two methods for investigating roots of quasi-polynomials.

The D-partition method [144]. For fixed τ , the zeros of the quasi-polynomial

Φ(z) are continuous functions of its coefficients. Let us divide the space of coeffi-

cients, using hypersurfaces, into regions whose points correspond to pure imaginary

zeros of the quasi-polynomial, z = iy (inclusive of the degenerate case z = 0). This

process is called a D-partition.

At the points of each region of a D-partition, the quasi-polynomial has equal

numbers of zeros with positive reals parts (the number of zeros is here understood as

the sum of their multiplicities). This is because a change in the number of zeros with
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1.3. Stability (Instability) of Solutions to Delay ODEs 47

positive real parts can only occur, as the coefficients vary continuously, when a zero

crosses the imaginary axis, or when it crosses the boundary of a region in the D-

partition. The regions that have no roots with a positive real part determine regions

of asymptotic stability of solutions to the linear delay ODEs concerned.

The stability analysis conducted in the space of the model parameters by the D-

partition method suggests finding regions Dk where there are no roots with positive

real parts. To single out a region Dk, if it is connected, it suffices to make sure that

at least one of its points corresponds to a quasi-polynomial whose roots all have a

negative real part. In order to figure out how the number of roots with a positive

real part changes when crossing some boundary of the D-partition, one computes

the differential of the real part of the root and checks its sign to judge whether the

number of roots with a positive real part decreases or increases.

Suppose that the linear delay ODE in question depends onm free parameters am
(τ is assumed fixed) and the corresponding characteristic equation has the form

Φ(z, a1, . . . , am) = 0, where z = x + iy. In view of the inequality dΦ = Φz dz +∑m
s=1

∂Φ
∂as

das = 0, we get

dx = −Re

(
1

Φz

m∑

s=1

∂Φ

∂as
das

)
. (1.3.2.10)

As a rule, one computes the differential dx at some boundary of the D-partition (at

z = iy) between two regions where only one parameter varies to ensure that the

boundary is crossed. If dx > 0, then as we move from one region of the D-partition

to the other, the number of roots of the characteristic polynomial that have a positive

real part increases by one. If dx < 0, the number or roots decreases by one.

◮ Example 1.15. Find the region of stability of the second-order linear ODE

with constant delay

u′′tt = au+ bw, w = u(t− τ), (1.3.2.11)

in the space of real parameters a and b for τ > 0.

We write the characteristic equation

Φ(z) = 0, Φ(z) ≡ z2 − a− be−τz. (1.3.2.12)

In the degenerate case of z = 0, we have a + b = 0 (one of the boundaries of

the D-partition). Setting z = iy in (1.3.2.12), where 0 < y < ∞, we get −y2 =
a+ b[cos(τy) − i sin(τy)], which leads to the transcendental equations

y2 + a+ b cos(τy) = 0,

b sin(τy) = 0.
(1.3.2.13)

Assuming that b 6= 0, we start from the second equation in (1.3.2.13) and then

proceed to the first one to obtain

y =
πk

τ
, k = 1, 2, . . . ,

b = (−1)k+1
[
a+

( πk
τ

)2]
.

(1.3.2.14)
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48 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

Here, the second relation determines two sets of parallel straight lines with angles

of inclination ±π/4 that define boundaries of the D-partition in the (a, b) plane.

Moreover, the second relation in (1.3.2.14) is satisfied at b = 0 and −∞ < a < 0
(y =

√
−a ), which corresponds to the negative part of the a-axis. So the negative

semiaxis also makes up boundaries of the D-partition. Figure 1.12 displays the D-

partition lines in the (A,B) plane, where A = aτ2 and B = bτ2. The regions where

the characteristic equation (1.3.2.12) has equal numbers of roots with a positive real

part are shaded in the same color; the circles indicate the numbers of roots.
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Figure 1.12. The D-partition boundaries for the second-order ODE with constant delay

(1.3.2.11). The regions where the characteristic equation (1.3.2.12) has equal numbers of roots

with a positive real part are shaded in the same color; the circles indicate the numbers of roots.

We note first that the characteristic equation (1.3.2.12) has a single root with

a positive real part at the points of the semiaxis b = 0, a > 0. Therefore, the

characteristic equation also has a single root with a positive real part at all points of

the cone containing the semiaxis.

To determine the number of roots with a positive real part in other regions, we

will take advantage of formula (1.3.2.10). In view of (1.3.2.12), it becomes

dx = −Re
(Φada+Φbdb

Φz

)
= Re

( da+ e−τzdb

2z + bτe−τz

)
. (1.3.2.15)

We will only be interested in the sign of dx as we cross boundaries of regions of

the D-partition, which are defined by the linear relations (1.3.2.14). Therefore, we

substitute z= iy, where y=πk/τ (k=1, 2, . . . ), into the right-hand side of (1.3.2.15)

to obtain

dx = Re
da+ (−1)k db

2iy + (−1)kbτ
=

(−1)kbτ da+ bτ db

4y2 + (bτ)2
. (1.3.2.16)
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1.3. Stability (Instability) of Solutions to Delay ODEs 49

For simplicity, we will further assume that τ =1. Hence, signdx=sign[(−1)kb da+
b db].

It follows from (1.3.2.16) that for any fixed positive a = a∗ > 0 (da = 0), the

differential dx, with sign dx=sign(b db), is positive when b is positive and increases

(db > 0) or negative and decreases (db < 0). This implies that in the regions adjacent

with the cone containing the points a > 0, the number of roots of the characteristic

equation (1.3.2.12) with a positive real part equals two and increases as the vertical

line a = a∗ crosses further boundaries.

For a sufficiently small fixed positive b = b∗ > 0 (db = 0), we see that dx < 0
when we cross the straight line a + b = 0 (corresponding to k = 0 in (1.3.2.14)) as

a decreases (da < 0). Therefore, inside the triangle with vertices at (0, 0), (−π2, 0),
and (− 1

2π
2, 1

2π
2), the characteristic equation (1.3.2.12) has no roots with a positive

real part, and hence, the trivial solution of the original equation (1.3.2.11) is stable

in this region.

When we move left (da < 0) along the horizontal line b = b∗ > 0 (db = 0)

and cross the straight line (1.3.2.14) with k = 1, b = a + π2, we have signdx =
sign(−b da) so that dx > 0 for sufficiently small b∗. It follows that in the region to

the left of the triangle, there is one root of the characteristic equation with a positive

real part. Likewise, one can determine the number of roots with a positive real part

in other regions of the D-partition. For clarity, in Figure 1.12, the regions where

the characteristic equation has equal numbers of roots with a positive real part are

shaded in the same color. ◭

The Cooke–van den Driessche method. The regions of stability and instabil-

ity are separated by pure imaginary roots, z = iy, which are zeros of the quasi-

polynomial (1.3.2.9) and satisfy the equation Φ(iy) = 0. On representing the quasi-

polynomial as P (iy) = −Q(iy)e−iτy, we take the modulus of both sides and raise

to the power of two to obtain the algebraic equation

F (y) = 0, F (y) ≡ |P (iy)|2 − |Q(iy)|2. (1.3.2.17)

Its left-hand side is a polynomial of degree 2n, since the equation only involves even

powers of y. The substitution ζ = y2 reduces F (y) to a polynomial of degree n,

which can be written in the factorized form

F (y) =

n∏

j=1

(ζ − rj), ζ = y2, (1.3.2.18)

where r1, . . . , rn are some numbers, generally complex.

Now assuming that the iy and τ satisfying equations (1.3.2.9) and (1.3.2.17) are

known, we will treat the root z = x + iy of equation (1.3.2.9) as a function τ and

attempt to determine the direction of motion of z as τ varies. So we need to calculate

s = sign
{
Re

( dz
dτ

∣∣∣
z=iy

)}
= sign

{ d

dτ

(
Re z

)∣∣
z=iy

}
. (1.3.2.19)

It was shown in [113] that for any simple root iy with y > 0 at which the

imaginary axis is crossed with a ‘positive velocity’ (s 6= 0), the direction of crossing
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50 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

can be found from the formula

s = signF ′(y), (1.3.2.20)

with the function F (y) defined in (1.3.2.17).

Suppose that the polynomials P (z) and Q(z), defined in (1.3.2.9), do not have

common roots and the inequality P (0)+Q(0) 6= 0 holds, which means that z = 0 is

not a root of the quasi-polynomialΦ(z). Then the following propositions hold [113]:

1◦. Suppose the equation F (y) = 0, defined in (1.3.2.17), does not have positive

roots. Then if the quasi-polynomial Φ(z) is stable at τ = 0, it will remain stable for

all τ ≥ 0, and if it is unstable at τ = 0, it will remain unstable for all τ ≥ 0.

2◦. Let the equation F (y) = 0 have at least one positive root and let all positive

roots be simple. Then as τ increases, a stable quasi-polynomial can become unstable

and vice versa. There is a positive τ∗ such that the quasi-polynomial Φ(z) from

(1.3.2.9) is unstable for all τ > τ∗. For 0 < τ < τ∗, the stability or instability can

alter no more than finitely many times.

3◦. If iy (y > 0) and τ satisfy relation (1.3.2.9) and if iy is a simple root such

that s 6= 0, then y is a simple root of the equation F (y) = 0, and the root z(τ)
of equation (1.3.2.9) intersects the imaginary axis (as τ increases) in the direction

determined by signF ′(y).
4◦. Suppose that all positive roots, r1, . . . , rp, appearing on the right-hand side

of (1.3.2.18) are different and r1> · · ·>rp > 0. Then ±iyk=±i√rk (k=1, . . . , p)
are possible roots of equation (1.3.2.9) on the imaginary axis. Let all these roots be

simple. Then the direction of crossing of the imaginary axis at iyk is determined by

sk = sign

p∏

j=1,j 6=k
(rk − rj).

It follows that the imaginary axis is always crossed from left to right for the

largest root r1, from right to left for the root r2, and so on. If there is only one positive

root, r1 , it is clear that the imaginary axis is crossed from left to right. If there are

two positive roots, the imaginary axis is first crossed from left to right (at r1) and

then from right to left (at r2).

1.3.3. Stability of Solutions to Linear ODEs with Several
Constant Delays

First-order linear ODEs with several constant delays. The analysis of stability of

a first-order linear equation with constant coefficients and constant delays,

u′t(t) = −
n∑

k=1

aku(t− τk), (1.3.3.1)

reduces to finding the locations of the roots of the characteristic equation

λ+
n∑

k=1

ake
−λτk = 0. (1.3.3.2)
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1.3. Stability (Instability) of Solutions to Delay ODEs 51

The study [522] proved the following two theorems for equation (1.3.3.1).

Theorem 1. Let ak ∈ [0,∞) and τk ∈ [0,∞) for all k = 1, . . . , n and let∑n
k=1 ak > 0. Then, if the inequality

∑n
k=1 akτk < π/2 holds, all roots of the

transcendental equation (1.3.3.2) have negative real parts, and the trivial solution of

equation (1.3.3.1) is asymptotically stable.

Theorem 2. If n = 2, a1 = a2 > 0, and a1τ1 < 1, then for any positive τ2, all

roots of the transcendental equation (1.3.3.2) have negative real parts.

Notably, if
∑n
k=1ak < 0 for any nonnegative τk , the trivial solution of equation

(1.3.3.1) is unstable.

Second-order linear ODEs with several constant delays. Consider the second-

order linear ODE with constant coefficients and several constant delays

u′′tt(t) + au′t(t) + bu(t) =

n∑

k=1

cku(t− τk), (1.3.3.3)

where a > 0 and b > 0, and ck are real numbers satisfying the condition b >∑n
k=1 |ck|.

Theorem. For the trivial solution of equation (1.3.3.3) to be asymptotically

stable for any τk ≥ 0, it suffices that either of the following inequalities holds [500]:

(a) a >

n∑

k=1

|ck|
/(

b−
n∑

k=1

|ck|
)1/2

,

(b) a >
n∑

k=1

|ck|τk.

The characteristic equation of the delay ODE (1.3.3.3) is f(λ) ≡ λ2+ aλ+ b−∑n
k=1cke

−λτk = 0. Suppose the inequality

f(0) = b−
n∑

k=1

ck < 0

holds. In this case, since f(+∞) = +∞, the function f(λ) has at least one positive

root, λ = λ+ > 0, which generates an indefinitely growing solution, u+ = eλ+t,

of equation (1.3.3.3). Therefore, the trivial solution of equation (1.3.3.3) will be

unstable.

Higher-order linear ODEs with several constant delays. Now let us look at

the nth-order linear homogeneous ODE with real constant coefficients and several

constant delays

u
(n)
t (t) +

n−1∑

k=0

aku
(k)
t (t) +

n−1∑

k=0

m∑

j=1

bkju
(k)
t (t− τj) = 0, (1.3.3.4)

where τj > 0 and t > t0.
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52 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

The characteristic equation associated with the delay ODE (1.3.3.4) is

P (λ)+

m∑

j=1

bkjQj(λ)e
−τjλ =0, P (λ)≡ λn+

n−1∑

k=0

akλ
k, Qj(λ)≡

n−1∑

k=0

bkjλ
k.

(1.3.3.5)

Theorem. Let the coefficients of equation (1.3.3.4) satisfy the condition

m∑

j=1

|b0j | < |a0|.

Then, solutions of equation (1.3.3.4) are asymptotically stable if and only if the

following two conditions hold [144, 609]:

1◦. The real parts of all roots of the polynomial P (λ) must be negative.

2◦. For any y > 0, the inequality

m∑

j=1

|Qj(iy)| < |P (iy)|, i2 = −1,

must hold.

1.3.4. Stability Analysis of Solutions to Nonlinear Delay
ODEs by the First Approximation

Solution stability and instability theorems. In studying the stability of the trivial

solution to the nonlinear equation (1.3.1.1) under the assumption that the right-hand

side is differentiable with respect to all arguments, starting from the second, in a

neighborhood of the zero values of these arguments for t > t0, it is often reasonable

to single out the linear part and rewrite the equation in the form

u′t = a0(t)u+ a1(t)w1 + · · ·+ am(t)wm +N(t, u, w1, . . . , wm),

wi = u(t− τi(t)), i = 1, . . . ,m.
(1.3.4.1)

The nonlinear function N has a higher-than-first order in the ensemble of all argu-

ments starting from the second.

In many cases, a stability analysis of the trivial solution to ODE (1.3.4.1) is

equivalent to that of the trivial solution to the simpler, linear ODE

u′t = a0(t)u+ a1(t)w1 + · · ·+ am(t)wm,

wi = u(t− τi(t)), i = 1, . . . ,m,
(1.3.4.2)

which is called the first approximation for ODE (1.3.4.1).

In what follows, we will be looking at the constant delay ODE (1.3.4.1) assuming

that ai = const, τi = const, and N(t, 0, 0, . . . , 0) = 0. The following two theorems

[144], analogous to Lyapunov’s theorems for regular ODEs without delay, hold.
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Theorem 1. The trivial solution u = 0 of the nonlinear ODE with delays

u′t = a0u+ a1w1 + · · ·+ amwm +N(t, u, w1, . . . , wm),

wi = u(t− τi), i = 1, . . . ,m,
(1.3.4.3)

is asymptotically stable if all roots of the characteristic equation

λ = a0 + a1e
−τ1λ + · · ·+ ame

−τmλ, (1.3.4.4)

associated with the truncated first-approximation equation, with N ≡ 0, have nega-

tive real parts and the inequality

|N(t, u, w1, . . . , wm)| ≤ k
m∑

i=0

|wi|, w0 = u, (1.3.4.5)

holds. Here, k is a sufficiently small positive constant, all wi are sufficiently small

(such that |wi| < σ), and t ≥ t0.

Theorem 2. If at least one root of the characteristic equation (1.3.4.4) has a

positive real part and condition (1.3.4.5) holds, then the trivial solution of equation

(1.3.4.3) is unstable.

Remark 1.17. Similar theorems for systems of nonlinear ODEs with constant delays are
stated in [144].

Stability conditions for solutions to Hutchinson type equations. Below are a

few examples of applying the above theorems to the stability and instability analysis

of nonlinear Hutchinson type equations.

◮ Example 1.16. Consider the nonlinear ODE with constant delay

u′t = cu(1− wk), w = u(t− τ). (1.3.4.6)

At k=1 and c= b, it becomes Hutchinson’s equation (see Subsection 6.1.1, equation

(6.1.1.5)). We call equation (1.3.4.6) a generalized Hutchinson equation.

Equation (1.3.4.6) has two stationary solutions: u = 0 and u = 1. Using

Theorems 1 and 2, we will investigate their stability for c > 0 and k > 0.

1. The stationary solution u = 0 is unstable, because the first-approximation

characteristic equation is degenerate and it has a single root, λ = c > 0; in addition,

inequality (1.3.4.5) holds.

2. To analyze the stationary solution u = 1, we substitute u = 1− ū in equation

(1.3.4.6) to arrive at the delay ODE

ū′t = −c(1− ū)[1− (1 − w̄)k], w̄ = ū(t− τ). (1.3.4.7)

Considering that the stationary solution u = 1 of the original equation (1.3.4.6) has

become the trivial solution ū = 0 of the reduced equation (1.3.4.7), we expand the

right-hand side of (1.3.4.6) in a Taylor series assuming that ū and w̄ are small. Since

(1− w̄)k = 1− kw̄ + o(w̄), we get

−c(1− ū)[1− (1− w̄)k] = −ckw̄ + ckūw̄ + o(w̄). (1.3.4.8)
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Therefore, the linearized first-approximation equation for (1.3.4.7) is

ū′t = −ckw̄. (1.3.4.9)

Equation (1.3.4.9) is a special case of equation (1.3.2.1) where one should set a = 0
and b = −ck. Consequently, for the stability analysis of the trivial solution of

equation (1.3.4.9), we can use the Hayes theorem (see Subsection 1.3.2). The first

two conditions of (1.3.2.3) with a = 0 and b < 0 are satisfied automatically, and one

should set µ = π/2 in the third condition. Taking into account that the nonlinear

part of the function (1.3.4.8) can be neglected for small |ū| and |w̄|, we obtain the

following stability and instability conditions for the stationary solution u = 1 of the

generalized Hutchinson equation (1.3.4.6):

solution u = 1 is asymptotically stable if ckτ < π/2;

solution u = 1 is unstable if ckτ > π/2.
(1.3.4.10)

◭

◮ Example 1.17. The nonlinear delay ODE

u′t = cu[1− f(w)], w = u(t− τ), (1.3.4.11)

is a further generalization of Hutchinson’s equation. In (1.3.4.11), c > 0, and f(w)
is any monotonic smooth function that satisfies the conditions

f(0) = 0, f(1) = 1, f ′(1) > 0. (1.3.4.12)

Just as (1.3.4.6), equation (1.3.4.11) has the stationary solutions u=0 and u=1.

By reasoning like in Example 1.16, we can show that the trivial solution u = 0 is

unstable, and the stability and instability regions of the stationary solution u = 1 are

determined by conditions (1.3.4.10), where k = f ′(1) > 0. ◭

Stability conditions for stationary solutions of other nonlinear delay ODEs.

We now consider the nonlinear constant delay ODE of a reasonably general form

u′t = f(u,w), w = u(t− τ). (1.3.4.13)

We assume that equation (1.3.4.13) has a stationary solution u = u0, implying that

f(u0, u0) = 0, and the function f(u,w) has continuous partial derivatives at the

point u = u0, w = u0.

For the stability analysis of the stationary solution u = u0, we first linearize the

right-hand side of equation (1.3.4.13) about u0 to obtain

f(u,w) = f◦
u(u− u0) + f◦

w(w − u0) + o
(
|u− u0|+ |w − u0|

)
,

f◦
u =

∂f

∂u

∣∣∣
u=u0,w=u0

, f◦
w =

∂f

∂w

∣∣∣
u=u0,w=u0

.
(1.3.4.14)

Then we make the change of variable ū= u−u0, which takes the stationary solution

u = u0 of the original equation to the trivial solution ū = 0 of the reduced equation.
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As a result, after discarding the nonlinear part, which has the order o
(
|ū|+ |w̄|

)
, we

arrive at the linear equation

ū′t = f◦
u ū+ f◦

ww̄, w̄ = ū(t− τ). (1.3.4.15)

Up to obvious renaming, it coincides with equation (1.3.2.1).

The stability conditions for the trivial solution of equation (1.3.4.15), which

coincide with those for the stationary solution u = u0 of the original equation

(1.3.4.13), are determined by inequalities (1.3.2.3) with a = f◦
u and b = f◦

w.

1.4. Exact and Approximate Analytical Solution

Methods for Delay ODEs

1.4.1. Using Integral Transforms for Solving Linear
Problems

To solve linear problems for delay ODEs, one can use the Laplace and Mellin integral

transforms [37, 55, 78, 144, 525, 526]. In what follows, we will need some concepts

and formulas from the theory of residues.

Residues. A residue of a function f(z) holomorphic in a punctured neighbor-

hood of a point z = a of the complex plane z, where a is an isolated singular point

of f , is the number

Res
z=a

f(z) =
1

2πi

∫

Cε

f(z) dz, i2 = −1,

where Cε denotes a circle of a sufficiently small radius ε described by the equation

|z − a| = ε.
For a simple pole, when f(z) ≃ const/(z − a) as z → a, the following formula

holds:

Res
z=a

f(z) = lim
z→a

[
(z − a)f(z)

]
.

If f(z) =
ϕ(z)

ψ(z)
, where ϕ(a) 6=0 and z = a is a simple zero of the function ψ(z),

implying that ψ(a) = 0 and ψ′
z(a) 6= 0, we get

Res
z=a

f(z) =
ϕ(a)

ψ′
z(a)

. (1.4.1.1)

If z = a is an nth-order pole∗ of the function f(z), then

Res
z=a

f(z) =
1

(n− 1)!
lim
z→a

dn−1

dxn−1

[
(z − a)nf(z)

]
. (1.4.1.2)

∗This means that f(z)≈ const (z−a)−n in a neighborhood of the point z = a, where n is a positive

integer.
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The Laplace transform. For an arbitrary complex-valued function f(t) of a real

variable t (t ≥ 0), the Laplace transform is defined as

f̃(s) =

∫ ∞

0

f(t) e−st dt, (1.4.1.3)

where s = a+ ib is a complex variable.

The original function f(t) is piecewise continuous in its entire domain, so it can

only have jump discontinuities, with each finite interval containing no more than

finitely many discontinuities. Moreover, it can only have a bounded exponential

growth, implying that there are numbers M > 0 and σ0 such that |f(t)| ≤ Meσ0t

for t > 0. Furthermore, we assume that σ0 is the least possible number, called the

growth constant of f(t).

The function f̃(s) is the Laplace transform or just the transform of f(t). For

every f(t), its transform is defined in the half-plane Re s > σ0, where it is analytic.

Formula (1.4.1.3) will be written for short as

f̃(s) = L
{
f(t)

}
or f̃(s) = L

{
f(t), s

}
.

The inverse Laplace transform. Given a Laplace transform f̃(s), the original

function can be found using the inverse Laplace transform

f(t) =
1

2πi

∫ c+i∞

c−i∞
f̃(s)esxds, i2 = −1, (1.4.1.4)

where the integration path goes parallel to the imaginary axis of the complex s-plane

to the right of all singular points of f̃(s), which implies that c > σ0.

The integral in (1.4.1.4) is understood in the sense of the Cauchy principal value:

∫ c+i∞

c−i∞
f̃(s)est ds = lim

ω→∞

∫ c+iω

c−iω
f̃(s)est ds.

In the region t < 0, formula (1.4.1.4) gives f(t) ≡ 0.

Formula (1.4.1.4) holds for continuous functions. If f(t) has a jump discontinu-

ity at a point t= t0 > 0, then the right-hand side of formula (1.4.1.4) given the value
1
2 [f(t0 − 0) + f(t0 + 0)] at this point (if t0 = 0, the first term in the square brackets

must be omitted).

The inversion formula (1.4.1.4) will be written for short as follows:

f(t) = L−1
{
f̃(s)

}
or f(t) = L−1

{
f̃(s), t

}
.

There are detailed tables of the Laplace transform and inverse Laplace transform,

which are handy in solving linear differential equations (e.g., see [35, 130, 132, 145,

365, 403, 440, 441]).
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Table 1.4. Basic properties of the Laplace transform.

No. Function Laplace transform Transformation

1 af1(t) + bf2(t) af̃1(s) + bf̃2(s)
Linear

superposition

2 f(t/a), a > 0 af̃(as) Scaling

3
f(t − a),

f(ξ) ≡ 0 for ξ < 0 e−asf̃(s)
Translation

in argument

4 tnf(t); n = 1, 2, . . . (−1)n f̃
(n)
s (s)

Differentiation

of transform

5
1

t
f(t)

∫ ∞

s
f̃(q) dq Integration

of transform

6 eatf(t) f̃(s− a)
Translation

in complex plane

7 f ′t(t) sf̃(s)− f(+0) Differentiation

8 f
(n)
t (t) snf̃(s)−

n∑
k=1

sn−kf
(k−1)
t (+0) Differentiation

9 tmf
(n)
t (t), m=1, 2, . . . (−1)m

[
snf̃(s)−

n∑
k=1

sn−kf
(k−1)
t (+0)

](m)

s
Differentiation

10
[
tmf(t)

](n)
t
, m ≥ n (−1)m

[
f̃(s)

](m)

s
Differentiation

11

∫ t

0
f(ξ) dξ

f̃(s)

s
Integration

12

∫ t

0
f1(ξ)f2(t − ξ) dξ f̃1(s)f̃2(s) Convolution

Basic properties of the Laplace transform.

1◦. Table 1.4 lists main formulas of original functions and their Laplace trans-

forms.

2◦. The Laplace transforms of some functions are listed in Table 1.5; for more

detailed tables, see [130, 365, 440].

The inverse transform of rational functions. Let us look at an important case

of transforming rational functions of the form

f̃(s) =
R(s)

Q(s)
, (1.4.1.5)

whereQ(s) andR(s) are some polynomials, with the degree of the polynomialQ(s)
being higher than that of polynomialR(s).

Let the zeros of the denominator be simple, meaning that

Q(s) ≡ const (s− s1) . . . (s− sn).

Then the inverse transform can be expressed as

f(t) =
n∑

k=1

R(sk)

Q′(sk)
exp(skt), (1.4.1.6)
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Table 1.5. Laplace transforms of some functions.

No. Function, f(t) Laplace transform, f̃(s) Remarks

1 1 1/s

2 tn
n!

sn+1
n = 1, 2, . . .

3 ta Γ(a + 1)s−a−1 a > −1

4 e−at (s+ a)−1

5 tae−bt Γ(a+ 1)(s+ b)−a−1 a > −1

6 sinh(at)
a

s2 − a2

7 cosh(at)
s

s2 − a2

8 ln t − 1

s
(ln s+ C) C is Euler’s constant,

C ≈ 0.5772156649

9 sin(at)
a

s2 + a2

10 cos(at)
s

s2 + a2

11 erfc

(
a

2
√
t

)
1

s
exp

(
−a

√
s
)

a ≥ 0

12 J0(at)
1√

s2 + a2
J0(t) is the Bessel function

where the prime stands for a derivative.

If Q(s) has m zeros with multiplicities r1, . . . , rm, or

Q(s) ≡ const (s− s1)
r1 . . . (s− sm)

rm ,

then

f(t) =
m∑

k=1

1

(rk − 1)!
lim
s→sk

drk−1

dsrk−1

[
(s− sk)

rk f̃(s)est
]
. (1.4.1.7)

Inversion of functions with finitely many singular points. If the function f̃(s)
has finitely many singular points s1, . . . , sn and f̃(s) tends to zero as s → ∞, then

the inverse transform can be obtained using the formula

f(t) =

n∑

k=1

Res
s=sk

[f̃(s)est]. (1.4.1.8)

Inversion of functions with infinitely many singular points. Formula (1.4.1.8)

can be extended to functions f̃(s) with infinitely many singular points. In this case,

the inverse transform f(t) is expressed as an infinite series.

Theorem (decomposition) (e.g., see [130, 292]). Let the function of complex

variable f̃(s) meet the following conditions:
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1. The function f̃(s) is meromorphic (i.e., defined on the entire complex plane

and does not have, in a finite portion of the plane, singular points other than poles)

and differentiable in a half-plane Re s > s0.

2. There is a nested circle system

Cn: |s| = Rn, R1 < R2 < · · · , Rn → ∞,

on which f̃(s) tends to zero uniformly with respect to arg s.

3. For any a > s0, the integral
∫ a+i∞
a−i∞ f̃(s) ds is absolutely convergent. Then

f(t) =

∞∑

k=1

Res
s=sk

[f̃(s)est], (1.4.1.9)

where the sum of residues is taken over all singular points sk of f̃(s) in decreasing

order of their moduli.

If all singular points of f̃(s) are simple poles, the residues in (1.4.1.9) can be

computed using formula (1.4.1.1) by representing f̃(s) as the ratio of two functions

with the roots of the denominator being simple and coinciding with the singular

points of f̃(s).

◮ Example 1.18. Consider the linear delay ODE [144, p. 79]:

u′t(t) = au(t) + bu(t− τ) (1.4.1.10)

subjected to the initial condition

u(t) = ϕ(t), −τ ≤ t ≤ 0. (1.4.1.11)

Applying the Laplace transform (1.4.1.3) to (1.4.1.10) gives

∫ ∞

0

u′t(t)e
−st dt =

∫ ∞

0

[au(t) + bu(t− τ)]e−st dt.

Using rule 7 from Table 1.4 for the left-hand side of the equation, making the change

of variable t− τ = t1 in the second term of the right-hand side, and breaking up the

resulting integral
∫∞
−τ into two integrals,

∫ 0

−τ and
∫∞
0

, we get

sũ(s)− ϕ(0) = aũ(s) + bũ(s)e−sτ + b

∫ 0

−τ
ϕ(t)e−s(t+τ) dt.

As a result, we obtain

ũ(s) =
ϕ(0) + b

∫ 0

−τ ϕ(t)e
−s(t+τ)dt

s− a− be−sτ
. (1.4.1.12)

Suppose that the inequality ln(−bτ) − aτ + 1 6= 0 holds. Then the quasi-

polynomial

Q(s) = s− a− be−sτ , (1.4.1.13)
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60 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

which is the denominator of the fraction (1.4.1.12), only has simple zeros, sk. Using

the inversion formula (1.4.1.9), we represent the desired solution as the series

u(t) =
∞∑

k=0

eskt

1 + τbe−skτ

[
ϕ(0) + b

∫ 0

−τ
ϕ(t)e−sk(t+τ)dt

]
.

The roots of the quasi-polynomial (1.4.1.13) can be expressed in terms of the

Lambert W function as (1.1.3.5) by replacing λ with sk. The symbol W on the

right-hand side of formula (1.1.3.5) is understood as the set of all real and complex

branches of the Lambert W function.

The article [21] provides a description of how solutions to problem (1.4.1.10)–

(1.4.1.11) and other linear systems of delay ODEs can be constructed using the

Lambert W function. ◭

Remark 1.18. The Laplace transform can be used to construct asymptotic solutions to
linear ODEs with proportional delay and to study solution stability of such equations [523].

The Mellin transform. Let the function f(t) be defined on the real semiaxis

t > 0 and satisfy the conditions [402, 403]:

∫ 1

0

|f(t)|ta1−1 dt <∞,

∫ ∞

1

|f(t)|ta2−1 dt <∞,

where a1 and a2 are some real numbers such that a1 < a2.

The Mellin transform of f(t) is defined as follows:

f̂(s) =

∫ ∞

0

f(t)ts−1 dt, (1.4.1.14)

where s = a+ ib is a complex variable (a1 < a < a2).

Formula (1.4.1.14) will be written for short as

f̂(s) = M
{
f(t)

}
or f̂(s) = M

{
f(t), s

}
.

The inverse transform f(t) of the function f̂(s) can be obtained using the inverse

Mellin transform

f(t) =
1

2πi

∫ a+i∞

a−i∞
f̂(s)t−s ds (a1 < a < a2). (1.4.1.15)

The integration path goes parallel to the imaginary axis of the complex plane s, and

the integral is understood in the sense of the Cauchy principal value.

Formula (1.4.1.15) holds for continuous functions. If the function f(t) has a

jump discontinuity at a point t = t0 > 0, then the right-hand side of (1.4.1.15) gives
1
2 [f(t0−0)+f(t0+0)] at this point (if t0 = 0, the first term in square brackets must

be omitted) [130].

The inversion formula of the Mellin transform (1.4.1.15) will be written for short

as

f(t) = M−1
{
f̂(s)

}
or f(t) = M−1

{
f̂(s), t

}
.
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Table 1.6 lists basic formulas giving the correspondence between some func-

tions and their Mellin transforms. Table 1.7 lists the Mellin transforms of some

functions. There are detailed tables of the direct and inverse Mellin transforms (see

[35, 130, 145, 403]) which are handy in solving linear differential equations and

linear differential equations with proportional argument.

Table 1.6. Basic properties of the Mellin transform.

No. Function Mellin transform Operation

1 af1(t) + bf2(t) af̂1(s) + bf̂2(s)
Linear

superposition

2 f(at), a > 0 a−sf̂(s) Scaling

3 taf(t) f̂(s+ a)
Translation

of argument

4 f(t2) 1
2
f̂
(
1
2
s
)

Argument squaring

5 f(1/t) f̂(−s) Argument inversion

6 tλf
(
atβ

)
, a > 0, β 6= 0

1

β
a
−
s+λ
β f̂

( s+ λ

β

)
Power-law

transformation

7 f ′t(t) −(s− 1)f̂(s− 1) Differentiation

8 tf ′t(t) −sf̂(s) Differentiation

9 f
(n)
t (t) (−1)n

Γ(s)

Γ(s− n)
f̂(s− n) Differentiation

of nth order

10
(
t
d

dt

)n
f(t) (−1)nsnf̂(s)

Differentiation

of nth order

11 tα
∫ ∞

0
ξβf1(tξ)f2(ξ) dξ f̂1(s+ α)f̂2(1− s− α+ β) Integration

12 tα
∫ ∞

0
ξβf1

( t
ξ

)
f2(ξ) dξ f̂1(s+ α)f̂2(s+ α+ β + 1) Integration

The Mellin transform is related to the Laplace transform by

M {f(t), s} = L {f(et),−s}+ L {f(e−t), s}. (1.4.1.16)

Formula (1.4.1.16) allows one to take advantage of the more common tables of

the direct and inverse Laplace transforms.

◮ Example 1.19. Following [525, 526], consider the ODE with proportional

argument

u′t(t) + au(t) = bu(pt), p > 1, a > 0, (1.4.1.17)

subjected to homogeneous boundary conditions on a semi-infinite interval,

lim
t→0+

u(t) = 0, lim
t→∞

u(t) = 0, (1.4.1.18)
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62 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

Table 1.7. Mellin transforms of some functions.

No. Function, f(t) Mellin transform, f̃(s) Remarks

1 H(t − a) −s−1as a > 0, s < 0

2 H(a − t) s−1as a > 0, s > 0

3 tnH(t − a) −(n+ s)−1an+s a > 0, Re(n+ s) < 0

4 tnH(a − t) (n+ s)−1an+s a > 0, Re(n+ s) > 0

5 e−ct
b

b−1c−s/bΓ(s/b) b > 0, Re c > 0, Re s > 0

6 e−ct
−b

b−1cs/bΓ(−s/b) b > 0, Re c > 0, Re s < 0

7 ln(t)H(a − t) s−1a−s(ln a− s−1) a > 0, Re s > 0

8 ln(1 + at)
π

sas sin(πs)
|arg a| < π, −1 < Re s < 0

9 sin(at) a−sΓ(s) sin( 1
2
πs) a > 0, −1 < Re s < 1

10 cos(at) a−sΓ(s) cos( 1
2
πs) a > 0, 0 < Re s < 1

11 erfc(t) π−1/2s−1Γ[ 1
2
(s+ 1)] Re s > 0

12 J0(at)
2s−1Γ(s/2)

asΓ(1 − s/2)

a > 0, 0 < Re s < 3/2,

J0(t) is the Bessel function

Notation: H(t) = {1 if t ≥ 0, 0 if t < 0} is the Heaviside unit-step function.

and the normalization condition

∫ ∞

0

u(t) dt = 1. (1.4.1.19)

Problems where additional conditions like (1.4.1.18) and (1.4.1.19) define the

unknown function u(t) as a function of probability arise, for example, in biological

models of cell growth [206, 207].

Applying the Mellin transform to (1.4.1.17) and taking into account conditions

(1.4.1.18) (the solution is assumed to decay rapidly for large t), we obtain the differ-

ence equation

−(s− 1)û(s− 1) + aû(s) = bp−sû(s). (1.4.1.20)

In view of the Mellin transform definition (1.4.1.14), condition (1.4.1.19) becomes

û(1) = 1. (1.4.1.21)

We will now consider the auxiliary linear homogeneous ODE

v′(t) + av(t) = 0, (1.4.1.22)
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obtained by dropping the last term in (1.4.1.17). Applying the Mellin transform to

(1.4.1.22) gives

−(s− 1)F (s− 1) + aF (s) = 0, (1.4.1.23)

where F (s) = M {v(t), s}. Equation (1.4.1.22) admits an exact solution v = e−at.
Considering the above and using transformation 5 (with b = 1 and c = a) from

Table 1.7, we get

F (s) = a−sΓ(s), (1.4.1.24)

where Γ(s) is the gamma function.

A solution to the difference problem (1.4.1.20)–(1.4.1.21) will be sought in the

form

û(s) = F (s)Q(s). (1.4.1.25)

On substituting (1.4.1.25) into (1.4.1.20) and taking into account (1.4.1.23), we

arrive at the equation

Q(s− 1) = (1 − ba−1p−s)Q(s). (1.4.1.26)

Its solution can be represented as an infinite product (this can be proved by a direct

verification):

Q(s) = C

∞∏

k=0

(1− ba−1p−k−s−1), (1.4.1.27)

where C is some constant. Hence, the solution of equation (1.4.1.20) can be written

as

û(s) = Ca−sΓ(s)

∞∏

k=0

(1− ba−1p−k−s−1). (1.4.1.28)

The constant C is found from the normalization condition (1.4.1.21):

C = a

∞∏

k=0

(1− ba−1p−k−2)−1. (1.4.1.29)

To inverse the function (1.4.1.28), one has to convert the infinite product to an

infinite series. To this end, we take advantage of Euler’s formula [16]:

∞∏

k=0

(1 + rqk) = 1 +

∞∑

k=1

rkqk(k−1)/2

∏k
j=1(1 − qj)

,

where |q| < 1 and r is any complex number. Taking into account that q = p−1 and

r = −ba−1p−s−1, we rewrite solution (1.4.1.28) as

û(s) = Ca−sΓ(s)

(
1 +

∞∑

k=1

βkp
−ks

)
, (1.4.1.30)

where the coefficients βk are defined by

βk =
(−1)kbk

akpk(k+1)/2
∏k
j=1(1 − p−j)

, k = 1, 2, . . . (1.4.1.31)
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64 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

The series (1.4.1.30) is uniformly convergent in the right half-plane. Therefore,

the function û(s) can be transformed back, term by term, using property 5 from

Table 1.7 with b = 1 and property 2 from Table 1.6. As a result, we obtain a solution

of the original problem (1.4.1.17)–(1.4.1.19) in the form

u(t) = C

∞∑

k=0

βke
−apkt,

where β0 = 1; the constants C and βk are defined by formulas (1.4.1.29) and

(1.4.1.31). ◭

1.4.2. Representation of Solutions as Power Series in the
Independent Variable

Representation of Solutions as Power Series. Approximate solutions to ODEs

with proportional delay can be sought as polynomials (or infinite power series) in the

independent variable [46, 199, 471, 474]:

u(t) =
k∑

n=0

γnt
n, (1.4.2.1)

where k is a given positive integer and γn are constants that are sequentially deter-

mined during the analysis.

◮ Example 1.20. Consider the Cauchy problem for the linear ODE with con-

stant coefficients and two proportional delays

u′t = au+ bw1 + cw2, w1 = u(pt), w2 = u(qt); u(0) = 1. (1.4.2.2)

We look for its solution as an infinite series

u = 1 +
∞∑

n=1

γnt
n. (1.4.2.3)

Substituting (1.4.2.3) into (1.4.2.2) and taking into account the expression of the

derivative

u′t =
∞∑

n=1

nγnt
n−1 = γ1 +

∞∑

n=1

(n+ 1)γn+1t
n,

we obtain

γ1 +
∞∑

n=1

(n+ 1)γn+1t
n = a+ b+ c+

∞∑

n=1

γn(a+ bpn + cqn)tn.

By matching up the coefficients of like powers tn, we arrive at the following linear

algebraic system of equations for γn:

γ1 = a+ b+ c, (n+ 1)γn+1 = γn(a+ bpn + cqn), n = 1, 2, . . .
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We solve this system by starting from n = 1 and increasing n sequentially. As a

result, we obtain the desired power series solution of the Cauchy problem (1.4.2.2):

u = 1 +

∞∑

n=1

γnt
n, γn =

1

n!

n−1∏

k=0

(a+ bpk + cqk). (1.4.2.4)

For 0<p< 1 and 0<q< 1, the series (1.4.2.4) has an infinite radius of convergence,

in which case we get an < γn < (a + b + c)n and eat < u < e(a+b+c)t, provided

that a ≥ 0, b ≥ 0, and c ≥ 0.

Notably, solution (1.4.2.4) was obtained previously in [375] using a different

approach. Also, in the special case c = 0, the solution becomes the one presented

in [166]. ◭

◮ Example 1.21. Consider the Cauchy problem for the nonlinear equation

with proportional delay

u′t(t) = a− bu2(pt); u(0) = 0, (1.4.2.5)

where 0 < p < 1.

The right-hand side of equation (1.4.2.5) remains unchanged under the substitu-

tion of −u for u. Consequently, u′t is an even function, and u is the sum of an odd

function and a constant. In view of the above and the zero initial condition, we will

look for a solution to problem (1.4.2.5) in the form

u = αt+ βt3 + γt5 + δt7 + · · · . (1.4.2.6)

Substituting (1.4.2.6) into (1.4.2.5) and collecting the coefficients of like powers of t,
we get

α− a+ (3β + bp2α2)t2 + (5γ + 2bp4αβ)t4 + [7δ + bp6(β2 + 2αγ)]t6 + · · · = 0.

Equating the coefficients of the different powers t2n with zero, we obtain the follow-

ing algebraic equations for the coefficients of the series (1.4.2.6):

α− a = 0 (for t0),

3β + bp2α2 = 0 (for t2),

5γ + 2bp4αβ = 0 (for t4),

7δ + bp6(β2 + 2αγ) = 0 (for t6).

On solving these equations, we ultimately arrive at an approximate solution to prob-

lem (1.4.2.5) in the form of a polynomial:

u = at− 1
3a

2bp2t3 + 2
15a

3b2p6t5 − 1
21 a

4b3p10
(
1
3 + 4

5 p
2
)
t7. (1.4.2.7)

For small t, its error is of the order of O(t9).
Figure 1.13 displays approximate solutions computed using formula (1.4.2.7)

with p = 0, 0.25, 0.5, 0.75, and 1.0. It is apparent that for ab > 0 and 0 < p ≤ 1,

the curves are non-monotonic. They first increase from zero and reach a positive

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 65

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 65



66 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

1 2 3 4 5
0

1

2

3

4

5

6

1 2 3 4 5
0

1

2

3

4

5

6

u u

t t

(a) (b)

ab > 0

ab < 0

p = 0

p = 0.25
p = 0.5

p = 0.75

p = 1

p = 0

p = 0.25

p = 0.5

p = 0.75

p = 1
a = 2
b = 1

a = 2
b = -1

Figure 1.13. Approximate solutions of problem (1.4.2.5) computed using formula (1.4.2.7)

with p = 0, 0.25, 0.5, 0.75, and 1.0 for two pairs of the determining parameters: (a) a = 2
and b = 1, (b) a = 2 and b = −1.

extremum and then decrease, cross the axis u = 0 (the smaller the p, the further

away the intersection point), and become negative. For ab < 0, all curves increase

monotonically, and they grow faster as p increases from zero to one.

Formula (1.4.2.7) gives an exact result at p = 0. Therefore, one can expect that

its error should decrease as the parameter p decreases from one to zero. This is

corroborated by the subsequent comparison of formula (1.4.2.7) with exact solutions

to problem (1.4.2.5).

For arbitrary nonzero a and b, the nonlinear problem (1.4.2.5) admits, besides the

case p = 0, two other exact solutions, with p = 1
2 and p = 1. These are given below.

1◦. Solution to problem (1.4.2.5) where p = 1
2 :

u(t) =

√
2a

b
sin

(
b

√
a

2b
t

)
for ab > 0,

u(t) = −
√
− 2a

b
sinh

(
b

√
− a

2b
t

)
for ab < 0.

(1.4.2.8)

2◦. Solution to problem (1.4.2.5) with p = 1:

u(t) =

√
a

b
tanh

(
b

√
a

b
t

)
for ab > 0,

u(t) = −
√
− a

b
tan

(
b

√
− a

b
t

)
for ab < 0.

(1.4.2.9)

Figure 1.14 a shows in solid lines the exact solutions to problem (1.4.2.5) with

a=2 and b=1 computed using formulas (1.4.2.8) and (1.4.2.9) for p= 1
2 and p=1.
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Figure 1.14. Exact solutions to problem (1.4.2.5) computed by formulas (1.4.2.8) and

(1.4.2.9) with p = 1
2

and p = 1 for two pairs of the determining parameters: (a) a = 2 and

b = 1, (b) a = 2 and b = −1.

The dashed lines indicate the approximate solutions represented by the polynomial

(1.4.2.7) with the same values of the determining parameters. Figure 1.14 b shows

in solid and dashed lines the respective exact and approximate solutions to problem

(1.4.2.5) with a = 2 and b = −1 for p = 1
2 and p = 1. It is apparent that the

approximate formula (1.4.2.7) works well at p= 1
2 on a reasonably large time interval

(0 ≤ t ≤ π). At p = 1, the error of formula (1.4.2.7) is much larger, and it can only

be used on the interval 0 ≤ t ≤ 0.8. ◭

Remark 1.19. In problems for proportional delay ODEs where the equation is valid in a
region t ≥ t0, approximate solutions can be sought in the form u(t) =

∑k
n=0 γn(t− t0)

n.

◮ Example 1.22. Consider the following mixed boundary value problem for a

second-order linear ODE with proportional delay:

u′′xx(x) + (a+ bx2)u(px) + c = 0; (1.4.2.10)

u′x(0) = 0, u(1) = 0, (1.4.2.11)

where 0 < p < 1.

We look for an approximate solution to problem (1.4.2.10), (1.4.2.11) in the form

of a power series:

u = λ+ αx+ βx2 + γx3 + δx4 + · · · , (1.4.2.12)

where the constant λ, α, β, γ, δ, . . . are to be determined. On substituting (1.4.2.12)

into the first boundary condition (1.4.2.11), we get

α = 0. (1.4.2.13)

Taking into account (1.4.2.13), we substitute (1.4.2.12) into equation (1.4.2.10) and

collect the coefficients of like powers of x to obtain

A+Bx+ Cx2 + · · · = 0, (1.4.2.14)

A = 2β + aλ+ c, B = 6γ, C = 12δ + bλ+ ap2β.
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68 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

Equating the coefficients of the different powers of x in (1.4.2.14) with zero, we

arrive at a system of linear algebraic equations: A = 0, B = 0, C = 0, . . . On

solving this system, we express β, γ, δ, . . . through λ and substitute (1.4.2.13) and

the resulting expressions into (1.4.2.12). Retaining the leading terms up to x4, we

obtain the approximating polynomial

u = λ− 1
2 (aλ+ c)x2 + 1

24 (a
2p2λ+ acp2 − 2bλ)x4. (1.4.2.15)

The approximate value of λ results from substituting the polynomial (1.4.2.15) into

the second boundary condition (1.4.2.11). This gives

λ =
c(12− ap2)

a2p2 − 2b− 12a+ 24
. (1.4.2.16)

On substituting (1.4.2.16) into (1.4.2.15), we eventually arrive at an approximate

solution to problem (1.4.2.10), (1.4.2.11) in the form

u =
c[12− ap2 + (b− 12)x2 + (ap2 − b)x4]

a2p2 − 2b− 12a+ 24
. (1.4.2.17)

For any a, b, and c such that 6a + b 6= 12, the approximate formula (1.4.2.17)

provides the exact result at p = 0. Therefore, one should expect that its error

decreases as the parameter p decreases from one to zero.

Figure 1.15 shows in solid lines the approximate solutions computed using for-

mula (1.4.2.17) with a = b = c = 1 for p = 0, 0.5, and 1. A numerical solution

obtained by Heun’s method for p=0.5 (see Subsections 5.1.4 and 5.1.5) is shown by

open circles. The dashed line indicates a numerical solution obtained by the shooting

method for p = 1 (see Subsection 5.1.6).

u

p = 1

p = 0

p = 0.5

0 0.2 0.4 0.6 0.8 x

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1.15. Solutions to problem (1.4.2.10), (1.4.2.11) with a = b = c = 1 obtained using

the approximate formula (1.4.2.17) and by numerical integration for p = 0, 0.5, and 1.
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1.4. Exact and Approximate Analytical Solution Methods for Delay ODEs 69

It is apparent from Figure 1.15 that the curves representing the approximate and

numerical solutions at p=0.5 are very close to each other; the maximum discrepancy

between them is 0.02. At p = 1, the maximum discrepancy between approximate

and numerical solutions is much larger, 0.068. ◭

Padé approximant. The partial sum (1.4.2.1) well approximates the solution

for sufficiently small t. However, it usually works poorly for intermediate and

large t, since a power series can be slowly converging or can have a small radius of

convergence. This also results from the facts that the approximate solution (1.4.2.1)

grows indefinitely as t → ∞, while the exact solution is often bounded.

Therefore, it is sometimes reasonable to employ Padé approximants rather than

power expansions (1.4.2.1). A Padé approximant of order [N/M ], PNM (t), is the ratio

of two polynomials of degreeN and M [30]:

PNM (t) =
A0 +A1t+ · · ·+AN t

N

1 +B1t+ · · ·+BM tM
, where N +M = k. (1.4.2.18)

The coefficients A1, . . . , AN and B1, . . . , BM are usually selected to ensure that

the first k + 1 leading terms of the Taylor expansion of (1.4.2.18) coincide with the

respective terms of the expansion (1.4.2.1). In other words, the expansions (1.4.2.1)

and (1.4.2.18) must be asymptotically equivalent as t→ 0.

In practice, one usually chooses a diagonal sequence, withN =M . It often turns

out that formula (1.4.2.18) approximates the exact solution quite well over the entire

range of t (for sufficiently large N ).

For examples of using Padé approximants to construct approximate solutions to

problems described by ODEs without or with delay, see [30, 423, 613] and [13, 46],

respectively.

1.4.3. Method of Regular Expansion in a Small Parameter

The method of regular expansion in a small parameter [255, 421, 423, 613] is used to

solve nonlinear ODEs or PDEs. It is also suitable for solving differential equations

with proportional delay.

For simplicity, we restrict ourselves to the description of the method of regular

expansion in a small parameter ε for a first-order nonlinear ODE with proportional

delay:

u′t = f(t, u, w, ε), w = u(pt). (1.4.3.1)

Let the function f be representable as a series in powers of ε:

f(t, u, w, ε) =

∞∑

n=0

εnfn(t, u, w). (1.4.3.2)

We will seek a solution of the Cauchy problem for equation (1.4.3.1) subjected

to the initial condition

u = a at t = 0 (1.4.3.3)
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70 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

in the form of a regular expansion in powers of the small parameter (ε→ 0):

u =

∞∑

n=0

εnun(t). (1.4.3.4)

Substituting (1.4.3.2) and (1.4.3.4) into equation (1.4.3.1), expanding the functions fn
into series in ε, and equating the coefficients of like powers of ε, we arrive at the

following system of equations for un(t):

u′0 = f0(t, u0, w0), w0 = u0(pt); (1.4.3.5)

u′1 = f1(t, u0, w0) + g1(t, u0, w0)u1 + g2(t, u0, w0)w1, w1 = u1(pt), (1.4.3.6)

g1(t, u, w) =
∂f0
∂u

, g2(t, u, w) =
∂f0
∂w

.

Here we have only written out the first two equations. The primes denote differenti-

ation with respect to t. The initial conditions for un can be derived from condition

(1.4.3.3) taking into account the expansion (1.4.3.4):

u0(0) = a, u1(0) = u2(0) = · · · = 0.

Whether the application of this method is successful depends mainly on the

possibility of constructing a solution to equation (1.4.3.5) for the leading term of the

expansion, u0. Importantly, the other terms of the expansion, un with n ≥ 1, are

described by linear equations with homogeneous initial conditions.

◮ Example 1.23. Consider the Cauchy problem for a nonlinear ODE with

proportional delay

u′t + bu = εw2, w = u(pt); u(0) = a, (1.4.3.7)

where ε is a small parameter.

We will look for a solution in the form (1.4.3.4) while retaining three leading

terms of the expansion:

u = u0 + εu1 + ε2u2 + o(ε2), un = un(t). (1.4.3.8)

Substituting (1.4.3.8) into equation (1.4.3.7) and collecting the terms with like pow-

ers of ε, we obtain

u′0 + bu0 + ε(u′1 + bu1 − w2
0) + ε2(u′2 + bu2 − 2w0w1) + o(ε2) = 0. (1.4.3.9)

Likewise, substituting (1.4.3.8) into the initial condition (1.4.3.7) yields

u0(0)− a+ εu1(0) + ε2u2(0) + o(ε2) = 0. (1.4.3.10)

Now equating the coefficients of like powers of ε in (1.4.3.9) and (1.4.3.10) with

zero, we arrive at the following sequence of simple linear problems for ODEs without

delays:

u′0 + bu0 = 0, u0(0) = a;

u′1 + bu1 = w2
0 , u1(0) = 0;

u′2 + bu2 = 2w0w1, u2(0) = 0.
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Integrating these equations one by one beginning with the first and assuming that

p 6= 1/2, we obtain

u0 = ae−bt,

u1 =
a2

b(2p− 1)

(
e−bt − e−2bpt

)
,

u2 =
2a3

b2(p+ 1)(2p− 1)2
[
pe−bt − (p+ 1)e−2pbt + e−p(2p+1)bt

]
.

Substituting these functions into (1.4.3.8), we find the desired solution in the form

u = e−bt +
εa2

b(2p− 1)

(
e−bt − e−2bpt

)

+
2ε2a3

b2(p+ 1)(2p− 1)2
[
pe−bt − (p+ 1)e−2pbt + e−p(2p+1)bt

]
+ o(ε2).

In a similar manner, we obtain an asymptotic solution to problem (1.4.3.7) with

p = 1/2:

u = e−bt + εa2te−bt + 1
2 ε

2a3t2e−bt + o(ε2).
◭

1.4.4. Method of Matched Asymptotic Expansions.
Singular Perturbation Problems with a Boundary
Layer

Below we will illustrate the characteristic features of using the method of matched

asymptotic expansions. As an example, we will consider a two-point boundary value

problem for a quasilinear second-order ODE with proportional argument where the

highest derivative is multiplied by a small parameter:

εu′′xx + f(x)u′x + g(x, u, w) = 0, w = u(px) (0 < x < 1); (1.4.4.1)

u(0) = a, u(1) = b, (1.4.4.2)

where 0 < ε≪ 1 and 0 < p < 1.

In general, problem (1.4.4.1)–(1.4.4.2) cannot be solved in a closed analytical

form, even though the equation did not involve the term with proportional delay w.

However, an approximate solution to the problem for small ε can be obtained using

the method of matched asymptotic expansions [289, 354, 355, 407, 423]. We will

show this below.

Importantly, if ε=0, the second-order equation (1.4.4.1) degenerates into a first-

order ODE, which has no solutions that can meet both boundary conditions (1.4.4.2)

simultaneously. Problems that involve a small parameter and degenerate at ε= 0 are

called singular perturbation problems.

In what follows, we assume that f(x) > 0. In this case, a boundary layer

is formed in a small neighborhood of the point x = 0 where the solution has a

large gradient if ε is small. In the language of the method of matched asymptotic
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expansions, the boundary layer region Ωi = {0 ≤ x ≤ O(ε)} is customarily called

the inner region, while the remaining (larger) portion of the interval 0 ≤ x ≤ 1 is

called the outer region and denoted Ωo = {O(ε) < x ≤ 1}.

In the inner region, one uses an extended, boundary layer variable

z = x/ε (1.4.4.3)

and looks for an asymptotic solution in the form

u = ui(z) +O(ε), z = O(1). (1.4.4.4)

Substituting (1.4.4.4) into (1.4.4.1), considering (1.4.4.3), and taking into account

that f(x) = f(εz) ≃ f(0) as ε→ 0 and z = O(1), we obtain

ε−1[(ui)
′′
zz + f(0)(ui)

′
z ] +O(1) = 0.

Equating the functional factor of ε−1 with zero, we arrive at an equation for the

leading term of the asymptotic expansion in the boundary layer region:

(ui)
′′
zz + f(0)(ui)

′
z = 0.

This linear ODE is easy to integrate. Then, by satisfying the first boundary condition

(1.4.4.2), we get

ui = c(1− e−f0z) + a, z = x/ε, 0 ≤ z ≤ O(1), (1.4.4.5)

where f0 = f(0) and c is a constant determined in the subsequent analysis.

The solution in the outer region Ωo = {O(ε) < x ≤ 1} is sought in the form

u= uo(x)+O(ε). The leading term of the asymptotic solution to problem (1.4.4.1)–

(1.4.4.2) in Ωo is determined from a truncated equation (the small terms with the

second derivative is neglected) and the second boundary condition:

f(x)(uo)
′
x + g(x, uo, wo) = 0; uo(1) = b. (1.4.4.6)

Importantly, the first-order ODE with proportional argument (1.4.4.6) is significantly

simpler than the original second-order equation (1.4.4.1). Let the function

uo = uo(x) (1.4.4.7)

be a solution to problem (1.4.4.6).

The inner and outer solutions (1.4.4.5) and (1.4.4.7) must agree with each other,

or satisfy the matching condition

ui(z → ∞) = uo(x→ 0). (1.4.4.8)

It allows us to determine the constant c appearing in (1.4.4.5):

c = uo(0)− a. (1.4.4.9)
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A composite asymptotic solution to problem (1.4.4.1)–(1.4.4.2), uniformly valid

in the entire region 0 ≤ x ≤ 1, is expressed as

u = [a− uo(0)]e
−f0z + uo(x) = [a− uo(0)]e

−(f0/ε)x + uo(x), (1.4.4.10)

where f0 = f(0).
Differentiating formula (1.4.4.5) twice with respect to x, we find the derivatives

in the inner region:

u′x =
cf0
ε
e−(f0/ε)x, u′′xx = − cf2

0

ε2
e−(f0/ε)x. (1.4.4.11)

One can see that for ε→0, both derivatives in the boundary layer region 0≤x≤O(ε)
are large.

◮ Example 1.24. Consider the following nonlinear problem for a second-order

ODE with a proportional argument and a small parameter ε multiplying the highest

derivative:

εu′′xx + u′x + ku− sw2 = 0, w = u( 12x) (0 < x < 1); (1.4.4.12)

u(0) = a, u(1) = b. (1.4.4.13)

Problem (1.4.4.12)–(1.4.4.13) is a special case of problem (1.4.4.1)–(1.4.4.2) with

f(x) = 1, g(x, u, w) = ku− sw2, and p = 1/2.

The inner solution is given by formula (1.4.4.5) with f0 = 1:

ui = c(1 − e−z) + a, z = x/ε, 0 ≤ z ≤ O(1). (1.4.4.14)

The constant c will be determined below.

The outer solution is described by the following equation and boundary condi-

tion:

(uo)
′
x + kuo − sw2

o = 0, wo = uo(
1
2x); uo(1) = b. (1.4.4.15)

The exact solution to problem (1.4.4.15) is

uo = A exp[(As− k)x], (1.4.4.16)

where A is a real root of the transcendental equation

b = A exp(As− k). (1.4.4.17)

For s 6=0, this root can be expressed via the LambertW function: A= s−1W (bsek).
The constant c appearing in the asymptotic solution (1.4.4.14) can be found using

relation (1.4.4.9). We get

c = A− a. (1.4.4.18)

Using formula (1.4.4.10) and solutions (1.4.4.14) and (1.4.4.16), we obtain the

composite asymptotic solution to problem (1.4.4.12)–(1.4.4.13):

u = (a−A) exp(−ε−1x) +A exp[(As− k)x]. (1.4.4.19)
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Figure 1.16. Approximate solutions to problem (1.4.4.12)–(1.4.4.13) computed using the

composite formula (1.4.4.19) with ε = 0.01 and a = 0, b = 1, s = 1 for k = 2, 3, 4 (solid

lines). The dashed lines indicate the asymptotic solutions in the boundary layer computed by

formulas (1.4.4.14) and (1.4.4.18). The dotted lines indicate the outer solutions obtained with

formula (1.4.4.16).

Figure 1.16 displays three approximate solutions to problem (1.4.4.12)–(1.4.4.13)

computed using the composite formula (1.4.4.19) with ε=0.01 for a=0, b=1, s=1.

These solutions are shown in solid lines and correspond to k = 2, 3, 4. The dashed

lines indicate the asymptotic solutions in the boundary layer computed by formulas

(1.4.4.14) and (1.4.4.18) using the same values of the determining parameters. The

dotted lines indicate the outer solutions (1.4.4.16). ◭

One can see that the solutions grow rapidly in a narrow region near the left

boundary and then decrease gradually and slowly. Notably, large gradients of solu-

tions severely limit the applicability of standard numerical methods for integrating

similar boundary layer problems (e.g., see the introduction in the article [407] and

references therein).

1.4.5. Method of Successive Approximations and Other
Iterative Methods

Method of successive approximations. Let us look at the nonlinear equation

u = F [u], (1.4.5.1)

where F [u] is a nonlinear operator.

An approximate solution of equation (1.4.5.1) is sought using a recurrence rela-

tion:

u0 = ϕ, un = F [un−1], n = 1, 2, . . . . (1.4.5.2)
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The initial function ϕ can be chosen from various considerations. If the unknown

function depends on t alone, one usually setsϕ=F [u]|t=0. Under certain restrictions

on the operator F , the sequence of function un converges to a solution of equation

(1.4.5.2) as n→ ∞.

◮ Example 1.25. Consider the Cauchy problem for a first-order nonlinear ODE

with proportional delay

u′t = f(t, u, w), w = u(pt); u(0) = a, (1.4.5.3)

where 0 < p < 1.

Integrating the equation from 0 to t and taking into account the initial condition,

we obtain the integral equation

u(t) = a+

∫ t

0

f(ξ, u(ξ), u(pξ)) dξ. (1.4.5.4)

An approximate solution of this equation, which is a special case of equation

(1.4.5.1), is sought using the recurrence relation

u0 = a, un(t) = a+

∫ t

0

f(ξ, un−1(ξ), un−1(pξ)) dξ, n = 1, 2, . . . .

◭

A method based on the expansion of the nonlinear operator. We outline

below the iterative method proposed in [120] (see also [56, 375]). It is based on the

expansion of the nonlinear operator and can be used for the approximate solution of

various linear or nonlinear mathematical equations including delay ODEs.

A solution to equation (1.4.5.1) is sought in the form

u =

∞∑

n=0

un. (1.4.5.5)

Assuming that this series is absolutely convergent, we write the identity

F

[ ∞∑

n=0

un

]
= F [u0] +

∞∑

n=1

{
F

[ n∑

j=0

uj

]
− F

[ n−1∑

j=0

uj

]}
. (1.4.5.6)

On substituting (1.4.5.5) and (1.4.5.6) into equation (1.4.5.1), we get

∞∑

n=0

un = F [u0] +

∞∑

n=1

{
F

[ n∑

j=0

uj

]
− F

[ n−1∑

j=0

uj

]}
. (1.4.5.7)

This relation can be satisfied by setting [120]:

u0 = ϕ,

u1 = F [u0],

un+1 = F [u0 + · · ·+ un]− F [u0 + · · ·+ un−1], n = 1, 2, . . .

(1.4.5.8)
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76 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

As in the method of successive approximations, the initial function ϕ can be chosen

from various considerations. If the unknown function only depends on t, we set

ϕ = F [u]|t=0.

Assuming that 1 ≤ n ≤ m, we get finitely many recurrence relations (1.4.5.8),

which allow one to find an approximate solution to the nonlinear equation (1.4.5.1).

The studies [56, 120, 375] found conditions under which the infinite series (1.4.5.5),

corresponding to m = ∞, is convergent.

◮ Example 1.26. Consider the Cauchy problem for a nonlinear ODE with two

proportional delays

u′t= f(t, u,w1,w2), w1= u(pt), w2= u(qt), 0<p< 1, 0<q< 1; (1.4.5.9)

u(0) = a.

Integrating equation (1.4.5.9) with respect to t, from zero to t, we arrive at the

integral equation

u(t) = a+

∫ t

0

f(ξ, u(ξ), u(pξ), u(qξ)) dξ, (1.4.5.10)

which is a special case of equation (1.4.5.1) with

F [u] = a+

∫ t

0

f(ξ, u(ξ), u(pξ), u(qξ)) dξ.

In our case, F [u]|t=0 = a. Therefore, we choose the initial function in (1.4.5.8) as

ϕ = a. The studies [57, 375] specify sufficient conditions under which the above

iterative method results in a solution to equation (1.4.5.10) as a convergent series

(1.4.5.5). ◭

◮ Example 1.27. The article [375] shows that applying the iterative method to

the Cauchy problem for the linear equation with proportional delays (1.4.2.2) leads

to solution (1.4.2.4), obtained in Subsection 1.4.2 using a different approach. ◭

Adomian decomposition method. For clarity, we will outline the main ideas of

the Adomian decomposition method (e.g., see [5, 7]) by studying an example of the

Cauchy problem for a first-order nonlinear ODE with proportional delay (1.4.5.3).

Integrating this equation from 0 to t and employing the initial condition, we arrive at

the integral equation (1.4.5.4).

We look for a solution to the integral equation (1.4.5.4) as the series

u(t) =

∞∑

n=0

εnun(t), (1.4.5.11)

where 0≤ ε≤ 1 is an auxiliary parameter. Substituting (1.4.5.11) into the right-hand

side of equation (1.4.5.3) and then expanding into a Maclaurin series in ε, we obtain

f(t, u(t), u(pt)) = f

(
t,

∞∑

n=0

εnun(t),
∞∑

n=0

εnun(pt)

)
=

∞∑

n=0

εnAn, (1.4.5.12)
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where An are functions that are called Adomian polynomials and defined as

An =
1

n!

{
∂n

∂εn
f

(
t,

∞∑

k=0

εkuk(t),

∞∑

k=0

εkuk(pt)

)}

ε=0

. (1.4.5.13)

Substituting (1.4.5.11) and (1.4.5.12) into equation (1.4.5.4) yields

∞∑

n=0

εnun(t) = a+

∫ t

0

∞∑

n=0

εnAn dt. (1.4.5.14)

Assuming that the series (1.4.5.11) and (1.4.5.12) are convergent for 0 ≤ ε ≤ 1, we

set ε = 1 in (1.4.5.14) to obtain

u0(t) + u1(t) + u2(t) + u3(t) + · · · = a+

∫ t

0

A0 dt+

∫ t

0

A1 dt+

∫ t

0

A2 dt+ · · · .

Equating the terms on the left with the respective terms on the right, we arrive at the

Adomian recurrence relations

u0(t) = a;

un(t) =

∫ t

0

An−1 dt, n = 1, 2, . . .
(1.4.5.15)

In general, each polynomial An only depends on time t and the components uj and

wj , where j ≤ n, so thatA0 =A0(t, u0, w0), A1 =A1(t, u0, w0, u1, w1), and so on.

Therefore, the recurrence relations (1.4.5.15) allow one to determine the functionsun
successively.

Substituting the function un obtained with the recurrence relations (1.4.5.15)

into (1.4.5.11) followed by setting ε = 1, we find the desired solution of the original

problem.

Remark 1.20. If the right-hand side of equation (1.4.5.3) is linear in the unknown func-
tion, that is, f(t, u, w) = g(t)u+ h(t)w, then the Adomian polynomials are defined simply
as An = g(t)un(t) + h(t)un(pt).

◮ Example 1.28. Consider the Cauchy problem for a pantograph-type first-

order linear ODE with variable coefficients

u′t = g(t)u+ h(t)w, w = u(pt); u(0) = a. (1.4.5.16)

We look for a solution to this problem by the Adomian decomposition method as the

series

u(t) =

∞∑

n=0

un(t), (1.4.5.17)

whose terms are defined by the recurrence relations

u0(t) = a, un(t) =

∫ t

0

[
g(ξ)un−1(ξ) + h(ξ)un−1(pξ)

]
dξ, n = 1, 2, . . .

(1.4.5.18)
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78 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

In the special case [143]:

a = 1, g(t) = 1
2 , h(t) = 1

2 e
t/2, (1.4.5.19)

problem (1.4.5.16) admits the exact solution u(t) = et.
For the Cauchy problem (1.4.5.16) with functions (1.4.5.19), the study [149]

computed 13 terms of the series by formulas (1.4.5.18). The maximum error of the

respective approximate solution, expressed as the sum of these terms, was less than

5× 10−15 for 0 ≤ t ≤ 1. ◭

Now we will give a general description of the Adomian decomposition method.

Consider the following differential equation with proportional delay written in a short

form:

L[u] = N [u,w], (1.4.5.20)

where u = u(t) is the unknown function, w = u(pt), L[u] is a linear differential op-

erator containing the highest derivative, and N [u,w] is a nonlinear (in special cases,

linear) differential operator or a function of two arguments,u andw. The coefficients

of the operators can depend on the independent variable t. To formulate a problem

for equation (1.4.5.20), one should use suitable initial or boundary conditions.

In the first stage, one seeks a solution to an auxiliary, simpler problem for the

truncated linear equation

L[u0] = 0, (1.4.5.21)

obtained from (1.4.5.20) by dropping the right-hand side. The initial or boundary

conditions remain the same. Then the nonlinear term N [u,w] is represented as the

series

N [u,w] =
∞∑

n=0

An, An =
1

n!

{
∂n

∂εn
N

[ ∞∑

k=0

εkuk(t),
∞∑

k=0

εkuk(pt)

]}

ε=0

.

One looks for a solution in the form of the series (1.4.5.17), where u0 is a solution

to the above problem for equation (1.4.5.21), while the other functions un(t) are

determined by solving the linear ODEs

L[un] = An−1, n = 1, 2, . . . , (1.4.5.22)

subjected to homogeneous initial or boundary conditions. Importantly, equations

(1.4.5.22) do not involve terms with proportional delay.

For further details and numerous examples of employing the Adomian decom-

position method, see, for example, [5–7, 125, 149, 447].

Homotopy analysis method. The homotopy analysis method (e.g., see [298,

299, 307]) is a semi-analytical procedure for solving nonlinear ODEs and PDEs,

which can also be employed for solving differential equations with proportional

delay. Below we outline the characteristic features of the method.

Let us revisit the nonlinear ODE with proportional delay (1.4.5.20) subjected to

some initial or boundary conditions. The key idea of the homotopy method is to
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replace the analysis of equation (1.4.5.20) with an analysis of an auxiliary family of

differential equations (homotopies):

(1 − ε)
{
L[u]− L[u0]

}
+ εh

{
L[u]−N [u,w]

}
= 0. (1.4.5.23)

This family depends on the decomposition parameter ε (0 ≤ ε ≤ 1) as well as

the convergence-control parameter h. As ε increases from 0 to 1, the solution of

equation (1.4.5.23) changes from u0 = u0(t) to the solution of equation (1.4.5.20).

Notably, if u = u0 is a solution of the original equation (1.4.5.20), then this

function will also be a solution of the family of differential equations (1.4.5.23) for

any values of the parameters ε and h.

We seek an approximate solution of equation (1.4.5.23) as the finite sum

u∗(t) =

m∑

n=0

εnun(t), (1.4.5.24)

with the functions un to be determined in the subsequent analysis.

We substitute expression (1.4.5.24) into (1.4.5.23) and collect the terms pro-

portional to the different powers of ε. Then we equate the resulting functional

coefficients of εn with zero to obtain a system of differential equations for un. On

solving this system sequentially, we find the terms un of the sum (1.4.5.24). Now

setting ε = 1 in (1.4.5.24) and assuming m to be sufficiently large, we obtain an

approximate analytical solution of the original equation (1.4.5.20). Whether this

solution is suitable or not depends on the selection of the initial approximation u0 =
u0(t), the value of the convergence-control parameter h, and the number of termsm.

One possible way of choosing h is as follows. Take the value h = hmin, for

which the discrepancy ‖L[u∗] − N [u∗, w∗]‖ attains a minimum (the choice of the

norm ‖ . . . ‖ is down to the researcher).

For further details and numerous examples of employing the homotopy analysis

method, see [299, 300]; the drawbacks of the method are discussed in [307].

Other methods based on perturbation-iteration algorithms. We will describe

below a general scheme of iterative methods based on introducing a small parameter.

To be specific, we will consider second-order nonlinear ODEs with proportional

delay of the form

u′′tt = f(t, u, u′t, w, w
′
t), w = u(pt). (1.4.5.25)

For what follows, we introduce the more general, auxiliary equation with param-

eter ε

u′′tt = F (t, u, u′t, w, w
′
t, ε), w = u(pt). (1.4.5.26)

Its right-hand side must satisfy the matching condition

F (t, u, u′t, w, w
′
t, 1) ≡ f(t, u, u′t, w, w

′
t). (1.4.5.27)

The initial or boundary conditions for (1.4.5.26) are exactly the same as for equation

(1.4.5.25).
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80 1. DELAY ORDINARY DIFFERENTIAL EQUATIONS

By construction, a solution to the auxiliary problem for equation (1.4.5.26) with

ε = 1 is also a solution to the original problem for equation (1.4.5.25).

An approximate solution to the problem for equation (1.4.5.25) is constructed as

follows. Assuming ε in (1.4.5.26) to be a small parameter, one looks for a solution to

the auxiliary problem as a regular decomposition in powers of ε: u=
∑∞
n=0 ε

nun(t).
Computing the sum of the first few terms followed by setting ε = 1, one obtains an

approximate solution to the original problem for equation (1.4.5.25). The accuracy

and applicability of this iterative approach depends on how lucky the choice of the

auxiliary function F in (1.4.5.26) was.

For equations with proportional delays

u′′tt = f(t, u, u′t, w), w = u(pt), (1.4.5.28)

it is advisable to choose the auxiliary equation with parameter ε in the form

u′′tt = f(t, u, u′t, εw), w = u(pt). (1.4.5.29)

At ε = 1, this equation coincides with (1.4.5.28). The decomposition of the solution

to equation (1.4.5.29) into a series in powers of ε leads to simpler ODEs without

delay for all terms un(t).
For examples of employing the above approach for constructing approximate

solutions to equations of the form (1.4.5.28), see the article [27].

Remark 1.21. Approximate analytical methods of iterative type with a large number of
iterations are often counted among numerical-analytical or numerical methods.

1.4.6. Galerkin-Type Projection Methods. Collocation
Method

Preliminary remarks. Galerkin-type methods are widely employed to construct

approximate solutions to linear and nonlinear boundary value problems for second-

and higher-order ODEs and PDEs without delay (e.g., see [161, 251, 280, 282, 342,

402, 423]). These methods are also effective for solving more complicated problems

described by differential equations with proportional argument.

The current subsection outlines a few Galerkin-type methods for solving bound-

ary value problems that are described by ODEs with proportional argument. For

clarity, we will use x to denote the independent variable (rather than t) and restrict

ourselves to studying second-order equations, which, along with the unknown func-

tion u = u(x), also involve w = u(px), where 0 < p ≤ 1.

The representation of approximate solutions as linear combinations of basis

functions. We will look at a boundary value problem for the equation

F[u]− f(x) = 0 (1.4.6.1)

subjected to linear homogeneous boundary conditions∗ at points x = x1 and x = x2
(either of the two variants is possible: x1 = 0, x2 = L or x1 = −L, x2 = L).

∗For second-order ODEs, nonhomogeneous boundary conditions can be converted to homogeneous

ones with the change of variable z = b2x2 + b1x + b0 + y with the constants b2, b1, and b0 selected

using the method of undetermined coefficients.
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In equation (1.4.6.1), F[u] ≡ F(x, u, ux, uxx, w, wx) is a second-order linear or

nonlinear differential operator, u = u(x) is the unknown function, w = u(px), and

f = f(x) is a given function.

We chose a sequence of linear independent functions, called basis functions,

ϕ = ϕn(x) (n = 1, . . . , N), (1.4.6.2)

that satisfy the same boundary conditions as u = u(x). In all the methods discussed

below, we seek an approximate solution to equation (1.4.6.1) as the linear combina-

tion

uN =

N∑

n=1

Anϕn(x), (1.4.6.3)

with the coefficients An to be determined in the subsequent analysis.

The finite sum (1.4.6.3) is called the approximating function. The amount of

error (residual),RN , is determined after substituting the finite sum into the left-hand

side of equation (1.4.6.1):

RN = F[uN ]− f(x). (1.4.6.4)

If the residual RN is identically zero, then the function uN is an exact solution of

equation (1.4.6.1). In the generic case, RN 6≡ 0.

Remark 1.22. The set of basis functions ϕn(x) in the approximating function (1.4.6.3) is
most commonly chosen to be a sequence of polynomials or trigonometric functions.

Remark 1.23. Rather than the approximating function (1.4.6.3), linear in the unknown
coefficients An, one can use the more general form

uN = Φ(x,A1, . . . , AN )

for an approximate solution. The function Φ(x,A1, . . . , AN) is given in advance. It is
selected from theoretical considerations while taking into account the characteristic features
of the problem or from relevant experimental data. It must satisfy the boundary conditions for
any values of the coefficients A1, . . . , AN .

The general scheme of applying the Galerkin method. To find the coefficients

An in (1.4.6.3), we will consider a different sequence of linear independent func-

tions:

ψ = ψk(x) (k = 1, 2, . . . , N). (1.4.6.5)

Let us multiply (1.4.6.4) by ψk and integrate over the domain V = {x1 ≤ x≤ x2}, in

which the desired solution to equation (1.4.6.1) is sought. On equating the resulting

integral with zero (such integrals are zero for exact solutions), we arrive at the

following system of algebraic equations for the unknown coefficients An:

∫ x2

x1

ψkRN dx = 0 (k = 1, 2, . . . , N), (1.4.6.6)

with the residual RN defined by (1.4.6.4).

Relation (1.4.6.6) implies that the approximating function (1.4.6.3) satisfies equa-

tion (1.4.6.1) ‘on average’ (in the integral sense) with weight functions ψk. If we
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introduce the inner product of arbitrary functions g and h, 〈g, h〉=
∫ x2

x1
gh dx, we can

treat the equations (1.4.6.6) as orthogonality conditions for the residualRN to all ψk.

The Galerkin method is applicable not only to boundary value problems but also

to eigenvalue problems, in which case one sets f = λu and looks for eigenfunc-

tions yn in conjunction with eigenvalues λn.

Below we outline a few special techniques that are particular cases of the Galerkin

method.

Bubnov–Galerkin method. The sequences of functions (1.4.6.2) and (1.4.6.5)

in the Galerkin method can be chosen arbitrarily. The modification in which the sets

of functions are the same,

ϕk(x) = ψk(x) (k = 1, 2, . . . , N), (1.4.6.7)

is called the Bubnov–Galerkin method.

Method of moments. The method of moments is a Galerkin method with the

weight functions (1.4.6.5) chosen as powers of x:

ψk = xk. (1.4.6.8)

Least squares method. Sometimes the weight functionsψk are expressed viaϕk
as

ψk = F[ϕk] (k = 1, 2, . . . ),

where F is the differential operator of equation (1.4.6.1). This modification of the

Galerkin method is known as the least squares method.

Collocation method. In the collocation method, one selects a set of points xk ,

k = 1, . . . , N , and imposes the condition that the residual (1.4.6.4) is zero at these

points:

RN = 0 at x = xk (k = 1, . . . , N). (1.4.6.9)

When solving a specific problem, the points xk, at which the residual RN van-

ishes, are considered most essential. The number of collocation points, N , is taken

equal to the number of terms in the sum (1.4.6.3). This results in a complete system

of algebraic equations for the unknown coefficients An; for linear boundary value

problems, this algebraic system is linear.

For polynomial basis functions (1.4.6.2), the collocation points xk in (1.4.6.9)

are reasonable to take as Chebyshev nodes, defined on the interval x ∈ (−1, 1) as

xk = cos
( 2k − 1

2N
π
)
, k = 1, . . . , N.

Other suitable nodes can be used such as roots of some orthogonal polynomials with

a weight function. If all roots are equally spaced, the method usually works worse

and can even result in divergent solutions as N → ∞.

Notably, the collocation method is a special case of the Galerkin method in which

the weight functions (1.4.6.5) are Dirac delta functions:

ψk = δ(x− xk).
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With the collocation method, one does not have to calculate integrals, which

immensely simplifies the solution of nonlinear problems. This method, however,

usually leads to less accurate results than other modifications of the Galerkin method.

◮ Example 1.29. Consider the boundary value problem for a second-order

linear ordinary differential equation with variable coefficients and proportional delay

u′′xx + g(x)w − f(x) = 0, w = u(px), (1.4.6.10)

subjected to the boundary conditions of the first kind

u(−1) = u(1) = 0. (1.4.6.11)

We assume the coefficients of equation (1.4.6.10) to be smooth even functions

such that f(x)= f(−x) and g(x)= g(−x). We will look for an approximate solution

to problem (1.4.6.10)–(1.4.6.11) by employing the collocation method.

1◦. We select the polynomials

un(x) = x2n−2(1− x2), n = 1, 2, . . . , N,

as basis functions. These satisfy the boundary conditions (1.4.6.11): un(±1) = 0.

We use three collocation points

x1 = −σ, x2 = 0, x3 = σ (0 < σ < 1) (1.4.6.12)

and restrict ourselves to two basis functions (N = 2). Then the approximating

function is
u = A1(1− x2) +A2x

2(1 − x2),

w = A1(1− p2x2) +A2p
2x2(1− p2x2),

(1.4.6.13)

whereA1 andA2 are unknown coefficients. Substituting (1.4.6.13) into the left-hand

side of equation (1.4.6.10) results in the residual

R(x) = A1

[
−2+ (1− p2x2)g(x)

]
+A2

[
2− 12x2 + p2x2(1− p2x2)g(x)

]
− f(x).

The residual R(x) must vanish at the collocation points (1.4.6.12). Considering that

f(σ) = f(−σ) and g(σ) = g(−σ), we obtain two linear algebraic equations for A1

and A2:

A1

[
−2 + g(0)

]
+ 2A2 − f(0) = 0,

A1

[
−2 + (1 − p2σ2)g(σ)

]

+A2

[
2− 12 σ2 + p2σ2(1− p2σ2)g(σ)

]
− f(σ) = 0.

(1.4.6.14)

2◦. To be specific, we choose the following functions in equation (1.4.6.10):

f(x) = −1, g(x) = 1 + x2. (1.4.6.15)

On solving the respective system of algebraic equations (1.4.6.14), we find the coef-

ficients

A1=
12−p2(1+σ2)(1−p2σ2)

10+p2(1+σ2)(1+p2σ2)
, A2=

1−p2(1+σ2)

10+p2(1+σ2)(1+p2σ2)
. (1.4.6.16)
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Figure 1.17. Comparison of the approximate analytical solutions (1.4.6.13) and (1.4.6.16)

to equation (1.4.6.10) with conditions (1.4.6.11) and (1.4.6.15), obtained by the collocation

method, with numerical solutions.

Figure 1.17 depicts in dashed lines, 1 and 2, the approximate solutions to prob-

lem (1.4.6.10), (1.4.6.11), (1.4.6.15) with p = 1 obtained by the collocation method

using formulas (1.4.6.13) and (1.4.6.16) with σ = 1/2 (the collocation points are

equally spaced) and σ =
√
2/2 (the collocation points are Chebyshev nodes). The

solid line indicates a numerical solution to this problem with p = 1 obtained by

the shooting method (see Subsection 5.1.6). It is apparent that both approximate

solutions are in good agreement with the numerical solution (using Chebyshev nodes

gives a more accurate result). For p = 1/2, the approximate solutions obtained by

formulas (1.4.6.13), (1.4.6.16) for σ = 1/2 and σ =
√
2/2 practically coincide; these

are shown in Figure 1.17 by dashed line 3. The circles indicate a numerical solution

with p = 1/2 obtained using a combination of the shooting method and Heun’s

method (see Subsections 5.1.4 and 5.1.5). The approximate solutions are in good

agreement with the numerical solution; the maximum discrepancy between them is

0.009 at p = 1/2 and σ = 1/2 and 0.006 at p = 1/2 and σ =
√
2/2. ◭

Method of minimization of the root mean square error. Sometimes, the

coefficients An of the approximating function (1.4.6.3) are sought using a method

based on minimizing the functional

Φ =
∫ L

0
R2
N dx→ min. (1.4.6.17)

Given the functions ϕn in the sum (1.4.6.3), the integral Φ is a function of the

coefficients An. The necessary conditions for the minimization of the functional

(1.4.6.17) are
∂Φ

∂An
= 0 (n = 1, . . . , N). (1.4.6.18)

Relations (1.4.6.18) represent a system of algebraic (or transcendental) equations for

the desired coefficients An.

Remark 1.24. If the number of terms of the approximating function (1.4.6.3) is large, the
Galerkin-type approximate analytical methods (primarily, the collocation method) are often
referred to as numerical-analytical or numerical methods.

Remark 1.25. Numerical methods for the integration of delay ODEs are discussed in
Section 5.1.
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2. Linear Partial Differential

Equations with Delay

2.1. Properties and Specific Features of Linear

Equations and Problems with Constant

Delay

2.1.1. Properties of Solutions to Linear Delay Equations

Examples of linear partial differential equations with delay. Second-order linear

partial differential equations of the parabolic or hyperbolic type with constant delay

are not uncommon in the literature and applications. Such equations with n spatial

variables are expressed as

ut − L1[u]− L2[w] = Φ(x, t), (2.1.1.1)

utt − L1[u]− L2[w] = Φ(x, t), (2.1.1.2)

where

L1[u] ≡
n∑

i,j=1

a
(1)
ij (x, t)

∂2u

∂xi∂xj
+

n∑

i=1

b
(1)
i (x, t)

∂u

∂xi
+ c1(x, t)u,

L2[w] ≡
n∑

i,j=1

a
(2)
ij (x, t)

∂2w

∂xi∂xj
+

n∑

i=1

b
(2)
2 (x, t)

∂w

∂xi
+ c2(x, t)w,

w = u(x, t− τ), x = (x1, . . . , xn), τ > 0.

(2.1.1.3)

Equations (2.1.1.1) and (2.1.1.2) are said to be homogeneous if Φ(x, t) ≡ 0.

For variable delays, τ = τ(t), one should set w = u(x, t − τ(t)) in the linear

partial differential equations (2.1.1.1)–(2.1.1.3). In particular, for equations with

proportional delay, we have w = u(x, pt), where 0 < p < 1.

Properties of linear partial differential equations with constant delay. In

what follows, for brevity, we will write a linear homogeneous PDE with constant

delay as

L[u] = 0. (2.1.1.4)

For parabolic and hyperbolic equations, the linear differential operator L[u] in

(2.1.1.4) is defined by the left-hand side of equations (2.1.1.1) and (2.1.1.2), respec-

tively. In general, equation (2.1.1.4) can be an arbitrary linear homogeneous PDE of
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86 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

any order in the variables t, x1, . . . , xn with sufficiently smooth coefficients and a

constant delay in time.

Linear operator L has the properties

L[u1 + u2] = L[u1] + L[u2],
L[Au] = AL[u], A = const .

An arbitrary linear homogeneous equation (2.1.1.4) has a trivial solution, u ≡ 0.

A function u is called a classical solution of equation (2.1.1.4) if, with u sub-

stituted into the equation, it becomes an identity and if all partial derivatives of u
in (2.1.1.4) are continuous. The concept of a classical solution is directly related to

the domain of the independent variables. In what follows, for brevity, we will usually

write ‘solution’ to mean ‘classical solution’.

Application of particular solutions to construct other solutions. Below we

list the main properties of particular solutions to linear homogeneous PDEs with

delay analogous to those of simpler linear homogeneous PDEs without delay [404].

1◦. Let u1 = u1(x, t), u2 = u2(x, t), . . . , uk = uk(x, t) be any particular

solutions to the homogeneous equation (2.1.1.4). Then the linear combination of

these solutions

u = A1u1 +A2u2 + · · ·+ Akuk, (2.1.1.5)

whereA1,A2, . . . , Ak are arbitrary constants, is also a solution to equation (2.1.1.4).

In physics, this property is known as the principle of linear superposition.

We assume that {uk} is an infinite sequence of solutions to equation (2.1.1.4).

Then, regardless of whether the series
∑∞

k=1 uk is convergent or not, it is called a

formal solution to equation (2.1.1.4). If all solutions uk are classical and, in addi-

tion, the series
∑∞
k=1 uk and its derivatives involved in the equation are uniformly

convergent, then the series determines a classical solution to equation (2.1.1.4).

2◦. Let the coefficients of the linear differential operator L be independent of

time t. If equation (2.1.1.4) has a particular solution ũ = ũ(x, t), then the function

ũ(x, t+ a), where a is an arbitrary constant, is also a solution to the equation.

If the coefficients of the operator L are independent of only one space vari-

able, xk, and equation (2.1.1.4) has a particular solution ũ= ũ(x, t), then the function

ũ(x, t)|xk⇒xk+b, where b is an arbitrary constant, is also a solution to the equation.

3◦. Suppose the coefficients of the linear differential operator L are independent

of t. Then if equation (2.1.1.4) has a particular solution ũ = ũ(x, t), the partial

derivatives of ũ with respect to time∗

∂ũ

∂t
,

∂2ũ

∂t2
, . . . ,

∂kũ

∂tk
, . . .

are also solutions to equation (2.1.1.4).

∗Here and henceforth, we assume that the particular solution ũ is differentiable sufficiently many times

with respect to t and x1, . . . , xn (or the parameters).
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2.1. Properties and Specific Features of Linear Equations with Constant Delay 87

4◦. Let the coefficients of the linear differential operator L be independent of

the space variables x1, . . . , xn. Then if equation (2.1.1.4) has a particular solution

ũ = ũ(x, t), the partial derivatives ũ with respect to these variables

∂ũ

∂x1
,

∂ũ

∂x2
,

∂ũ

∂x3
, . . . ,

∂2ũ

∂x21
,

∂2ũ

∂x1∂x2
, . . . ,

∂k+mũ

∂xk2∂x
m
3

, . . .

are also solutions to equation (2.1.1.4).

If the coefficients of the operator L are independent of only one space vari-

able, x1, and equation (2.1.1.4) has a particular solution ũ = ũ(x, t), then the partial

derivatives
∂ũ

∂x1
,

∂2ũ

∂x21
, . . . ,

∂kũ

∂xk1
, . . .

are also solutions to equation (2.1.1.4).

5◦. Suppose that the coefficients of the linear differential operator L are all

constant and equation (2.1.1.4) has a particular solution ũ= ũ(x, t). Then any partial

derivatives of ũ with respect to time and the spatial variables (inclusive of mixed

derivatives)

∂ũ

∂t
,

∂ũ

∂x1
, . . . ,

∂2ũ

∂x22
,

∂2ũ

∂t∂x1
, . . . ,

∂kũ

∂xk3
, . . .

are all solutions to equation (2.1.1.4).

6◦. Let equation (2.1.1.4) have a particular solution ũ = ũ(x, t;µ) dependent

on the free parameter µ and let the coefficients of the linear differential operator L
be independent of µ (but can depend on time and spatial variables). Then, the

differentiation of ũ with respect to µ gives other solutions to equation (2.1.1.4):

∂ũ

∂µ
,

∂2ũ

∂µ2
, . . . ,

∂kũ

∂µk
, . . .

Let some constants µ1, . . . , µk belong to the domain of the parameter µ. Then

the sum

u = A1ũ(x, t;µ1) + · · ·+Akũ(x, t;µk), (2.1.1.6)

where A1, . . . , Ak are arbitrary constants, is also a solution to the linear homoge-

neous equation (2.1.1.4). The number of terms in the sum (2.1.1.6) can be finite or

infinite.

7◦. Further solutions may also be constructed in the following manner. Suppose

ũ(x, t;µ) is a particular solution dependent on the parameters µ (just as in Item 6◦,

the coefficients of the linear operator L are assumed to be independent of µ). We first

multiply this solution by an arbitrary function ϕ(µ) and then integrate with respect

to µ on the interval [α, β] to obtain the function

∫ β

α

ϕ(µ)ũ(x, t;µ) dµ

that is also a solution to the original linear homogeneous equation (2.1.1.4).
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88 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

8◦. In case we deal with a linear partial differential equation with delay, the

following proposition [9] can also be used to construct complicated solutions out of

simpler ones.

Proposition. Suppose that a linear homogeneous PDE with delay has a one-

parameter particular solution of the form u = ũ(x, t;µ), where µ is a free parameter

not involved in the original equation. Then the equation also has the two-parameter

solutions

u1 = Re ũ(x, t, α+ iβ), u2 = Im ũ(x, t, α+ iβ),

where α and β are arbitrary real constants, i2 = −1, and Re z and Im z are the real

and imaginary parts of the complex variable z.

Corollary 1. Let a linear homogeneous PDE with constant delay whose coeffi-

cients are independent of time t have a particular solution u = ũ(x, t). Then this

equation also admits the one-parameter family of solutions

u1 = Re ũ(x, t+ iα), u2 = Im ũ(x, t+ iα),

where α is an arbitrary real constant and i2 = −1.

Corollary 2. Let a linear homogeneous PDE with constant delay whose coeffi-

cients are independent of a space variable xk have a particular solution u = ũ(x, t).
Then this equation also admits the one-parameter family of solutions

u1 = Re ũ(x, t)
∣∣
xk⇒xk+iα

, u2 = Im ũ(x, t)
∣∣
xk⇒xk+iα

,

where α is an arbitrary real constant.

The properties specified in Items 1◦ to 8◦ allow one to use known particular

solutions to construct other particular solutions to linear homogeneous PDEs with

constant delay.

◮ Example 2.1. The linear thermal conduction PDE with constant delay

ut = uxx − aw, w = u(x, t− τ),

has a particular solution

ũ(x, t) = exp
(√

µ+ ae−µτ x+ µt
)
,

where µ is an arbitrary constant. Differentiating this expression with respect to µ
(see Item 6◦), we arrive at the more complex solution

ũ1(x, t) =

(
1− aτe−µτ

2
√
µ+ ae−µτ

x+ t

)
exp

(√
µ+ ae−µτ x+ µt

)
.

◭

◮ Example 2.2. The wave-type linear PDE with delay

utt = wxx, w = u(x, t− τ),
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2.1. Properties and Specific Features of Linear Equations with Constant Delay 89

has a particular solution

ũ(x, t) = exp
(
µeµτ/2x+ µt

)
,

where µ is an arbitrary constant. Setting µ= iα in this solution (see Item 8◦) and then

extracting the real and imaginary parts, we obtain two more complicated solutions

u1 = exp
[
−α sin( 12ατ)x

]
cos

[
α cos( 12ατ)x + αt

]
,

u2 = exp
[
−α sin( 12ατ)x

]
sin

[
α cos( 12ατ)x + αt

]
.

◭

Separable solutions in the form of the product or sum of functions with

different arguments.

1◦. Many linear homogeneous partial differential equations have solutions that

can be represented as the product of two or more functions dependent on different

arguments. Such solutions are referred to as multiplicative separable solutions; they

are also often called separable solutions for short.

Table 2.1 lists frequent types of linear homogeneous differential equations with

several independent variables and a constant delay that admit exact separable solu-

tions. Linear combinations of particular solutions associated with distinct values of

the separation parameters, λ, β1, . . . , βn, are also solutions to these equations. The

last row of Table 2.1 uses short notations: Lt is a linear differential operator whose

coefficients are only dependent on time t, and Lx is a linear differential operator with

coefficients on the space variables alone; it is assumed thatLt[C] = 0 and Lx[C] = 0,

where C is an arbitrary constant.

Table 2.1. Some linear nonhomogeneous PDEs with constant delay admitting multiplicative

separable solutions.

No. Form of equation (2.1.1.4) Form of particular solutions

1
Equation coefficients

are constant

u(x, t) = A exp(λt + β1x1 + · · ·+ βnxn),
λ, β1, . . . , βn are related

by an algebraic (transcendental) equation

2
Equation coefficients

are independent of t
u(x, t) = eλtψ(x),

where λ is an arbitrary constant

3
Equation coefficients are

independent of x1, . . . , xn

u(x, t) = exp(β1x1 + · · ·+ βnxn)ψ(t),
where β1, . . . , βn are arbitrary constants

4
Equation coefficients are

independent of x1, . . . , xk (k < n)
u(x, t) = exp(β1x1+ · · ·+βkxk)ψ(t, xk+1, . . . , xn),

where β1, . . . , βk are arbitrary constants

5

Equation can be

represented as

Lt[u] + Lx[w] = 0

u(x, t) = ϕ(t)ψ(x),
ϕ(t) satisfies equation Lt[ϕ] + λϕ(t − τ) = 0,

ψ(x) satisfies equation Lx[ψ]− λψ = 0

For constant coefficient equations (see row 1 of Table 2.1), the separation param-

eters must satisfy a single algebraic (or transcendental) equation

D(λ, β1, . . . , βn) = 0, (2.1.1.7)
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90 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

which results from substituting the solution into equation (2.1.1.4). In physical

applications, equation (2.1.1.7) is usually referred to as a dispersion equation. Any

n out of n+ 1 separation parameters in (2.1.1.7) can be treated as arbitrary.

◮ Example 2.3. Consider the linear telegraph equation with constant delay

utt + kut = auxx + bux + c1u+ c2w, w = u(x, t− τ). (2.1.1.8)

We look for a (traveling wave) particular solution to this equation in the exponential

form

u = A exp(βx + λt),

where A is an arbitrary constant, to arrive at the dispersion equation

λ2 + kλ = aβ2 + bβ + c1 + c2e
−λτ .

Either parameter β or λ can be treated as fixed, and the other is determined from this

equation.

Notably, the constant coefficient equation (2.1.1.8) also admits more complicated

solutions (see the second and third rows of Table 2.1, last column). ◭

◮ Example 2.4. The linear heat equation with constant delay

ut = awxx, w = u(x, t− τ),

admits multiplicative separable solutions

u = [A cos(kx) +B sin(kx)]e−λt, k = (λe−λτ/a)1/2 (λ > 0);

u = [A exp(kx) +B exp(−kx)]e−λt, k = (−λe−λτ/a)1/2 (λ < 0),
(2.1.1.9)

where A, B, and λ are arbitrary constants.

It is noteworthy that solutions (2.1.1.9) are special cases of a multiplicative

separable solution u = ϕ(x)ψ(t). ◭

2◦. Linear delay PDEs with two independent variables, x and t, of the form

L
(1)
t [u] + L

(2)
t [w] +M (1)

x [u] +M (2)
x [w] + c1u+ c2w = f(x) + g(t),

where

L
(j)
t [v] ≡

Kj∑

i=1

a
(j)
i (t)

∂iv

∂ti
, M (j)

x [v] ≡
Nj∑

i=1

b
(j)
i (x)

∂iv

∂xi
, j = 1, 2,

have exact solutions representable as the sum of functions with different arguments:

u = ϕ(x) + ψ(t). (2.1.1.10)

Such solutions are known as additive separable solutions.

◮ Example 2.5. The linear delay PDE (2.1.1.8) has an additive separable solu-

tion of the form (2.1.1.10) with the functions ϕ = ϕ(x) and ψ = ψ(t) satisfying the

ODE and delay ODE

aϕ′′
xx + bϕ′

x + (c1 + c2)ϕ = 0,

ψ′′
tt + kψ′

t = c1ψ + c2ψ̄, ψ̄ = ψ(t− τ).
◭
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2.2. Linear Initial-Boundary Value Problems with Constant Delay 91

2.1.2. General Properties and Qualitative Features of Delay
Problems

Many properties of linear partial differential equations with delay are similar to

those of respective partial differential equations without delay. Boundary conditions

in initial-boundary value problems for partial differential equations with delay are

stated in exactly the same way as for partial differential equations without delay.

Below we note three main qualitative features that distinguish problems for delay

PDEs from those for PDEs without delay.

First, the initial conditions for PDEs in problems with a constant delay, τ > 0,

are set on a closed interval, t0 − τ ≤ t ≤ t0, rather than at a point, t = t0, as in

problems without delay. Moreover, one looks for a solution continuous at t = t0.

Most commonly, the initial point is chosen as t0 = 0 or, sometimes, t0 = τ .

Secondly, even though the initial data have continuous derivatives with respect

to t up to an arbitrary order, solutions to Cauchy problems and initial-boundary value

problems will generally have jump-discontinuous partial derivatives of order k and

above (k = 1, 2, . . . ) at the points t = t0 + (k − 1)τ . However, the lower-order

derivatives will be continuous at these points. This means that jump discontinuities

propagate throughout derivatives with gradual solution smoothing (as in the delay

ODEs; see Section 1.1.2).

Thirdly, initial-boundary value problems for parabolic and hyperbolic equations

with delay can, under certain conditions, be ill-posed in the sense of Hadamard,

meaning that solutions of such problems are unstable with respect to small perturba-

tions of the initial data.

Linear problems described by partial differential equations with delay can be

solved using separation of variables or methods of integral transforms in the same

ways as those for linear partial differential equations without delay [404, 514].

2.2. Linear Initial-Boundary Value Problems with

Constant Delay

2.2.1. First Initial-Boundary Value Problem for
One-Dimensional Parabolic Equations with Constant
Delay

Statement of the problem. Let us look at the first initial-boundary value problem for

one-dimensional parabolic equations with constant coefficients and a constant delay

∂u

∂t
= a1

∂2u

∂x2
+ a2

∂2w

∂x2
+ c1u+ c2w + f(x, t), w = u(x, t− τ), (2.2.1.1)

where a1 > a2 ≥ 0, defined in the domain Ω = {0 < x < h, t > 0}. We supplement

equation (2.2.1.1) with the nonhomogeneous boundary conditions of the first kind

(Dirichlet conditions)

u = g1(t) at x = 0, t > −τ ; u = g2(t) at x = h, t > −τ, (2.2.1.2)
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92 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

and the general initial condition

u = ϕ(x, t) at 0 < x < h, −τ ≤ t ≤ 0. (2.2.1.3)

We assume the functions f and ϕ, appearing in equation (2.2.1.1) and the initial

condition (2.2.1.3), to be continuous and the functions g1 and g2, involved in the

boundary conditions (2.2.1.2), to be continuously differentiable with respect to t. In

addition, we assume that the boundary and initial conditions (2.2.1.2) and (2.2.1.3)

are consistent, implying that

ϕ(0, t) = g1(t), ϕ(h, t) = g2(t).

The studies [270–272, 335, 452] employed the method of separation of variables

to solve one-dimensional problems described by parabolic equations with constant

delay (2.2.1.1) and related equations.

Representation of solutions as the sum of several functions. Following [270,

271], we look for solutions to problem (2.2.1.1)–(2.2.1.3) in the form

u = u0(x, t) + u1(x, t) + u2(x, t), (2.2.1.4)

where the function

u0(x, t) = g1(t) +
x

h
[g2(t)− g1(t)] (2.2.1.5)

satisfies the nonhomogeneous boundary conditions (2.2.1.2). The functions u1 =
u1(x, t) and u2 = u2(x, t) are determined by solving the simpler initial-boundary

value problems with homogeneous (zero) boundary conditions described below.

Problem 1. The function u1 satisfies the linear homogeneous PDE with constant

delay

∂u1
∂t

= a1
∂2u1
∂x2

+ a2
∂2w1

∂x2
+ c1u1 + c2w1, w1 = u1(x, t− τ), (2.2.1.6)

homogeneous boundary conditions

u1 = 0 at x = 0, t > −τ ; u1 = 0 at x = h, t > −τ, (2.2.1.7)

and nonhomogeneous initial condition

u1 = Φ(x, t) at 0 < x < h, −τ ≤ t ≤ 0, (2.2.1.8)

where

Φ(x, t) = ϕ(x, t)− g1(t)−
x

h
[g2(t)− g1(t)]. (2.2.1.9)

Problem 2. The function u2 satisfies the linear nonhomogeneous PDE with

constant delay

∂u2
∂t

=a1
∂2u2
∂x2

+a2
∂2w2

∂x2
+c1u2+c2w2+F (x, t), w2=u2(x, t−τ), (2.2.1.10)
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2.2. Linear Initial-Boundary Value Problems with Constant Delay 93

where

F (x, t) = f(x, t)− ∂

∂t

{
g1(t) +

x

h
[g2(t)− g1(t)]

}

+ c1

{
g1(t) +

x

h
[g2(t)− g1(t)]

}

+ c2

{
g1(t− τ) +

x

h
[g2(t− τ) − g1(t− τ)]

}
,

(2.2.1.11)

and the zero (homogeneous) boundary and initial conditions

u2 = 0 at x = 0, t > −τ ; u2 = 0 at x = h, t > −τ ; (2.2.1.12)

u2 = 0 at 0 < x < h, −τ ≤ t ≤ 0. (2.2.1.13)

Solution of problem 1. Consider the linear homogeneous PDE with delay

(2.2.1.6) subjected to the boundary and initial conditions (2.2.1.7) and (2.2.1.8). We

first look for particular solutions to equation (2.2.1.6) as the product of functions

with different arguments

u1p = X(x)T (t). (2.2.1.14)

On substituting (2.2.1.14) into (2.2.1.6) and rearranging, we get

X(x)[T ′(t)− c1T (t)− c2T (t− τ)] = X ′′(x)[a1T (t) + a2T (t− τ)]. (2.2.1.15)

Separating the variables in this equation, we arrive at the second-order linear ODE

without delay and first-order ODE with constant delay

X ′′(x) = −λ2X(x), (2.2.1.16)

T ′(t) = (c1 − a1λ
2)T (t) + (c2 − a2λ

2)T (t− τ). (2.2.1.17)

Considering that the function u1 must satisfy the homogeneous boundary conditions

(2.2.1.7) and using (2.2.1.14), we obtain homogeneous boundary conditions for X :

X(0) = X(h) = 0. (2.2.1.18)

The linear homogeneous problem (2.2.1.16), (2.2.1.18), which is a special case of

a Sturm–Liouville problem (also known as an eigenvalue problem), has nontrivial

solutions at only the following discrete values of the parameter λ:

λn =
πn

h
, n = 1, 2, . . . . (2.2.1.19)

The respective eigenfunctions are

Xn(x) = sin
( πnx

h

)
. (2.2.1.20)

Notably, two eigenfunctionsXn(x) and Xm(x) are orthogonal in the sense that

∫ h

0

Xn(x)Xm(x) dx = 0 if n 6= m. (2.2.1.21)
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94 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

On substituting the eigenvalues (2.2.1.19) into (2.2.1.17), we get a delay ODE

for T = Tn(t):

T ′
n(t) =

[
c1 − a1

( πn
h

)2 ]
Tn(t) +

[
c2 − a2

( πn
h

)2 ]
Tn(t− τ). (2.2.1.22)

We seek a solution to the linear initial-boundary value problem (2.2.1.6)–(2.2.1.7)

as the series

u1(x, t) =

∞∑

n=1

Xn(x)Tn(t), (2.2.1.23)

where the functions u1n(x, t) = Xn(x)Tn(t) are particular solutions to equation

(2.2.1.6) satisfying the homogeneous boundary conditions (2.2.1.7). By the linear

superposition principle, the series (2.2.1.23) is also a formal solution to the original

partial differential equation with delay (2.2.1.6) and satisfies the boundary conditions

(2.2.1.7).

To find the initial conditions for the delay ODE (2.2.1.22), we represent the initial

condition (2.2.1.8) as an expansion in the eigenfunctions (2.2.1.20):

Φ(x, t)=

∞∑

n=1

Φn(t)Xn(x)=

∞∑

n=1

Φn(t) sin
πnx

h
, 0≤x≤h, −τ≤ t≤0. (2.2.1.24)

Multiplying (2.2.1.24) by Xm(x) = sin πmx
h (m = 1, 2, . . . ), integrating with

respect to the space variable x from 0 to h, and taking into account (2.2.1.21), we

obtain

Φn(t) =
2

h

∫ h

0

Φ(ξ, t) sin
( πnξ

h

)
dξ, −τ ≤ t ≤ 0, (2.2.1.25)

where the function Φ(ξ, t) is defined by (2.2.1.9).

From relations (2.2.1.23) and (2.2.1.24) we find the initial conditions for the

delay ODE (2.2.1.17):

Tn(t) = Φn(t), −τ ≤ t ≤ 0. (2.2.1.26)

The functions Φn(t) are defined by (2.2.1.25).

Up to notation, problem (2.2.1.22), (2.2.1.26) coincides with problem (1.1.5.5),

(1.1.5.6) discussed in Subsection 1.1.5. Introducing the notation

αn = c1 − a1

( πn
h

)2
, βn = c2 − a2

( πn
h

)2
, σn = e−αnτβn (2.2.1.27)

and using formulas (1.1.5.7) and (1.1.5.3), we represent the solution to problem

(2.2.1.22), (2.2.1.26) as

Tn(t) = eαn(t+τ) expd(σnt, σnτ)Φn(−τ)

+

∫ 0

−τ
eαn(t−s) expd(σn(t−τ −s), σnτ)[Φ′

n(s)−αnΦn(s)]ds, (2.2.1.28)
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2.2. Linear Initial-Boundary Value Problems with Constant Delay 95

where expd(t, τ) is the delayed exponential function, which is defined as

expd(t, τ) ≡
[t/τ ]+1∑

k=0

[t− (k − 1)τ ]k

k!
. (2.2.1.29)

The symbol [A] stands for the integer part of the number A.

On substituting (2.2.1.20) and (2.2.1.28) into (2.2.1.23), we can write the solu-

tion to problem (2.2.1.6)–(2.2.1.7) as [271]:

u1(x, t) =

∞∑

n=1

sin
( πnx

h

){
eαn(t+τ) expd(σnt, σnτ)Φn(−τ)

+

∫ 0

−τ
eαn(t−s) expd

(
σn(t−τ −s), σnτ

)
[Φ′
n(s)−αnΦn(s)]ds

}
, (2.2.1.30)

where

Φn(t) =
2

h

∫ h

0

{
ϕ(ξ, t)− g1(t)−

ξ

h
[g2(t)− g1(t)]

}
sin

( πnξ
h

)
dξ. (2.2.1.31)

◮ Example 2.6. For homogeneous boundary conditions, g1(t) = g2(t) ≡ 0,

on a unit-length interval, h = 1, and with stationary initial data as a portion of a

parabola, ϕ(x, t) = 4x(1− x), the Fourier coefficients (2.2.1.31) are

Φn =

{
32
π3n3 for odd n,

0 for even n.
◭

Solution of problem 2. We now consider the linear nonhomogeneous delay PDE

(2.2.1.10)–(2.2.1.11) with homogeneous boundary and initial conditions (2.2.1.12)

and (2.2.1.13).

We first expand the nonhomogeneous component of equation (2.2.1.10) into a

series in the eigenfunctions (2.2.1.20):

F (x, t) =

∞∑

n=1

Fn(t) sin
πnx

h
, Fn(t) =

2

h

∫ h

0

F (ξ, t) sin
( πnξ

h

)
dξ, (2.2.1.32)

where the function F (x, t) is defined by (2.2.1.11).

We seek a solution to problem (2.2.1.10)–(2.2.1.13) as the series

u2(x, t) =

∞∑

n=1

Un(t) sin
πnx

h
, (2.2.1.33)

which satisfies the homogeneous boundary conditions (2.2.1.12). On substituting

(2.2.1.33) into (2.2.1.10), we obtain a linear nonhomogeneous delay ODE for Un(t):

U ′
n(t) =

[
c1−a1

( πn
h

)2 ]
Un(t)+

[
c2−a2

( πn
h

)2 ]
Un(t− τ)+Fn(t), (2.2.1.34)
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96 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

where the functions Fn(t) are determined with the second formula in (2.2.1.32). To

complete the statement of the problem, we supplement equation (2.2.1.34) with the

homogeneous initial conditions

Un(t) = 0, −τ ≤ t ≤ 0, (2.2.1.35)

which follow from (2.2.1.13) and (2.2.1.33).

Up to notation, problem (2.2.1.34)–(2.2.1.35) coincides with problem (1.1.5.8)–

(1.1.5.9) discussed in Subsection 1.1.5. Therefore, the solution to problem (2.2.1.12)–

(2.2.1.35) for t ≥ 0 can be represented as the integral

Un(t) =

∫ t

0

eαn(t−s) expd(σn(t− s), σnτ)Fn(s) ds, σn = e−αnτβn, (2.2.1.36)

with the parameters αn and βn defined in (2.2.1.27). Substituting (2.2.1.36) into

(2.2.1.33) yields the following solution to problem (2.2.1.10)–(2.2.1.13) [271]:

u2(x, t) =

∞∑

n=1

[∫ t

0

eαn(t−s) expd(σn(t− s), σnτ)Fn(s) ds

]
sin

πnx

h
. (2.2.1.37)

On substituting the functions (2.2.1.5), (2.2.1.30), and (2.2.1.37) into (2.2.1.4),

one arrives at the solution to the original problem (2.2.1.1)–(2.2.1.3).

Remark 2.1. The studies [270, 271] describe sufficient conditions for the convergence of
the series (2.2.1.30) and (2.2.1.37), which define the solution to problem (2.2.1.1)–(2.2.1.3).
The solution stability and instability conditions for this problem are discussed in Section 2.2.5,
which shows that if the inequality a2>a1 holds, the initial-boundary value problem (2.2.1.1)–
(2.2.1.3) is ill-posed in the sense of Hadamard.

2.2.2. Other Problems for a One-Dimensional Parabolic
Equation with Constant Delay

Representation of solutions to initial-boundary value problems as the sum of

solutions to simpler problems. Below we outline the procedure of constructing

solutions by separation of variables for other initial-boundary value problems de-

scribed by the one-dimensional linear partial differential equation with constant de-

lay (2.2.1.1). For brevity, we will write the equation as

L[u,w] = f(x, t), t > 0, (2.2.2.1)

where L[u,w]≡ ut−a1uxx−a2wxx−c1u−c2w, w= u(x, t−τ), and a1>a2 ≥ 0.

We will study equation (2.2.2.1) while supplying it with different linear nonho-

mogeneous boundary conditions, which we will write in the general form

Γ1[u] = g1(t) at x = 0, t > −τ ;
Γ2[u] = g2(t) at x = h, t > −τ, (2.2.2.2)
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2.2. Linear Initial-Boundary Value Problems with Constant Delay 97

and the general initial condition

u = ϕ(x, t) at 0 < x < h, −τ ≤ t ≤ 0. (2.2.2.3)

We assume that the linear operators Γ1,2[u] involved in the boundary conditions

(2.2.2.2) are explicitly independent of t. The most common boundary conditions are

shown in the third row of Table 2.2.

We look for a solution to problem (2.2.2.1)–(2.2.2.3) as the sum (2.2.1.4), where

u0 = u0(x, t) (2.2.2.4)

is any twice continuously differentiable function that satisfies the boundary condi-

tions (2.2.2.2), implying that

Γ1[u0] = g1(t) at x = 0, Γ2[u0] = g2(t) at x = h. (2.2.2.5)

The definition of u0 is unrelated to the solution of the differential equation. This

function can be sought by the method of undetermined coefficients in the form, for

example, of a quadratic polynomial in x: u0 = α0(t) + α1(t)x + α2(t)x
2 (in most

cases, setting α2≡0 would suffice). The functional coefficientsαk(t) are determined

by substituting the polynomial into the boundary conditions (2.2.2.5).

Table 2.2 lists the simplest functions u0 = u0(x, t) that satisfy the most com-

mon nonhomogeneous boundary conditions in initial-boundary value problems for

parabolic or hyperbolic equations with a single space variable. In the boundary

conditions of the third kind, it is assumed that k1 > 0 and k2 > 0.

Table 2.2. Simplest functions u0 = u0(x, t) that satisfy the most common nonhomogeneous

boundary conditions at the endpoints of the interval 0 ≤ x ≤ h.

No.
Initial-boundary

value problem
Boundary

conditions

Function u0=u0(x, t)
satisfying the boundary conditions

1 First
u= g1(t) at x=0

u= g2(t) at x=h
u0= g1(t)+

x

h

[
g2(t)−g1(t)

]

2 Second
ux= g1(t) at x=0

ux= g2(t) at x=h
u0= xg1(t)+

x2

2h

[
g2(t)−g1(t)

]

3 Third
ux−k1u= g1(t) at x=0

ux+k2u= g2(t) at x=h
u0=

(k2x−1−k2h)g1(t)+(1+k1x)g2(t)

k2+k1+k1k2h

4 Mixed
u= g1(t) at x=0

ux= g2(t) at x=h
u0= g1(t)+xg2(t)

5 Mixed
ux= g1(t) at x=0

u= g2(t) at x=h
u0=(x− l)g1(t)+g2(t)

Remark 2.2. The boundary conditions of the first, second, and third initial-boundary
value of problems are also known as Dirichlet, Neumann, and Robin boundary conditions,
respectively.
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98 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

The other two functions, u1 = u1(x, t) and u2 = u2(x, t), appearing in (2.2.1.4)

are determined by solving the simpler initial-boundary value problems with homo-

geneous (zero) boundary conditions stated below.

Problem 1. The function u1 satisfies the linear homogeneous PDE with constant

delay

L[u1, w1] = 0, w1 = u1(x, t− τ), (2.2.2.6)

homogeneous boundary conditions

Γ1[u1] = 0 at x = 0, t > −τ ; Γ2[u1] = 0 at x = h, t > −τ, (2.2.2.7)

and nonhomogeneous initial condition

u1 = Φ(x, t) at 0 < x < h, −τ ≤ t ≤ 0, (2.2.2.8)

where

Φ(x, t) = ϕ(x, t)− u0(x, t). (2.2.2.9)

Problem 2. The function u2 satisfies the linear nonhomogeneous PDE with

constant delay

L[u2, w2] = F (x, t), w2 = u2(x, t− τ), (2.2.2.10)

where

F (x, t) = f(x, t)− L[u0, w0], w0 = u0(x, t− τ), (2.2.2.11)

and the zero boundary and initial conditions

Γ1[u2] = 0 at x = 0, t > −τ ; Γ2[u2] = 0 at x = h, t > −τ ; (2.2.2.12)

u2 = 0 at 0 < x < h, −τ ≤ t ≤ 0. (2.2.2.13)

Solution of problem 1. Let us look at the linear homogeneous PDE with delay

(2.2.1.6) (or (2.2.2.6)) subjected to the boundary and initial conditions (2.2.2.7)

and (2.2.2.8). Just as previously, we first look for particular solutions to equation

(2.2.1.6) as the product of functions with different arguments (2.2.1.14): u1p =
X(x)T (t). On separating the variables in the resulting equation, we arrive at the

linear ODE and linear delay ODE

X ′′(x) = −λ2X(x), (2.2.2.14)

T ′(t) = (c1 − a1λ
2)T (t) + (c2 − a2λ

2)T (t− τ), (2.2.2.15)

which coincide with equations (2.2.1.16) and (2.2.1.17). Requiring that the function

u1p = X(x)T (t) must satisfy the homogeneous boundary conditions (2.2.1.7), we

obtain the following homogeneous boundary conditions for X :

Γ1[X ] = 0 at x = 0, Γ2[X ] = 0 at x = h. (2.2.2.16)

The linear homogeneous eigenvalue problem (2.2.2.14), (2.2.2.16) has nontrivial

solutions X = Xn(x) for only a discrete set of values of λ:

λ = λn, X = Xn(x), n = 1, 2, . . . (2.2.2.17)
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Table 2.3 lists eigenvalues and eigenfunctions of homogeneous linear boundary

value problems described by ODE (2.2.2.14) subjected to the five most common

boundary conditions.

Table 2.3. Eigenvalues and eigenfunctions of eigenvalue problems described by the homoge-

neous ODE X ′′
xx = −λ2X subjected to the most common homogeneous boundary conditions

at the endpoints of the interval 0 ≤ x ≤ h.

No.
Initial-boundary

value problem
Boundary

conditions

Eigenvalues λn and eigenfunctions

Xn = Xn(x), n = 1, 2, . . .

1 First
X = 0 at x = 0

X = 0 at x = h
λn =

πn

h
; Xn = sin

πnx

h

2 Second
X′
x = 0 at x = 0

X′
x = 0 at x = h

λ0 = 0, λn =
πn

h
;

X0 = 1, Xn = cos
πnx

h

3 Third
X′
x− k1X = 0 at x = 0

X′
x+ k2X = 0 at x = h

λn are roots of the transcendental equation
tan(λh)

λ
=

k1 + k2

λ2 − k1k2
(λn > 0);

Xn = cos(λnx) +
k1

λn
sin(λnx)

4 Mixed
X = 0 at x = 0

X′
x = 0 at x = h

λn =
π(2n− 1)

2h
; Xn = sin

π(2n− 1)x

2h

5 Mixed
X′
x = 0 at x = 0

X = 0 at x = h
λn =

π(2n − 1)

2h
; Xn = cos

π(2n− 1)x

2h

On substituting the eigenvalues λ = λn into (2.2.2.15), we obtain the respective

delay ODEs for the functions T = Tn(t).

We look for a solution to the linear initial-boundary value problems (2.2.2.6)–

(2.2.2.9) as the series

u1(x, t) =

∞∑

n=1

Xn(x)Tn(t), (2.2.2.18)

where the functions u1n(x, t) = Xn(x)Tn(t) are particular solutions to equation

(2.2.2.6) satisfying the homogeneous boundary conditions (2.2.2.7).

To determine the initial conditions for the delay ODE (2.2.2.15) at λ = λn, we

rewrite the initial condition (2.2.2.8) as a series expansion in the eigenfunctions:

Φ(x, t) =

∞∑

n=1

Φn(t)Xn(x), 0 ≤ x ≤ h, −τ ≤ t ≤ 0. (2.2.2.19)

Multiplying (2.2.2.19) by Xm(x) (m = 1, 2, . . . ), integrating with respect to the

space variable x from 0 to h, and taking into account that the eigenfunctions Xn(x)
and Xm(x) are orthogonal if n 6= m, implying that relations (2.2.1.21) hold, we
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100 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

obtain

Φn(t) =
1

‖Xn‖2
∫ h

0

Φ(ξ, t)Xn(ξ) dξ, −τ ≤ t ≤ 0. (2.2.2.20)

The function Φ(ξ, t) is defined by formula (2.2.2.9), and ‖Xn‖2 =
∫ h
0 X

2
n(ξ) dξ.

From relations (2.2.2.18) and (2.2.2.19) we obtain the initial conditions for the delay

ODE (2.2.2.15) at λ = λn:

Tn(t) = Φn(t), −τ ≤ t ≤ 0, (2.2.2.21)

where the functions Φn(t) are given by (2.2.2.20).

Introducing the notations

αn = c1 − a1λ
2
n, βn = c2 − a2λ

2
n, σn = e−αnτβn (2.2.2.22)

and reasoning as in Subsection 2.2.1, we obtain the solution to problem (2.2.2.15),

(2.2.2.21) at λ = λn in the form

Tn(t) = eαn(t+τ) expd(σnt, σnτ)Φn(−τ)

+

∫ 0

−τ
eαn(t−s) expd(σn(t− τ − s), σnτ)[Φ

′
n(s)− αnΦn(s)] ds, (2.2.2.23)

where expd(t, τ) ≡
∑[t/τ ]+1

k=0
[t−(k−1)τ ]k

k! is the delayed exponential function.

On substituting the functions (2.2.2.23) into formula (2.2.2.18), we find the

solution to problem (2.2.2.6)–(2.2.2.9):

u1(x, t) =

∞∑

n=1

Xn(x)

{
eαn(t+τ) expd(σnt, σnτ)Φn(−τ)

+

∫ 0

−τ
eαn(t−s) expd(σn(t− τ − s), σnτ)[Φ

′
n(s)− αnΦn(s)] ds

}
, (2.2.2.24)

where

Φn(t) =
1

‖Xn‖2
∫ h

0

[
ϕ(ξ, t)− u0(ξ, t)

]
Xn(ξ) dξ, ‖Xn‖2 =

∫ h

0

X2
n(ξ) dξ.

(2.2.2.25)

For any of the five main initial-boundary value problems, whose boundary con-

ditions are presented in Table 2.2, the eigenvalues λn and eigenfunctions Xn(x) in

formulas (2.2.2.24) and (2.2.2.25) should be taken from Table 2.3.

Solution of problem 2. Now we consider the linear nonhomogeneous delay

PDE (2.2.2.10)–(2.2.2.11) with the homogeneous boundary and initial conditions

(2.2.2.12) and (2.2.2.13).
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2.2. Linear Initial-Boundary Value Problems with Constant Delay 101

We first expand the nonhomogeneous component of equation (2.2.2.10) into a

series in eigenfunctions (2.2.2.17):

F (x, t) =
∞∑

n=1

Fn(t)Xn(x), Fn(t) =
1

‖Xn‖2
∫ h

0

F (ξ, t)Xn(ξ) dξ, (2.2.2.26)

where the function F (x, t) is defined by (2.2.2.11), and ‖Xn‖2 =
∫ h
0
X2
n(ξ) dξ.

Then we look for a solution to problem (2.2.2.10)–(2.2.2.13) as the series

u2(x, t) =

∞∑

n=1

Un(t)Xn(x), (2.2.2.27)

which satisfies the homogeneous boundary conditions (2.2.2.12). Inserting (2.2.2.27)

into (2.2.2.10) and taking into account (2.2.2.26), we obtain linear nonhomogeneous

delay ODEs for Un(t):

U ′
n(t) = (c1 − a1λ

2
n)Un(t) + (c2 − a2λ

2
n)Un(t− τ) + Fn(t), (2.2.2.28)

where the functions Fn(t) are determined using the second formula in (2.2.2.26). To

complete the statement of the problem, we supplement equations (2.2.2.28) with the

homogeneous initial conditions

Un(t) = 0, −τ ≤ t ≤ 0, (2.2.2.29)

which follow from (2.2.2.13) and (2.2.2.27).

Up to notation, problem (2.2.2.28)–(2.2.2.29) coincides with problem (2.2.1.34)–

(2.2.1.35). Therefore, its solution for t ≥ 0 can be represented as

Un(t) =

∫ t

0

eαn(t−s) expd(σn(t− s), σnτ)Fn(s) ds, σn = e−αnτβn, (2.2.2.30)

where the parameters αn and βn are defined in (2.2.2.22). Substituting (2.2.2.30)

into (2.2.2.27) yields the solution to problem (2.2.2.10)–(2.2.2.13):

u2(x, t) =

∞∑

n=1

[∫ t

0

eαn(t−s) expd(σn(t− s), σnτ)Fn(s) ds

]
Xn(x). (2.2.2.31)

A solution to the initial-boundary value problem (2.2.2.1)–(2.2.2.3) with any

boundary conditions presented in Table 2.2 can be obtained by substituting the func-

tions (2.2.2.4), (2.2.2.24), and (2.2.2.31) into (2.2.1.4) and taking the functions u0 =
u0(x, t) from Table 2.2. The respective eigenvalues λn and eigenfunctions Xn(x)
should be taken from Table 2.3.
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102 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

2.2.3. Problems for Linear Parabolic Equations with
Several Variables and Constant Delay

Statement of the problem. Consider the m-dimensional linear parabolic equation

with constant delay

ut = a1L[u] + a2L[w] + c1u+ c2w + f(x, t), w = u(x, t− τ), (2.2.3.1)

a1 > a2 ≥ 0, x = (x1, . . . , xm),

defined in a domain Ω = {x ∈ V, t > 0}, where V is an open connected bounded

domain in R
m with a smooth boundary S = ∂V .

We assume that the coefficients of the second-order linear differential opera-

tor with respect to the space variables L[u] appearing in (2.2.3.1) can be depen-

dent on x1, . . . , xm but are independent of time t. In particular, the right-hand

side of equation (2.2.3.1) can involve the m-dimensional Laplace operator L[u] =

∆u ≡ ∑m
i=1

∂2u
∂x2

i

or a more complex operator with variable coefficients, L[u] =

div[p(x)∇u], where p(x) > 0.

We supplement equation (2.2.3.1) with a nonhomogeneous linear boundary con-

dition that we will write as

Γ[u] = g(x, t) at x ∈ S, t > −τ, (2.2.3.2)

and the general initial condition

u = ϕ(x, t) at x ∈ V, −τ ≤ t ≤ 0. (2.2.3.3)

The coefficients of the differential operator Γ[u] in (2.2.3.2) can depend on the

space variable x1, . . . , xm but are independent of time t.
The construction of solutions to problem (2.2.3.1)–(2.2.3.3) consists of a few

stages described below.

Representation of solutions to the problem concerned as the sum of solutions

to simpler problems. We seek a solution to problem (2.2.3.1)–(2.2.3.3) as the sum

u = u0(x, t) + u1(x, t) + u2(x, t), (2.2.3.4)

where

u0 = u0(x, t) (2.2.3.5)

is any twice differentiable function satisfying the boundary condition (2.2.3.2), which

implies that

Γ[u0] = g(x, t) at x ∈ S, t > −τ. (2.2.3.6)

Remark 2.3. For the Dirichlet boundary condition, one should set Γ[u] ≡ u in (2.2.3.2).
In this case, any sufficiently smooth function G(x, t) defined for t > −τ in the closed domain
V

⋃

S and satisfying the condition G(x, t)|x∈S = g(x, t) can be chosen as u0.

The functions u1 = u1(x, t) and u2 = u2(x, t) in (2.2.3.4) are determined by

solving two initial-boundary value of problems, simpler than the original one, with

homogeneous (zero) boundary conditions as described below.
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2.2. Linear Initial-Boundary Value Problems with Constant Delay 103

Problem 1. The function u1 satisfies the linear homogeneous PDE with constant

delay

(u1)t = a1L[u1]+a2L[w1]+c1u1+c2w1, w1 = u1(x, t−τ), t > 0, (2.2.3.7)

homogeneous boundary condition

Γ[u1] = 0 at x ∈ S, t > −τ, (2.2.3.8)

and nonhomogeneous initial condition

u1 = Φ(x, t) at x ∈ V, −τ ≤ t ≤ 0, (2.2.3.9)

where

Φ(x, t) = ϕ(x, t)− u0(x, t). (2.2.3.10)

Problem 2. The function u2 satisfies the linear nonhomogeneous PDE with

constant delay

(u1)2=a1L[u2]+a2L[w2]+c1u2+c2w2+F (x, t), w2=u2(x, t−τ), (2.2.3.11)

where

F (x, t)= f(x, t)−(u0)t+a1L[u0]+a2L[w0]+c1u0+c2w0, w0= u0(x, t−τ),
(2.2.3.12)

and the zero boundary and initial conditions

Γ[u2] = 0 at x ∈ S, t > −τ ; (2.2.3.13)

u2 = 0 at x ∈ V, −τ ≤ t ≤ 0. (2.2.3.14)

Solution of problem 1. Consider the linear homogeneous delay PDE (2.2.3.7)

with the boundary and initial conditions (2.2.3.8) and (2.2.3.9). As previously, we

first look for particular solutions to equation (2.2.3.7) as the product of functions

with different arguments

u1p = X(x)T (t). (2.2.3.15)

Substituting (2.2.3.15) into (2.2.3.7) and separating the variables in the resulting

equation, we arrive at a second-order linear partial differential equation and a first-

order ODE with constant delay:

L[X ] = −µX, (2.2.3.16)

T ′(t) = (c1 − a1µ)T (t) + (c2 − a2µ)T (t− τ). (2.2.3.17)

For µ=λ2, equation (2.2.3.17) coincides with (2.2.2.15). Requiring that the function

(2.2.3.15) must satisfy the homogeneous boundary condition (2.2.3.8), we arrive at

a homogeneous boundary condition for X = X(x):

Γ[X ] = 0 at x ∈ S. (2.2.3.18)
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104 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

With respect to the linear homogeneous stationary eigenvalue problem (2.2.3.16),

(2.2.3.18), we assume that the following three standard conditions hold.

1◦. Problem (2.2.3.16), (2.2.3.18) has nontrivial solutions for only a discrete set

of eigenvalues, µ = µn, n = 1, 2, . . . , such that

0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn ≤ µn+1 ≤ · · · , µn → ∞ as n→ ∞. (2.2.3.19)

Each eigenvalue appears in this ordered sequence as many times as its multiplicity.

2◦. The eigenfunctions, X = Xn(x), corresponding to the eigenvalues µ = µn,

can be chosen real-valued and orthonormal, so that the relations

∫

V

Xm(x)Xn(x) dV = δmn, δmn =

{
1 if m = n,

0 if m 6= n
(2.2.3.20)

hold.

3◦. Any function F (x) that is twice continuously differentiable in an open

domain V+ε (containing V ) and satisfies the boundary condition (2.2.3.18) is ex-

pandable in a Fourier series in the orthonormal system of eigenfunctionsXn(x):

F (x) =

∞∑

n=1

FnXn(x), Fn =

∫

V

F (x)Xn(x) dV. (2.2.3.21)

This series is assumed to be regularly convergent in the domain V̄ = V ∪ S.

◮ Example 2.7. The linear homogeneous eigenvalue problem [534] determined

by the operator L[X ] ≡ div[p(x)∇X ] and described by the equation

div[p(x)∇X ] = −µX, x ∈ V, (2.2.3.22)

subjected to the boundary condition

α(x)X + β(x)
∂X

∂ν
= 0 at x ∈ S (2.2.3.23)

satisfies conditions 1◦–3◦ above. The symbol ∂/∂ν stands for a derivative with re-

spect to the outward normal to the surface S. The functional coefficients in (2.2.3.22)

and (2.2.3.23) satisfy the conditions

p(x) ∈ C1(V̄ ), α(x) ∈ C(S), β(x) ∈ C(S),

p(x) > 0, α(x) ≥ 0, β(x) ≥ 0, α(x) + β(x) > 0.
(2.2.3.24)

The linear homogeneous eigenvalue problems for the Helmholtz equation

∆X = −µX, x ∈ V (L = ∆), (2.2.3.25)

with homogeneous Dirichlet, Neumann, and Robin boundary conditions are impor-

tant special cases of problem (2.2.3.22)–(2.2.3.23).

The book [404] lists eigenvalues and eigenfunctions of many boundary value

problems for equation (2.2.3.25) with various homogeneous boundary conditions for

domains V of different shape. ◭
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2.2. Linear Initial-Boundary Value Problems with Constant Delay 105

In what follows, we assume that the eigenvalues and eigenfunctions of the linear

homogeneous boundary value problem (2.2.3.16), (2.2.3.18) are known, and condi-

tion 1◦–3◦ above are satisfied. On substituting the eigenvaluesµ=µn into (2.2.3.17),

we obtain respective delay ODEs for the functions T = Tn(t).
We will look for solutions to the linear initial-boundary value problem (2.2.3.7)–

(2.2.3.10) as the series

u1(x, t) =

∞∑

n=1

Xn(x)Tn(t), (2.2.3.26)

with the functions u1n(x, t) = Xn(x)Tn(t) being particular solutions to equation

(2.2.3.7) satisfying the homogeneous boundary condition (2.2.3.8).

To determine the initial conditions for the delay ODE (2.2.3.17), we rewrite

condition (2.2.3.9) to expand into a series in eigenfunctions:

Φ(x, t) =

∞∑

n=1

Φn(t)Xn(x), x ∈ V, −τ ≤ t ≤ 0. (2.2.3.27)

Multiplying (2.2.3.27) by Xm(x) (m = 1, 2, . . . ), integrating over the domain V ,

and taking into account (2.2.3.20), we find the functions Φn(t):

Φn(t) =

∫

V

Φ(x, t)Xn(x) dV, −τ ≤ t ≤ 0. (2.2.3.28)

The function Φ(x, t) is defined by formula (2.2.3.10). From relations (2.2.3.26) and

(2.2.3.28) we obtain the following initial conditions for the delay ODE (2.2.3.17)

with µ = µn:

Tn(t) = Φn(t), −τ ≤ t ≤ 0, (2.2.3.29)

where the functions Φn(t) are given by (2.2.3.28).

Since problem (2.2.3.17), (2.2.3.29) with µ = µn coincides, up to notation, with

problem (2.2.2.15), (2.2.2.21), its solution can be expressed as

Tn(t) = eαn(t+τ) expd(σnt, σnτ)Φn(−τ)

+

∫ 0

−τ
eαn(t−s) expd(σn(t− τ − s), σnτ)[Φ

′
n(s)− αnΦn(s)] ds,

(2.2.3.30)

αn = c1 − a1µn, βn = c2 − a2µn, σn = e−αnτβn,

where expd(t, τ) is the delayed exponential function (2.2.1.29).

Substituting the functions (2.2.3.30) into (2.2.3.26) yields the solution to prob-

lem (2.2.3.7)–(2.2.3.10):

u1(x, t) =

∞∑

n=1

Xn(x)

{
eαn(t+τ) expd(σnt, σnτ)Φn(−τ)

+

∫ 0

−τ
eαn(t−s) expd(σn(t− τ − s), σnτ)[Φ

′
n(s)− αnΦn(s)] ds

}
,

(2.2.3.31)

where Φn(t) =
∫
V

[
ϕ(x, t)− u0(x, t)

]
Xn(x) dV .
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106 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

Solution of problem 2. We now look at the linear nonhomogeneous delay

PDE (2.2.3.11)–(2.2.3.12) with the homogeneous boundary and initial conditions

(2.2.3.13) and (2.2.3.14).

First, we expand the nonhomogeneous component of equation (2.2.3.11) into a

series in eigenfunctions of problem (2.2.3.16), (2.2.3.18):

F (x, t) =

∞∑

n=1

Fn(t)Xn(x), Fn(t) =

∫

V

F (x, t)Xn(x) dξ, (2.2.3.32)

where the function F (x, t) is defined by formula (2.2.3.12).

Then, we look for a solution to problem (2.2.3.11)–(2.2.3.14) as the series

u2(x, t) =

∞∑

n=1

Un(t)Xn(x), (2.2.3.33)

which satisfies the homogeneous boundary conditions (2.2.3.13). On substituting

(2.2.3.33) into (2.2.3.11) and taking into account (2.2.3.32), we obtain linear nonho-

mogeneous ODEs with constant delay for Un(t):

U ′
n(t) = (c1 − a1µn)Un(t) + (c2 − a2µn)Un(t− τ) + Fn(t), (2.2.3.34)

where the functions Fn(t) are found from the second formula in (2.2.3.32). To

complete the statement of the problem, we supplement equations (2.2.3.34) with the

homogeneous initial conditions

Un(t) = 0, −τ ≤ t ≤ 0, (2.2.3.35)

which follow from (2.2.3.14) and (2.2.3.33).

Up to notation, problem (2.2.3.34)–(2.2.3.35) coincides with problem (2.2.2.28)–

(2.2.2.29). Therefore, its solution for t ≥ 0 can be represented as

Un(t) =

∫ t

0

eαn(t−s) expd(σn(t− s), σnτ)Fn(s) ds, σn = e−αnτβn, (2.2.3.36)

where the parameters αn and βn are defined in (2.2.3.30). On substituting (2.2.3.36)

into (2.2.3.33), we obtain the solution to problem (2.2.3.11)–(2.2.3.14):

u2(x, t) =

∞∑

n=1

[∫ t

0

eαn(t−s) expd(σn(t− s), σnτ)Fn(s) ds

]
Xn(x). (2.2.3.37)

Formulas (2.2.3.4), (2.2.3.31), and (2.2.3.37) form a basis for the construction of

analytical solutions to the original problem (2.2.3.1)–(2.2.3.3). The eigenvalues µn
and eigenfunctions are determined by solving the homogeneous problem (2.2.3.16),

(2.2.3.18).

◮ Example 2.8. Setting L[u] = ∆u in (2.2.3.1), where ∆ is the Laplace op-

erator, we arrive at an eigenvalue problem for the homogeneous Helmholtz equation
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2.2. Linear Initial-Boundary Value Problems with Constant Delay 107

(2.2.3.25). In the three-dimensional case, the homogeneous Dirichlet boundary con-

ditions on the faces of a rectangular parallelepiped with edges a, b, and c are written

as

X |x=0 = X |x=a = X |y=0 = X |y=b = X |z=0 = X |z=c = 0.

Then the eigenvalues and normalized eigenfunctions of the problem are [404]:

µklm = π2

(
k2

a2
+
l2

b2
+
m2

c2

)
, k, l,m = 1, 2, 3, . . . ,

Xklm(x, y, z) =
8

abc
sin

( πkx
a

)
sin

( πly
b

)
sin

( πmz
c

)
.

◭

2.2.4. Problems for Linear Hyperbolic Equations with
Constant Delay

Statement of the problem. Consider the initial-boundary value problem for the one-

dimensional homogeneous linear hyperbolic equation with constant coefficients and

a constant delay

utt = a1uxx + a2wxx + c1u+ c2w, w = u(x, t− τ), (2.2.4.1)

where a1 > a2 ≥ 0. The equation is defined in the domain Ω = {0< x < h, t > 0}.

We supplement equation (2.2.4.1) with the homogeneous boundary conditions

Γ1[u] = 0 at x = 0, t > −τ ;
Γ2[u] = 0 at x = h, t > −τ, (2.2.4.2)

and consistent initial conditions

u = ϕ(x, t) at 0 < x < h, −τ ≤ t ≤ 0,

ut = ϕt(x, t) at 0 < x < h, −τ ≤ t ≤ 0.
(2.2.4.3)

We assume that the linear operators Γ1,2[u] involved in the boundary condition

(2.2.4.2) are explicitly independent of t. The most common boundary conditions are

specified in the third row of Table 2.2, where one should set g1(t) = g2(t) ≡ 0. In

particular, in the case of the boundary Dirichlet boundary conditions, one should set

Γ1[u] = Γ2[u] = u in (2.2.4.2).

Construction of solutions to problem (2.2.4.1)–(2.2.4.3). We first look for

particular solutions of equation (2.2.4.1) as the product of functions with different

arguments: up = X(x)T (t). Separating the variables in the resulting equation, we

arrive at the following linear ODE and second-order delay ODE:

X ′′(x) = −λ2X(x), (2.2.4.4)

T ′′(t) = (c1 − a1λ
2)T (t) + (c2 − a2λ

2)T (t− τ). (2.2.4.5)
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108 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

Requiring that the function up =X(x)T (t) must satisfy the homogeneous boundary

conditions (2.2.4.2), we obtain the homogeneous boundary conditions for X :

Γ1[X ] = 0 at x = 0, Γ2[X ] = 0 at x = h. (2.2.4.6)

The linear homogeneous eigenvalue problem (2.2.4.4), (2.2.4.6), which coin-

cides with problem (2.2.2.14), (2.2.2.16) has nontrivial solutions X = Xn(x) for

only a discrete set of values of the parameter λ:

λ = λn, X = Xn(x), n = 1, 2, . . . (2.2.4.7)

The eigenvalues and eigenfunctions for the homogeneous linear boundary value

problems described by ODE (2.2.4.4) with five most common types of boundary

conditions are specified in Table 2.3.

Substituting the eigenvalues λ= λn into (2.2.4.5) yields respective second-order

delay ODEs for the functions T = Tn(t).
We seek solutions to the linear initial-boundary value problem (2.2.4.1)–(2.2.4.3)

as the series

u(x, t) =
∞∑

n=1

Xn(x)Tn(t), (2.2.4.8)

where the functions upn(x, t) = Xn(x)Tn(t) are particular solutions to equation

(2.2.4.1) satisfying the homogeneous boundary conditions (2.2.4.2).

To determine the initial conditions for the delay ODE (2.2.4.5) with λ = λn, we

rewrite the first initial condition of (2.2.4.3) to expand into a series in the eigenfunc-

tions:

ϕ(x, t) =
∞∑

n=1

ϕn(t)Xn(x), 0 ≤ x ≤ h, −τ ≤ t ≤ 0. (2.2.4.9)

Multiplying (2.2.4.9) by Xm(x) (m = 1, 2, . . . ), integrating with respect to the

space variable x from 0 to h, and taking into account that the eigenfunctions Xn(x)
and Xm(x) are orthogonal if n 6=m, implying that relations (2.2.1.21) hold, we find

the functions ϕn(t):

ϕn(t) =
1

‖Xn‖2
∫ h

0

ϕ(ξ, t)Xn(ξ) dξ, −τ ≤ t ≤ 0, (2.2.4.10)

where ‖Xn‖2 =
∫ h
0 X

2
n(ξ) dξ.

From relations (2.2.4.8) and (2.2.4.9) and the initial conditions (2.2.4.3) we find

the initial conditions for the delay ODE (2.2.2.15) with λ = λn:

Tn(t) = ϕn(t), T ′
n(t) = ϕ′

n(t) at −τ ≤ t ≤ 0, (2.2.4.11)

where the functions ϕn(t) are given by (2.2.4.10).

To construct analytical solutions of Cauchy-type problems for the second-order

delay ODE (2.2.4.5) with c1 = 0 and the initial data (2.2.4.11), one can take advan-

tage of the results obtained in the study [455], which dealt with a similar problem for
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2.2. Linear Initial-Boundary Value Problems with Constant Delay 109

a constant-delay ODE. The solution for functions Tn(t), obtained by the method of

steps, is quite cumbersome; it is presented in Subsection 1.2.2. Furthermore, problem

(2.2.4.5), (2.2.4.11) can be solved using the Laplace transform (see Subsection 1.4.1)

or numerical methods (see Subsection 5.1).

Once the functions Tn(t) have been found, the solution to the original problem

(2.2.4.1)–(2.2.4.3) is determined by the series (2.2.4.8); the respective eigenfunctions

Xn(x) (and eigenvalues λn) for the most common types of boundary conditions can

be taken from Table 2.3.

Notably, if the inequality a2 > a1 holds, the initial-boundary value problems

(2.2.4.1)–(2.2.4.3) are ill-posed in the sense of Hadamard (see Remark 2.7 in Sub-

section 2.2.5).

Remark 2.4. The study [455] obtained an analytical solution to the initial-boundary value
problem for the one-dimensional hyperbolic linear homogeneous equation with constant delay
(2.2.4.1) where a2 = c1 = 0 and which is subjected to the homogeneous Dirichlet boundary
conditions u|x=0 = u|x=h = 0.

2.2.5. Stability and Instability Conditions for Solutions to
Linear Initial-Boundary Value Problems

An initial-boundary value problem with Dirichlet boundary conditions. Solu-

tions of special form. Let us consider exponential-trigonometric functions of the

form

un = An exp(̺nt) sin
( πnx

h

)
, n = 1, 2, . . . , (2.2.5.1)

where An is a free parameter, and the constant ̺n satisfies the transcendental equa-

tion

̺n = −
(
a1 + a2e

−̺nτ)
( πn
h

)2

+ c1 + c2e
−̺nτ . (2.2.5.2)

Under condition (2.2.5.2), the functions (2.2.5.1) are exact solutions to the ho-

mogeneous parabolic equation with constant delay (2.2.1.1) where f(x, t) ≡ 0 and

satisfy the homogeneous boundary conditions (2.2.1.2) with g1(t) = g2(t) ≡ 0.

It is noteworthy that the transcendental equation (2.2.5.2) can be derived from the

delay ODE (2.2.1.22) by seeking its exact solutions in the exponential from Tn =
An exp(̺nt).

The solution to the initial-boundary value problems for the homogeneous para-

bolic equation with constant delay (2.2.1.1), subjected to the homogeneous boundary

conditions (2.2.1.2) and a fairly arbitrary initial condition, can be represented as a

series whose terms are functions of the form (2.2.5.1)–(2.2.5.2). This solution will

tend to a trivial one if all roots of the characteristic equation (2.2.5.2) have a negative

real part, in which case the trivial solution is said to be asymptotically stable. On the

other hand, if at least one root of the characteristic equation (2.2.5.2) has a positive

real part, then the trivial solution will be unstable as well as any other.

Necessary and sufficient stability conditions for solutions. If there is no delay,

τ = 0, equation (2.2.5.2) has a single, real root: ̺n = c1 + c2 − (a1 + a2)(πn/h)
2.
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110 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

In this case, if the condition

c1 + c2 − (a1 + a2)(π/h)
2 < 0

holds, all constant ̺n will be negative and the respective solutions (2.2.5.1) will tend

to zero as t→ ∞.

In what follows, we assume that τ > 0, a1 > 0, and a2 ≥ 0 (we do not require

the condition a1 > a2 to be satisfied here). Using the notations (2.2.1.27), we rewrite

equation (2.2.5.2) in the more compact form

̺n − αn − βne
−̺nτ = 0,

αn = c1 − a1λ
2
n, βn = c2 − a2λ

2
n, λn = πn/h.

(2.2.5.3)

Up to obvious renaming, equation (2.2.5.3) coincides with the transcendental equa-

tion (1.1.3.3), which was treated in Subsection 1.1.3.

All roots of the characteristic equation (2.2.5.3) have a negative real part if and

only if the following three inequalities hold simultaneously (see the Hayes theorem

in Subsection 1.3.2):

(i) (c1 − a1λ
2
n)τ < 1,

(ii) c1 + c2 − (a1 + a2)λ
2
n < 0,

(iii) c2 − a2λ
2
n +

√
(c1 − a1λ2n)

2 + (µ/τ)2 > 0,

(2.2.5.4)

where λn = πn/h, n = 1, 2, . . . , µ is a root of the transcendental equation µ =
τ(c1 − a1λ

2
n) tanµ that satisfies the condition 0 < µ < π (in the degenerate case of

c1 − a1λ
2
n = 0, one should set µ = π/2).

If inequalities (2.2.5.4) all hold simultaneously, all solutions of the homogeneous

parabolic equation with constant delay (2.2.1.1) satisfying homogeneous boundary

conditions of the form (2.2.1.2) with g1= g2=0 tend to the trivial solution as t→∞.

Sufficient conditions for asymptotic stability of solutions. The inequalities

(2.2.5.4), which involve six continuous parameters, a1, a2, c1, c2, h, and τ , and a

discrete parameter, n, are inconvenient in practical usage. Below are some simpler

sufficient conditions under which all roots of the characteristic equation (2.2.5.3) will

have a negative real part.

Since a1 > 0, a2 ≥ 0, and λn ≥ λ1, the first two inequalities in (2.2.5.4) hold

for any n if they hold for n = 1. Using the inequality
√
z21 + z22 > −z1 with z2 6= 0,

one can easily see that the last condition in (2.2.5.4) holds if the inequality c2− c1 +
(a1 − a2)λ

2
n ≥ 0 is true. For a1 ≥ a2, λn in this inequality can be replaced with λ1.

As a result, we obtain the following conditions:

(i) (c1 − a1λ
2
1)τ < 1,

(ii) c1 + c2 − (a1 + a2)λ
2
1 < 0,

(iii) c2 − c1 + (a1 − a2)λ
2
1 ≥ 0,

(iv) a1 ≥ a2 ≥ 0, a1 > 0,

(2.2.5.5)

where λ1 = π/h. If inequalities (2.2.5.5) all hold simultaneously, all roots of the

characteristic equation (2.2.5.3) will have a negative real part.
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2.2. Linear Initial-Boundary Value Problems with Constant Delay 111

◮ Example 2.9. For c1 = c2 = 0 and a1 > a2 ≥ 0, conditions (2.2.5.5)

hold, and all solutions to the homogeneous parabolic equation with constant delay

(2.2.1.1) that satisfy the homogeneous boundary conditions (2.2.1.2) tend to the

trivial solution as t→ ∞. ◭

Remark 2.5. The stability conditions (2.2.5.5) can also be used if the inequalities a1 ≥
a2 ≥ 0 in Item (iv) are replaced with a2 < 0 and a1 + a2 > 0.

Instability conditions for solutions. Solutions to the homogeneous parabolic

equation with constant delay (2.2.1.1) that satisfy the homogeneous boundary condi-

tions (2.2.1.2) will be unstable if at least one of the inequalities (2.2.5.4) is violated.

Therefore, for solutions to be unstable it suffices that either condition holds:

(i) (c1 − a1λ
2
1)τ > 1,

(ii) c1 + c2 − (a1 + a2)λ
2
1 > 0,

(2.2.5.6)

where λ1 = π/h.

It is noteworthy that if a1 > a2, the characteristic equation (2.2.5.2) can only

have finitely many roots with a positive real part.

Now let us look at the left-hand side of the last inequality in (2.2.5.4). For largen,

we have λn → ∞ and

c2 − a2λ
2
n +

√
(c1 − a1λ2n)

2 + (µ/τ)2 = (a1 − a2)λ
2
n + c2 − c1 +O(λ−2

n ).

It follows that if the condition

a2 > a1 (2.2.5.7)

holds for a sufficiently large n, the inequality

c2 − a2λ
2
n +

√
(c1 − a1λ2n)

2 + (µ/τ)2 < 0

will also hold, which indicates the domain of instability.

An asymptotic formula for the real part of the constant ̺n at large n.

Solutions to the transcendental equation (2.2.5.3) can be expressed via the Lambert

W functionW =W (z) as (cf. formula (1.1.3.5)):

̺n = αn +
1

τ
W (z), z = βnτe

−αnτ , (2.2.5.8)

where W is understood as all branches of the function.

For a1 > 0 and a2 > 0 and sufficiently large n, the coefficients αn and βn are

negative, with limn→∞ αn = −∞ and limn→∞ βn = −∞. Considering the above

and using the two leading terms of the asymptotic representation of the Lambert

W function (1.1.3.10), we obtain the following expression of the real part of the

constant ̺n for a1/a2 = O(1) [410]:

Re ̺n =
1

τ
ln
a2
a1

(as n→ ∞). (2.2.5.9)
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112 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

To sum up, for sufficiently large n, two qualitatively different situations can occur:

Re ̺n < 0 at a2 < a1,

Re ̺n > 0 at a2 > a1.
(2.2.5.10)

In the first case of (2.2.5.10), the trivial solution can be stable or unstable depend-

ing on whether inequalities (2.2.5.4), or the simpler conditions (2.2.5.5) or (2.2.5.6),

hold or not. In the second case of (2.2.5.10), for a sufficiently large n, the associated

exact solution obtained by extracting the real part of (2.2.5.1), will exponentially

grow as time t increases. This means that the trivial solution to the initial-boundary

value problem for the homogeneous equation with constant delay (2.2.1.1) subjected

to the homogeneous boundary conditions (2.2.1.2) will be unstable.

Remark 2.6. The special case of a1 = 0 and c1 = c2 = 0 is discussed in Subsection 2.3.2.

Instability of the nonhomogeneous initial-boundary value problems with

delay. We will show that instability of the trivial solution of a homogeneous equa-

tion with homogeneous boundary conditions leads to instability of any solution to

the general nonhomogeneous initial-boundary value problems with delay (2.2.1.1)–

(2.2.1.3).

Indeed, suppose that the transcendental equation (2.2.5.2) has a root ̺n with

Re ̺n > 0, and u = u(x, t) is an arbitrary solution to the first initial-boundary value

problems with delay (2.2.1.1)–(2.2.1.3). Then the function

us(x, t) = u(x, t) + un(x, t), (2.2.5.11)

where un(x, t) is an exponentially growing function of the form (2.2.5.1) such that

Re ̺n > 0, is a solution to equation (2.2.1.1) and satisfies the nonhomogeneous

boundary conditions (2.2.1.2). It is easy to verify that for sufficiently large n, the

inequality

|us(x, t)− u(x, t)| ≤ |An| for 0 < x < h, −τ ≤ t ≤ 0, (2.2.5.12)

holds. It is apparent from (2.2.5.12) that for a sufficiently small |An| = ε, the initial

data for the solutions u and us of equation (2.2.1.1) are indefinitely close to each

other. However, as t→∞, the two solutions will diverge indefinitely at the point x=
h/2 because the real part of ̺n is positive for large n in formula (2.2.5.1). So we have

lim
t→∞

|us(x, t)− u(x, t)|x=h/2 → ∞ as t→ ∞.

This means that any solution to the delay initial-boundary value problems (2.2.1.1)–

(2.2.1.3) is unstable with respect to variations in the initial data as long as the tran-

scendental equation (2.2.5.2) has a root with Re ̺n > 0.

Stability and instability conditions for solutions to other initial-boundary

value problems. Conditions (2.2.5.4), (2.2.5.5), (2.2.5.6), and (2.2.5.7) can be used

to analyze the stability and instability of solutions to other initial-boundary value

problems. In particular, the solutions to all problems discussed in Subsection 2.2.2

are unstable if inequality (2.2.5.7) holds.
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2.3. Hyperbolic and Differential-Difference Heat Equations 113

To determine whether a solution to an initial-boundary value problem is stable or

unstable, one should insert the least eigenvalue λ1 from Table 2.3 into the sufficient

conditions (2.2.5.5) or (2.2.5.6). For the Neumann boundary conditions (second row

in Table 2.3), one has, in addition, to investigate the sign of the real part of the root ̺0
of the transcendental equation (2.2.5.2) with n = 0.

Remark 2.7. It can be shown [410] that the initial-boundary value problems for hyperbolic
equations with constant delay (2.2.4.1), discussed in Subsection 2.2.4, are also unstable if
a2 > a1.

2.3. Hyperbolic and Differential-Difference Heat

Equations

2.3.1. Derivation of the Hyperbolic and
Differential-Difference Heat Equations

The classical heat (diffusion) equation. The classical model of thermal conduction

or diffusion is based on Fourier’s law [325]:

q = −λ∇θ, (2.3.1.1)

where q is the heat flux density, λ is thermal conductivity, θ is temperature, and ∇ is

the gradient operator.

In the simplest case where thermal sources are absent, the energy conservation

law is

ρcpθt = − div q, (2.3.1.2)

where t is time, ρ is density, and cp is the specific heat capacity of the substance

(medium).

Substituting (2.3.1.1) into (2.3.1.2) gives the classical heat equation [88, 325]:

θt = a∆θ, (2.3.1.3)

where a = λ/(ρcp) is thermal diffusivity, ∆ is the Laplace operator (in the three-

dimensional case, we have ∆θ = θxx + θyy + θzz , where x, y, z are the Cartesian

coordinates).

Notably, the diffusion equation is also written in the form (2.3.1.3), where θ is

concentration, and a is the diffusion coefficient.

The heat equation (2.3.1.3) is of parabolic type and it possesses a physically

paradoxical property of infinite speed of propagation of perturbations. This is not ob-

served in practice, which indicates a limited area of applicability of such equations.

Hyperbolic heat (diffusion) equation. The above drawback of Fourier’s model

(2.3.1.1) led to the need to develop other thermal conduction (diffusion) models that

would give a finite perturbation propagation speed. This resulted in a more complex

thermal conduction model based on the Cattaneo–Vernotte differential law [91, 92,

531, 532] (see also [165, 257, 325, 489]):

q = −λ∇θ − τqt. (2.3.1.4)
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114 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

Model (2.3.1.4) differs from Fourier’s law (2.3.1.1) in the presence of an additional

nonstationary term proportional to τ . When τ =0, model (2.3.1.4) becomes (2.3.1.1).

Using model (2.3.1.4) and in view of the conservation law (2.3.1.2), one obtains

a hyperbolic heat equation:

τθtt + θt = a∆θ, (2.3.1.5)

where the relaxation time τ is assumed small. If τ = 0, equation (2.3.1.5) becomes

(2.3.1.3).

Estimates of the thermal and diffusion relaxation times.

1◦. Estimates of the thermal relaxation time. The relaxation time τ appearing in

the model (2.3.1.4) and equation (2.3.1.5) characterizes nonequilibrium properties

of the thermal conduction process and takes into account the inertia of the thermal

flux. For metals, superconductors, and semiconductors, theoretical estimates give

τ ≈ 10−12–10−6 s [176, 370, 374, 529].

Although very small, such values of τ must be considered when analyzing high-

intensity nonstationary processes, the duration of which is comparable to the re-

laxation time when, for example, materials are treated using ultrashort laser pulses

and high-speed electronic devices [17, 370, 456]. These also include the processes

of high-speed friction heating, local heating during transonic dynamic crack prop-

agation, etc. [244, 285]. For materials and media with an inhomogeneous inter-

nal structure (e.g., capillary-porous bodies, pastes, suspensions, powders, gas-liquid

multiphase media, biological substances, food products, wood, etc.), the relaxation

time can be much larger [47, 121, 126, 325, 507]. For example, the studies [253, 345]

state that the thermal relaxation time of meat products and some bulk media can give

τ -values of the order of ten or more seconds.

2◦. Thermal and diffusion speeds of perturbation propagation. Diffusion relax-

ation time. In simple systems such as ideal gas mixtures, the characteristic diffusion

relaxation time τD , which is the time of establishing the local equilibrium concentra-

tion of the diffusing component, coincides with the characteristic thermal relaxation

time τT , the time of establishing local equilibrium temperature. (The subscript ‘T ’

is added here for clarity.) However, in systems with a more complex structure

[489, 490], such as molten metals, we have τD ≫ τT . In such systems, thermal

equilibrium establishes prior to diffusion equilibrium. Either stage of establishing

local equilibrium has its own characteristic speed (determined from the hyperbolic

heat equation (2.3.1.5)): diffusion speed, VD =(D/τD)
1/2, and thermal wave speed,

VT = (a/τT )
1/2. For homogeneous gaseous and liquid media, we can roughly

assume that the thermal wave speed VT is approximately equal to the speed of sound.

For molten metals, VD ≈ 1–10m/s and VT ≈ 103–104 m/s, or VD ≪ VT . The

speed of heat propagation in the air is approximately equal to the speed of sound

VT ≈ 330m/s. The diffusion speed VD in capillary-porous media is less than VT
by about 106–107 times, so it must be taken into account in mass transfer equations

[325, p. 455]. For diffusion in polymers, the relaxation time is a few seconds [250].

The above examples testify that the thermal and diffusion relaxation times can vary

within very wide limits and must be taken into account when solving many heat and

mass transfer problems.
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2.3. Hyperbolic and Differential-Difference Heat Equations 115

The differential-difference heat equation with a finite relaxation time. To

substantiate the Cattaneo–Vernotte differential model (2.3.1.4) theoretically, one of-

ten (but not always) uses the following differential-difference relation for the thermal

flux [165, 390, 427, 489, 521]:

q|t+τ = −λ∇θ, (2.3.1.6)

in which the left-hand side is evaluated at time t + τ , while the right-hand side is

evaluated at time t. The physical meaning of relation (2.3.1.6) is as follows: unlike

the classical local equilibrium case, transfer processes in local non-equilibrium me-

dia exhibit inertial properties: the system reacts to a thermal action (or the thermal

flux responds to a change in the temperature gradient) a relaxation time τ later than

the current time t.
As a result, we arrive at the linear differential-difference heat equation with a

finite relaxation time

θt|t+τ = a∆θ, (2.3.1.7)

where θ|t+τ = θ(x, t+ τ).

Remark 2.8. The fact that the heat equation with a time delay can happen to be a more
adequate model was first noted by Maxwell [337].

If we formally expand the left-hand side of equation (2.3.1.7) into a Taylor series

in the small τ and retain the two leading terms, we will get the hyperbolic heat

equation (2.3.1.5). However, as will be shown in the next section, this formal reason-

ing frequently used in the literature is not justified in any way since it significantly

changes the properties of the equation.

Denoting u = θ(x, t+ τ) in (2.3.1.7), we obtain the delay PDE

ut = a∆w, w = u(x, t− τ), (2.3.1.8)

which is a special case of equation (2.1.1.1).

2.3.2. Stokes Problem and Initial-Boundary Value Problems
for the Differential-Difference Heat Equation

Exact solutions to the one-dimensional differential-difference heat equation. In

the one-dimensional case, the differential-difference heat equation (2.3.1.7) simpli-

fies to become

θt|t+τ = aθxx. (2.3.2.1)

Here, as previously, the left-hand side is evaluated at time t+ τ , while the right-hand

side is evaluated at time t.
Below we list a number of exact solutions to equation (2.3.2.1).

1◦. Multiplicative separable solutions:

θ = [A cos(kx) +B sin(kx)]e−λt, ak2 = λe−λτ (λ > 0); (2.3.2.2)

θ = [A exp(kx) +B exp(−kx)]e−λt, ak2 = −λe−λτ (λ < 0), (2.3.2.3)

where A, B, and λ are arbitrary constants.
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116 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

Solution (2.3.2.2) is periodic in the space coordinate x and decays as t → ∞.

For 0 < λ <∞ and τ > 0, the range of the parameter k is limited: 0 < k ≤ kmax =
(eaτ)−1/2. For a given k such that 0 < k < kmax, equation (2.3.2.1) admits two real-

valued solutions of the form (2.3.2.2) associated with two positive roots, λ1 and λ2,

of the transcendental equation λe−λτ = ak2.

Solutions (2.3.2.2) and (2.3.2.3) are special cases of the multiplicative separable

solution

θ = ϕ(x)ψ(t), (2.3.2.4)

where the functions ϕ(x) and ψ(t) satisfy the linear constant-coefficient equations

ϕ′′
xx + cϕ = 0, (2.3.2.5)

ψ′
t(t+ τ) + acψ(t) = 0. (2.3.2.6)

The former is an ordinary differential equation, while the latter is a differential-

difference equation. The change of variable t̄ = t+ τ reduces the latter equation to

a standard delay ODE (for its solution, see Subsection 1.1.3).

2◦. Solution periodic in t:

θ = e−γx[A cos(ωt− βx) +B sin(ωt− βx)] + C, (2.3.2.7)

β =
( ω

2a

)1/2
[1 + sin(τω)]1/2, γ =

( ω

2a

)1/2 cos(τω)

[1 + sin(τω)]1/2
,

where A, B, C, and ω are arbitrary constants.

Solution (2.3.2.7) decays as x→ ∞ if C = 0 and τω < 1
2π.

3◦. Polynomial solutions:

θ = Ax+B,

θ = A(x2 + 2at) +B,

θ = A(x3 + 6atx) +B,

θ = A[x4 + 12a(t− τ)x2 + 12a2(t− 2τ)2] +B,

θ = A[x5 + 20a(t− τ)x3 + 60a2(t− 2τ)2x] +B,

θ = x2n +

n∑

k=1

(2n)(2n− 1) . . . (2n− 2k + 1)

k!
ak(t− kτ)kx2n−2k,

θ = x2n+1 +

n∑

k=1

(2n+ 1)(2n) . . . (2n− 2k + 2)

k!
ak(t− kτ)kx2n−2k+1,

where A and B are arbitrary constants, and n is a positive integer. The first three

solutions are independent of the relaxation time τ .

Stokes problem with a periodic boundary condition (0 ≤ x < ∞). Below

we consider the Stokes problem for the one-dimensional differential-difference heat

equation (2.3.2.1) without initial data and with special boundary conditions

θ = A cos(ωt) at x = 0, θ → 0 at x→ ∞, (2.3.2.8)
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2.3. Hyperbolic and Differential-Difference Heat Equations 117

where A and ω are arbitrary constants. We will look for a solution to equation

(2.3.2.1) periodic in time t and satisfying the boundary conditions (2.3.2.8).

Problem (2.3.2.1), (2.3.2.8) has an exact solution that is a special case of solution

(2.3.2.7) (see [390, 427]):

θ = Ae−γx cos(ωt− βx), (2.3.2.9)

where

β =
( ω

2a

)1/2
[1 + sin(τω)]1/2, γ =

( ω

2a

)1/2 cos(τω)

[1 + sin(τω)]1/2
, (2.3.2.10)

ω 6= 1

τ

( 3π

2
+ 2πk

)
, k = 0, 1, 2, . . .

At τ = 0, solution (2.3.2.9), (2.3.2.10) becomes the solution to the related Stokes

problem without initial conditions for the classical parabolic heat equation, which is

given by formula (2.3.2.9) with

β = γ =
( ω

2a

)1/2
. (2.3.2.11)

The solution to the problem without initial conditions for the one-dimensional hyper-

bolic heat equation (2.3.1.5) (with ∆θ = θxx) resulting from the Cattaneo–Vernotte

differential model (2.3.1.4) is described by formula (2.3.2.9) in which

β =
( ω

2a

)1/2[
τω + (1 + τ2ω2)1/2

]1/2
,

γ =
( ω

2a

)1/2[
τω + (1 + τ2ω2)1/2

]−1/2
.

(2.3.2.12)

A comparison of formulas (2.3.2.9) and (2.3.2.10) with (2.3.2.9) and (2.3.2.11)

shows that for small ωτ (to be precise, for 0 < ωτ < π/2), the decay constant γ for

the differential-difference model is less than that for the classical model (described

by the parabolic equation). However, the coefficient β for the differential-difference

model is greater than that for the classical model.

The two leading terms in the expansions of formulas (2.3.2.10) and (2.3.2.12)

into a series in small τ (with ωτ≪ 1) coincide. For small τ > 0 and large frequencies

ω ≫ τ−1, the coefficients (2.3.2.12) have the following asymptotics:

β = ω

√
τ

a
, γ =

1

2
√
aτ
. (2.3.2.13)

This means that for large frequencies, the decay constant γ is independent of ω,

which is a qualitative difference from the respective solution of the parabolic heat

equation (2.3.2.11). Both determining parameters in (2.3.2.13) depend on the per-

turbation parameter τ significantly. For large values of ωτ , solutions (2.3.2.9),

(2.3.2.10) and (2.3.2.9), (2.3.2.12) differ qualitatively. Specifically, the decay con-

stant γ in the differential-difference model depends on the frequencyω significantly:
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118 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

it does not tend to a constant quantity as in the Cattaneo–Vernotte model (see the

asymptotics (2.3.2.13)).

Exact solution of the Stokes problems with a first-order volume reaction.

The one-dimensional heat and mass transfer linear differential-difference equation

with a source is expressed as

θt|t+τ = aθxx − kθ|t+τ , (2.3.2.14)

where θ|t+τ = θ(x, t + τ). In mass transfer problems, the last term in equation

(2.3.2.14) with k > 0 describes a first-order chemical reaction [401].

Consider the Stokes problem for the one-dimensional differential-difference heat

equation with a source (2.3.2.14) without initial data and with the special periodic

boundary conditions (2.3.2.8).

Problem (2.3.2.14), (2.3.2.8) has the following exact solution:

θ = Ae−γx cos(ωt− βx),

β =
1√
2a

[√
ω2 + k2 + ω sin(τω)− k cos(τω)

]1/2
,

γ =
ω cos(τω) + k sin(τω)

√
2a

[√
ω2 + k2 + ω sin(τω)− k cos(τω)

]1/2 .

(2.3.2.15)

In the limiting case k = 0, formulas (2.3.2.15) become (2.3.2.9) and (2.3.2.10).

Remark 2.9. The change of variable

θ(x, t) = e−ktη(x, t)

converts equation (2.3.2.14) to a simpler, sourceless equation of the form (2.3.2.1):

ηt|t+τ = aekτηxx.

An initial-boundary value problem for the differential-difference heat equa-

tion. The first initial-boundary value problem for the one-dimensional differential-

difference heat equation (2.3.2.1) can be written as

ut = awxx, w = u(x, t− τ);

u = g1(t) at x = 0, t > −τ ; u = g2(t) at x = h, t > −τ ;
u = ϕ(x, t) at 0 < x < h, −τ ≤ t ≤ 0,

(2.3.2.16)

where the notation u(x, t) = θ(x, t+ τ) is used.

Problem (2.3.2.16) is a special case of problem (2.2.1.1)–(2.2.1.3) with a1 = 0,

a2 = a, c1 = c2 = 0, and f(x, t) ≡ 0. It follows from the results presented in

Subsection 2.2.5 that the homogeneous problem (2.3.2.16) with g1(t) = g2(t) ≡ 0
and ϕ(x, t) ≡ 0 admits the exact solutions (2.2.5.1), where the coefficient λn in the

exponential is expressed via the Lambert W function (see formula (2.2.5.8) with

αn = 0):

λn =
1

τ
W (z), z = −aτ

( πn
h

)2
. (2.3.2.17)
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2.4. Linear Initial-Boundary Value Problems with Proportional Delay 119

Using the asymptotic representation of the Lambert W function (1.1.3.10), we

can express the real part of λn for sufficiently large n as [410]:

Reλn =
1

τ

(
2 lnn− ln lnn+O(1)

)
. (2.3.2.18)

Hence, λn → ∞ as n → ∞. Therefore, for large n, the associated exact solution

obtained by extracting the real part of (2.2.5.1) will exponentially grow with time t;
moreover, the initial-boundary value problem with delay (2.3.2.16) is unstable with

respect to small perturbations in the initial data (this fact can be proved using a

similar reasoning as in Subsection 2.2.5). Apparently, this fact was first established

in [243], where equation (2.3.2.1) was treated using first-kind homogeneous bound-

ary conditions and a special initial condition (see also [234, 390]).

Consequently, attempting to generalize the classical thermal conduction model

(2.3.1.1) by employing the differential-difference model (2.3.1.6) with a finite relax-

ation time τ (delay) leads to problem (2.3.2.16) whose solutions are unstable for any

τ > 0. This means that the differential-difference model (2.3.1.6) is unsuitable for

the description of thermal (and diffusion) processes.

Notably, the Cattaneo–Vernotte differential model (2.3.1.4) results in a stable

trivial solution to the initial-boundary value problem for the hyperbolic heat equation

(2.3.1.5), which is because both roots of the associated characteristic equation are

either negative or have a negative real part. The derivation of the hyperbolic heat

equation (2.3.1.5) from the differential-difference equation (2.3.1.7) through the ex-

pansion with respect to small τ is fallacious for t∼ τ (it is assumed in the expansion

that τ ≪ t). It is at small t ∼ τ that using the hyperbolic heat equation (2.3.1.5)

allows one to remove the above drawback of the parabolic heat equation (2.3.1.3).

2.4. Linear Initial-Boundary Value Problems with

Proportional Delay

2.4.1. Preliminary Remarks

There are relatively few publications devoted to analyzing and solving partial dif-

ferential equations with proportional delay. The study [591] uses a first-order linear

PDE with proportional delay to simulate the growth and division of cells distributed

by size. It looks for a solution to this equation as a series whose terms are determined

by solving simpler PDEs without delay. The article [141] explores a more complex

linear reaction-diffusion equation with a proportional space argument (obtained by

adding a diffusion term to the equation dealt with in [591]).

The study [308] briefly outlines the following initial-boundary value problems

for linear heat and wave equations with proportional delay in two arguments,

ut(α
2x, t) = uxx(x, βt) and utt(α

2x, t) = uxx(x, β
2t),

subjected to homogeneous Dirichlet boundary conditions and a general initial condi-

tion. The authors employ the method of separation of variables to construct solutions.
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120 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

A complicating factor in these problems is the non-orthogonality of the system of

eigenfunctionsXn(x).

The articles [458, 459, 484] investigate the issues of unique solvability and

smoothness of linear boundary value problems for elliptic PDEs with dilated or con-

tracted arguments in the highest-order derivatives of the unknown (see also [364]).

The studies [1, 9, 194, 416] discuss analytical solution methods for some linear

and nonlinear PDEs with proportional delays. The article [492] constructs a finite-

difference scheme of numerical integration of first-order constant delay PDEs with

respect to t and proportional delay PDEs with respect to x. The studies [36, 461,

509] are devoted to numerical solution methods for PDEs with proportional delays

[36, 461] and more complex, variable delays [509].

2.4.2. First Initial-Boundary Value Problem for a Parabolic
Equation with Proportional Delay

Statement of the problem. Consider the first initial-boundary value problem for a

one-dimensional parabolic linear homogeneous equation with constant coefficients

and a proportional delay:

ut = a1uxx + a2wxx + c1u+ c2w, w = u(x, pt). (2.4.2.1)

The equation is defined in the domain Ω = {0 < x < h, t > 0}, and it is assumed

that a1 > a2 ≥ 0 and 0 < p < 1. We supplement equation (2.4.2.1) with first-kind

homogeneous boundary conditions (Dirichlet conditions)

u = 0 at x = 0, u = 0 at x = h (2.4.2.2)

and a general initial condition

u = ϕ(x) at t = 0. (2.4.2.3)

By reasoning in the same way as for the linear homogeneous equation with

constant delay (2.2.1.1) with f = 0, we can show by separation of variables that the

proportional delay equation (2.4.2.1) admits exact solutions as the product of two

functions with different arguments:

un(x, t) = Tn(t) sin
( πnx

h

)
, n = 1, 2, . . . . (2.4.2.4)

The functions Tn(t) satisfy the first-order linear ODEs with proportional delay

T ′
n(t) =

[
c1 − a1

( πn
h

)2 ]
Tn(t) +

[
c2 − a2

( πn
h

)2 ]
Tn(pt), (2.4.2.5)

which one can obtain from (2.2.1.22) by formally replacing T (t−τ) with T (pt). The

particular solutions (2.4.2.4) satisfy the homogeneous boundary conditions (2.4.2.2).
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2.4. Linear Initial-Boundary Value Problems with Proportional Delay 121

Using the linear superposition principle, we look for a solution to the initial-

boundary value problem (2.4.2.1)–(2.4.2.3) as the infinite series

u(x, t) =
∞∑

n=1

Tn(t) sin
( πnx

h

)
(2.4.2.6)

that satisfies equation (2.4.2.1) and the homogeneous boundary conditions (2.4.2.2).

To determine the initial condition for the ODE with proportional delay (2.4.2.5),

we rewrite the function ϕ(x) involved in the initial condition (2.4.2.3) to expand into

a series in the eigenfunctions

ϕ(x) =
∞∑

n=1

An sin
πnx

h
. (2.4.2.7)

Multiplying (2.4.2.7) by Xm(x) = sin πmx
h (m = 1, 2, . . . ) and integrating with

respect to the space variable x from 0 to h, we find the coefficients An:

An =
2

h

∫ h

0

ϕ(ξ) sin
( πnξ

h

)
dξ. (2.4.2.8)

From relations (2.4.2.6) and (2.4.2.7) we obtain the initial condition for the propor-

tional delay ODE (2.4.2.5):

Tn(0) = An, (2.4.2.9)

where the coefficients An are determined by formula (2.4.2.8).

Up to notation, the linear problem (2.4.2.5), (2.4.2.9) with the normalized initial

condition An = 1 coincides with problem (1.4.2.2) where c = 0, which was treated

in Subsection 1.4.2. Introducing the notations

αn = c1 − a1

( πn
h

)2
, βn = c2 − a2

( πn
h

)2
(2.4.2.10)

and using formulas (1.4.2.4), we represent the solution to problem (2.4.2.5), (2.4.2.9)

as the power series

Tn(t) = An

(
1 +

∞∑

m=1

γmnt
m

)
, γmn =

1

m!

m−1∏

k=0

(αn + βnp
k). (2.4.2.11)

For 0 < p < 1, the series (2.4.2.11) has an infinite radius of convergence.

Substituting expressions (2.4.2.11) into formula (2.4.2.6) yields the solution to

problem (2.4.2.1)–(2.4.2.3):

u(x, t) =

∞∑

n=1

An

(
1 +

∞∑

m=1

γmnt
m

)
sin

( πnx
h

)
,

γmn =
1

m!

m−1∏

k=0

(αn + βnp
k),

(2.4.2.12)

where the coefficients An, αn, βn are defined by formulas (2.4.2.8) and (2.4.2.10).

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 121

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 121



122 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

2.4.3. Other Initial-Boundary Value Problems for a
Parabolic Equation with Proportional Delay

Representation of solutions to initial-boundary value problems as the sum of

solutions to simpler problems. Below we describe a procedure for constructing

solutions, by the method of separation of variables, to other initial-boundary value

problems for the one-dimensional parabolic linear homogeneous PDE with propor-

tional delay (2.4.2.1). For brevity, we will write this equation as

L[u,w] = 0, t > 0, (2.4.3.1)

where L[u,w]≡ ut−a1uxx−a2wxx− c1u− c2w and w = u(x, pt) with 0< p< 1.

We will supplement equation (2.4.3.1) with different linear homogeneous bound-

ary conditions

Γ1[u] = 0 at x = 0, Γ2[u] = 0 at x = h, (2.4.3.2)

and the general initial condition

u = ϕ(x) at t = 0. (2.4.3.3)

The third column of Table 2.2 with g1(t) = g2(t) ≡ 0 shows the most common

homogeneous boundary conditions, which define the form of the operators (func-

tions) Γ1,2[u].
As previously, we first look for particular solutions to the linear homogeneous

equation (2.4.3.1) as the product of two functions with different arguments: u1 =
X(x)T (t). Separating the variables in the resulting equation, we arrive at the linear

ODE and ODE with proportional delay

X ′′(x) = −λ2X(x), (2.4.3.4)

T ′(t) = (c1 − a1λ
2)T (t) + (c2 − a2λ

2)T (pt). (2.4.3.5)

Requiring that the function u1 =X(x)T (t) must satisfy the homogeneous boundary

conditions (2.4.3.2), we obtain homogeneous boundary conditions for X :

Γ1[X ] = 0 at x = 0, Γ2[X ] = 0 at x = h. (2.4.3.6)

The nontrivial solutions X = Xn(x) of the linear homogeneous eigenvalue

problem (2.4.3.4), (2.4.3.6) exist for only a discrete set of values of λ:

λ = λn, X = Xn(x), n = 1, 2, . . . (2.4.3.7)

Table 2.3 presents the eigenvalues and eigenfunctions of homogeneous linear

boundary value problems for ODE (2.4.3.4) subjected to the five most common types

of boundary conditions.

Using the linear superposition principle, we look for a solution to the initial-

boundary value problem (2.4.3.1)–(2.4.3.1) as the infinite series

u(x, t) =
∞∑

n=1

Tn(t)Xn(x), (2.4.3.8)
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2.4. Linear Initial-Boundary Value Problems with Proportional Delay 123

with the functions Tn(t) described by equation (2.4.3.5) at λ = λn. By construction,

the series (2.4.3.8) automatically satisfies equation (2.4.3.1) and the homogeneous

boundary conditions (2.4.3.2).

To determine the initial conditions for the ODE with proportional delay (2.4.3.5)

at λ = λn, we represent the function ϕ(x) appearing in the initial condition (2.4.3.3)

as a series in the eigenfunctions:

ϕ(x) =

∞∑

n=1

AnXn(x). (2.4.3.9)

Multiplying (2.4.3.9) byXm(x) (m=1, 2, . . . ), integrating with respect to the space

variable x from 0 to h, and taking into account that any two eigenfunctions Xn(x)
and Xm(x) with n 6= m are orthogonal, meaning that relations (2.2.1.21) hold, we

find the coefficients An:

An =
1

‖Xn‖2
∫ h

0

ϕ(ξ)Xn(ξ) dξ, ‖Xn‖2 =

∫ h

0

X2
n(ξ) dξ. (2.4.3.10)

From relations (2.4.3.8) and (2.4.3.9) we obtain the initial conditions for the ODE

with proportional delay (2.4.3.5) where λ = λn:

Tn(0) = An. (2.4.3.11)

The coefficients An are determined by formula (2.4.3.10).

Up to notation, the linear problem with proportional delay (2.4.3.5), (2.4.3.11)

where λ = λn coincides with problem (2.4.2.5), (2.4.2.9) discussed in Subsection

2.4.2. Consequently, the solution to problem (2.4.2.5), (2.4.2.9) can be represented

as the power series

Tn(t) = An

(
1 +

∞∑

m=1

γmnt
m

)
, γmn =

1

m!

m−1∏

k=0

(αn + βnp
k),

αn = c1 − a1λ
2
n, βn = c2 − a2λ

2
n.

(2.4.3.12)

Substituting expressions (2.4.3.12) into formula (2.4.3.8) yields the solution to

problem (2.4.3.1)–(2.4.3.3):

u(x, t) =
∞∑

n=1

An

(
1 +

∞∑

m=1

γmnt
m

)
Xn(x), (2.4.3.13)

where the coefficients An and γmn are evaluated using expressions (2.4.3.10) and

(2.4.3.12).

Solutions to the initial-boundary value problems (2.4.3.1)–(2.4.3.3) with any

type of boundary conditions (see Table 2.2) can be obtained with formulas (2.4.3.10),

(2.4.3.12), and (2.4.3.13) by taking the respective eigenvalues λn and eigenfunctions

Xn(x) from Table 2.3.
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124 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

Remark 2.10. Solutions to more complicated initial-boundary value problems described
by n-dimensional homogeneous PDEs with proportional delay subjected to homogeneous
boundary conditions can be constructed in a similar way to those in Subsection 2.2.3 for
equations with constant delay.

A self-similar problem for a linear PDE with two proportional arguments.

We now consider the parabolic-type equation with two proportional arguments

ut = a1uxx + a2wxx, w = u(px, qt) (x > 0, t > 0), (2.4.3.14)

where p > 0 and q > 0 are scaling factors.

We supplement equation (2.4.3.14) with a special initial and a special boundary

condition

u = A at t = 0, u = B at x = 0, (2.4.3.15)

where A and B are arbitrary constants.

The solution to problem (2.4.3.14)–(2.4.3.15) is self-similar and it can be repre-

sented as

u = U(z), z = xt−1/2, (2.4.3.16)

where the function U(z) satisfies the following boundary value problem for an ODE

with proportional argument:

− 1
2 zU

′
z = a1U

′′
zz + a2W

′′
zz , W = U(σz), σ = pq−1/2; (2.4.3.17)

U(0) = B, U(∞) = A. (2.4.3.18)

Suppose that the scaling factors are related by the parabolic formula q=p2. Then

we get σ=1 andU =W . In this special case, equation (2.4.3.17) is easy to integrate,

and the solution to the original problem (2.4.3.14)–(2.4.3.15) is expressed as

u = B + (A−B) erf
( x

2
√
at

)
, a = a1 + a2, (2.4.3.19)

where erf ζ = 2√
π

∫ ζ
0 exp(−ξ2) dξ is the error function.

2.4.4. Initial-Boundary Value Problem for a Linear
Hyperbolic Equation with Proportional Delay

Statement of the problem. Let us look at the first initial-boundary value problem

for a one-dimensional hyperbolic linear homogeneous equation with constant coef-

ficients and a proportional delay

utt = a1uxx + a2wxx + c1u+ c2w, w = u(x, pt). (2.4.4.1)

The equation is defined in the domain Ω = {0 < x < h, t > 0} and it is assumed

that a1 > a2 ≥ 0 and 0 < p < 1. We supplement equation (2.4.4.1) with the first-

kind (Dirichlet) homogeneous boundary conditions

u = 0 at x = 0, u = 0 at x = h, (2.4.4.2)
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2.4. Linear Initial-Boundary Value Problems with Proportional Delay 125

and general initial conditions

u = ϕ(x) at t = 0, ut = ψ(x) at t = 0. (2.4.4.3)

Reasoning in the same way as for the parabolic equation (2.4.2.1), we can em-

ploy the method of separation of variables to show that the hyperbolic equation with

proportional delay (2.4.4.1) admits exact solutions as the product of two functions

with different arguments

un(x, t) = Tn(t) sin
( πnx

h

)
, n = 1, 2, . . . , (2.4.4.4)

with the functions Tn(t) satisfying the second-order linear ODEs with proportional

delay

T ′′
n (t) =

[
c1 − a1

( πn
h

)2 ]
Tn(t) +

[
c2 − a2

( πn
h

)2 ]
Tn(pt). (2.4.4.5)

These equations can be obtained from (2.4.2.5) by formally replacing the first deriva-

tive with the second derivative. The particular solutions (2.4.4.4) satisfy the homo-

geneous boundary conditions (2.4.4.2).

Using the linear superposition principle, we look for a solution to the initial-

boundary value problem (2.4.4.1)–(2.4.4.3) as the infinite series

u(x, t) =

∞∑

n=1

Tn(t) sin
( πnx

h

)
. (2.4.4.6)

It satisfies equation (2.4.4.1) and the homogeneous boundary conditions (2.4.4.2).

To determine the initial conditions for the ODE with proportional delay (2.4.4.5),

we rewrite the functions ϕ(x) and ψ(x) appearing in the initial conditions (2.4.4.3)

to expand into series in the eigenfunctions:

ϕ(x) =

∞∑

n=1

An sin
πnx

h
, ψ(x) =

∞∑

n=1

Bn sin
πnx

h
. (2.4.4.7)

Multiplying (2.4.4.7) by Xm(x) = sin πmx
h (m = 1, 2, . . . ) and integrating with

respect to the space variable x from 0 to h, we find the coefficients An and Bn:

An =
2

h

∫ h

0

ϕ(ξ) sin
( πnξ

h

)
dξ, Bn =

2

h

∫ h

0

ψ(ξ) sin
( πnξ

h

)
dξ. (2.4.4.8)

From relations (2.4.4.6) and (2.4.4.7) we obtain the initial conditions for the ODE

with proportional delay (2.4.4.5):

Tn(0) = An, T ′
n(0) = Bn, (2.4.4.9)

where the coefficients An and Bn are determined by formulas (2.4.4.8).

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 125

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 125



126 2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

Up to notation, the linear problem for the second-order ODE with proportional

delay (2.4.4.5), (2.4.4.9) coincides with problem (1.2.2.24), (1.2.2.25) with c = 0
discussed in Subsection 1.2.2. Considering the above and using formulas (1.2.2.26)

and (1.2.2.26), we can represent the solution to problem (2.4.4.5), (2.4.4.9) as a linear

combination of two power series:

Tn(t) = AnTn1(t) +BnTn2(t), (2.4.4.10)

where

Tn1(t) = 1+

∞∑

m=1

γn,2mt
2m, γn,2m=

1

(2m)!

m−1∏

k=0

(αn+βnp
2k);

Tn2(t) = t+

∞∑

m=1

γn,2m+1t
2m+1, γn,2m+1=

1

(2m+1)!

m−1∏

k=0

(αn+βnp
2k+1).

(2.4.4.11)

The coefficients αn and βn are defined by formulas (2.4.2.10). For 0 < p < 1, both

series in (2.4.4.11) have an infinite radius of convergence.

Substituting expressions (2.4.4.10) into (2.4.4.6) yields the solution to the initial-

boundary value problem (2.4.4.1)–(2.4.4.3):

u(x, t) =
∞∑

n=1

[
AnTn1(t) +BnTn2(t)

]
sin

( πnx
h

)
,

Tn1(t) = 1 +

∞∑

m=1

γn,2mt
2m, Tn2(t) = t+

∞∑

m=1

γn,2m+1t
2m+1,

(2.4.4.12)

where the coefficients An, Bn, γn,2m, γn,2m+1 are evaluated by formulas (2.4.4.8)

and (2.4.4.11).
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3. Analytical Methods and Exact

Solutions to Nonlinear Delay

PDEs. Part I

3.1. Remarks and Definitions. Traveling Wave

Solutions

3.1.1. Preliminary Remarks. Terminology. Classes of
Equations Concerned

Preliminary Remarks. Nonlinear second- and higher-order partial differential equa-

tions with delay (nonlinear equations of mathematical physics with delay) arise in

various areas of applied mathematics, physics, mechanics, biology, medicine, chem-

istry, and numerous applications. General closed-form solutions of such equations

are impossible to find even in the simplest cases. Therefore, researchers have to

restrict themselves to seeking and analyzing particular solutions which are frequently

referred to as exact solutions.

Exact solutions of differential equations have always played and continue to play

a huge role in shaping the correct understanding of the qualitative features of many

phenomena and processes in various fields of natural science. Exact solutions of

nonlinear equations clearly demonstrate and contribute to the better understanding

of the mechanisms of such complicated nonlinear effects as the spatial localization

of transfer processes, the multiplicity or absence of stationary states under certain

conditions, the existence of blow-up modes, the possible non-smoothness or discon-

tinuity of the unknown quantities, and many more.

Even those particular exact solutions of differential equations that do not have a

clear physical meaning can fit for designing test problems to check the correctness

and evaluate the accuracy of various numerical, asymptotic, and approximate ana-

lytical methods. In addition, model equations and problems that admit exact solu-

tions serve as a basis for developing new numerical, asymptotic, and approximate

methods, making it possible to study more complex problems that do not have an

exact analytical solution. Finally, exact methods and solutions are also necessary

for developing and improving the relevant sections of computer software intended

for symbolic calculations (computer algebra systems such as Mathematica, Maple,

Maxima, and more).

Factors leading to the need to consider the delay. The studies [182, 213,

283, 346, 570] mention various factors that lead to the need to introduce delay
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128 3. ANALYTICAL METHODS AND EXACT SOLUTIONS TO DELAY PDES. PART I

into mathematical models described by reaction-diffusion type equations and other

nonlinear PDEs. In particular, in biology and biomechanics, delays are associated

with limited transmission rates of nerve and muscle reactions in living tissues. In

medical problems of the spread of infectious diseases, the delay time is determined

by the incubation period (the time interval between initial contact with an infectious

agent and appearance of the first signs or symptoms of the disease). In population

dynamics, a delay arises because individuals participate in reproduction only after

reaching a certain age. In control theory, delays occur due to limited speeds of signal

propagation and limited rates of technological processes.

Delay reaction-diffusion equations. In natural science and numerous applica-

tions, nonlinear reaction-diffusion equations with constant delay are very common

to model phenomena and processes with aftereffects (e.g., see [420, 569, 572]):

ut = auxx + F (u,w), w = u(x, t− τ), (3.1.1.1)

where a > 0 is the transfer (diffusion) coefficient, F (u,w) is the kinetic function,

and τ is the delay time.

The special case F (u,w) = f(w) in (3.1.1.1) allows a simple physical interpre-

tation: the transfer of a substance in a local-nonequilibrium medium exhibits inertial

properties, meaning that the system does not respond to an action instantaneously, as

in the classical local-equilibrium case, but a delay time τ later.

Nonlinear delay reaction-diffusion equations of the form (3.1.1.1) and related

more complicated equations and systems of such equations arise in various applica-

tions in such disciplines as biology, biophysics, biochemistry, chemistry, medicine,

ecology, economics, control theory, the theory of climate models, and many others

(e.g., see the studies [152, 189, 224, 315, 339, 377, 420, 483, 519, 569, 572] and

references therein). Notably, similar equations occur in the mathematical theory of

artificial neural networks, whose results are used in signal and image processing and

pattern recognition problems [19, 85, 86, 319, 320, 493, 542, 607].

The models described by nonlinear delay reaction-diffusion equations of the

form (3.1.1.1) are usually obtained from generalizing simpler models. To this end,

the following two techniques are most frequently used:

(i) in models described by first-order ordinary differential equations with inde-

pendent variable t and constant delay τ , one adds a diffusion term auxx;

(ii) in models described by reaction-diffusion equations without delay, one re-

places the kinetic function f(u) with a more complicated kinetic function with

delay, F (u,w), that satisfies the condition F (u, u) = f(u).

A further generalization of reaction-diffusion models would be to use nonlinear

equations with a variable transfer coefficient and a constant delay,

ut = [g(u)ux]x + F (u,w), w = u(x, t− τ), (3.1.1.2)

or even more complex related equations with variable delay.

Remark 3.1. For exact solutions to various reaction-diffusion type equations (3.1.1.1) and
(3.1.1.2) with τ = 0 and related nonlinear PDEs without delay, see, for example, [99, 100,
134, 137, 148, 171, 175, 229, 394, 396, 397, 400, 422, 425, 430, 437, 442, 445, 603].

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 128

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 128



3.1. Remarks and Definitions. Traveling Wave Solutions 129

Nonlinear delay Klein–Gordon type wave equations. Apart from reaction-

diffusion equations with constant delay (3.1.1.1) and (3.1.1.2), the present book also

deals with nonlinear Klein–Gordon type wave equations with constant delay [429]:

utt = auxx + F (u,w), w = u(x, t− τ). (3.1.1.3)

In addition, it also treats some more complicated related nonlinear wave type equa-

tions with delay, including telegraph and hyperbolic reaction-diffusion equations

with delay [419].

Remark 3.2. Klein–Gordon type wave equations occur in various areas of theoretical
physics, including relativistic quantum mechanics and field theory. For exact solutions to
various nonlinear equations of the form (3.1.1.3) with τ = 0 and related nonlinear PDEs
without delay, see, for example, [12, 15, 62, 108, 147, 195, 218, 220–223, 229, 371, 399, 422,
425, 430, 443, 494, 593, 608, 611].

Remark 3.3. For example, see [117, 118, 304, 538] for the investigation of oscillatory
properties of solutions to some nonlinear hyperbolic equations with delay.

Terminology: which solutions are called exact. In the present book, the fol-

lowing solutions are understood as exact solutions to nonlinear partial differential

equations with constant or variable delay [416, 428, 432]:

(a) Solutions expressible in terms of elementary functions, the functions appear-

ing in the equation (in case the equation involves arbitrary or special functions), and

indefinite or/and definite integrals.

(b) Solutions expressible in terms of solutions to ordinary differential equations

or systems of such equations.

(c) Solutions expressible in terms of solutions to ordinary differential equations

with constant or variable delay or systems of such equations.

Various combinations of cases (a)–(c) are also allowed. In case (a), exact solu-

tions can be represented explicitly, implicitly, or parametrically.

Exact methods for solving nonlinear PDEs (including delay PDEs) are methods

that allow one to obtain exact solutions.

Following [422, 425, 430], we will further be using a simple and clear classifica-

tion of most common solutions by their appearance (see Table 3.1) unrelated to the

type or form of the equations concerned.

Difficulties arising in using standard analytical methods. The presence of a

constant or variable delay in nonlinear equations of mathematical physics dramati-

cally complicates the analysis. Many exact methods that are effective in finding exact

solutions for nonlinear PDEs without delay, such as the nonclassical method of sym-

metry reductions (Bluman–Cole method) [20, 60, 105, 107, 363], direct method of

symmetry reductions (Clarkson–Kruskal method) [20, 106, 107, 363, 422, 425, 430],

method of differential constraints [171, 256, 422, 425, 430, 480], method of inverse

scattering problem [3, 82, 362, 383], and method of truncated Painlevé expansions

[239, 286, 422, 425, 550, 551] are inapplicable for constructing exact solutions to

nonlinear PDEs with constant or variable delay. The classical method of symmetry

reductions (Lie group analysis) [61, 229, 368, 372] shows very limited capabilities
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130 3. ANALYTICAL METHODS AND EXACT SOLUTIONS TO DELAY PDES. PART I

Table 3.1. Most common types of exact solutions to equations of mathematical physics with

two independent variables, x and t, and the unknown function u.

No. Type of solution General structure of solution (x and t can be

swapped)

1 Traveling wave solution u = U(z), z = kx+ λt, kλ 6= 0

2 Additive separable solution u = ϕ(x) + ψ(t)

3 Multiplicative separable solution u = ϕ(x)ψ(t)

4 Self-similar solution u = tαF (z), z = xtβ

5 Generalized self-similar solution u = ϕ(t)F (z), z = ψ(t)x

6 Generalized traveling wave solution u = U(z), z = ϕ(t)x+ ψ(t)

7 Generalized separable solution u = ϕ1(x)ψ1(t) + · · ·+ ϕn(x)ψn(t)

8 Functional separable solution (special

case)

u = U(z), z = ϕ(x) + ψ(t)

9 Functional separable solution u=U(z), z=ϕ1(x)ψ1(t)+· · ·+ϕn(x)ψn(t)

as only relatively few exact solutions to isolated nonlinear PDEs with constant delay

have been reported so far [316, 341, 510]. Notably, equations of mathematical

physics with two independent variables and a delay have the following essential

qualitative features: (i) PDEs with constant delay do not admit self-similar solutions,

unlike PDEs without delay, many of which do, and (ii) PDEs with proportional delay

in either independent variable do not have traveling wave solutions, unlike simpler

PDEs without delay, which often have.

In subsequent sections, we will describe quite effective methods, developed in

recent years, for constructing exact solutions to nonlinear PDEs with constant or

variable delay. We will give many examples of constructing exact solutions for

specific equations. When selecting suitable material, we paid the greatest attention

to nonlinear reaction-diffusion type equations with delay that often arise in applica-

tions and nonlinear equations of general form with one or more arbitrary functions.

Exact solutions of such equations are of greatest interest for testing numerical and

approximate analytical methods. Apart from equations with constant delay (3.1.1.1)

and (3.1.1.3), we will also consider more complex equations, with a proportional

delay τ = pt and a variable delay of general form τ = τ(t).

3.1.2. States of Equilibrium. Traveling Wave Solutions.
Exact Solutions in Closed Form

States of equilibrium. A constant

u = u∗, u∗ = const, (3.1.2.1)

that solves an equation of mathematical physics is called a state of equilibrium, also

known as a stationary point, a rest point, a fixed point, or simply an equilibrium. In
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3.1. Remarks and Definitions. Traveling Wave Solutions 131

the case of a PDE with constant delay independent of the variables x and t,

Φ(u, ux, ut, uxx, . . . ;w,wx, wt, wxx, . . . ) = 0, w = u(x, t− τ), (3.1.2.2)

the states of equilibrium are determined from the algebraic (or transcendental) equa-

tion

Φ(u∗, 0, 0, 0, . . . ;u∗, 0, 0, 0, . . . ) = 0.

The equilibrium states (3.1.2.1) of the delay reaction-diffusion equation (3.1.1.1)

are determined from the algebraic (transcendental) equation F (u∗, u∗) = 0 and,

hence, are zeros of the kinetic function.

Traveling wave solutions. Non-constant solutions of the form

u = U(z), z = kx+ λt, (3.1.2.3)

where k and λ are nonzero constants, are called traveling wave solutions. As a

rule, PDEs with constant delay of the form (3.1.2.2) have traveling wave solutions

(3.1.2.3), where the function U(z) is described by the ordinary differential equation

with constant delay

Φ(U, kU ′
z, λU

′
z, k

2U ′′
zz, . . . ;W,kW

′
z, λW

′
z , k

2W ′′
zz , . . . ) = 0, W = U(z − λτ).

(3.1.2.4)

Remark 3.4. There are very rare occasions when equations of the form (3.1.2.2) do not
have traveling wave solutions (3.1.2.3). In such cases, the left-hand side of equation (3.1.2.4)
is nonzero for any k and λ.

◮ Example 3.1. The nonlinear Monge–Ampére type equation with constant

delay

u2xt − uxxutt + w = 0, w = u(x, t− τ),

which is an equation of the form (3.1.2.2), does not have traveling wave solutions,

because inserting (3.1.2.3) results in the false equality W = 0 (since U 6= const). ◭

Traveling wave solutions of reaction-diffusion equations with constant delay.

Substituting (3.1.2.3) into (3.1.1.1) yields the nonlinear ordinary differential equation

with constant delay

ak2U ′′
zz − λU ′

z + F (U,W ) = 0, (3.1.2.5)

where W = U(z − σ), σ = λτ .

The questions of existence and stability of traveling wave solutions to delay

reaction-diffusion equations have been addressed in many studies (e.g., see [152,

224, 339, 483, 519, 572] and references therein).

Below we specify several reduced nonlinear delay ODEs of the form (3.1.2.5)

that admit traveling wave solutions expressible in terms of elementary functions.

These derive from respective original delay reaction-diffusion equations (3.1.1.1)

whose kinetic function contains functional arbitrariness. The solutions listed below

as well as some other solutions were obtained in [412]) (see also [495, 497]). The sit-

uations σ > 0 (delay ODEs) and σ < 0 (advanced ODEs) are treated simultaneously.
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132 3. ANALYTICAL METHODS AND EXACT SOLUTIONS TO DELAY PDES. PART I

Equation 1. Consider the nonlinear delay ODE

ak2U ′′
zz − λU ′

z + Uf(W/U) = 0, (3.1.2.6)

where f(ζ) is an arbitrary function, and W = U(z − σ).

1◦. Equation (3.1.2.6) admits exponential exact solutions of the form

U = C exp(βz),

where C is an arbitrary constant, and β is a root of the algebraic (transcendental)

equation

ak2β2 − λβ + f(e−σβ) = 0.

The parameters k and λ in (3.1.2.6) can be any.

2◦. Equation (3.1.2.6) admits exact exponential-trigonometric solutions of the

form

U = eµz
[
An cos(βnz) +Bn sin(βnz)

]
, βn =

πn

σ
, n = ±1,±2, . . . ,

where An, Bn, and µ are arbitrary constants. The equation parameters λ and k are

expressed as

λ = 2ak2µ, k = ±
[
f
(
(−1)ne−µσ

)

a(β2
n + µ2)

]1/2
.

Equation 2. The nonlinear delay ODE

ak2U ′′
zz−λU ′

z+Uf(U−cW )+Wg(U−cW )+h(U−cW )=0, c> 0, (3.1.2.7)

where f(ζ), g(ζ), and h(ζ) are arbitrary functions, and W = U(z − σ), admits

exponential-trigonometric solutions of the form

U = eµz
[
An cos(βnz) +Bn sin(βnz)

]
+D,

µ =
1

σ
ln c, βn =

2πn

σ
, n = ±1,±2, . . . ,

where An and Bn are arbitrary constants, and D is a root of the algebraic (transcen-

dental) equation

D
[
f(ξ) + g(ξ)

]
+ h(ξ) = 0, ξ = (1− c)D.

The equation parameters λ and k are expressed as

λ = 2ak2µ, k = ±
[
cf(ξ) + g(ξ)

ac(β2
n + µ2)

]1/2
.
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3.1. Remarks and Definitions. Traveling Wave Solutions 133

Equation 3. The nonlinear delay ODE

ak2U ′′
zz−λU ′

z+Uf(U+cW )+Wg(U+cW )+h(U+cW )=0, c> 0, (3.1.2.8)

where f(ζ), g(ζ), and h(ζ) are arbitrary functions, and W = U(z − σ), admits

exponential-trigonometric solutions

U = eµz
[
An cos(βnz) +Bn sin(βnz)

]
+D,

µ =
1

σ
ln c, βn =

(2n− 1)π

σ
, n = 0, ±1,±2, . . . ,

where An and Bn are arbitrary constants, and D is a root of the algebraic (or

transcendental) equation

D
[
f(ξ) + g(ξ)

]
+ h(ξ) = 0, ξ = (1 + c)D.

The equation parameters λ and k are expressed as

λ = 2ak2µ, k = ±
[
cf(ξ)− g(ξ)

ac(β2
n + µ2)

]1/2
.

Equation 4. The nonlinear delay ODE

ak2U ′′
zz − λU ′

z + Uf(U2 +W 2) +Wg(U2 +W 2) = 0, (3.1.2.9)

where f(ζ) and g(ζ) are arbitrary functions, and W = U(z − σ), admits exact

trigonometric solutions

U = An cos(βnz) +Bn sin(βnz),

βn =
π(2n+ 1)

2σ
, n = 0, ±1, ±2, . . .

(3.1.2.10)

The coefficientsAn andBn in (3.1.2.10) are determined from the system of algebraic

(transcendental) equations

−ak2β2
nAn−λβnBn+Anf(A2

n+B
2
n)+(−1)n+1Bng(A

2
n+B

2
n)= 0,

−ak2β2
nBn+λβnAn+Bnf(A

2
n+B

2
n)+(−1)nAng(A

2
n+B

2
n)= 0.

(3.1.2.11)

If the constants An and Bn are treated as arbitrary, then it follows from (3.1.2.11)

that the parameters λ and k are expressed as

λ =
(−1)n+1g(A2

n +B2
n)

βn
, k = ±

[
f(A2

n +B2
n)

aβ2
n

]1/2
.

Equation 5. Now consider the nonlinear delay ODE

ak2U ′′
zz−λU ′

z+
1

ϕ′
U

f
(
ϕ(U)−ϕ(W )

)
+

ϕ′′
UU

(ϕ′
U )

3
g
(
ϕ(U)−ϕ(W )

)
=0, (3.1.2.12)
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134 3. ANALYTICAL METHODS AND EXACT SOLUTIONS TO DELAY PDES. PART I

where f(ζ), g(ζ), and ϕ(U) are arbitrary functions. It admits exact solutions that

can be represented in implicit form:

ϕ(U) = Az +B, (3.1.2.13)

where A and B are arbitrary constants. The parameters k and λ are expressed as

k = ±
[
g(Aσ)

aA2

]1/2
, λ =

f(Aσ)

A
. (3.1.2.14)

◮ Example 3.2. Assuming that ϕ(U) = Uk in (3.1.2.12) and (3.1.2.13), we

arrive at the equation

ak2U ′′
zz − λU ′

z + U1−kf̂(Uk −W k) + U1−2kĝ(Uk −W k) = 0,

which has an exact solution U = (Az + B)1/k. The new arbitrary functions are

related to the original ones as: f̂(ζ) = 1
k f(ζ) and ĝ(ζ) = k−1

k2 g(ζ). ◭

◮ Example 3.3. Setting ϕ(U) = eβU in (3.1.2.12) and (3.1.2.13), we get the

equation

ak2U ′′
zz − λU ′

z + e−βU f̂(eβU − eβW ) + e−2βU ĝ(eβU − eβW ) = 0,

which has an exact solution U = 1
β ln(Az + B). The new arbitrary functions are

related to the original ones as: f̂(ζ) = 1
β f(ζ) and ĝ(ζ) = 1

β g(ζ). ◭

Reaction-diffusion equations with proportional delay. We note right away

that the partial differential equation with proportional delay in one independent vari-

able does not admit traveling wave solutions.

However, partial differential equations explicitly independent of x and t with

identical proportional delays in two independent variables can have traveling wave

solutions. Such equations involve the unknown functions u = u(x, t) and w =
u(px, qt) with q = p. In particular, reaction-diffusion equations with proportional

delay [416]:

ut = [g(u)ux]x + F (u,w), w = u(px, pt),

admit traveling wave solutions (3.1.2.3), where the functionU(z) is described by the

ODE with proportional delay

λU ′
z = k2[g(U)U ′

z]
′
z + F (U,W ), W = U(pz).

3.1.3. Traveling Wave Front Solutions to Nonlinear
Reaction-Diffusion Type Equations

Traveling wave front solutions. We will consider traveling wave solutions

u = U(z), z = x+ λt, (3.1.3.1)
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3.1. Remarks and Definitions. Traveling Wave Solutions 135

with λ > 0. Substituting (3.1.3.1) into the PDE with constant delay (3.1.1.1) yields

the following second-order delay ODE for U(z):

aU ′′
zz − λU ′

z + f(U,W ) = 0, W = U(z − λτ). (3.1.3.2)

Bounded solutions allowing a physical interpretation are of greatest interest.

In what follows, we assume that equation (3.1.1.1) has simple stationary solutions

u= u1 and u= u2, where u1 and u2 are some constants. This implies that the kinetic

function f(u,w) vanishes at these points: f(u1, u1) = f(u2, u2) = 0.

Applications pay special attention to traveling wave solutions (3.1.3.1) in which

the function U(z) satisfies not only the delay ODE (3.1.3.2) but also additional

boundary conditions to match the stationary solutions:

U(z) → u1 as z → −∞, U(z) → u2 as z → ∞. (3.1.3.3)

The constants u1 and u2 can be swapped. Bounded monotonic solutions (3.1.3.1)

of equation (3.1.1.1) that satisfy conditions (3.1.3.3) are called traveling wave front

solutions or traveling front solutions for short.

Below we describe the qualitative features of traveling wave front solutions to

some PDEs with constant delay occurring in applications.

Delay diffusive logistic equation. The reaction-diffusion logistic equation with

constant delay has the form

ut = auxx + bu(1− cw), w = u(x, t− τ), (3.1.3.4)

where a > 0, b > 0, and c > 0. It describes the dynamics of populations (col-

lections of individuals of the same species) considering the period of maturation,

when individuals are not capable of reproduction (see Subsection 6.3.2 for details).

Sometimes, equation (3.1.3.4) is also called the delay Fisher equation; with τ = 0,

it was discussed in [162, 278].

Equation (3.1.3.4) has two simple stationary solutions, u = 0 and u = 1/c, and

admits a traveling wave solution (3.1.3.1), where the function U(z) is described by

the delay ODE

aU ′′(z)− λU ′(z) + bU(z)[1− cU(z − λτ)] = 0. (3.1.3.5)

The monotonic functionU(z) satisfying equation (3.1.3.5) and the asymptotic bound-

ary conditions matching the stationary conditions

U(z) → 0 as z → −∞, U(z) → 1/c as z → ∞ (3.1.3.6)

will define a traveling wave front solution.

The following theorems hold true.

Theorem 1 [160, 353]. If τ = 0, the boundary value problem (3.1.3.5)–(3.1.3.6)

has a monotonic solution if and only if λ≥ 2
√
ab. In other words, if there is no delay,

λ = 2
√
ab is the minimum allowed traveling wave speed for the reaction-diffusion

equation (3.1.3.4).
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Theorem 2 [224, 572]. For any λ > 2
√
ab, there is a τ∗(λ) > 0 such that for

τ ≤ τ∗(λ), equation (3.1.3.4) has a traveling wave front solution with the wave front

moving at a speed λ.

Let us explain why a bounded traveling wave speed arises in Theorems 1 and 2.

To this end, we linearize equation (3.1.3.5) for large negative z while assuming that

|U | ≪ 1. As a result, we arrive at the approximate ODE without delay

aU ′′(z)− λU ′(z) + bU(z) = 0.

We look for its particular solutions in the exponential form U = exp(βz). The

constant β must satisfy the quadratic equation

aβ2 − λβ + b = 0,

whose roots are

β1,2 =
λ±

√
λ2 − 4ab

2a
.

It is apparent that for λ> 2
√
ab, both roots are positive real numbers. The associated

exponential solutions tend to zero monotonically as z → −∞. For λ < 2
√
ab,

both roots are complex numbers. Although the associated solutions rapidly decay as

z → −∞, they also oscillate and, hence, are not monotonic.

The theorem below refines Theorem 1.

Theorem 3 [181] (see also [288]). The delay reaction-diffusion logistic equation

(3.1.3.4) with a= b= c=1 has a positive monotonic traveling wave front solution of

the form (3.1.3.1) that connects the stationary solutions 0 and 1 if and only if either

of the following conditions holds:

(i) 0 ≤ τ ≤ 1/e = 0.367879441 . . . and 2 ≤ λ < +∞;

(ii) 1/e < τ ≤ τ1 = 0.560771160 . . . and 2 ≤ λ ≤ λ∗(τ) = 1/
√
φ(τ).

The constant τ1 is a root of the transcendental equation

2τ2 exp
(
1 +

√
1 + 4τ2 − 2τ

)
= 1+

√
1 + 4τ2,

and the function φ(τ) is defined parametrically as

φ = ξh(ξ), τ = h(ξ) ≡
(
2ξ +

√
1 + 4ξ2

)
exp

(
−1− 2ξ√

1 + 4ξ2

)
,

where 0 ≤ ξ ≤ 0.445 . . . .

If τ > τ1 = 0.560771160 . . . , the delay diffusive logistic equation (3.1.3.4) with

a = b = c = 1 does not have a monotonic traveling wave front solution.

Delay diffusive logistic equation under limited food conditions. The diffusive

logistic equation with constant delay and limited food supply, which generalizes

equation (3.1.3.4), has the form

ut = auxx + bu
1− cw

1 + γw
, w = u(x, t− τ), (3.1.3.7)

where γ > 0. In the special case γ = 0, it becomes equation (3.1.3.4).
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3.1. Remarks and Definitions. Traveling Wave Solutions 137

Just as (3.1.3.4), equation (3.1.3.7) has two simple stationary solutions, u = 0
and u = 1/c, and admits a traveling wave solution of the form (3.1.3.1).

The study [187] (see also [224]) showed that equation (3.1.3.7) has a traveling

wave front solution under the conditions of Theorem 2 stated above.

Remark 3.5. A similar statement holds true for the more complex delay equation obtained
from (3.1.3.7) by replacing the denominator 1 + γw with 1 + γ1u+ γ2w, where γ1 ≥ 0 and
γ2 ≥ 0.

Nicholson’s blowflies delay model. The nonlinear reaction-diffusion equation

with delay

ut = uxx − δu+ pwe−κw, w = u(x, t− τ), (3.1.3.8)

where p > 0, δ > 0, and κ > 0, is known as Nicholson’s blowflies delay model.

For p/δ > 1, equation (3.1.3.8) has two simple stationary solutions, u = 0 and

u = (1/κ) ln(p/δ), and admits an exact traveling wave solution (3.1.3.1) with the

function U(z) described by the delay ODE

U ′′(z)− λU ′(z)− δU(z) + pU(z − λτ)e−κU(z−λτ) = 0. (3.1.3.9)

The monotonic function U(z) that solves equation (3.1.3.9) and satisfies the

boundary conditions matching the stationary solutions

U(z) → 0 as z → −∞, U(z) → (1/κ) ln(p/δ) as z → ∞ (3.1.3.10)

defines a traveling front solution.

The study [488] proved the following theorem.

Theorem 4. Let 1 < p/δ ≤ e. Then there exists a λ∗ > 0 such that for any

λ > λ∗, equation (3.1.3.9) has a traveling front solution (3.1.3.1) with the wave front

moving at a speed λ.

Belousov–Zhabotinsky delay reaction-diffusion model. The Belousov–Zha-

botinsky delay reaction-diffusion model is described by the quasilinear system of

equations [572]:

ut = uxx + u(1− u− av̄), v̄ = v(x, t − τ),

vt = vxx − buv,
(3.1.3.11)

where u and v are the bromous acid and bromide ion concentrations, while a and

b are positive constants. Equations (3.1.3.11) and their generalizations can serve

to describe more complicated biochemical and biological processes. The simpler

system without delay, with τ = 0 in (3.1.3.11), was studied in [351].

System (3.1.3.11) has two simple stationary solutions: u = 0, v = const and

u = 1, v = 0.

System (3.1.3.11) admits traveling wave solutions

u = U(z), v = V (z), z = x+ λt, (3.1.3.12)

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 137

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 137



138 3. ANALYTICAL METHODS AND EXACT SOLUTIONS TO DELAY PDES. PART I

where λ>0; the functionsU(z) and V (z) are described by the system of delay ODEs

U ′′(z)− λU ′(z) + U(z)[1− U(z)− aV (z − λτ)] = 0,

V ′′(z)− λV ′(z)− bU(z)V (z) = 0.
(3.1.3.13)

We supplement equation (3.1.3.13) with asymptotic boundary conditions match-

ing the stationary solutions:

U(z) → 0 as z → −∞, U(z) → 1 as z → ∞,

V (z) → 1 as z → −∞, V (z) → 0 as z → ∞.
(3.1.3.14)

The functions U(z) and V (z) that solve the system of delay ODEs (3.1.3.13)

and satisfy the boundary conditions (3.1.3.14) define a traveling front solution for

the original system of delay reaction-diffusion equations (3.1.3.11).

The study [572] proved the following theorem.

Theorem 5. Depending on the values of the determining parameters a and b, this

theorem consists of two items:

1◦. Let 0 < b ≤ 1− a. Then for any λ ≥ 2
√
1− a and τ > 0, system (3.1.3.11)

has a traveling front solution with speed λ.

2◦. Let 1 − a < b. Then for any λ ≥ 2
√
b and τ > 0, system (3.1.3.11) has a

traveling front solution with speed λ.

Lotka–Volterra type diffusive model with several delays. The Lotka–Volterra

type reaction-diffusion model with cooperative interactions and four delay times is

described by the system of equations [224]:

∂u(x, t)

∂t
= a1

∂2u(x, t)

∂x2
+ b1u(x, t)[1− c1u(x, t− τ1) + d1v(x, t− τ2)],

∂v(x, t)

∂t
= a2

∂2v(x, t)

∂x2
+ b2v(x, t)[1 + d2u(x, t− τ3)− c2v(x, t− τ4)],

(3.1.3.15)

where ai, bi, ci, di, and τj (i = 1, 2; j = 1, 2, 3, 4) are positive constants.

Let c1c2 − d1d2 > 0. Then system (3.1.3.15) has four states of equilibrium:

(0, 0), (1/c1, 0), (0, 1/c2), (k1, k2), where

k1 =
d1 + c2

c1c2 − d1d2
, k2 =

c1 + d2
c1c2 − d1d2

. (3.1.3.16)

By changing in (3.1.3.15) to the traveling wave variables (3.1.3.12), we obtain

the system of delay ODEs

a1U
′′(z)− λU ′

z(z) + b1U(z)[1− c1U(z − λτ1) + d1V (z − λτ2)] = 0,

a2V
′′(z)− λV ′

z (z) + b2V (z)[1 + d2U(z − λτ3)− c2V (z − λτ4)] = 0.
(3.1.3.17)

We supplement equation (3.1.3.17) with asymptotic boundary conditions matching

the stationary solutions:

U(z) → 0 as z → −∞, U(z) → k1 as z → ∞,

V (z) → 0 as z → −∞, V (z) → k2 as z → ∞,
(3.1.3.18)

where the constants k1 and k2 are defined in (3.1.3.16).
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The study [224] proved the following theorem.

Theorem 6. Let c1c2 − d1d2 > 0. Then for any

λ > max
[
2
√
a1b1c1k1, 2

√
a2b2c2k2

]

and sufficiently small τ1 and τ4, the Lotka–Volterra type delay reaction-diffusion

system (3.1.3.15) has a traveling front solution (3.1.3.12) with the wave front moving

at a speed λ; this solution is asymptotically related to the stationary solutions (0, 0)
and (k1, k2).

3.2. Multiplicative and Additive Separable

Solutions

3.2.1. Preliminary Remarks. Terminology. Examples

Preliminary remarks and definitions. The method of separation of variables is the

most common approach to solving linear equations of mathematical physics without

delay [89, 280, 402, 404, 514, 613]. For equations in two independent variables, x
and t, and one unknown function, u = u(x, t), this method is based on seeking exact

solutions as the product of two functions with different arguments:

u = ϕ(x)ψ(t), (3.2.1.1)

with the functions ϕ = ϕ(x) and ψ = ψ(t) described by linear ordinary differential

equations and determined in a subsequent analysis.

Integrating certain classes of nonlinear first-order PDEs without delay implies

seeking exact solutions as the sum of two functions with different arguments [254,

402, 424]:

u = ϕ(x) + ψ(t). (3.2.1.2)

Some nonlinear second- or higher-order equations of mathematical physics with-

out or with delay also have exact solutions of the form (3.2.1.1) or (3.2.1.2). These

kinds of solution will be called a multiplicative separable solution or additive sep-

arable solution, respectively [422, 425, 430]. Either kind of exact solution will

sometimes be referred to as a separable solution.

Examples of nonlinear delay PDEs admitting separable solutions. In the

simplest cases, the separation of variables in nonlinear partial differential equations

with two independent variables and a constant time delay is carried out following

the same procedure as in linear equations without delay. One looks for an exact so-

lution as the product or sum of two functions with different arguments. Substituting

(3.2.1.1) or (3.2.1.2) into the equation concerned and performing simple algebraic

rearrangements, one arrives at an equality of two expressions (for equations in two

variables) dependent on different arguments. This situation is only possible when

both expressions are equal to the same constant quantity. As a result, one obtains an

ODE without delay for ϕ = ϕ(x) and a delay ODE for ψ = ψ(t).

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 139

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 139



140 3. ANALYTICAL METHODS AND EXACT SOLUTIONS TO DELAY PDES. PART I

Let us illustrate the aforesaid by simple specific examples.

◮ Example 3.4. We will show that the reaction-diffusion equation with a con-

stant delay and a power-law nonlinearity

ut = a(ukux)x + bw, w = u(x, t− τ), (3.2.1.3)

has an exact solution as the product of two functions with different arguments.

Indeed, substituting (3.2.1.1) into equation (3.2.1.3) yields the relation

ϕψ′
t = aψk+1(ϕkϕ′

x)
′
x + bϕψ̄, ψ̄ = ψ(t− τ). (3.2.1.4)

Moving the term bϕψ̄ across to the left-hand side of (3.2.1.4) and dividing by ϕψk+1,

we obtain
ψ′
t − bψ̄

ψk+1
=
a(ϕkϕ′

x)
′
x

ϕ
.

The left-hand side of this equation only depends on the variable t, while the right-

hand side depends on x alone. This is possible only if

ψ′
t − bψ̄

ψk+1
= C,

a(ϕkϕ′
x)

′
x

ϕ
= C, (3.2.1.5)

where C is an arbitrary constant. The first-order ODE with constant delay for ψ =
ψ(t) in (3.2.1.5) can be solved using the method of steps (see Subsection 1.1.5). The

second-order ODE without delay for ϕ = ϕ(x) in (3.2.1.5) admits order reduction

(since it is explicitly independent of x), and its general solution can be represented

in implicit form.

The procedure for constructing a separable solution of the form (3.2.1.1) to the

nonlinear PDE (3.2.1.3) is completely analogous to that for solving the simpler

linear PDE with constant delay at k = 0. The fundamental difference between

linear and nonlinear differential equations is that the principle of superposition is

inapplicable to nonlinear equations. This means that solutions of the form (3.2.1.1)

for the nonlinear equation (3.2.1.3) with k 6= 0 obtained by integrating equations

(3.2.1.5) for various values of C cannot be added up. ◭

Remark 3.6. The constant delay time τ in equations (3.2.1.3) and (3.2.1.5) can be re-
placed with an arbitrary variable delay τ = τ (t). In particular, a proportional delay τ =
(1− p)t, implying that t− τ = pt, can be used.

◮ Example 3.5. The reaction-diffusion type equation with an exponential non-

linearity and constant delay

ut = auxx + beλ(u−w), w = u(x, t− τ), (3.2.1.6)

has an additive separable solution expressed as the sum of two functions with differ-

ent arguments. Substituting (3.2.1.2) into equation (3.2.1.6) and rearranging yields

the equation

ψ′
t − beλ(ψ−ψ̄) = aϕ′′

xx, ψ̄ = ψ(t− τ). (3.2.1.7)
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Its left-hand side is only dependent on t, while the right-hand side depends on x
alone. Equating the left- and right-hand sides of (3.2.1.7) with the same constant, we

obtain

ψ′
t − beλ(ψ−ψ̄) = C, aϕ′′

xx = C. (3.2.1.8)

The nonlinear first-order ODE with constant delay for ψ = ψ(t) in (3.2.1.8) reduces

to a linear delay ODE with the substitution θ = e−λψ. Integrating the second-order

ODE for ϕ = ϕ(x) in (3.2.1.8) twice, we get ϕ = C
2ax

2 + C1x+ C2. ◭

Remark 3.7. The constant delay τ in equations (3.2.1.6) and (3.2.1.8) can be replaced
with an arbitrary variable delay τ = τ (t). In particular, a proportional delay τ = (1 − p)t,
implying that t− τ = pt, can be used.

◮ Example 3.6. We will show that the reaction-diffusion equation with con-

stant delay and a logarithmic source

ut = auxx + bu lnw, w = u(x, t− τ), (3.2.1.9)

has a multiplicative separable solution expressed as the sum of two functions with

different arguments

u = ϕ(x)ψ(t). (3.2.1.10)

To this end, we substitute expression (3.2.1.10) into equation (3.2.1.9) and divide by

ϕψ. As a result, after moving one term from the right- to the left-hand side, we get

ψ′
t

ψ
− b ln ψ̄ = a

ϕ′′
xx

ϕ
+ b lnϕ, ψ̄ = ψ(t− τ).

The left-hand side of this equations is only dependent on t, while the right-hand side

depend on x alone. Equating them with the same constant, we obtain a delay ODE

for ψ(t) and ODE without delay for ϕ(x):

ψ′
t

ψ
− b ln ψ̄ = C, a

ϕ′′
xx

ϕ
+ b lnϕ = C. (3.2.1.11)

With the change of variable ψ = eθ, the nonlinear first-order ODE with constant

delay for ψ = ψ(t) in (3.2.1.11) reduces to a linear delay ODE for θ. ◭

Remark 3.8. The constant delay τ in equations (3.2.1.9) and (3.2.1.11) can be replaced
with an arbitrary variable delay τ = τ (t). In particular, a proportional delay τ = (1 − p)t,
implying that t− τ = pt, can be used.

Below we describe some nonlinear delay PDEs of the form (3.1.1.1) that involve

arbitrary functions, dependent on combinations of u and w, and admit additive or

multiplicative separable solutions.

3.2.2. Delay Reaction-Diffusion Equations Admitting
Separable Solutions

Reaction-diffusion equations with constant delay involving an arbitrary func-

tion. Below we list a number of nonlinear reaction-diffusion equations with constant
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delay that involve one arbitrary continuous function f(. . . ) and admit separable exact

solutions.

Equation 1. Consider the nonlinear reaction-diffusion equation with constant

delay

ut = auxx + uf(w/u), w = u(x, t− τ). (3.2.2.1)

1◦. It has a multiplicative separable solution periodic in the space coordinate x:

u = [C1 cos(βx) + C2 sin(βx)]ψ(t), (3.2.2.2)

where C1, C2, and β are arbitrary constants, and ψ(t) is a function satisfying the

first-order ODE with constant delay

ψ′
t(t) = −aβ2ψ(t) + ψ(t)f

(
ψ(t− τ)/ψ(t)

)
. (3.2.2.3)

2◦. Equation (3.2.2.1) has another multiplicative separable solution:

u = [C1 exp(−βx) + C2 exp(βx)]ψ(t), (3.2.2.4)

where C1, C2, and β are arbitrary constants, and ψ(t) is a function satisfying the

first-order ODE with constant delay

ψ′
t(t) = aβ2ψ(t) + ψ(t)f

(
ψ(t− τ)/ψ(t)

)
. (3.2.2.5)

3◦. Equation (3.2.2.1) has a degenerate multiplicative separable solution:

u = (C1x+ C2)ψ(t), (3.2.2.6)

where C1 and C2 are arbitrary constants; the function ψ(t) satisfies the delay ODE

(3.2.2.3) with β = 0.

4◦. Equation (3.2.2.1) also has a mixed multiplicative separable solution:

u = eαx+βtθ(z), z = λx+ γt, (3.2.2.7)

where α, β, γ, and λ are arbitrary constants; the function θ(z) satisfies the second-

order ODE with constant delay

aλ2θ′′zz(z) + (2aαλ− γ)θ′z(z) + (aα2 − β)θ(z)

+ θ(z)f
(
e−βτθ(z − σ)/θ(z)

)
= 0, σ = γτ.

Solution (3.2.2.7) can be treated as a nonlinear superposition of two traveling waves.

Remark 3.9. The delay ODEs (3.2.2.3) and (3.2.2.5) admit particular solutions of the
exponential form:

ψ(t) = Aeλnt, n = 1, 2,

where A is an arbitrary constant, and λ1 and λ2 are roots of the transcendental equations

λ1 = −aβ2 + f(e−λ1τ ) for equation (3.2.2.3),

λ2 = aβ2 + f(e−λ2τ ) for equation (3.2.2.5).
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3.2. Multiplicative and Additive Separable Solutions 143

Equation 2. The nonlinear reaction-diffusion equation with constant delay

ut = auxx + bu lnu+ uf(w/u) (3.2.2.8)

admits a multiplicative separable solution

u = ϕ(x)ψ(t). (3.2.2.9)

The functions ϕ(x) and ψ(t) are described, respectively, by the ODE without delay

and ODE with constant delay

aϕ′′
xx = C1ϕ− bϕ lnϕ, (3.2.2.10)

ψ′
t(t) = C1ψ(t) + ψ(t)f(ψ(t − τ)/ψ(t)) + bψ(t) lnψ(t), (3.2.2.11)

where C1 is an arbitrary constant.

Remark 3.10. The second-order ODE (3.2.2.10) is explicitly independent of x, and so
its general solution can be expressed in implicit form. The equation has a particular one-
parameter solution

ϕ = exp
[

− b

4a
(x+ C2)

2 +
C1

b
+

1

2

]

,

where C2 is an arbitrary constant.

Equation 3. Consider the nonlinear reaction-diffusion equation with constant

delay

ut = auxx + f(u− w). (3.2.2.12)

1◦. It has an exact additive separable solution quadratic in x:

u = C2x
2 + C1x+ ψ(t), (3.2.2.13)

whereC1 andC2 are arbitrary constants; the function ψ(t) is described by first-order

ODE with constant delay

ψ′
t(t) = 2C2a+ f

(
ψ(t)− ψ(t− τ)

)
. (3.2.2.14)

2◦. Equation (3.2.2.12) also has a more general solution than (3.2.2.13):

u = C1x
2 + C2x+ C3t+ θ(z), z = βx+ γt, (3.2.2.15)

where C1, C2, C3, β, and γ are arbitrary constants; the function θ(z) is described by

the second-order ODE with constant delay

aβ2θ′′zz(z)− γθ′z(z) + 2C1a− C3 + f
(
θ(z)− θ(z − σ) + C3τ

)
= 0, σ = γτ.

With C1 = C2 = C3 = 0, relation (3.2.2.15) represents a traveling wave solution.

Remark 3.11. The delay ODE (3.2.2.14) has a particular solution ψ(t) = λt+C3 linear
in t, whereC3 is an arbitrary constant and λ is a root of the algebraic (transcendental) equation
2C2a− λ+ f(τλ) = 0.
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Equation 4. Let us look at the nonlinear reaction-diffusion equation with con-

stant delay

ut = auxx + bu+ f(u− w), (3.2.2.16)

which becomes equation (3.2.2.12) at b = 0 .

1◦. For ab > 0, equation (3.2.2.16) has an additive separable solution periodic

in the space variable x:

u = C1 cos(λx) + C2 sin(λx) + ψ(t), λ =
√
b/a, (3.2.2.17)

where C1 and C2 are arbitrary constants, and the function ψ(t) satisfies the delay

ODE

ψ′
t(t) = bψ(t) + f

(
ψ(t)− ψ(t− τ)

)
. (3.2.2.18)

2◦. For ab < 0, equation (3.2.2.16) has another additive separable solution

u = C1 exp(−λx) + C2 exp(λx) + ψ(t), λ =
√
−b/a, (3.2.2.19)

where C1 and C2 are arbitrary constants, and the function ψ(t) satisfies the delay

ODE (3.2.2.18).

3◦. For b = 0, equation (3.2.2.16) has a degenerate additive separable solution

u = C1x+ C2 + ψ(t),

where the function ψ(t) satisfies the delay ODE (3.2.2.18) with b = 0.

4◦. For ab > 0, equation (3.2.2.16) also has a more general solution

u = C1 cos(λx) + C2 sin(λx) + θ(z), z = βx+ γt, λ =
√
b/a, (3.2.2.20)

than (3.2.2.17). Here, C1, C2, β, and γ are arbitrary constants; the function θ(z) is

described by the delay ODE

γθ′z(z) = aβ2θ′′zz(z) + bθ(z) + f(θ(z)− θ(z − σ)), σ = γτ. (3.2.2.21)

Unlike (3.2.2.17), solution (3.2.2.20) is not periodic in the space variable x; it de-

scribes a nonlinear interaction of a periodic standing wave with a traveling wave.

5◦. For ab < 0, equation (3.2.2.16) also has a more general solution

u = C1 exp(−λx) + C2 exp(λx) + θ(z), (3.2.2.22)

z = βx+ γt, λ =
√
−b/a,

than (3.2.2.19). Here, C1, C2, β, and γ are arbitrary constants, and θ(z) is a function

satisfying the delay ODE (3.2.2.21).

Table 3.2 collects the above and some other nonlinear reaction-diffusion type

equations with constant delay that admit additive or multiplicative separable solu-

tions (according to [426, 432, 435]). Eleven equations involve one or two arbitrary

continuous functions of a single argument, f(z) and g(z), where z = u− w or z =
u/w, and one equation involves an arbitrary function of two arguments, f(z1, z2).
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3.2. Multiplicative and Additive Separable Solutions 145

Table 3.2. Reaction-diffusion equations with constant delay admitting additive or multiplica-

tive separable solutions. Notations: w = u(x, t − τ ), ψ̄ = ψ(t − τ ); C1, C2, and C3 are

arbitrary constants.

Original equation Forms of solution Determining equations

or constants

ut=auxx+uf(w/u) u=[C1 cos(βx)+C2 sin(βx)]ψ(t);
u=[C1 exp(−βx)+C2 exp(βx)]ψ(t);
u=(C1x+C2)ψ(t)

ψ′
t=−aβ2ψ+ψf(ψ̄/ψ);
ψ′
t=aβ

2ψ+ψf(ψ̄/ψ);
ψ′
t=ψf(ψ̄/ψ)

ut=auxx+bu lnu
+uf(w/u)

u=ϕ(x)ψ(t) aϕ′′
xx=C1ϕ−bϕ lnϕ,

ψ′
t=C1ψ+bψ lnψ

+ψf(ψ̄/ψ)

ut=auxx+f(u−w) u=C2x2+C1x+ψ(t) ψ′
t=2C2a+f(ψ−ψ̄)

ut=auxx
+bu+f(u−w)

u=C1 cos(λx)+C2 sin(λx)+ψ(t),

where λ=
√
b/a (for ab>0);

u=C1 exp(−λx)+C2 exp(λx)+ψ(t),

where λ=
√

−b/a (for ab<0)

ψ′
t=bψ+f(ψ−ψ̄);

ψ′
t=bψ+f(ψ−ψ̄)

ut=auxx
+uf(u−kw,w/u)

u=ect[C1 cos(λx)+C2 sin(λx)],
if b=f(0,1/k)−c>0;

u=ect[C1 exp(−λx)+C2 exp(λx)],
if b=f(0,1/k)−c<0

c=(lnk)/τ ,

λ=(b/a)1/2, k>0;

c=(lnk)/τ ,

λ= |b/a|1/2, k>0

ut=a(ukux)x
+uf(w/u)

u=ϕ(x)ψ(t) a(ϕkϕ′
x)

′
x=C1ϕ,

ψ′
t=C1ψk+1+ψf(ψ̄/ψ)

ut=a(ukux)x+buk+1

+uf(w/u)
u=[C1 cos(βx)+C2 sin(βx)]

1
k+1ψ(t),

where β=
√
b(k+1)/a, b(k+1)>0;

u=(C1e−βx+C2eβx)
1

k+1ψ(t),

where β=
√

−b(k+1)/a, b(k+1)<0;

u=C1 exp
(
− b

2a
x2+C2x

)
ψ(t)

at k=−1;

u=ϕ(x)ψ(t)
(generalizes preceding solutions)

ψ′
t=ψf(ψ̄/ψ);

ψ′
t=ψf(ψ̄/ψ);

ψ′
t=ψf(ψ̄/ψ);

a(ϕkϕ′
x)

′
x+bϕ

k+1=C1ϕ,

ψ′
t=C1ψk+1+ψf(ψ̄/ψ)

ut=a(eλuux)x+f(u−w) u=
1

λ
ln(C1λx

2+C2x+C3)+ψ(t) ψ′
t=2aC1eλψ+f(ψ−ψ̄)

ut=a(eλuux)x+beλu

+f(u−w)
u= 1

λ
ln[C1 cos(βx)+C2 sin(βx)]+ψ(t),

where β=
√
bλ/a, bλ>0;

u= 1
λ
ln(C1e−βx+C2eβx)+ψ(t),

where β=
√

−bλ/a, bλ<0;

u=ϕ(x)+ψ(t)
(generalizes preceding solutions)

ψ′
t=f(ψ−ψ̄);

ψ′
t=f(ψ−ψ̄);

a(eλϕϕ′
x)

′
x+be

λϕ=C1,

ψ′
t=C1eλψ+f(ψ−ψ̄)

ut=a(ukux)x
+uf(w/u)
+uk+1g(w/u)

u=eλtϕ(x),
where λ is a root of

transcendental equation λ=f(e−λτ)

a(ϕkϕ′
x)

′
x

+g(e−λτ)ϕk+1=0,

this ODE linearizes with

change of variable ξ=ϕk+1

ut=a(eλuux)x
+f(u−w)
+eλug(u−w)

u=βt+ϕ(x),
where β is a root of

algebraic equation β=f(βτ)

a(eλϕϕ′
x)

′
x+g(βτ)e

λϕ=0,

this ODE linearizes with

change of variable ξ=eλϕ

ut=[(a lnu+b)ux]x
−cu lnu+uf(w/u)

u=exp(±λx)ψ(t), λ=
√
c/a ψ′

t=λ
2(a+b)ψ

+ψf(ψ̄/ψ)
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The listed solutions were obtained with the method of functional constraints, which

is discussed below in Section 3.4; this method allows one to find even more sophis-

ticated exact solutions.

Reaction-diffusion equations with a general variable delay. Many additive

and multiplicative separable solutions obtained previously for nonlinear reaction-

diffusion equations with constant delay (see Table 3.2) are extendable to the case of

more complicated nonlinear PDEs with general variable delay.

Table 3.3 lists nonlinear reaction-diffusion equations with variable delay that

admit exact separable solutions. It is assumed that τ = τ(t) is an arbitrary positive

continuous function that can vanish at one or more isolated points; in particular, one

should set τ = (1− p)t, implying that t− τ = pt, in the case of proportional delay.

Table 3.3. Reaction-diffusion equations with general variable delay that admit additive or

multiplicative separable solutions. Notations: w = u(x, t− τ (t)), ψ̄ = ψ(t− τ (t)); C1, C2,

and C3 are arbitrary constants.

Original equation Forms of solution Determining equations

ut=auxx+uf(w/u)
u=[C1 cos(βx)+C2 sin(βx)]ψ(t);
u=[C1 exp(−βx)+C2 exp(βx)]ψ(t);
u=(C1x+C2)ψ(t)

ψ′
t=−aβ2ψ+ψf(ψ̄/ψ);
ψ′
t=aβ

2ψ+ψf(ψ̄/ψ);
ψ′
t=ψf(ψ̄/ψ)

ut=auxx
+bu lnu+uf(w/u) u=ϕ(x)ψ(t)

aϕ′′
xx=C1ϕ−bϕ lnϕ,

ψ′
t=
C1ψ+bψ lnψ+ψf(ψ̄/ψ)

ut=auxx+f(u−w) u=C2x2+C1x+ψ(t) ψ′
t=2C2a+f(ψ−ψ̄)

ut=auxx+bu+f(u−w)

u=C1 cos(λx)+C2 sin(λx)+ψ(t),

where λ=
√
b/a (for ab>0);

u=C1 exp(−λx)+C2 exp(λx)+ψ(t),

where λ=
√

−b/a (for ab<0)

ψ′
t=bψ+f(ψ−ψ̄);

ψ′
t=bψ+f(ψ−ψ̄)

ut=a(ukux)x+uf(w/u) u=ϕ(x)ψ(t)
a(ϕkϕ′

x)
′
x=C1ϕ,

ψ′
t=C1ψk+1+ψf(ψ̄/ψ)

ut=a(ukux)x
+buk+1+uf(w/u)

u=ϕ(x)ψ(t)
a(ϕkϕ′

x)
′
x+bϕ

k+1=C1ϕ,

ψ′
t=C1ψk+1+ψf(ψ̄/ψ)

ut=a(eλuux)x+f(u−w) u=
1

λ
ln(C1λx

2+C2x+C3)+ψ(t) ψ′
t=2aC1eλψ+f(ψ−ψ̄)

ut=a(eλuux)x
+beλu+f(u−w) u=ϕ(x)+ψ(t)

a(eλϕϕ′
x)

′
x+be

λϕ=C1,

ψ′
t=C1eλψ+f(ψ−ψ̄)

Remark 3.12. All the equations and solutions listed in Table 3.3 can be generalized
by replacing the single-argument arbitrary functions f(w/u) and f(u − w) in the original
equations with two-argument arbitrary functions f(t, w/u) and f(t, u − w) and also the
functions f(ψ̄/ψ) and f(ψ−ψ̄) in the determining equations with f(t, ψ̄/ψ) and f(t, ψ−ψ̄).

Reaction-diffusion equations with several delays. All the equations and their

additive and multiplicative separable solutions specified in Table 3.3 can be general-

ized to nonlinear reaction-diffusion equations with several variable delays of general
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3.2. Multiplicative and Additive Separable Solutions 147

form. To this end, the single-argument arbitrary functions in the equations and their

solutions should be replaced with multi-argument arbitrary functions following the

rules

f(w/u)⇒ f(w1/u, . . . ,wn/u), f(u−w)⇒ f(u−w1, . . . , u−wn);
f(ψ̄/ψ)⇒ f(ψ̄1/ψ, . . . , ψ̄n/ψ), f(ψ− ψ̄)⇒ f(ψ− ψ̄1, . . . , ψ− ψ̄n);

wk= u(x, t−τk(t)), ψ̄k=ψ(t−τk(t)), k=1, . . . , n.

(3.2.2.23)

◮ Example 3.7. The reaction-diffusion equation with several delays

ut = auxx + uf(w1/u, . . . , wn/u), wk = u(x, t− τk(t)), k = 1, . . . , n,

which generalizes the first equation from Table 3.3, admits a periodic multiplicative

separable solution in the space variable x:

u = [C1 cos(βx) + C2 sin(βx)]ψ(t).

The function ψ = ψ(t) is described by the ODE with several variable delays

ψ′
t = −aβ2ψ + ψf(ψ̄1/ψ, . . . , ψ̄n/ψ), ψ̄k = ψ(t− τk(t)). ◭

◮ Example 3.8. Another reaction-diffusion equation with several delays

ut = auxx + f(u− w1, . . . , u− wn), wk = u(x, t− τk(t)), k = 1, . . . , n,

which generalizes the third equation from Table 3.3, admits an additive separable

solution

u = C2x
2 + C1x+ ψ(t),

where ψ = ψ(t) is a function satisfying the ODE with several variable delays

ψ′
t = 2C2a+ f(ψ − ψ̄1, . . . , ψ − ψ̄n), ψ̄k = ψ(t− τk(t)). ◭

Reaction-diffusion equations with several space variables and a constant

delay. Below we will discuss some generalizations of the previous one-dimensional

nonlinear reaction-diffusion equations with constant delay and their separable solu-

tions to the case of more complicated, n-dimensional delay reaction-diffusion equa-

tions.

Table 3.4 displays some nonlinear reaction-diffusion equations with several space

variables and a constant delay time that admit additive and multiplicative separable

solutions. The equations are written using the short notations

x = (x1, . . . , xm), u = u(x, t), w = u(x, t− τ),

∆u =

m∑

j=1

∂2u

∂x2j
, ∇u =

m∑

j=1

ej
∂

∂xj
, div[s(u)∇u] =

m∑

j=1

∂

∂xj

[
s(u)

∂u

∂xj

]
,

where xj are Cartesian coordinates and ej is a unit vector defining the direction

of change of the space coordinate xj . The values m = 2 and m = 3 correspond

to two- and three-dimensional equations. The separation of variables results in the

m-dimensional stationary equation for ϕ = ϕ(x) specified in the last column of

Table 3.4. Eight out of the eleven equations for ϕ are linear or can be linearized. For

exact solutions to these PDEs, see, for example, the books [404, 514].
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Table 3.4. Reaction-diffusion equations with several space variables and a constant time delay

that admit additive and multiplicative separable solutions. Notations: w = u(x, t − τ ), ψ̄ =
ψ(t− τ ), and C is an arbitrary constant.

Original equation Forms of solution Determining equations

ut = a∆u+ uf(w/u) u = ϕ(x)ψ(t) ∆ϕ = Cϕ,

ψ′
t = aCψ + ψf(ψ̄/ψ)

ut = a∆u+ bu lnu
+ uf(w/u)

u = ϕ(x)ψ(t) a∆ϕ = Cϕ− bϕ lnϕ,

ψ′
t = Cψ + bψ lnψ

+ ψf(ψ̄/ψ)

ut = a∆u+ f(u−w) u = ϕ(x) + ψ(t) ∆ϕ = C,

ψ′
t = aC + f(ψ − ψ̄)

ut = a∆u+bu+f(u−w) u = ϕ(x) + ψ(t) a∆ϕ+ bϕ = 0,

ψ′
t = bψ + f(ψ − ψ̄)

ut = a∆u
+ uf(u − kw,w/u)

u = ectϕ(x),
c = (ln k)/τ , k > 0

a∆ϕ+ [f(0, 1/k)− c]ϕ = 0

ut = adiv(uk∇u)
+ uf(w/u)

u = ϕ(x)ψ(t) a div(ϕk∇ϕ) = Cϕ,

ψ′
t = Cψk+1 + ψf(ψ̄/ψ)

ut = adiv(uk∇u)
+ buk+1 + uf(w/u)

u = ϕ(x)ψ(t) a div(ϕk∇ϕ) + bϕk+1 = Cϕ,

ψ′
t = Cψk+1 + ψf(ψ̄/ψ)

ut = adiv(eλu∇u)
+ f(u −w)

u = 1
λ
lnϕ(x) + ψ(t) ∆ϕ = Cλ,

ψ′
t = aCeλψ + f(ψ − ψ̄)

ut = adiv(eλu∇u)
+ beλu + f(u− w)

u = 1
λ
lnϕ(x) + ψ(t) (a/λ)∆ϕ + bϕ = C,

ψ′
t = Ceλψ + f(ψ − ψ̄)

ut = adiv(uk∇u)
+ uf(w/u)
+ uk+1g(w/u)

u = eλtϕ(x),
where λ is a root of

transcendental equation

λ = f(e−λτ )

a div(ϕk∇ϕ) + g(e−λτ )ϕk+1 = 0,

change of variable ξ = ϕk+1 linearizes

this PDE

ut = adiv(eλu∇u)
+ f(u −w)
+ eλug(u−w)

u = βt+ ϕ(x),
where β is a root of

algebraic equation

β = f(βτ)

a div(eλϕ∇ϕ) + g(βτ)eλϕ = 0,

change of variable ξ = eλϕ linearizes

this PDE

3.2.3. Delay Klein–Gordon Type Equations Admitting
Separable Solutions

Klein–Gordon type wave equations with a constant delay and arbitrary func-

tions. Nonlinear Klein–Gordon type wave equations with delay differ from delay

reaction-diffusion equations by formally replacing the first time derivative ut with

the second time derivative utt. In many cases, the general structure of additive and

multiplicative separable solutions to these different nonlinear equations of mathemat-

ical physics with delay is the same; this means that the principle of solution analogy

works here [9].
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3.2. Multiplicative and Additive Separable Solutions 149

Table 3.5 displays nonlinear Klein–Gordon type wave equations with constant

delay admitting additive or multiplicative separable solutions (those to the first five

equations were obtained in [429]). Ten equations involve one or two arbitrary con-

tinuous functions of a single argument, f(z) and g(z), where z = u−w or z = u/w,

and one equation involves a two-argument arbitrary function, f(z1, z2).

Klein–Gordon type wave equations with a variable delay of general form.

Many additive and multiplicative separable solutions obtained previously for non-

linear Klein–Gordon type wave equations with constant delay (see Table 3.6) are

extendable to more complicated, nonlinear equations with a variable delay of general

form.

Table 3.6 shows nonlinear Klein–Gordon type wave equations with variable de-

lay that admit separable solutions. It is assumed that τ = τ(t) is an arbitrary positive

continuous function that can vanish at one or more isolated points; in particular, for

proportional delay, one should set τ = (1 − p)t, implying that t − τ = pt, in the

equations.

All the equations and their additive and multiplicative separable solutions listed

in Table 3.6 can be generalized to nonlinear Klein–Gordon type wave equations with

several variable delays of general form. To this end, the single-argument arbitrary

functions should be replaced with multi-argument arbitrary functions in the equations

and their solutions following the rules (3.2.2.23).

Klein–Gordon type wave equations with several space variables and a con-

stant delay. We will now describe some generalizations of the previously discussed

nonlinear Klein–Gordon type wave equations with constant delay and their separable

solutions to more complex, n-dimensional Klein–Gordon type wave equations with

delay.

Table 3.7 displays some nonlinear Klein–Gordon type wave equations with sev-

eral space variables and a constant delay time that admit additive or multiplicative

separable solutions.

3.2.4. Some Generalizations

We will now look at nonlinear delay PDEs of a fairly general form

L[u] = M[u] + F (t, u, w),

w = u(x, t− τ), x = (x1, . . . , xm),
(3.2.4.1)

where L is a linear differential operator in time t of order n whose coefficients can

be time dependent,

L[u] =

n∑

i=1

ci(t)
∂iu

∂ti
, (3.2.4.2)

and M is a linear differential operator of any order in the space variables x1, . . . , xm
whose coefficients can be dependent on x1, . . . , xm.
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Table 3.5. Klein–Gordon type wave equations with constant delay admitting additive or

multiplicative separable solutions. Notations: w = u(x, t − τ ), ψ̄ = ψ(t − τ ); C1, C2, and

C3 are arbitrary constants.

Original equation Forms of solution Determining equations

or constants

utt=auxx+uf(w/u) u=[C1 cos(βx)+C2 sin(βx)]ψ(t);
u=[C1 exp(−βx)+C2 exp(βx)]ψ(t);
u=(C1x+C2)ψ(t)

ψ′′
tt=−aβ2ψ+ψf(ψ̄/ψ);
ψ′′
tt=aβ

2ψ+ψf(ψ̄/ψ);
ψ′′
tt=ψf(ψ̄/ψ)

utt=auxx+bu lnu
+uf(w/u)

u=ϕ(x)ψ(t) aϕ′′
xx=C1ϕ−bϕ lnϕ,

ψ′′
tt=C1ψ+bψ lnψ

+ψf(ψ̄/ψ)

utt=auxx+f(u−w) u=C2x2+C1x+ψ(t) ψ′′
tt=2C2a+f(ψ−ψ̄)

utt=auxx+bu
+f(u−w)

u=C1 cos(λx)+C2 sin(λx)+ψ(t),

where λ=
√
b/a (for ab>0);

u=C1 exp(−λx)+C2 exp(λx)+ψ(t),

where λ=
√

−b/a (for ab<0)

ψ′′
tt=bψ+f(ψ−ψ̄);

ψ′′
tt=bψ+f(ψ−ψ̄)

utt=auxx
+uf(u−kw,w/u)

u=ect[C1 cos(λx)+C2 sin(λx)],
if b=f(0,1/k)−c2>0;

u=ect[C1 exp(−λx)+C2 exp(λx)],
if b=f(0,1/k)−c2<0

c=(lnk)/τ , λ=(b/a)1/2,

k>0;

c=(lnk)/τ , λ= |b/a|1/2,

k>0

utt=a(ukux)x+uf(w/u) u=ϕ(x)ψ(t) a(ϕkϕ′
x)

′
x=C1ϕ,

ψ′′
tt=C1ψk+1+ψf(ψ̄/ψ)

utt=a(ukux)x+buk+1

+uf(w/u)
u=[C1 cos(βx)+C2 sin(βx)]

1
k+1ψ(t),

where β=
√
b(k+1)/a, b(k+1)>0;

u=(C1e−βx+C2eβx)
1

k+1ψ(t),

where β=
√

−b(k+1)/a, b(k+1)<0;

u=C1 exp
(
− b

2a
x2+C2x

)
ψ(t)

if k=−1;

u=ϕ(x)ψ(t)
(generalizes preceding solutions)

ψ′′
tt=ψf(ψ̄/ψ);

ψ′′
tt=ψf(ψ̄/ψ);

ψ′′
tt=ψf(ψ̄/ψ);

a(ϕkϕ′
x)

′
x+bϕ

k+1=C1ϕ,

ψ′′
tt=C1ψk+1+ψf(ψ̄/ψ)

utt=a(eλuux)x+f(u−w) u=
1

λ
ln(C1λx

2+C2x+C3)+ψ(t) ψ′′
tt=2aC1eλψ+f(ψ−ψ̄)

utt=a(eλuux)x+beλu

+f(u−w)
u= 1

λ
ln[C1cos(βx)+C2 sin(βx)]+ψ(t),

where β=
√
bλ/a, bλ>0;

u= 1
λ
ln(C1e−βx+C2eβx)+ψ(t),

where β=
√

−bλ/a, bλ<0;

u=ϕ(x)+ψ(t)
(generalizes preceding solutions)

ψ′′
tt=f(ψ−ψ̄);

ψ′′
tt=f(ψ−ψ̄);

a(eλϕϕ′
x)

′
x+be

λϕ=C1,

ψ′′
tt=C1eλψ+f(ψ−ψ̄)

utt=a(ukux)x
+uf(w/u)
+uk+1g(w/u)

u=eλtϕ(x),
where λ is a root of transcendental

equation λ2=f(e−λτ)

a(ϕkϕ′
x)

′
x

+g(e−λτ)ϕk+1=0,

change of variable ξ=ϕk+1

linearizes this ODE

utt=[(a lnu+b)ux]x
−cu lnu+uf(w/u)

u=exp(±λx)ψ(t), λ=
√
c/a ψ′′

tt=λ
2(a+b)ψ+ψf(ψ̄/ψ)
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Table 3.6. Klein–Gordon type wave equations with a variable delay of general form that admit

additive or multiplicative separable solutions. Notations: w= u(x, t−τ (t)), ψ̄=ψ(t−τ (t));
C1, C2, and C3 are arbitrary constants.

Original equation Forms of solution Determining equations

utt=auxx+uf(w/u)
u=[C1 cos(βx)+C2 sin(βx)]ψ(t);
u=[C1 exp(−βx)+C2 exp(βx)]ψ(t);
u=(C1x+C2)ψ(t)

ψ′′
tt=−aβ2ψ+ψf(ψ̄/ψ);
ψ′′
tt=aβ

2ψ+ψf(ψ̄/ψ);
ψ′′
tt=ψf(ψ̄/ψ)

utt=auxx+bu lnu
+uf(w/u) u=ϕ(x)ψ(t)

aϕ′′
xx=C1ϕ−bϕ lnϕ,

ψ′′
tt=C1ψ+bψ lnψ

+ψf(ψ̄/ψ)

utt=auxx+f(u−w) u=C2x2+C1x+ψ(t) ψ′′
tt=2C2a+f(ψ−ψ̄)

utt=auxx+bu
+f(u−w)

u=C1 cos(λx)+C2 sin(λx)+ψ(t),

where λ=
√
b/a (for ab>0);

u=C1 exp(−λx)+C2 exp(λx)+ψ(t),

where λ=
√

−b/a (for ab<0)

ψ′′
tt=bψ+f(ψ−ψ̄);

ψ′′
tt=bψ+f(ψ−ψ̄)

utt=a(ukux)x
+uf(w/u)

u=ϕ(x)ψ(t)
a(ϕkϕ′

x)
′
x=C1ϕ,

ψ′′
tt=C1ψk+1+ψf(ψ̄/ψ)

utt=a(ukux)x+buk+1

+uf(w/u)
u=ϕ(x)ψ(t)

a(ϕkϕ′
x)

′
x+bϕ

k+1=C1ϕ,

ψ′′
tt=C1ψk+1+ψf(ψ̄/ψ)

utt=a(eλuux)x
+f(u−w) u=

1

λ
ln(C1λx

2+C2x+C3)+ψ(t) ψ′′
tt=2aC1eλψ+f(ψ−ψ̄)

utt=a(eλuux)x+beλu

+f(u−w) u=ϕ(x)+ψ(t)
a(eλϕϕ′

x)
′
x+be

λϕ=C1,

ψ′′
tt=C1eλψ+f(ψ−ψ̄)

In particular, M can be an elliptic operator:

M[u] =

m∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

m∑

i=1

bi(x)
∂u

∂xi
. (3.2.4.3)

Also, M can be a biharmonic operator of the form

M[u] = a∆∆u, ∆u ≡
m∑

i=1

∂2u

∂x2i
.

Setting L[u] = ut, M[u] = auxx, Ft = 0, and m = 1 in (3.2.4.1) yields the

nonlinear delay reaction-diffusion equation (3.1.1.1). Setting L[u] = utt, M[u] =
auxx, Ft = 0, and m = 1 in (3.2.4.1) results in the nonlinear delay Klein–Gordon

equation (3.1.1.3).

Listed below are a few multiplicative or additive separable solutions to nonlinear

partial differential equations of the form (3.2.4.1) that involve an arbitrary two-

argument function f(t, z), where z=z(u,w). The determining equations are derived
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Table 3.7. Klein–Gordon type wave equations with several space variables and a constant

delay admitting additive or multiplicative separable solutions. Notations: w = u(x, t − τ ),
ψ̄ = ψ(t− τ ), and C is an arbitrary constant.

Original equation Form of solution Determining equations

utt=a∆u+uf(w/u) u=ϕ(x)ψ(t)
∆ϕ=Cϕ,

ψ′′
tt=aCψ+ψf(ψ̄/ψ)

utt=a∆u+bu lnu+uf(w/u) u=ϕ(x)ψ(t)
a∆ϕ=Cϕ−bϕ lnϕ,

ψ′′
tt=Cψ+bψ lnψ+ψf(ψ̄/ψ)

utt=a∆u+f(u−w) u=ϕ(x)+ψ(t)
∆ϕ=C,

ψ′′
tt=aC+f(ψ−ψ̄)

utt=a∆u+bu+f(u−w) u=ϕ(x)+ψ(t)
a∆ϕ+bϕ=0,

ψ′′
tt=bψ+f(ψ−ψ̄)

utt=a∆u+uf(u−kw,w/u) u=ectϕ(x),
c=(lnk)/τ , k>0

a∆ϕ+[f(0,1/k)−c2]ϕ=0

utt=adiv(uk∇u)+uf(w/u) u=ϕ(x)ψ(t)
adiv(ϕk∇ϕ)=Cϕ,

ψ′′
tt=Cψ

k+1+ψf(ψ̄/ψ)

utt=adiv(uk∇u)
+buk+1+uf(w/u)

u=ϕ(x)ψ(t)
adiv(ϕk∇ϕ)+bϕk+1=Cϕ,

ψ′′
tt=Cψ

k+1+ψf(ψ̄/ψ)

utt=adiv(eλu∇u)+f(u−w) u=
1

λ
lnϕ(x)+ψ(t)

∆ϕ=Cλ,

ψ′′
tt=aCe

λψ+f(ψ−ψ̄)
utt=adiv(eλu∇u)

+beλu+f(u−w) u=
1

λ
lnϕ(x)+ψ(t)

(a/λ)∆ϕ+bϕ=C,

ψ′′
tt=Ce

λψ+f(ψ−ψ̄)

utt=adiv(uk∇u)
+uf(w/u)
+uk+1g(w/u)

u=eλtϕ(x),
where λ is a root

of transcendental

equation λ2=f(e−λτ)

adiv(ϕk∇ϕ)+g(e−λτ)ϕk+1=0,
change of variable ξ=ϕk+1

linearizes this PDE

by using the following simple properties of the linear operators L and M:

L[ϕ(x)ψ(t)] = ϕ(x)L[ψ(t)], L[ϕ(x) + ψ(t)] = L[ψ(t)],

M[ϕ(x)ψ(t)] = ψ(t)M[ϕ(x)], M[ϕ(x) + ψ(t)] = M[ϕ(x)].

Equation 1. The nonlinear PDE with constant delay

L[u] = M[u] + uf(t, w/u), w = u(x, t− τ), (3.2.4.4)

admits a multiplicative separable solution

u = ϕ(x)ψ(t). (3.2.4.5)

The functionsϕ=ϕ(x) and ψ=ψ(t) are described by the following linear stationary

PDE without delay and nonlinear ODE with constant delay:

M[ϕ] = Cϕ; (3.2.4.6)

L[ψ] = Cψ + ψf(t, ψ̄/ψ), ψ̄ = ψ(t− τ), (3.2.4.7)

where C is an arbitrary constant.
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3.2. Multiplicative and Additive Separable Solutions 153

Below are two simple cases where particular solutions to equation (3.2.4.6) or

(3.2.4.7) can be found.

1◦. If M is a linear differential operator with constant coefficients, then equation

(3.2.4.6) admits an exponential exact solution of the formϕ(x)=A exp
(∑m

i=1 βixi
)
,

where A is an arbitrary constant and β1, . . . , βm are arbitrary constants linked by a

single polynomial dispersion relation. For C = 0 and m ≥ 2, equation (3.2.4.6) can

also have polynomial particular solutions.

2◦. If L is a linear differential operator of the form (3.2.4.2) with constant co-

efficients (ci = const) and if the source function is explicitly independent of time t,
implying that f = f(w/u), then the constant delay ODE (3.2.4.7) admits exponential

solutions ψ(t) = Beλt, where B is an arbitrary constant and λ is a root of the

algebraic (transcendental) equation

n∑

i=1

ciλ
i = C + f(e−τλ).

Remark 3.13. If the linear differential operators L and M have constant coefficients and
if the source function f is explicitly independent of time t, then the equation with constant
delay (3.2.4.4) admits exact solutions of the form

u = exp

(

αt+
m
∑

i=1

βixi

)

θ(z), z = γt+
m
∑

i=1

λixi, (3.2.4.8)

where α, βi, γ, and λi are arbitrary constants, and the function θ(z) is described by a delay
ODE.

Equation 2. The more complicated nonlinear PDE with constant delay

L[u] = M[u] + bu lnu+ uf(t, w/u), (3.2.4.9)

also admits a multiplicative separable solution of the form (3.2.4.5), where the func-

tions ϕ = ϕ(x) and ψ = ψ(t) are described by the nonlinear stationary PDE and

nonlinear constant delay ODE

M[ϕ] = Cϕ− bϕ lnϕ;

L[ψ] = Cψ + bψ lnψ + ψf(t, ψ̄/ψ), ψ̄ = ψ(t− τ);

C is an arbitrary constant.

Equation 3. Another nonlinear partial differential equation with constant delay

L[u] = M[u] + bu+ f(t, u− w) (3.2.4.10)

admits an additive separable solution

u = ϕ(x) + ψ(t). (3.2.4.11)

The functions ϕ = ϕ(x) and ψ = ψ(t) are described by the linear stationary PDE

and nonlinear constant delay ODE

M[ϕ] = C − bϕ;

L[ψ] = C + bψ + f(t, ψ − ψ̄), ψ̄ = ψ(t− τ),

where C is an arbitrary constant.
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Remark 3.14. For a variable delay of general form τ = τ (t), the nonlinear equations
(3.2.4.4), (3.2.4.9), and (3.2.4.10) also have multiplicative or additive separable solutions
(3.2.4.5) and (3.2.4.11).

3.3. Generalized and Functional Separable

Solutions

3.3.1. Generalized Separable Solutions

Preliminary remarks and definitions. Just as previously, we will consider partial

differential equations with two independent variables, x and t, and a constant delay

time, τ .

Linear equations of mathematical physics with constant coefficients without de-

lay and many related linear PDEs with variable coefficients have exact solutions

as the sum of pairwise products of functions with different arguments (e.g., see

[402, 404, 514]):

u(x, t) = ϕ1(x)ψ1(t) + ϕ2(x)ψ2(t) + · · ·+ ϕk(x)ψk(t). (3.3.1.1)

Many nonlinear partial differential equations of mathematical physics with qua-

dratic and power-law nonlinearities, inclusive of some delay PDEs, also have exact

solutions of the form (3.3.1.1). Such solutions will be referred to as generalized

separable solutions. In general, the functions ϕj(x) and ψj(t) are not known in

advance and so have to be determined in a subsequent investigation.

Remark 3.15. For generalized separable solutions and methods for constructing such
solution to nonlinear PDE without delay, see, for example, [169, 170, 172–175, 393, 422, 425,
430, 438, 515–517].

Remark 3.16. Expressions of the form (3.3.1.1) are frequently used in applied and com-
putational mathematics for constructing approximate analytical and numerical solutions by
projection methods such as Bubnov–Galerkin methods [161, 163, 446].

In practice, one often deals with generalized separable solutions of special form

that involve three unknown functions [169, 170, 422, 425, 430]:

u(x, t) = ϕ(t)θ(x) + ψ(t). (3.3.1.2)

(The independent variables can be swapped in the right-hand side.) In the special

case ψ(t) = 0, this solution becomes a multiplicative separable solution, and if

ϕ(t) = 1, it becomes an additive separable solution.

The method based on a priori setting of a system of coordinate functions.

To construct exact solutions of PDEs with a quadratic or power-law nonlinearity that

is explicitly independent of x, one can employ the following simplified approach.

One looks for a solution as the finite sum (3.3.1.1) and assumes that the system of

coordinate functions ϕm(x) is described by linear ODEs with constant coefficients.

The most common solutions to such equations are

ϕm(x) = xαm , ϕm(x) = eβmx, ϕm(x) = cos(λmx), ϕm(x) = sin(λmx).
(3.3.1.3)
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Finite sets of these functions or various combinations can be used to search for

generalized separable solutions of the form (3.3.1.1) with the constants αm, βm,

and λm either set or determined in a subsequent analysis. The other system of func-

tions ψk(t) is found by solving the nonlinear delay ODEs obtained by substituting

expression (3.3.1.1) with functions (3.3.1.3) into the original delay PDE.

By explicitly setting one system of coordinate functions {ϕj(x)}, one seriously

facilitates the construction of exact solutions. However, isolated solutions of the

form (3.3.1.1) may be lost with this approach. Notably, the overwhelming majority

of generalized separable solutions for PDEs with a quadratic nonlinearity, known so

far, are determined by coordinate functions (3.3.1.3), most frequently with k = 2 in

(3.3.1.1).

Method of invariant subspaces. Consider the nonlinear evolution equation with

constant delay [433]:

ut = F [u] + sw, w = u(x, t− τ), (3.3.1.4)

where F [u] is a nonlinear differential operator in the space variable x of the form

F [u] ≡ F (x, u, ux, . . . , u
(n)
x ) (3.3.1.5)

and s is some constant.

Definition [175]. A finite-dimensional linear subspace

Lk =
{
ϕ1(x), . . . , ϕk(x)

}
(3.3.1.6)

whose elements are all possible linear combinations of the linearly independent

functions ϕ1(x), . . . , ϕk(x) is said to be invariant under a differential operator F if

F [Lk] ⊆ Lk. In this case, there exist functions f1, . . . , fk such that

F

[ k∑

j=1

Cjϕj(x)

]
=

k∑

j=1

fj(C1, . . . , Ck)ϕj(x) (3.3.1.7)

for arbitrary constants C1, . . . , Ck. Note that the functions ϕj(x) appearing in

(3.3.1.7) cannot depend on C1, . . . , Ck.

Proposition 1. Let the linear subspace (3.3.1.6) be invariant under a differential

operator F . Then equation (3.3.1.4) has a generalized separable solution of the form

u =

k∑

j=1

ψj(t)ϕj(x), (3.3.1.8)

with the functions ψ1(t), . . . , ψk(t) described by the system of ordinary differential

equations with delay [433]:

ψ′
j = fj(ψ1, . . . , ψk) + sψ̄j , ψ̄j = ψj(t− τ), j = 1, . . . , k. (3.3.1.9)

Here the prime stands for a derivative with respect to t.
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This proposition can be proved as follows. First, one substitutes expression

(3.3.1.8) into equation (3.3.1.4) and then uses relation (3.3.1.7) in which the con-

stants Cj are replaced with ψj = ψj(t). After collecting the terms proportional to

ϕj = ϕj(x), one obtains the equation

k∑

j=1

[ψ′
j − fj(ψ1, . . . , ψk)− sψ̄j ]ϕj(x) = 0.

Since the functions ϕj are linearly independent, all expressions in square brackets

must be set equal to zero. This results in the system of ODEs (3.3.1.9).

Remark 3.17. The study [175] formulated Proposition 1 for equation (3.3.1.4) without
the delay term, i.e., for s = 0.

Remark 3.18. The delay in equations (3.3.1.4) and (3.3.1.9) can depend arbitrarily on
time, so that τ = τ (t).

Table 3.8 displays some nonlinear differential operators and linear subspaces

invariant under these operators (according to [175, 422, 430]). Adding a linear

operator L[u] = αuxx + βux + γu+ δ to the nonlinear operators Nos. 4–8 does not

change the invariant subspaces.

Examples of constructing generalized separable solutions for nonlinear de-

lay equations. Below we consider a few examples of applying Proposition 1 and

Table 3.8 to construct exact solutions for reaction-diffusion type equations with a

quadratic nonlinearity and delay.

◮ Example 3.9. Let us look at the delay reaction-diffusion equation

ut = [(a1u+ a0)ux]x + b1u+ b2w, w = u(x, t− τ). (3.3.1.10)

It follows from row 3 of Table 3.8 with a = b and c = 0 that the nonlinear

differential operator on the right-hand side of equation (3.3.1.10) with b2 = 0 admits

the invariant linear subspace L3 = {1, x, x2} (the operator converts the quadratic

polynomial C1 + C2x + C3x
2 to a quadratic polynomial with other coefficients).

Considering the above and Proposition 1, one can conclude that the original equa-

tion (3.3.1.10) has a polynomial generalized separable solution in the space variable:

u = ψ1(t) + ψ2(t)x+ ψ3(t)x
2. (3.3.1.11)

The functions ψj = ψj(t) (j = 1, 2, 3) are described by the system of delay ODEs

ψ′
1 = 2a1ψ1ψ3 + a1ψ

2
2 + 2a0ψ3 + b1ψ1 + b2ψ̄1,

ψ′
2 = 6a1ψ2ψ3 + b1ψ2 + b2ψ̄2,

ψ′
3 = 6a1ψ

2
3 + b1ψ3 + b2ψ̄3,

where ψ̄j = ψj(t− τ). ◭

◮ Example 3.10. Let us look at the more complicated delay reaction-diffusion

equation with a quadratic nonlinearity

ut = [(a1u+ a0)ux]x + ku2 + b1u+ b2w, w = u(x, t− τ). (3.3.1.12)

At k = 0, it becomes equation (3.3.1.10). In what follows, we assume that k 6= 0.
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Table 3.8. Some nonlinear differential operators and linear subspaces invariant under these

operators (a, b, c, α, β, γ, and δ are free parameters).

No. Nonlinear operator F [u] Subspaces invariant under F [u]

1 auxx+bu2x+βux+γu+δ L3 =
{
1, x, x2}

2
auxx+bu2x+cu

2

+βux+γu+δ

L3 =
{
1, sin(x

√
c/b ), cos(x

√
c/b )

}
if bc> 0,

L3 =
{
1, sinh(x

√
|c/b| ), cosh(x

√
|c/b| )

}
if bc< 0

3
auuxx+bu2x+cu

2

+αuxx+βux+γu+δ

L3 =
{
1, sin(λx), cos(λx)

}
if c/(a+b) =λ2 > 0,

L3 =
{
1, sinh(λx), cosh(λx)

}
if c/(a+b) =−λ2< 0,

L3 =
{
1, x, x2} if c=0,

L2 =
{
x2, xσ}, σ=a/(a+b) if c=α= β= δ=0, a 6=−b

4
uuxx−u2x

(special case of operator 3)

L3 =
{
1, sin(λx ), cos(λx )

}
, λ is an arbitrary constant,

L3 =
{
1, sinh(λx ), cosh(λx )

}
, λ is an arbitrary constant,

L3 =
{
1, x, x2}

5
uuxx− 2

3
u2x

(special case of operator 3)
L4 =

{
1, x, x2, x3

}

6
uuxx− 3

4
u2x+au

2

(special case of operator 3)

L5 =
{
1, cos(kx), sin(kx), cos(2kx), sin(2kx)

}

if a= k2> 0,

L5 =
{
1, cosh(kx), sinh(kx), cosh(2kx), sinh(2kx)

}

if a=−k2< 0,

L5 =
{
1, x, x2, x3, x4

}
if a=0

7 [(au2+bu+c)ux]x L2 =
{
1, x

}

8 u2uxx− 1
2
uu2x+au

3

L3 =
{
1, cos(

√
2a x), sin(

√
2a x)

}
if a> 0,

L3 =
{
1, cosh(

√
2|a| x), sinh(

√
2|a| x)

}
if a< 0,

L3 =
{
1, x, x2

}
if a=0

9 uxuxx

L4 =
{
1, x, x2, x3

}
,

L3 =
{
1, x3/2, x3

}
,

L2 =
{
1, ϕ(x)

}
, ϕ′

xϕ
′′
xx= p1+p2ϕ, p1, p2 are constants

1◦. For a1k < 0, the nonlinear differential operator on the right-hand side of

equation (3.3.1.12) with b2=0 admits an invariant linear three-dimensional subspace

L3 = {1, e−λx, eλx}, where λ =
√
−k/(2a1) (see row 3 in Table 3.8 with a = b

and c = k 6= 0). In this case, it follows from Proposition 1 that equation (3.3.1.12)

admits a generalized separable solution of the form

u = ψ1(t) + ψ2(t) exp(−λx) + ψ3(t) exp(λx), λ =

√
− k

2a1
. (3.3.1.13)

The functions ψ = ψn(t) are described by the system of delay ODEs

ψ′
1 = kψ2

1 + 2kψ2ψ3 + b1ψ1 + b2ψ̄1,

ψ′
2 = ( 32kψ1 + a0λ

2 + b1)ψ2 + b2ψ̄2,

ψ′
3 = ( 32kψ1 + a0λ

2 + b1)ψ3 + b2ψ̄3,

where ψ̄j = ψj(t− τ) (i = 1, 2, 3).
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2◦. For a1k > 0, it can be shown in a similar way that equation (3.3.1.12) admits

a generalized separable solution

u = ψ1(t) + ψ2(t) cos(λx) + ψ3(t) sin(λx), λ =

√
k

2a1
, (3.3.1.14)

where the functions ψ = ψn(t) are described by the system of delay ODEs

ψ′
1 = kψ2

1 +
1
2k(ψ

2
2 + ψ2

3) + b1ψ1 + b2ψ̄1,

ψ′
2 = ( 32 kψ1 + b1 − a0λ

2)ψ2 + b2ψ̄2,

ψ′
3 = ( 32 kψ1 + b1 − a0λ

2)ψ3 + b2ψ̄3.
◭

Some generalizations. Below are two more general propositions that enable one

to obtain generalized separable solutions to some nonlinear delay PDEs.

1◦. Consider a more complex nonlinear PDE with several delays than (3.3.1.4):

ut = F [u] +

p∑

i=1

siwi, wi = u(x, t− τi), (3.3.1.15)

where F [u] is an nth-order nonlinear differential operator in x of the form (3.3.1.5),

and τi are delays (i = 1, . . . , p), which are assumed to be independent constants.

Proposition 2. Let the linear subspace (3.3.1.6) be invariant under the operatorF ,

implying that relation (3.3.1.7) holds. Then equation (3.3.1.15) has a generalized

separable solution of the form (3.3.1.8) with the functionsψ1(t), . . . , ψk(t) described

by the system of ODEs with p delays

ψ′
j(t) = fj

(
ψ1(t), . . . , ψk(t)

)
+

p∑

i=1

siψj(t− τi), j = 1, . . . , k. (3.3.1.16)

2◦. We now look at another nonlinear delay PDE

L[u] = F [u;w], w = u(x, t− τ), (3.3.1.17)

where L[u] is an arbitrary linear differential operator in t of the form

L[u] ≡
q∑

j=1

aj(t)u
(j)
t , (3.3.1.18)

and F [u;w] is a nonlinear differential operator in x involving the functions u and w:

F [u;w] ≡ F
(
u, ux, uxx . . . , u

(m)
x ;w,wx, wxx, . . . , w

(r)
x

)
. (3.3.1.19)

Suppose that the linearly independent functions ϕ1(x), . . . , ϕk(x) form a finite-

dimensional linear subspace Lk.
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3.3. Generalized and Functional Separable Solutions 159

Proposition 3. Let C1, . . . , Ck and C̄1, . . . , C̄k be two sets or arbitrary real

constants and let there exist functions f1, . . . , fk such that

F

[ k∑

j=1

Cjϕj(x);
k∑

j=1

C̄jϕj(x)

]
=

k∑

j=1

fj(C1, . . . , Cn; C̄1, . . . , C̄n)ϕj(x). (3.3.1.20)

Then equation (3.3.1.17) has generalized separable solutions of the form (3.3.1.8)

where the functions ψ1(t), . . . , ψk(t) are described by the system of delay ODEs

L[ψj(t)] = fj
(
ψ1(t), . . . , ψk(t);ψ1(t− τ), . . . , ψk(t− τ)

)
, j = 1, . . . , k.

(3.3.1.21)

Proposition 3 can be used to construct generalized separable solutions to nonlin-

ear delay PDEs other than those discussed above, including nonlinear delay Klein–

Gordon type wave equations. The delay in equations (3.3.1.17) and (3.3.1.21) can

depend on time: τ = τ(t).

Remark 3.19. To seek generalized separable solutions, one may find it helpful to employ
the method of functional constraints, which is described below in Section 3.4.

3.3.2. Functional Separable Solutions

Preliminary remarks and definitions. Suppose there is a linear equation of math-

ematical physics for z = z(x, t) that admits a generalized separable solution. Then

a nonlinear equation obtained from this linear equation with a change of variable

u = U(z) will have an exact solution of the form

u(x, t) = U(z), where z =

k∑

j=1

ϕj(x)ψj(t). (3.3.2.1)

Many nonlinear PDEs without delay irreducible to linear equations also have

exact solutions of the form (3.3.2.1). Such solutions will be referred to as functional

separable solutions. In general, the functionsϕj(x), ψj(t), and U(z) in (3.3.2.1) are

not known in advance and so have to be determined in a subsequent analysis. The

function U will be called the outer function, while ϕj and ψj will be called inner

functions. This terminology also applies to nonlinear equations of mathematical

physics with delay, which sometimes admit exact solutions of the form (3.3.2.1).

Remark 3.20. Generalized separable solutions (see Subsection 3.3.1) are special func-
tional separable solutions with U(z) = z. The presence of the outer function U in (3.3.2.1),
which must be found, is a complicating factor in constructing functional separable solutions.

In the narrow sense, the term functional separable solution is frequently used for

simpler exact solutions of the following form (e.g., see [15, 137, 195, 238, 343, 344,

425, 608]):

u = U(z), z = ϕ(x) + ψ(t), (3.3.2.2)

where the three functions U(z), ϕ(x), and ψ(t) are unknown. In constructing solu-

tions (3.3.2.2), one assumes that ϕ 6= const and ψ 6= const.
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Remark 3.21. In functional separation of variables, seeking the simplest solutions u =
U(ϕ(x) + ψ(t)) and u = U(ϕ(x)ψ(t)) leads to the same results, since the representation
U(ϕ(x)ψ(t)) = U1(ϕ1(x) +ψ1(t)), where U1(z) = U(ez), ϕ1(x) = lnϕ(x), and ψ1(t) =
lnψ(t), holds true.

The method based on transformations of the unknown function. In certain

cases, seeking solutions in the form (3.3.2.1) can be carried out in two steps. First,

one applies a transformation converting the original equation to a simpler one with

a quadratic or power-law nonlinearity. Then, one looks for a generalized separable

solution of the resulting equation.

Unfortunately, there are no regular methods for reducing a PDE of a given form

to a PDE with a quadratic nonlinearity. Sometimes, equations involving a quadratic

nonlinearity can be obtained through a transformation u = U(z) of the unknown

functions. The most common transformations are

u = zλ (for equations with a power-law nonlinearity),

u = λ ln z (for equations with an exponential nonlinearity),

u = eλz (for equations with a logarithmic nonlinearity);

where λ is a constant that has to be determined. This approach is equivalent to a

priori setting of the form of the outer function U(z) in (3.3.2.1); whether this is

successful or not mainly depends on the researcher’s experience and intuition.

Remark 3.22. Many nonlinear equations of mathematical physics without delay reducible
to equations with a quadratic nonlinearity using appropriate transformations can be found in
[169, 172–175, 422, 425, 430].

Examples of constructing functional separable solutions to nonlinear delay

equations. Below we will give a few examples of transforming the unknown func-

tion to construct functional separable solutions for second-order nonlinear PDEs with

delay.

◮ Example 3.11. Let us look at the six-parameter family of reaction-diffusion

equations with power-law nonlinearities and a time delay

ut = a(unux)x+ bun+1+ cu+ ku1−n+mu1−nwn, w = u(x, t− τ), (3.3.2.3)

where a, b, c, k, n, and m are free parameters. The substitution z = un converts

(3.3.2.3) to an equation with a quadratic nonlinearity

zt = azzxx +
a

n
z2x + bnz2 + cnz + kn+mnz̄, z̄ = z(x, t− τ). (3.3.2.4)

This equation admits various generalized separable solutions whose forms depend

on the coefficients of the nonlinear terms on the right-hand side of (3.3.2.4). Exact

solutions of equation (3.3.2.4) can be found using Table 3.8 (see rows 3–6). In

particular, if ab(n + 1) > 0, it will have solutions with trigonometric functions and

if ab(n+ 1) < 0, it will have exponential solutions.
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This approach allows one to obtain functional separable solutions of the form

u=
{
ϕ(t)

[
C1 cos(βx)+C2 sin(βx)

]
+ψ(t)

}1/n
for ab(n+1)> 0,

u=
{
ϕ(t)

[
C1 cosh(βx)+C2 sinh(βx)

]
+ψ(t)

}1/n
for ab(n+1)< 0.

(3.3.2.5)

Here C1 and C2 are arbitrary constants,

β =

√
|b|n2

|a(n+ 1)| ,

and the functions ϕ = ϕ(t) and ψ = ψ(t) are described by the system of ordinary

differential equations with delay

ϕ′
t=

bn(n+2)

n+1
ϕψ+cnϕ+mnϕ̄, ϕ̄=ϕ(t−τ),

ψ′
t=n(bψ2+cψ+k)+

bn

n+1
(C2

1 ±C2
2)ϕ

2+mnψ̄, ψ̄=ψ(t−τ).
(3.3.2.6)

The upper sign in the second equation corresponds to the first solution in (3.3.2.5),

and the lower sign corresponds to the second solution.

If C1 = C2, the last equation in (3.3.2.6), with the lower sign, can be satisfied if

we set ψ = const, where ψ is a root of quadratic equation bψ2 + (c+m)ψ + k = 0.

In this case, the first equation in (3.3.2.6) is a linear homogeneous delay ODE of the

form (1.1.3.1), which was studied in Subsection 1.1.3 in detail. This equation admits

particular exponential solutions ϕ = C3e
λt, where C3 is an arbitrary constant and λ

is a root of the transcendental equation

λ =
bn(n+ 2)

n+ 1
ψ + cn+mne−λτ .

◭

◮ Example 3.12. Now let us consider the six-parameter family of reaction-

diffusion equations with exponential nonlinearities and a time delay

ut = a(eλuux)x + beλu + c+ ke−λu +meλ(w−u), w = u(x, t− τ). (3.3.2.7)

The change of variable z = eλu converts (3.3.2.7) to an equation with a quadratic

nonlinearity

zt = azzxx + bλz2 + cλz + kλ+mλz̄, z̄ = z(x, t− τ). (3.3.2.8)

Solutions to equation (3.3.2.8) can be obtained using Table 3.8 (see row 3). It

is apparent that if abλ > 0, equation (3.3.2.8) has a solution with trigonometric

functions, if abλ < 0, it has a solution with exponential functions, and if b = 0, there

is a solution in the form of a quadratic polynomial in x.

In particular, the above change of variable leads to functional separable solutions

to equation (3.3.2.7) expressible in terms of elementary functions:

u =
1

λ
ln
{
eαt

[
C1 cos(x

√
β ) + C2 sin(x

√
β )

]
+ γ

}
for abλ > 0,

u =
1

λ
ln
{
eαt

[
C1 cosh(x

√
−β ) + C2 sinh(x

√
−β )

]
+ γ

}
for abλ < 0.
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HereC1 andC2 are arbitrary constants, and α is a root of the transcendental equation

α = λ(bγ + c+me−ατ ), β = bλ/a,

where γ = γ1,2 are roots of the quadratic equation bγ2 + (c+m)γ + k = 0. ◭

◮ Example 3.13. The five-parameter family of reaction-diffusion equations

with logarithmic nonlinearities and a time delay

ut = auxx + bu ln2 u+ cu lnu+ ku+mu lnw, w = u(x, t− τ), (3.3.2.9)

can be reduced with the change of variable u = ez to an equation with a quadratic

nonlinearity

zt = azxx + az2x + bz2 + cz + k +mz̄, z̄ = z(x, t− τ). (3.3.2.10)

One can find solutions to equation (3.3.2.10) using Table 3.8 (see equations 1 and 2).

It is apparent that if ab > 0, equation (3.3.2.10) has a solution with trigonometric

functions and if ab < 0, there is an exponential solution. If b= 0, equation (3.3.2.10)

admits a generalized separable solution as a quadratic polynomial in the space vari-

able, z = ψ1(t)x
2 + ψ2(t)x + ψ3(t), which leads to a functional separable solution

for the original equation (3.3.2.9):

u = exp[ψ1(t)x
2 + ψ2(t)x+ ψ3(t)].

The functions ψk = ψk(t) are described by the system of delay ODEs

ψ′
1 = 4aψ2

1 + cψ1 +mψ̄1,

ψ′
2 = 4aψ1ψ2 + cψ2 +mψ̄2,

ψ′
3 = cψ3 + 2aψ1 + aψ2

2 + k +mψ̄3,

where ψ̄j = ψj(t− τ), j = 1, 2, 3. The first equation of the system has a stationary

particular solution ψ1 = −(c+m)/(4a). In this case, the second equation is a linear

homogeneous delay ODE, which was thoroughly investigated in Subsection 1.1.3

and has an exponential particular solution ψ2 = Ceλt, and the last equation becomes

a linear nonhomogeneous delay ODE. ◭

3.3.3. Using Linear Transformations to Construct
Generalized and Functional Separable Solutions

Preliminary remarks. In certain cases, to obtain exact solutions of nonlinear delay

PDEs, one could first transform the independent variables and then look for general-

ized or functional separable solutions. The simplest linear transformations include

x, t, u =⇒ y, z, u, where y = k1x+ λ1t, z = k2x+ λ2t, (3.3.3.1)

where k1, k2, λ1, and λ2 are some constants. Previously, this approach made it

possible to obtain, in terms of new variables, multiplicative and additive separable
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3.3. Generalized and Functional Separable Solutions 163

solutions to the nonlinear delay reaction-diffusion equations (3.2.2.1) (see solution

(3.2.2.7)), (3.2.2.12) (solution (3.2.2.15) with C1 = 0), and (3.2.2.16) (solution

(3.2.2.20)).

Linear transformations for nonlinear delay Klein–Gordon type wave equa-

tions. To find exact solutions of nonlinear delay Klein–Gordon equations (3.1.1.3),

one may find it helpful to start with the following two linear transformations:

x, t, u =⇒ x, z, u, where z = t± a−1/2x. (3.3.3.2)

This results in two delay PDEs [429]:

auxx ± 2a1/2uxz + F (u,w) = 0,

u = u(x, z), z = t± a−1/2x, w = u(x, z − τ).
(3.3.3.3)

Notably, the relations t ± a−1/2x = C±, where C± are arbitrary constants, define

two different families of characteristics for the linear wave equation (3.1.1.3) with

F ≡ 0 (e.g., see [404, 514]).

The transformed equations (3.3.3.3) are often more convenient than the original

delay PDE (3.1.1.3); these make it possible to find generalized and functional sepa-

rable solutions with respect to the new arguments x and z.

Exact solutions to nonlinear delay PDEs [429]. To illustrate the effectiveness

of employing linear transformations of the form (3.3.3.2), we will list several nonlin-

ear hyperbolic PDEs with delay and their exact solutions.

Equation 1. The nonlinear delay Klein–Gordon type wave equation

utt = auxx + f(w/u) (3.3.3.4)

written in terms of the variables (3.3.3.2) admits multiplicative separable solutions

u = (x + C)ϕ(z), z = t± a−1/2x,

where C is an arbitrary constant; the functions ϕ(z) satisfy the nonlinear first-order

delay ODE

±2a1/2ϕ′(z) + f
(
ϕ(z − τ)/ϕ(z)

)
= 0.

Equation 2. The nonlinear delay Klein–Gordon type wave equation

utt = auxx + f(u− w) (3.3.3.5)

written in terms of the variables (3.3.3.2) admits a few exact solutions described

below.

1◦. Generalized separable solutions:

u = Cx2 + ϕ(z)x+ ψ(z), z = t± a−1/2x,

where C is an arbitrary constant, and ϕ(z) and ψ(z) are functions satisfying the

difference equations

ϕ(z) = ϕ(z − τ), (3.3.3.6)

f
(
ψ(z)− ψ(z − τ)

)
= ∓2a1/2ϕ′(z)− 2Ca. (3.3.3.7)
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It follows from the linear equation (3.3.3.6) that ϕ(z) is any τ -periodic function that

can generally be represented as the convergent series

ϕ(z) = A0 +

∞∑

n=1

(
An cos

2πnz

τ
+Bn sin

2πnz

τ

)
, (3.3.3.8)

where An and Bn are arbitrary constants. Substituting (3.3.3.8) into (3.3.3.7) yields

an equation that reduces to a linear nonhomogeneous difference equation of the form

ψ(z)− ψ(z − τ) = g∓(z) with a known right-hand side.

2◦. Generalized separable solutions:

u = Cxz + ϕ(x) + ψ(z), z = t± a−1/2x,

where C is an arbitrary constant, and ϕ(x) and ψ(z) are functions satisfying the

linear ODE and linear difference equation

aϕ′′
xx ± 2Ca1/2 + f(Cτx+B) = 0,

ψ(z)− ψ(z − τ) = B,

in which B is an arbitrary constant. The functions ϕ(x) and ψ(z) admit a closed-

form representation.

Equation 3. The nonlinear delay Klein–Gordon type wave equation

utt = auxx + f(u+ kw) (3.3.3.9)

admits generalized separable solutions

u = ϕ(z)x+ ψ(z), z = t± a−1/2x, (3.3.3.10)

where the functions ϕ(z) and ψ(z) are described by the difference equations

ϕ(z) + kϕ(z − τ) = 0, (3.3.3.11)

f
(
ψ(z) + kψ(z − τ)

)
= ∓2a1/2ϕ′(z). (3.3.3.12)

For k > 0, the general solution to equation (3.3.3.11) can be represented as

ϕ(z) = kz/τ
∞∑

n=1

[
An cos

(2n− 1)πz

τ
+Bn sin

(2n− 1)πz

τ

]
, (3.3.3.13)

where An and Bn are arbitrary constants such that the series in (3.3.3.13) is conver-

gent. If k = 1, we get a general τ -antiperiodic function (3.3.3.13).

For k < 0, equation (3.3.3.11) has the general solution

ϕ(z) = |k|z/τ
∞∑

n=0

(
An cos

2πnz

τ
+Bn sin

2πnz

τ

)
. (3.3.3.14)

Substituting (3.3.3.13) or (3.3.3.14) into (3.3.3.12) gives an equation reducible to

linear nonhomogeneous difference equations of the form ψ(z)+kψ(z− τ) = g∓(z)
with a known right-hand side.
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Equation 4. The nonlinear delay PDE

utt = auxx + u1−2kf(uk − wk), k 6= 1, (3.3.3.15)

admits functional separable solutions

u = [x+ θ(z)]1/k, z = t± a−1/2x,

where the function θ = θ(z) is described by the nonlinear first-order delay ODE

±2a1/2θ′z + a+
k2

1− k
f(θ − θ̄) = 0, θ̄ = θ(z − τ).

Equation 5. The nonlinear delay PDE

utt = auxx + ebu+cwf(u− w) (3.3.3.16)

admits additive separable solutions

u = ϕ(x) + θ(z), z = t± a−1/2x,

with the function ϕ = ϕ(x) satisfying the nonlinear second-order ODE

ϕ′′
xx = Ke(b+c)ϕ,

where K is an arbitrary constant and θ = θ(z) is a function described by the differ-

ence equation

aK + ebθ+cθ̄f(θ − θ̄) = 0, θ̄ = θ(z − τ).

Notably, the general solution of the ODE for ϕ is expressed in terms of elementary

functions [423].

Equation 6. The nonlinear delay PDE

utt = auxx + e−2βuf(beβu + ceβw) (3.3.3.17)

admits functional separable solutions of the form

u =
1

β
ln[ϕ(z)x+ ψ(z)], z = t± a−1/2x,

with the function ϕ = ϕ(z) satisfying the linear difference equation

bϕ+ cϕ̄ = 0, ϕ̄ = ϕ(z − τ),

and the function ψ = ψ(z) described by the nonlinear first-order delay ODE

±2a1/2(ϕ′
zψ − ϕψ′

z)− aϕ2 + βf(bψ + cψ̄) = 0, ψ̄ = ψ(z − τ).
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3.4. Method of Functional Constraints

3.4.1. General Description of the Method of Functional
Constraints

Following [428], we will consider the class of nonlinear delay reaction-diffusion

equations
ut = auxx + uf(z) + wg(z) + h(z),

w = u(x, t− τ), z = z(u,w),
(3.4.1.1)

where f(z), g(z), and h(z) are arbitrary functions, and z = z(u,w) is a given

function (in certain cases, it can be unknown and has to be determined). In addition,

along the way, we will sometimes be looking at more general equations where the

functions f , g, and h can also depend on either independent variable, x or t.

Remark 3.23. The first derivative ut on the left-hand side of equation (3.4.1.1) can be
replaced with the second derivative utt or a linear combination of time derivatives, L[u] =
∑n
m=1 cmu

(m)
t , where cm are arbitrary constants.

We seek generalized separable solutions of the form

u =

N∑

n=1

ϕn(x)ψn(t), (3.4.1.2)

where the functionsϕn(x) andψn(t) are to be determined in the subsequent analysis.

It should be reminded that the sum (3.4.1.2) most frequently contains the coordinate

functions specified in (3.3.1.3).

Notably, nonlinear delay PDEs of the form (3.4.1.1), which involve arbitrary

functions, cannot be solved with the use of the standard methods of generalized

separation of variables described in the books [175, 422, 425, 430] and Section 3.3.

The method of functional constraints developed in [428] is based on seeking

generalized separable solutions (3.4.1.2) for equations of the form (3.4.1.1) and

related more complex equations by employing one of the following two additional

functional constraints:

z(u,w) = p(x), w = u(x, t− τ); (3.4.1.3)

z(u,w) = q(t), w = u(x, t− τ). (3.4.1.4)

These represent difference equations in the variable t, where the space variable x
serves as a free parameter. The function z = z(u,w) is the argument of the arbitrary

functions f , g, and h involved in (3.4.1.1). The functions p(x) and q(t) depend on x
and t implicitly (expressed in terms of ϕn(x) and ψn(t)) and are determined in the

investigation of equation (3.4.1.3) or (3.4.1.4) taking into account (3.4.1.2). Notably,

there is no need to obtain the general solutions of equation (3.4.1.3) or (3.4.1.4);

particular solutions will suffice.

In view of (3.4.1.2), a solution to the difference equation (3.4.1.3) (or (3.4.1.4))

defines allowed structures of exact solutions. Their final forms are further deter-

mined by substituting these solutions into equation (3.4.1.1) in question. Constraints
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(3.4.1.3) and (3.4.1.4) will further be referred to as a functional constraint of the first

kind and a functional constraint of the second kind, respectively.

If either relation (3.4.1.3) or (3.4.1.4) holds, equation (3.4.1.1) becomes ‘linear’,

which then enables one to apply the procedure of separation of variables.

Remark 3.24. To avoid ambiguity, in Section 3.4, we will treat the simplest (degenerate)
functional constraint z(u,w) = const as a functional constraint of the first kind (3.4.1.3).

Remark 3.25. The term ‘functional constraint’ is introduced by analogy with ‘differential
constraint’ used in the method of differential constraints (proposed by N. N. Yanenko in [579])
to seek exact solutions of nonlinear PDEs and systems of such equations. For the description
of this method and examples of its application, see, for example, [422, 425, 430, 480].

Remark 3.26. In certain cases, the functional equations (3.4.1.3) and (3.4.1.4) allow one
to obtain more complex functional separable solutions than (3.4.1.2); for examples of such
solutions, see Subsection 3.4.3.

Below we give a number of examples illustrating the application of the method of

functional constraints to construct generalized separable solutions for some nonlinear

delay equations of the form (3.4.1.1) and related more complex equations.

3.4.2. Exact Solutions to Quasilinear Delay
Reaction-Diffusion Equations

This subsection will deal with quasilinear delay reaction-diffusion equations of the

form (3.4.1.1), which are linear in both derivatives. The exact solutions listed below

were obtained in [428].

Equations involving a single arbitrary function dependent on w/u.

Equation 1. Consider the nonlinear reaction-diffusion equation with constant

delay that involves a single arbitrary function dependent on the ratio w/u:

ut = auxx + uf(w/u), w = u(x, t− τ). (3.4.2.1)

It is a special case of equation (3.4.1.1) with g = h = 0 and z = w/u.

1◦. In this case, the functional constraint of the second kind (3.4.1.4) is

w/u = q(t), w = u(x, t− τ). (3.4.2.2)

It is clear that the difference equation (3.4.2.2) can be satisfied if we take the simple

multiplicative separable solution

u = ϕ(x)ψ(t), (3.4.2.3)

which gives q(t)=ψ(t−τ)/ψ(t). Substituting (3.4.2.3) into (3.4.2.1) and separating

the variables, we get the equations for ϕ = ϕ(x) and ψ = ψ(t):

ϕ′′
xx = kϕ, (3.4.2.4)

ψ′
t = akψ + ψf(ψ̄/ψ), ψ̄ = ψ(t− τ), (3.4.2.5)

where k is an arbitrary constant.
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The general solution to ODE (3.4.2.4) is given by

ϕ(x) =





C1 cos
(√

|k|x
)
+ C2 sin

(√
|k|x

)
if k < 0;

C1 exp
(
−
√
k x

)
+ C2 exp

(√
k x

)
if k > 0;

C1x+ C2 if k = 0,

(3.4.2.6)

where C1 and C2 are arbitrary constants. The delay ODE (3.4.2.5) admits particular

solutions in the exponential form

ψ(t) = C3e
λt,

where C3 is an arbitrary constant, and λ is a root of the transcendental equation

λ = ak + f(e−λτ ).

2◦. The functional constraint of the first kind (3.4.1.3) for equation (3.4.2.1) is

written in the simplest case p(x) = p0 = const as

w/u = p0, w = u(x, t− τ). (3.4.2.7)

We look for a solution to the difference equation (3.4.2.7) with p0 > 0 in the form

u = ectv(x, t), v(x, t) = v(x, t − τ), (3.4.2.8)

where c is an arbitrary constant, and v(x, t) is a τ -periodic function that has to be

determined. In this case, we have w/u = p0 = e−cτ .

Substituting (3.4.2.8) into equation (3.4.2.1) yields a linear problem for v:

vt = avxx + bv, v(x, t) = v(x, t− τ), (3.4.2.9)

where b = f(e−cτ)− c.
For convenience, we denote the general solution of problem (3.4.2.9) by v =

V1(x, t; b). It is expressed as

V1(x, t; b) =

∞∑

n=0

exp(−λnx)
[
An cos(βnt− γnx) +Bn sin(βnt− γnx)

]

+

∞∑

n=1

exp(λnx)
[
Cn cos(βnt+ γnx) +Dn sin(βnt+ γnx)

]
,

(3.4.2.10)

βn =
2πn

τ
, λn =

(√
b2 + β2

n − b

2a

)1/2

, γn =

(√
b2 + β2

n + b

2a

)1/2

,

(3.4.2.11)

where An, Bn, Cn, and Dn are arbitrary constants such that the series (3.4.2.10)–

(3.4.2.11) and its derivatives (V1)t and (V1)xx are all convergent; for example, one
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can ensure the convergence by setting An =Bn =Cn =Dn = 0 with n >N , where

N is an arbitrary positive integer.

We can single out the following special cases:

(i) formulas (3.4.2.10)–(3.4.2.11)withA0=B0=0,Cn=Dn=0, n=1, 2, . . . ,
define time τ -periodic solutions to problem (3.4.2.9) that decay as x→ ∞;

(ii) formulas (3.4.2.10)–(3.4.2.11) with Cn =Dn = 0, n= 1, 2, . . . , define time

τ -periodic solutions to problem (3.4.2.9) that are bounded as x→ ∞;

(iii) formulas (3.4.2.10)–(3.4.2.11) withAn=Bn=Cn=Dn=0, n=1, 2, . . . ,
define a stationary solution.

To sum up, equation (3.4.2.1) has the exact solution

u = ectV1(x, t; b), b = f(e−cτ )− c, (3.4.2.12)

where c is an arbitrary constant, and V1(x, t; b) is a τ -periodic function defined by

(3.4.2.10)–(3.4.2.11).

3◦. We look for a solution to the difference equation (3.4.2.7) with p0 < 0 in the

form

u = ectv(x, t), v(x, t) = −v(x, t− τ), (3.4.2.13)

where c is an arbitrary constant, and v(x, t) is a τ -antiperiodic function. In our case,

w/u = p0 = −e−cτ .

Substituting (3.4.2.13) into equation (3.4.2.1) yields a linear problem for v:

vt = avxx + bv, v(x, t) = −v(x, t− τ), (3.4.2.14)

where b = f(−e−cτ)− c.
The general solution of problem (3.4.2.14), which we denote by v = V2(x, t; b)

for convenience, is

V2(x, t; b) =

∞∑

n=1

exp(−λnx)
[
An cos(βnt− γnx) +Bn sin(βnt− γnx)

]

+

∞∑

n=1

exp(λnx)
[
Cn cos(βnt+ γnx) +Dn sin(βnt+ γnx)

]
,

(3.4.2.15)

βn =
π(2n− 1)

τ
, λn =

(√
b2 + β2

n − b

2a

)1/2

, γn =

(√
b2 + β2

n + b

2a

)1/2

,

(3.4.2.16)

where An, Bn, Cn, and Dn are arbitrary constants such that the series (3.4.2.15)–

(3.4.2.16) and respective derivatives (V2)t and (V2)xx are convergent. Formulas

(3.4.2.15)–(3.4.2.16) with Cn = Dn = 0, n = 1, 2, . . . , define τ -antiperiodic solu-

tions, in time t, of problem (3.4.2.14) that decay as x→ ∞.

To sum up, equation (3.4.2.1) has the exact solution

u = ectV2(x, t; b), b = f(−e−cτ)− c, (3.4.2.17)

where c is an arbitrary constant, and V2(x, t; b) is a τ -antiperiodic function defined

by formulas (3.4.2.15)–(3.4.2.16).
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Remark 3.27. Solutions (3.4.2.10)–(3.4.2.11) and (3.4.2.15)–(3.4.2.16) are very similar
in appearance. However, the first sum starts with n = 0 in the first solution and with n = 1 in
the second solution; the values of βn are also different.

Equation 2. Consider the nonlinear reaction-diffusion equation with constant

delay that involves a single arbitrary function

ut = auxx + bu lnu+ uf(w/u), w = u(x, t− τ). (3.4.2.18)

At b = 0, it becomes equation (3.4.2.1). The exact solution to equation (3.4.2.18)

determined by the functional constraint of the second kind (3.4.2.2) has the form

(3.4.2.3), or

u = ϕ(x)ψ(t),

where the functionsϕ=ϕ(x) and ψ=ψ(t) are described by the ODE and delay ODE

aϕ′′
xx + bϕ lnϕ = Cϕ,

ψ′
t = bψ lnψ + Cψ + ψf(ψ̄/ψ), ψ̄ = ψ(t− τ),

where C is an arbitrary constant.

Equations involving a single arbitrary function dependent on a linear com-

bination of u and w.

Equation 3. Consider the nonlinear reaction-diffusion equation with constant

delay that involves a single arbitrary function dependent on the difference u− w:

ut = auxx + bu+ f(u− w), w = u(x, t− τ). (3.4.2.19)

It is a special case of equation (3.4.1.1) with f(z) = b, g = 0, and z = u − w; for

convenience, the function h has been renamed f .

1◦. In this case, the functional constraint of the second kind (3.4.1.4) has the

form

u− w = q(t), w = u(x, t− τ). (3.4.2.20)

It is clear that the linear difference equation (3.4.2.20) can be satisfied if we take

the additive separable solution

u = ϕ(x) + ψ(t), (3.4.2.21)

which gives q(t) = ψ(t) − ψ(t − τ). Substituting (3.4.2.21) into (3.4.2.19) and

separating the variables, we obtain equations for ϕ = ϕ(x) and ψ = ψ(t):

aϕ′′
xx + bϕ = k, (3.4.2.22)

ψ′
t = bψ + k + f(ψ − ψ̄), ψ̄ = ψ(t− τ), (3.4.2.23)

where k is an arbitrary constant.

The general solution of equation (3.4.2.22) with b 6= 0 and k = 0 is

ϕ(x) =

{
C1 cos(βx) + C2 sin(βx), β =

√
b/a for b > 0;

C1 exp(−βx) + C2 exp(βx), β =
√
−b/a for b < 0,

(3.4.2.24)
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where C1 and C2 are arbitrary constants. For b > 0, solution (3.4.2.21), (3.4.2.24) is

periodic in the space variable x.

The general solution of equation (3.4.2.22) with b = 0 and k 6= 0 is expressed as

ϕ(x) =
k

2a
x2 + C1x+ C2. (3.4.2.25)

2◦. The functional constraint of the first kind (3.4.1.3) for equation (3.4.2.19) is

u− w = p(x), w = u(x, t− τ). (3.4.2.26)

The difference equation (3.4.2.26) can be satisfied if we take, for example, the

generalized separable solution

u = tϕ(x) + ψ(x), (3.4.2.27)

which gives p(x) = τϕ(x).
Substituting (3.4.2.27) into (3.4.2.19) gives ordinary differential equations for

ϕ = ϕ(x) and ψ = ψ(x):

aϕ′′
xx + bϕ = 0, (3.4.2.28)

aψ′′
xx + bψ + f(τϕ)− ϕ = 0. (3.4.2.29)

Equation (3.4.2.28) coincides with equation (3.4.2.22) at k = 0 and its solution

is given by formulas (3.4.2.24). The linear nonhomogeneous ODE with constant

coefficients (3.4.2.29) is easy to integrate.

One can obtain more complicated exact solutions to equation (3.4.2.19), involv-

ing any number of arbitrary parameters by utilizing the above solutions (3.4.2.21)

and (3.4.2.27) and the following theorem.

Theorem 1 (on nonlinear superposition of solutions). Let u0(x, t) be some

solution to the nonlinear delay equation (3.4.2.19) and let v = V1(x, t; b) be any τ -

periodic solution to the linear heat equation with a source (3.4.2.9). Then the sum

u = u0(x, t) + V1(x, t; b) (3.4.2.30)

is also a solution to equation (3.4.2.19). The general form of the functions V1(x, t; b)
is defined by formulas (3.4.2.10)–(3.4.2.11).

This theorem can be proved by a direct substitution of formula (3.4.2.30) into

the original delay equation (3.4.2.19) while using the equation for v (3.4.2.9).

Remark 3.28. In formula (3.4.2.30), one can use, for example, a spatially homogeneous
solution u0(t), a stationary solution u0(x), or a traveling wave solution u0 = u0(αx+ βt) as
the particular solution u0(x, t) to the nonlinear equation (3.4.2.19).

Equation 4. Let us look at the delay PDE

ut = auxx + bu+ f(u− kw), k > 0, (3.4.2.31)
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172 3. ANALYTICAL METHODS AND EXACT SOLUTIONS TO DELAY PDES. PART I

which is a special case of equation (3.4.1.1) with f(z) = b, g = 0, and z = u− kw;

for convenience, the function h has been renamed f .

1◦. The functional constraint of the first kind (3.4.1.3) for equation (3.4.2.31) is

u− kw = p(x), w = u(x, t− τ). (3.4.2.32)

The linear difference equation (3.4.2.32) can be satisfied if, for example, we take

a generalized separable solution of the form

u = ectϕ(x) + ψ(x), c =
1

τ
ln k, (3.4.2.33)

which gives p(x) = (1− k)ψ(x).
Substituting (3.4.2.33) into (3.4.2.31) yields ordinary differential equations for

ϕ = ϕ(x) and ψ = ψ(x):

aϕ′′
xx + (b − c)ϕ = 0, (3.4.2.34)

aψ′′
xx + bψ + f(η) = 0, η = (1− k)ψ. (3.4.2.35)

Up to obvious renaming, the linear ODE (3.4.2.34) coincides with equation

(3.4.2.22) at k = 0. Its solution is given by formulas (3.4.2.24) in which b must be

replaced with b− c. The nonlinear ODE (3.4.2.35) is autonomous and so its general

solution can be expressed in an implicit form.

2◦. One can obtain more complicated exact solutions to equation (3.4.2.31),

involving any number of arbitrary parameters, by employing the above solution

(3.4.2.33)–(3.4.2.35) and the following theorem.

Theorem 2 (generalizes Theorem 1). Let u0(x, t) be some solution to the non-

linear delay equation (3.4.2.31) and let v = V1(x, t; b) be any τ -periodic solution to

the linear heat equation with a source (3.4.2.9). Then the sum

u = u0(x, t) + ectV1(x, t; b − c), (3.4.2.36)

where c= (ln k)/τ , is also a solution to equation (3.4.2.31). The general form of the

function V1(x, t; b) is given by formulas (3.4.2.10)–(3.4.2.11).

This theorem can be proved by a direct substitution of formula (3.4.2.36) into

the original delay equation (3.4.2.31) while using the equation for v (3.4.2.9).

Formula (3.4.2.36) allows one to obtain a broad class of exact solutions to the

nonlinear delay equation (3.4.2.31). As u0(x, t) in (3.4.2.36), one can take a con-

stant u0 that satisfies the algebraic (or transcendental) equation bu0+f((1−k)u0)=0
and so is the simplest particular solution of equation (3.4.2.31). As u0(x, t) in

(3.4.2.36), one can also take simple particular solutions u0 = u0(x) or u0 = u0(t),
or the more complex traveling wave solution u0 = θ(αx + βt), where α and β are

arbitrary constants, and θ(y) is a function satisfying the delay ODE

aα2θ′′(y)− βθ′(y) + bθ(y) + f
(
θ(y)− kθ(y− σ)

)
= 0, y = αx+ βt, σ = βτ.

Furthermore, exact solution (3.4.2.33) is also suitable.
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Remark 3.29. Let us look at a more general equation than (3.4.2.31),

ut=auxx+bu+f(w1−kw2), w1=u(x, t−τ1), w2=u(x, t−τ2), k>0, (3.4.2.37)

with two delays, τ1 and τ2 (τ1 6= τ2). The difference equation w1 − kw2 = p(x) can be
satisfied by taking a generalized separable solution of the form (3.4.2.33) in which c= 1

τ
ln k

must be replaced with c = 1
τ2−τ1

ln k. Then a theorem similar to Theorem 2 will hold if we

set c = 1
τ2−τ1

ln k in formula (3.4.2.36).

Equation 5. Consider the delay PDE

ut = auxx + bu+ f(u+ kw), k > 0, (3.4.2.38)

which differs from equation (3.4.2.31) in the sign of k in the kinetic term. The

following theorem holds.

Theorem 3. Suppose that u0(x, t) is some solution to the nonlinear delay equa-

tion (3.4.2.38) and v = V2(x, t; b) is any τ -antiperiodic solution to the linear heat

equation with a source (3.4.2.14). Then the sum

u = u0(x, t) + ectV2(x, t; b− c), c =
1

τ
ln k, (3.4.2.39)

is also a solution to equation (3.4.2.38). The general form of V2(x, t; b) is defined by

formulas (3.4.2.15)–(3.4.2.16).

Theorem 3 is proved by direct verification. It allows one to obtain a broad class

of exact solutions to the nonlinear delay equation (3.4.2.38). As the particular solu-

tion u0(x, t) in (3.4.2.39), one can take, for example, a spatially homogeneous solu-

tion u0(t), a stationary solution u0(x), or a traveling wave solution u0=u0(αx+βt).
Equations involving two arbitrary functions dependent on a linear combi-

nation of u and w.

Equation 6. Now we look at the more complicated nonlinear delay PDE

ut = auxx + uf(u−w) +wg(u−w) + h(u−w), w = u(x, t− τ), (3.4.2.40)

where f(z), g(z), and h(z) are arbitrary functions. (Without loss of generality, either

function f or g can be set equal to zero.)

1◦. The functional constraint of the first kind (3.4.1.3) for equation (3.4.2.40)

has the form (3.4.2.26). The linear difference equation (3.4.2.26) can be satisfied

if, as before, we take a generalized separable solution of the form (3.4.2.27). As a

result, we obtain equations for the functions ϕ(x) and ψ(x); these are not written

out, since we give a significantly more general result below.

2◦. The linear difference equation (3.4.2.26) can be satisfied if we set

u=

N∑

n=1

[ϕn(x) cos(βnt)+ψn(x) sin(βnt)]+tθ(x)+ξ(x), βn=
2πn

τ
, (3.4.2.41)

where N is any positive integer. In this case, we have p(x) = τϕ(x) on the right-

hand side of equation (3.4.2.26).
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Substituting (3.4.2.41) into equation (3.4.2.40) and rearranging, we arrive at the

equation

N∑

n=1

[An cos(βnt) +Bn sin(βnt)] + Ct+D = 0 (3.4.2.42)

in which the functional coefficients An, Bn, C, and D depend on ϕn(x), ψn(x),
θ(x), and ξ(x) and their derivatives but are independent of time t. In (3.4.2.42),

equating all functional coefficients with zero, An = Bn = C = D = 0, we obtain

the following ODEs for the unknown functions:

aϕ′′
n + ϕn[f(τθ) + g(τθ)]− βnψn = 0,

aψ′′
n + ψn[f(τθ) + g(τθ)] + βnϕn = 0,

aθ′′ + θ[f(τθ) + g(τθ)] = 0,

aξ′′ + ξf(τθ) + (ξ − τθ)g(τθ) + h(τθ) − θ = 0.

where a prime denotes a derivative with respect to x.

It is noteworthy that the third nonlinear equation admits a trivial solution, θ = 0;

in this case, the other three equations become linear ODEs with constant coefficients.

Equation 7. Consider the nonlinear delay PDE

ut = auxx + uf(u− kw) + wg(u− kw) + h(u− kw), k > 0, (3.4.2.43)

where f(z), g(z), and h(z) are arbitrary functions, which is a generalization of

equation (3.4.2.31).

1◦. The functional constraint of the first kind (3.4.1.3) for equation (3.4.2.43)

has the form (3.4.2.32). The linear difference equation (3.4.2.32) can be satisfied

if, as before, we take a generalized separable solution of the form (3.4.2.33). As a

result, we can obtain equations for the functionsϕ(x) and ψ(x); these are not written

out, because we give a significantly more general result below.

2◦. The linear difference equation (3.4.2.32) can be satisfied by setting

u = ect
{
θ(x) +

N∑

n=1

[ϕn(x) cos(βnt) + ψn(x) sin(βnt)]

}
+ ξ(x), (3.4.2.44)

c =
1

τ
ln k, βn =

2πn

τ
,

where N is any positive integer. The right-hand side of equation (3.4.2.32) in this

case is p(x) = (1− k)ξ(x).

Substituting (3.4.2.44) into equation (3.4.2.43) and reasoning in the same fashion

as for equation (3.4.2.40), we obtain the following ODEs for the functions θ(x),
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ϕn(x), ψn(x), and ξ(x):

aθ′′ + θ
[
f(η) +

1

k
g(η)− c

]
= 0, η = (1− k)ξ,

aϕ′′
n + ϕn

[
f(η) +

1

k
g(η)− c

]
− βnψn = 0,

aψ′′
n + ψn

[
f(η) +

1

k
g(η)− c

]
+ βnϕn = 0,

aξ′′ + ξ[f(η) + g(η)] + h(η) = 0,

where a prime denotes a derivative with respect to x.

Equation 8. Consider the nonlinear delay PDE

ut = auxx + uf(u+ kw) + wg(u+ kw) + h(u+ kw), k > 0, (3.4.2.45)

where f(z), g(z), and h(z) are arbitrary functions, which is a generalization of

equation (3.4.2.38).

The functional constraint of the first kind (3.4.1.3) for equation (3.4.2.45) has the

form

u+ kw = p(x), w = u(x, t− τ). (3.4.2.46)

The linear difference equation (3.4.2.46) can be satisfied by setting

u = ect
N∑

n=1

[ϕn(x) cos(βnt) + ψn(x) sin(βnt)] + ξ(x), (3.4.2.47)

c =
1

τ
ln k, βn =

π(2n− 1)

τ
,

where N is any positive integer. The right-hand side of equation (3.4.2.46) in this

case is p(x) = (1 + k)ξ(x).
Substituting (3.4.2.47) into equation (3.4.2.45) and reasoning in the same fashion

as for equation (3.4.2.40), we obtain the following ODEs for the functions ϕn(x),
ψn(x), and ξ(x):

aϕ′′
n + ϕn

[
f(η)− 1

k
g(η)− c

]
− βnψn = 0,

aψ′′
n + ψn

[
f(η)− 1

k
g(η)− c

]
+ βnϕn = 0,

aξ′′ + ξ[f(η) + g(η)] + h(η) = 0, η = (1 + k)ξ.

Notably, the last equation is isolated as it does not depend on the others.

Equations involving two arbitrary functions that depend on the sum of

squares of u and w.

Equation 9. Now let us look at the nonlinear delay PDE

ut = auxx + uf(u2 + w2) + wg(u2 + w2), w = u(x, t− τ), (3.4.2.48)
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where f(z) and g(z) are arbitrary functions, dependent on the nonlinear (quadratic)

argument z = u2 + w2.

The functional constraint of the first kind (3.4.1.3) for equation (3.4.2.48) has the

form

u2 + w2 = p(x), w = u(x, t− τ). (3.4.2.49)

The nonlinear difference equation (3.4.2.49) can be satisfied if we set

u = ϕn(x) cos(λnt) + ψn(x) sin(λnt), (3.4.2.50)

λn =
π(2n+ 1)

2τ
, n = 0, ±1, ±2, . . .

It can be verified that the relation

w = (−1)nϕn(x) sin(λnt) + (−1)n+1ψn(x) cos(λnt)

holds, and also

u2 + w2 = ϕ2
n(x) + ψ2

n(x) = p(x).

Substituting (3.4.2.50) into (3.4.2.48) and splitting the resulting expression with

respect to cos(λnt) and sin(λnt), we obtain a nonlinear system of ordinary differen-

tial equations for the functions ϕn = ϕn(x) and ψn = ψn(x):

aϕ′′
n + ϕnf(ϕ

2
n + ψ2

n) + (−1)n+1ψng(ϕ
2
n + ψ2

n)− λnψn = 0,

aψ′′
n + ψnf(ϕ

2
n + ψ2

n) + (−1)nϕng(ϕ
2
n + ψ2

n) + λnϕn = 0,

where a prime denotes a derivative with respect to x.

Some generalizations. The above results admit various generalizations in the

cases where functional constraints of the second kind (3.4.1.4) with q(t) 6= const

were used to construct exact solutions. Let us illustrate this by specific examples.

◮ Example 3.14. The nonlinear PDE with constant delay

ut = auxx + uf(t, w/u), w = u(x, t− τ), (3.4.2.51)

which is more general than equation (3.4.2.1) as its kinetic function depends on

an additional argument, t, also has a multiplicative separable solution of the form

(3.4.2.3).

In turn, equation (3.4.2.51) also admits a further generalization. Specifically, the

constant delay time τ can be replaced with a variable delay τ = τ(t). The resulting

more complex equation (3.4.2.51) with variable delay will also have a multiplicative

separable solution (3.4.2.3). ◭

◮ Example 3.15. The nonlinear PDE with constant delay

ut = auxx + bu+ f(t, u− w), w = u(x, t− τ), (3.4.2.52)

which is more general than equation (3.4.2.19) as its kinetic function involves an

additional argument, t, also has a multiplicative separable solution (3.4.2.21).

Equation (3.4.2.52) can be further generalized. Specifically, equation (3.4.2.52)

with a variable delay τ = τ(t) also has an additive separable solution of the form

(3.4.2.21). ◭
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3.4.3. Exact Solutions to More Complicated Nonlinear
Delay Reaction-Diffusion Equations

Let us now consider the following nonlinear reaction-diffusion equations with con-

stant delay that are more complicated than (3.4.1.1) [435]:

ut = [g0(u)ux]x + g1(u)f1(z) + g2(u)f2(z) + g3(u),

w = u(x, t− τ), z = z(u,w),
(3.4.3.1)

where gi(u) (i= 0, 1, 2, 3) and z = z(u,w) are some given functions, and f1(z) and

f2(z) are arbitrary functions of a single argument. We will also be looking at related

equations in which the function g3(u) is replaced with g3(w).
We will be using the method of functional constraints to construct exact solutions

of nonlinear delay PDEs (3.4.3.1). This method is described in Subsection 3.4.1.

The exact solutions of such equations specified below were obtained in [435].

Remark 3.30. Apart from exact solutions to one-dimensional delay reaction-diffusion
equations, we will describe a few solutions to more complicated related equations with several
space variables.

One-dimensional equations involving a single arbitrary function.

Equation 1. Consider the nonlinear reaction-diffusion equation with constant

delay that involves a single arbitrary function dependent on the ratio w/u:

ut = a(ukux)x + uf(w/u), w = u(x, t− τ). (3.4.3.2)

It is a special case of equation (3.4.3.1) with g0(u) = auk, g1(u) = u, g2 = g3 = 0,

z = w/u, and f1(z) = f(z). If k = 0, see equation (3.4.2.1), which admits more

exact solutions than equation (3.4.3.2) with k 6= 0.

In this case, the functional constraint of the second kind (3.4.1.4) coincides with

(3.4.2.2) and admits a multiplicative separable solution (3.4.2.3). Therefore, we look

for exact solutions to the original delay reaction-diffusion equations in the form

u = ϕ(x)ψ(t). (3.4.3.3)

Substituting (3.4.3.3) into (3.4.3.2) and rearranging, we obtain the following ODE

and delay ODE for the functions ϕ = ϕ(x) and ψ = ψ(t):

a(ϕkϕ′
x)

′
x = bϕ, (3.4.3.4)

ψ′(t) = bψk+1(t) + ψ(t)f
(
ψ(t− τ)/ψ(t)

)
, (3.4.3.5)

where b is an arbitrary constant.

The general solution of the autonomous ODE (3.4.3.4) can be represented in

implicit form. For k 6= 0 and k 6= −2, its particular solution is

ϕ = Ax2/k, A =
[ bk2

2a(k + 2)

]1/k
.
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Remark 3.31. Equation (3.4.3.2) also admits an exact solution of the form

u = (x+ C)2/kθ(ζ), ζ = t+ λ ln(x+ C),

whereC and λ are arbitrary constants, and the function θ=θ(ζ) is described by the delay ODE

θ′(ζ) = a
{ 2(k + 2)

k2
θk+1(ζ) +

(3k + 4)λ

k
θk(ζ)θ′(ζ)

+ kλ2θk−1(ζ)[θ′(ζ)]2 + λ2θk(ζ)θ′′(ζ)
}

+ θ(ζ)f
(

θ(ζ − τ )/θ(ζ)
)

.

Equation 2. Consider the delay reaction-diffusion equation

ut = a(ukux)x + buk+1 + uf(w/u), (3.4.3.6)

which is a generalization of equation (3.4.3.2). In this case, the functional constraint

of the second kind (3.4.1.4) also coincides with (3.4.2.2), and the original equation

(3.4.3.6) admits separable solutions of the form (3.4.3.3), which are given below.

1◦. For b(k + 1) > 0, equation (3.4.3.6) has a multiplicative separable solution

u = [C1 cos(βx) + C2 sin(βx)]
1/(k+1)ψ(t), β =

√
b(k + 1)/a, (3.4.3.7)

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the delay ODE

ψ′(t) = ψ(t)f
(
ψ(t− τ)/ψ(t)

)
. (3.4.3.8)

Equation (3.4.3.8) has an exponential particular solution

ψ(t) = Aeλt, (3.4.3.9)

whereA is an arbitrary constant, and λ is a solution of the algebraic (transcendental)

equation λ− f(e−λτ ) = 0.

2◦. For b(k + 1) < 0, equation (3.4.3.6) has a multiplicative separable solution

u = [C1 exp(−βx) +C2 exp(βx)]
1/(k+1)ψ(t), β =

√
−b(k + 1)/a, (3.4.3.10)

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the delay ODE (3.4.3.8).

3◦. Equation (3.4.3.6) with k = −1 admits a multiplicative separable solution

u = C1 exp
(
− b

2a
x2 + C2x

)
ψ(t), (3.4.3.11)

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the delay ODE (3.4.3.8).

Equation 3. Consider the delay reaction-diffusion equation

ut = a(ukux)x + b+ u−kf(uk+1 − wk+1), k 6= −1, (3.4.3.12)

which involves an arbitrary function f(z), where z = uk+1 − wk+1.

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 178

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 178



3.4. Method of Functional Constraints 179

In this case, the functional constraint of the second kind (3.4.1.4) is written as

uk+1 − wk+1 = q(t), w = u(x, t− τ). (3.4.3.13)

The difference equation (3.4.3.13) can be satisfied if we take a functional separable

solution of the form

u = [ϕ(x) + ψ(t)]1/(k+1), (3.4.3.14)

which gives q(t) = ψ(t) − ψ(t − τ). Substituting (3.4.3.14) into the original delay

equation (3.4.3.12) and analyzing, we obtain the following results:

1◦. Equation (3.4.3.12) admits a functional separable solution

u =
[
At− b(k + 1)

2a
x2 + C1x+ C2

]1/(k+1)

, (3.4.3.15)

where C1 and C2 are arbitrary constants, and A is a solution of the algebraic (tran-

scendental) equation A = (k + 1)f(Aτ).
2◦. Equation (3.4.3.12) admits a more complicated functional separable solution

of the form

u =
[
ψ(t)− b(k + 1)

2a
x2 + C1x+ C2

]1/(k+1)

, (3.4.3.16)

where C1 and C2 are arbitrary constants, and the function ψ(t) is described by the

delay ODE

ψ′(t) = (k + 1)f
(
ψ(t)− ψ(t− τ)

)
. (3.4.3.17)

Equation 4. Consider the nonlinear delay PDE

ut = a(u−1/2ux)x + bu1/2 + f(u1/2 − w1/2), (3.4.3.18)

where f(z) is an arbitrary function and z = u1/2 − w1/2.

The functional constraint of the first kind (3.4.1.3) is

u1/2 − w1/2 = p(x), w = u(x, t− τ). (3.4.3.19)

The difference equation (3.4.3.19) can be satisfied by setting

u = [ϕ(x)t + ψ(x)]2, (3.4.3.20)

which gives p(x) = τϕ(x).
Substituting (3.4.3.20) into the delay equation (3.4.3.18) yields the following

ordinary differential equations for ϕ = ϕ(x) and ψ = ψ(x):

2aϕ′′
xx + bϕ− 2ϕ2 = 0,

2aψ′′
xx + bψ − 2ϕψ + f(τϕ) = 0.

These equations admit the simple particular solution

ϕ =
1

2
b, ψ = − 1

4a
f
( bτ

2

)
x2 +Ax+B,

where A and B are arbitrary constants.
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Equation 5. Consider the delay reaction-diffusion equation

ut = a(eλuux)x + f(u− w), (3.4.3.21)

which involves an arbitrary function f(z) with z = u− w.

In this case, the functional constraint of the second kind (3.4.1.4) coincides with

(3.4.2.20) and admits an additive separable solution (3.4.2.21). Therefore, we seek a

solution to the original delay PDE (3.4.3.21) in the form

u = ϕ(x) + ψ(t). (3.4.3.22)

Substituting (3.4.3.22) into the original delay equation (3.4.3.21) gives the exact

solution

u =
1

λ
ln(Ax2 +Bx+ C) + ψ(t), (3.4.3.23)

where A, B, and C are arbitrary constants, and the function ψ = ψ(t) satisfies the

delay ODE

ψ′(t) = 2a(A/λ)eλψ(t) + f
(
ψ(t)− ψ(t− τ)

)
. (3.4.3.24)

Remark 3.32. Equation (3.4.3.21) also admits a more complicated exact solution of the
form

u =
2

λ
ln(x+ C) + θ(ζ), ζ = t+ β ln(x+ C), (3.4.3.25)

whereC and β are arbitrary constants, and the function θ=θ(ζ) is described by the delay ODE

θ′(ζ) = aeλθ(ζ)
{ 2

λ
+ 3βθ′(ζ) + β2λ[θ′(ζ)]2 + β2θ′′(ζ)

}

+ f
(

θ(ζ)− θ(ζ − τ )
)

.

Equation 6. Consider the equation

ut = a(eλuux)x + beλu + f(u− w), (3.4.3.26)

which is a generalization of equation (3.4.3.21).

1◦. For bλ > 0, equation (3.4.3.26) admits an additive separable solution

u =
1

λ
ln[C1 cos(βx) + C2 sin(βx)] + ψ(t), β =

√
bλ/a, (3.4.3.27)

where C1 and C2 are arbitrary constants, and the function ψ(t) is described by the

delay ODE

ψ′(t) = f
(
ψ(t)− ψ(t− τ)

)
. (3.4.3.28)

Equation (3.4.3.28) has a simple particular solution ψ = A + kt, where A is

an arbitrary constant, and k is a solution of the algebraic (transcendental) equation

k − f(kτ) = 0.

2◦. For bλ < 0, equation (3.4.3.26) admits another additive separable solution

u =
1

λ
ln[C1 exp(−βx) + C2 exp(βx)] + ψ(t), β =

√
−bλ/a, (3.4.3.29)

where C1 and C2 are arbitrary constants, and the function ψ(t) is described by the

delay ODE (3.4.3.28).
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Equation 7. Consider the nonlinear delay PDE

ut = a(eλuux)x + b+ e−λuf(eλu − eλw). (3.4.3.30)

In this case, the functional constraint of the second kind (3.4.1.4) is written as

eλu − eλw = q(t), w = u(x, t− τ). (3.4.3.31)

The functional equation (3.4.3.31) can be satisfied by taking a functional separable

solution of the form

u =
1

λ
ln[ϕ(x) + ψ(t)], (3.4.3.32)

which gives q(t) = ψ(t) − ψ(t − τ). Substituting (3.4.3.32) into the original delay

equation (3.4.3.30) and analyzing, we obtain the following results:

1◦. Equation (3.4.3.30) admits a functional separable solution

u =
1

λ
ln
[
At− bλ

2a
x2 + C1x+ C2

]
, (3.4.3.33)

where C1 and C2 are arbitrary constants, and A is a solution of the algebraic (tran-

scendental) equation A− λf(Aτ) = 0.

2◦. Equation (3.4.3.30) admits a more complicated functional separable solution

u =
1

λ
ln
[
ψ(t)− bλ

2a
x2 + C1x+ C2

]
, (3.4.3.34)

where C1 and C2 are arbitrary constants, and the function ψ(t) is described by the

delay ODE

ψ′(t) = λf
(
ψ(t)− ψ(t− τ)

)
. (3.4.3.35)

Equation 8. The nonlinear delay PDE

ut = [(a lnu+ b)ux]x − cu lnu+ uf(w/u) (3.4.3.36)

admits two multiplicative separable solutions

u = exp(±λx)ψ(t), λ =
√
c/a, (3.4.3.37)

where the function ψ(t) is described by the delay ODE

ψ′(t) = λ2(a+ b)ψ(t) + ψ(t)f
(
ψ(t− τ)/ψ(t)

)
. (3.4.3.38)

Equation 9. Consider the nonlinear delay PDE

ut = [uf ′(u)ux]x +
1

f ′(u)
[af(u) + bf(w) + c], (3.4.3.39)

where f(u) is an arbitrary function, and the prime stands for a derivative with respect

to the argument.
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Equation (3.4.3.39) admits a generalized traveling wave solution (a functional

separable solution of special form) that can be represented in the implicit form

f(u) = ϕ(t)x+ ψ(t), (3.4.3.40)

where the functions ϕ(t) and ψ(t) satisfy the delay ODEs

ϕ′(t) = aϕ(t) + bϕ(t− τ), (3.4.3.41)

ψ′(t) = aψ(t) + bψ(t− τ) + c+ ϕ2(t). (3.4.3.42)

Equation 10. The nonlinear delay PDE

ut = [uf ′(u)ux]x + (a+ b)u+
2

f ′(u)
[af(u) + bf(w) + c] (3.4.3.43)

admits a functional separable solution that can be represented in the implicit form

f(u) = − 1
2 (a+ b)x2 + ϕ(t)x + ψ(t), (3.4.3.44)

where the functions ϕ(t) and ψ(t) are described by the delay ODEs

ϕ′(t) = −2bϕ(t) + 2bϕ(t− τ), (3.4.3.45)

ψ′(t) = 2aψ(t) + 2bψ(t− τ) + 2c+ ϕ2(t). (3.4.3.46)

Equation (3.4.3.45) has an exponential particular solution

ϕ(t) = C1e
λt + C2, (3.4.3.47)

where C1 and C2 are arbitrary constants, and λ is a root of the transcendental

equation λ+ 2b(1− e−λτ ) = 0.

Equation 11. The nonlinear delay PDE

ut = [f ′(u)ux]x + a1f(u) + a2f(w) + a3 +
b

f ′(u)

[
f(u)− f(w)

]
(3.4.3.48)

admits a functional separable solution that can be represented in the implicit form

f(u) = eλtϕ(x)− a3
a1 + a2

, (3.4.3.49)

where λ is a root of the transcendental equation

λ = b(1− e−λτ ), (3.4.3.50)

and the function ϕ = ϕ(x) satisfies the linear second-order ODE with constant

coefficients

ϕ′′
xx + (a1 + a2e

−λτ )ϕ = 0. (3.4.3.51)
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Equation 12. The nonlinear delay PDE

ut = [f ′(u)ux]x + a[f(u)− f(w)] +
1

f ′(u)

[
b1f(u) + b2f(w) + b3

]
(3.4.3.52)

admits a functional separable solution in implicit form

f(u) = eλtϕ(x) − b3
b1 + b2

, (3.4.3.53)

where λ is a root of the transcendental equation

λ− b1 − b2e
−λτ = 0, (3.4.3.54)

and the function ϕ = ϕ(x) satisfies the linear second-order ODE with constant

coefficients

ϕ′′
xx + a(1− e−λτ )ϕ = 0. (3.4.3.55)

Equation 13. Consider the nonlinear delay PDE

ut=[f ′(u)ux]x+a1f(u)+a2f(w)+a3+
1

f ′(u)

[
b1f(u)+b2f(w)+b3

]
, (3.4.3.56)

which generalizes the two preceding equations.

Let the coefficients of equation (3.4.3.56) satisfy the condition

(a1 + a2)b3 = a3(b1 + b2). (3.4.3.57)

Then equation (3.4.3.56) admits a functional separable solution that can be repre-

sented in the implicit form

f(u) = eλtϕ(x) + c. (3.4.3.58)

Here

c = − a3
a1 + a2

if a1 6= −a2 and c = − b3
b1 + b2

if b1 6= −b2,

λ is a root of the transcendental equation

λ− b1 − b2e
−λτ = 0, (3.4.3.59)

and the function ϕ = ϕ(x) satisfies the linear second-order ODE with constant

coefficients

ϕ′′
xx + (a1 + a2e

−λτ )ϕ = 0. (3.4.3.60)

Equation 14. Consider the nonlinear delay PDE

ut = [g(u)ux]x +
1

f ′(u)
[c1f(u) + c2f(w) + c3], (3.4.3.61)

g(u) = f ′(u)

∫
[af(u) + b] du,
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where f(u) is an arbitrary function, and the prime stands for a derivative with respect

to the argument.

Equation (3.4.3.61) admits a functional separable solution in implicit form

f(u) = ϕ(t)x+ ψ(t), (3.4.3.62)

where the functions ϕ = ϕ(t) and ψ = ψ(t) satisfy the delay ODEs

ϕ′(t) = aϕ3(t) + c1ϕ(t) + c2ϕ(t− τ),

ψ′(t) = ϕ2(t)[aψ(t) + b] + c1ψ(t) + c2ψ(t− τ) + c3.

One-dimensional equations involving two arbitrary functions. Below we

briefly describe several exact solutions to more general nonlinear reaction-diffusion

type equations with delay that involve two arbitrary functions.

Equation 15. Consider the nonlinear delay PDE

ut = a(ukux)x + uf(w/u) + uk+1g(w/u), (3.4.3.63)

where f(z) and g(z) are arbitrary functions.

Equation (3.4.3.63) admits a multiplicative separable solution

u = eλtϕ(x), (3.4.3.64)

where λ is a solution of the algebraic (transcendental) equation

λ = f(e−λτ ),

and the function ϕ = ϕ(x) is described by the nonlinear second-order ODE

a(ϕkϕ′
x)

′
x + g(e−λτ )ϕk+1 = 0.

For k 6= −1, the change of variable θ = ϕk+1 reduces this equation to a linear

second-order ODE with constant coefficients. If k = −1, one should use the change

of variable θ = lnϕ.

Equation 16. The nonlinear delay PDE

ut = a(u−1/2ux)x + f(u1/2 − w1/2) + u1/2g(u1/2 − w1/2) (3.4.3.65)

admits a generalized separable solution

u = [ϕ(x)t + ψ(x)]2, (3.4.3.66)

where the functions ϕ = ϕ(x) and ψ = ψ(x) are described by the system of ODEs

2aϕ′′
xx + ϕg(τϕ) − 2ϕ2 = 0,

2aψ′′
xx + ψg(τϕ) − 2ϕψ + f(τϕ) = 0.

A particular solution of this system is

ϕ = k, ψ = − 1

4a
f(kτ)x2 +Ax+B,
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where A and B are arbitrary constants, and the constant k is determined from the

algebraic (transcendental) equation g(kτ)− 2k = 0.

Equation 17. The nonlinear delay PDE

ut = a(ukux)x + f(uk+1 −wk+1) + u−kg(uk+1 −wk+1), k 6= −1, (3.4.3.67)

admits a functional separable solution

u = (At+ Bx2 + C1x+ C2)
1/(k+1), B = − (k + 1)

2a
f(Aτ), (3.4.3.68)

where C1 and C2 are arbitrary constants, and the constant A is determined from the

algebraic (transcendental) equationA− (k + 1)g(Aτ) = 0.

Equation 18. The nonlinear delay PDE

ut = a(eλuux)x + f(u− w) + eλug(u− w) (3.4.3.69)

admits an additive separable solution

u = βt+ ϕ(x), (3.4.3.70)

where the constant β is determined from the algebraic (transcendental) equation

β = f(βτ).

Function ϕ = ϕ(x) appearing in solution (3.4.3.70) is described by the ODE

a(eλϕϕ′
x)

′
x + g(βτ)eλϕ = 0.

With the change of variable θ= eλϕ, this equation reduces to the linear second-order

ODE with constant coefficients aθ′′xx + λg(βτ)θ = 0.

Equation 19. The nonlinear delay PDE

ut = a(eλuux)x + f(eλu − eλw) + e−λug(eλu − eλw) (3.4.3.71)

admits a functional separable solution

u =
1

λ
ln(At+Bx2 + C1x+ C2), B = − λ

2a
f(Aτ), (3.4.3.72)

where C1 and C2 are arbitrary constants, and the constant A is determined from the

algebraic (transcendental) equationA− λg(Aτ) = 0.

Equation 20. Consider the nonlinear delay PDE

ut = a[g′(u)ux]x + b+
1

g′(u)
f
(
g(u)− g(w)

)
, (3.4.3.73)

where g(u) and f(z) are arbitrary functions, and the prime stands for a derivative

with respect to u.
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Equation (3.4.3.73) admits a functional separable solution in implicit form

g(u) = ψ(t)− b

2a
x2 + C1x+ C2, (3.4.3.74)

where C1 and C2 are arbitrary constants. The function ψ = ψ(t) is described by the

delay ODE (3.4.3.28), which has a particular solution ψ(t) =At, where the constant

A is determined from the algebraic (transcendental) equation A− f(Aτ) = 0.

Equation 21. Consider the nonlinear delay PDE

ut = a[g′(u)ux]x + bg(u) +
g(u)

g′(u)
f
(
g(w)/g(u)

)
, (3.4.3.75)

where g(u) and f(z) are arbitrary functions, and the prime stands for a derivative

with respect to u.

1◦. For ab > 0, equation (3.4.3.75) admits a functional separable solution in

implicit form

g(u) =
[
C1 cos(λx) + C2 sin(λx)

]
ψ(t), λ =

√
b/a, (3.4.3.76)

where C1 and C2 are arbitrary constants. The function ψ = ψ(t) is described by the

delay ODE (3.4.3.8), which has an exponential particular solution ψ(t) = eλt, where

λ is a root of the algebraic (transcendental) equation λ− f(e−λτ ) = 0.

2◦. For ab < 0, equation (3.4.3.75) admits a functional separable solution in

implicit form

g(u) =
[
C1 exp(−λx) + C2 exp(λx)

]
ψ(t), λ =

√
−b/a, (3.4.3.77)

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the delay ODE (3.4.3.8).

3◦. For b = 0, equation (3.4.3.75) admits a functional separable solution in

implicit form

g(u) = (C1x+ C2)ψ(t),

where the function ψ = ψ(t) is described by the delay ODE (3.4.3.8).

Equation 22. Consider the nonlinear delay PDE

ut = [h(u)ux]x −
1

g′(u)
[c1g(u) + c2g(w)] +

1

g′(u)
f
(
g(u)− g(w)

)
, (3.4.3.78)

h(u) = g′(u)

∫
[ag(u) + b] du,

where g(u) and f(z) are arbitrary functions, and the prime denotes a derivative with

respect to u.

Equation (3.4.3.78) admits two generalized traveling wave solutions that can be

represented in the implicit form

g(u) = ±kx+ ψ(t), k =
√
(c1 + c2)/a. (3.4.3.79)
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The function ψ = ψ(t) is described by the delay ODE

ψ′(t) = c2ψ(t) + bk2 − c2ψ(t− τ) + f
(
ψ(t)− ψ(t− τ)

)
.

One-dimensional equations involving three arbitrary functions.

Equation 23. Consider the nonlinear delay PDE

ut = a[f ′(u)ux]x + g
(
f(u)− f(w)

)
+

1

f ′(u)
h
(
f(u)− f(w)

)
, (3.4.3.80)

where f(u), g(z), and h(z) are arbitrary functions, and the prime denotes a derivative

with respect to u.

Equation (3.4.3.80) admits a functional separable solution in implicit form

f(u) = At− g(Aτ)

2a
x2 + C1x+ C2, (3.4.3.81)

whereC1 and C2 are arbitrary constants, and the constantA is a root of the algebraic

(transcendental) equationA− h(Aτ) = 0.

Equation 24. Consider the nonlinear delay PDE

ut = a[f ′(u)ux]x + f(u)g
(
f(w)/f(u)

)
+

f(u)

f ′(u)
h
(
f(w)/f(u)

)
, (3.4.3.82)

where f(u), g(z), and h(z) are arbitrary functions.

We assume that β is a root of the algebraic (transcendental) equation

β − h(e−βτ ) = 0.

1◦. For ag(e−βτ)> 0, equation (3.4.3.82) admits a functional separable solution

in implicit form

f(u) =
[
C1 cos(λx) + C2 sin(λx)

]
eβt, λ =

√
g(e−βτ )/a, (3.4.3.83)

where C1 and C2 are arbitrary constants.

2◦. For ag(e−βτ ) < 0, equation (3.4.3.82) admits another functional separable

solution in implicit form

f(u) =
[
C1 exp(−λx) + C2 exp(λx)

]
eβt, λ =

√
−g(e−βτ)/a, (3.4.3.84)

where C1 and C2 are arbitrary constants.

3◦. For g(e−βτ) = 0, equation (3.4.3.82) admits a degenerate functional sepa-

rable solution in implicit form

f(u) = (C1x+ C2)e
βt.
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Equation 25. The nonlinear delay PDE

ut = [g(u)ux]x −
a2

f ′(u)

d

du

[ g(u)
f ′(u)

]
+

1

f ′(u)
h
(
f(u)− f(w)

)
(3.4.3.85)

admits two functional separable solutions in implicit form

f(u) = ±ax+ ψ(t),

where the function ψ = ψ(t) is described by the delay ODE

ψ′(t) = h
(
ψ(t)− ψ(t− τ)

)
.

Multi-dimensional equations involving a single arbitrary function. Below

we describe multi-dimensional generalizations of some of the above one-dimensional

delay reaction-diffusion equations and their exact solutions. We will use the nota-

tions: u = u(x, t), w = u(x, t − τ), and x = (x1, . . . , xn). The values n = 2 and

n = 3 correspond to two- and three-dimensional equations.

Remark 3.33. The exact solutions to the multi-dimensional nonlinear delay equations de-
scribed below are often expressed in terms of solutions to the Laplace, Poisson, or Helmholtz
equations, which are simpler than the original ones. Many solutions to these linear elliptic
equations can be found in [404, 514].

Equation 26. Consider the nonlinear delay PDE

ut = a div(uk∇u) + buk+1 + uf(w/u). (3.4.3.86)

1◦. For k 6= −1, equation (3.4.3.86) admits a multiplicative separable solution

of the form

u = ψ(t)ϕ1/(k+1)(x). (3.4.3.87)

The function ψ = ψ(t) is described by the delay ODE (3.4.3.8) and the function

ϕ = ϕ(x) satisfies the Helmholtz equation

∆ϕ+
b(k + 1)

a
ϕ = 0, (3.4.3.88)

where ∆ is the Laplace operator.

2◦. If k = −1, equation (3.4.3.86) admits a multiplicative separable solution

u = ψ(t) lnϕ(x), (3.4.3.89)

where the functionψ=ψ(t) is described by the delay ODE (3.4.3.8) and the function

ϕ = ϕ(x) satisfies Poisson’s equation

∆ϕ+ (b/a) = 0. (3.4.3.90)
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Equation 27. The nonlinear delay PDE

ut = a div(uk∇u) + b+ u−kf(uk+1 − wk+1), k 6= −1, (3.4.3.91)

admits a functional separable solution

u =
[
ϕ(x) + ψ(t)

]1/(k+1)
, (3.4.3.92)

where the function ψ = ψ(t) is described by the delay ODE (3.4.3.17) and the

function ϕ = ϕ(x) satisfies Poisson’s equation

∆ϕ+
b(k + 1)

a
= 0. (3.4.3.93)

Equation 28. The nonlinear delay PDE

ut = a div(u−1/2∇u) + bu1/2 + f(u1/2 − w1/2) (3.4.3.94)

admits a generalized separable solution

u = [ϕ(x)t+ ψ(x)]2. (3.4.3.95)

The functions ϕ = ϕ(x) and ψ = ψ(x) are described by the stationary second-order

PDEs

2a∆ϕ+ bϕ− 2ϕ2 = 0, (3.4.3.96)

2a∆ψ + bψ − 2ϕψ + f(τϕ) = 0. (3.4.3.97)

Equation (3.4.3.96) has a simple particular solution ϕ = 1
2 b = const. In this case,

equation (3.4.3.97) is Poisson’s equation:

a∆ψ + 1
2 f

(
1
2 bτ

)
= 0.

Equation 29. Consider the nonlinear delay PDE

ut = a div(eλu∇u) + beλu + f(u− w), (3.4.3.98)

which generalizes equation (3.4.3.26).

Equation (3.4.3.98) admits an additive separable solution

u = ψ(t) +
1

λ
lnϕ(x), (3.4.3.99)

in which the function ψ = ψ(t) is described by the delay ODE (3.4.3.28) and the

function ϕ = ϕ(x) satisfies the Helmholtz equation

∆ϕ+ λ(b/a)ϕ = 0. (3.4.3.100)
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Equation 30. The nonlinear delay PDE

ut = a div(eλu∇u) + b+ e−λuf(eλu − eλw) (3.4.3.101)

admits a functional separable solution

u =
1

λ
ln
[
ϕ(x) + ψ(t)

]
, (3.4.3.102)

where the function ψ = ψ(t) is described by the delay ODE (3.4.3.35) and the

function ϕ = ϕ(x) satisfies Poisson’s equation

∆ϕ+ λ(b/a) = 0. (3.4.3.103)

Equation 31. Consider the nonlinear delay PDE

ut = div[uf ′(u)∇u] + 1

f ′(u)
[af(u) + bf(w) + c], (3.4.3.104)

where f(u) is an arbitrary function, and the prime denotes a derivative with respect

to u.

Equation (3.4.3.104) admits a functional separable solution in implicit form

f(u) =
n∑

k=1

ϕk(t)xk + ψ(t), (3.4.3.105)

where the functions ϕk = ϕk(t) and ψ = ψ(t) are described by the delay ODEs

ϕ′
k(t) = aϕk(t) + bϕk(t− τ), k = 1, . . . , n, (3.4.3.106)

ψ′(t) = aψ(t) + bψ(t− τ) + c+

n∑

k=1

ϕ2
k(t). (3.4.3.107)

Equation 32. The nonlinear delay PDE

ut = div[f ′(u)∇u] + a1f(u) + a2f(w) + a3 +
b

f ′(u)

[
f(u)− f(w)

]
(3.4.3.108)

admits a functional separable solution in implicit form

f(u) = eλtϕ(x)− a3
a1 + a2

, (3.4.3.109)

where λ is a root of the transcendental equation

λ = b(1− e−λτ ), (3.4.3.110)

and the function ϕ = ϕ(x) is described by the Helmholtz equation

∆ϕ+ (a1 + a2e
−λτ )ϕ = 0. (3.4.3.111)
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Equation 33. The nonlinear delay PDE

ut = div[f ′(u)∇u]+a[f(u)−f(w)]+ 1

f ′(u)

[
b1f(u)+ b2f(w)+ b3

]
(3.4.3.112)

admits a functional separable solution in implicit form

f(u) = eλtϕ(x)− b3
b1 + b2

, (3.4.3.113)

where λ is a root of the transcendental equation

λ− b1 − b2e
−λτ = 0, (3.4.3.114)

and the function ϕ = ϕ(x) is described by the Helmholtz equation

∆ϕ+ a(1− e−λτ )ϕ = 0. (3.4.3.115)

Multi-dimensional equations involving two arbitrary functions.

Equation 34. The nonlinear delay PDE

ut = a div(u−1/2∇u) + f(u1/2 − w1/2) + u1/2g(u1/2 − w1/2) (3.4.3.116)

admits a generalized separable solution

u = [ϕ(x)t+ ψ(x)]2, (3.4.3.117)

where the functions ϕ = ϕ(x) and ψ = ψ(x) are described by the stationary second-

order PDEs

2a∆ϕ+ ϕg(τϕ) − 2ϕ2 = 0, (3.4.3.118)

2a∆ψ + ψg(τϕ)− 2ϕψ + f(τϕ) = 0. (3.4.3.119)

Equation (3.4.3.118) has a simple particular solution ϕ = ϕ0 = const, where ϕ0 is

a root of the algebraic (transcendental) equation g(τϕ0) − 2ϕ0 = 0. In this case,

equation (3.4.3.119) is Poisson’s equation:

a∆ψ + 1
2 f

(
τϕ0

)
= 0.

Equation 35. The nonlinear delay PDE

ut=a div(u
k∇u)+f(uk+1−wk+1)+u−kg(uk+1−wk+1), k 6=−1, (3.4.3.120)

admits a functional separable solution

u = [At+ ϕ(x)]1/(k+1), (3.4.3.121)

where A is a root of the algebraic (transcendental) equationA− (k + 1)g(Aτ) = 0,

and the function ϕ = ϕ(x) is described by Poisson’s equation

a∆ϕ+ (k + 1)f(Aτ) = 0. (3.4.3.122)
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Equation 36. Consider the nonlinear delay PDE

ut = a div(eλu∇u) + f(u− w) + eλug(u− w), (3.4.3.123)

where f(z) and g(z) are arbitrary functions.

Equation (3.4.3.123) admits an additive separable solution

u = βt+
1

λ
lnϕ(x), (3.4.3.124)

where β is a root of the algebraic (transcendental) equation β − f(βτ) = 0, and the

function ϕ = ϕ(x) satisfies the Helmholtz equation

a∆ϕ+ λg(βτ)ϕ = 0. (3.4.3.125)

Equation 37. The nonlinear delay PDE

ut = a div(eλu∇u) + f(eλu − eλw) + e−λug(eλu − eλw) (3.4.3.126)

admits a functional separable solution

u =
1

λ
ln[At+ ϕ(x)], (3.4.3.127)

where A is a root of the algebraic (transcendental) equation A − λg(Aτ) = 0, and

ϕ = ϕ(x) is a function described by Poisson’s equation

a∆ϕ+ λf(Aτ) = 0. (3.4.3.128)

Equation 38. Consider the nonlinear delay PDE

ut = a div[g′(u)∇u] + b+
1

g′(u)
f
(
g(u)− g(w)

)
, (3.4.3.129)

where g(u) and f(z) are arbitrary functions, and the prime denotes a derivative with

respect to u.

Equation (3.4.3.129) admits a functional separable solution in implicit form

g(u) = ϕ(x) + ψ(t). (3.4.3.130)

The function ψ = ψ(t) is described by the delay ODE (3.4.3.28), and the function

ϕ = ϕ(x) satisfies Poisson’s equation (3.4.3.90).

Equation 39. Consider the nonlinear delay PDE

ut = a div[g′(u)∇u] + bg(u) +
g(u)

g′(u)
f
(
g(w)/g(u)

)
, (3.4.3.131)

where g(u) and f(z) are arbitrary functions, and the prime denotes a derivative with

respect to u.

Equation (3.4.3.131) admits a functional separable solution in implicit form

g(u) = ϕ(x)ψ(t). (3.4.3.132)

The function ψ = ψ(t) is described by the delay ODE (3.4.3.8) and the function

ϕ = ϕ(x) satisfies the Helmholtz equation

a∆ϕ+ bϕ = 0. (3.4.3.133)
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Multi-dimensional equations involving three arbitrary functions.

Equation 40. Consider the nonlinear delay PDE

ut = a div[f ′(u)∇u] + g
(
f(u)− f(w)

)
+

1

f ′(u)
h
(
f(u)− f(w)

)
, (3.4.3.134)

where f(u), g(z), and h(z) are arbitrary functions.

Equation (3.4.3.134) admits a functional separable solution in implicit form

f(u) = At+ ϕ(x), (3.4.3.135)

where A is a root of the algebraic (transcendental) equationA− h(Aτ) = 0, and the

function ϕ = ϕ(x) is described by Poisson’s equation

a∆ϕ+ g(Aτ) = 0. (3.4.3.136)

Equation 41. Consider the nonlinear delay PDE

ut = a div[f ′(u)∇u] + f(u)g
(
f(w)/f(u)

)
+

f(u)

f ′(u)
h
(
f(w)/f(u)

)
, (3.4.3.137)

where f(u), g(z), and h(z) are arbitrary functions.

Equation (3.4.3.137) admits a functional separable solution in implicit form

f(u) = ϕ(x)eβt, (3.4.3.138)

where β is a root of the algebraic (transcendental) equation β − h(e−βτ ) = 0, and

ϕ = ϕ(x) is a function described by the Helmholtz equation

a∆ϕ+ g(e−βτ )ϕ = 0. (3.4.3.139)

Nonlinear reaction-diffusion type equations with a variable delay of general

form. The majority of the results presented above can be generalized to more

complex nonlinear reaction-diffusion type equations with a variable delay τ = τ(t),
where τ(t) is an arbitrary function. Table 3.9 displays some of such equations,

involving one or two arbitrary functions, and their exact solutions. In all the de-

termining delay ODEs referred to in the last column of Table 3.9, one should set

τ = τ(t).

◮ Example 3.16. Consider the first equation in Table 3.9. By setting τ = τ(t)
in the determining equation (3.4.3.5) for ψ(t), we obtain the delay ODE

ψ′(t) = bψk+1(t) + ψ(t)f
(
ψ(t− τ)/ψ(t)

)
, τ = τ(t).

◭

Some exact solutions to multi-dimensional nonlinear reaction-diffusion equa-

tions with a variable delay of general form τ = τ(t) can be found in Table 3.10.
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Table 3.9. Exact solutions to reaction-diffusion equations with a variable delay ut =
[G(u)ux]x + F (u,w), where w = u(x, t− τ ) and τ = τ (t).

Reaction-diffusion equation Form of exact solution
Determining

equations

ut= a(ukux)x+uf(w/u) u=ϕ(x)ψ(t)
(3.4.3.4)

(3.4.3.5)

ut= a(ukux)x+buk+1+uf(w/u)

u=ϕ(x)ψ(t),

see (3.4.3.7),

(3.4.3.10), (3.4.3.11)

(3.4.3.8)

ut= a(ukux)x+b+u−kf(uk+1−wk+1)
u=

[
ϕ(x)+ψ(t)

]1/(k+1)
,

see (3.4.3.16)
(3.4.3.17)

ut= a(eλuux)x+f(u−w)
u=ϕ(x)+ψ(t),

see (3.4.3.23)
(3.4.3.24)

ut= a(eλuux)x+beλu+f(u−w)
u=ϕ(x)+ψ(t),

see (3.4.3.27), (3.4.3.29)
(3.4.3.28)

ut= a(eλuux)x+b+e−λuf(eλu−eλw)
u= 1

λ
ln[ϕ(x)+ψ(t)],

see (3.4.3.34)
(3.4.3.35)

ut= [(a lnu+b)ux]x−cu lnu+uf(w/u) u=exp(±
√
c/a x)ψ(t) (3.4.3.38)

ut= [uf ′(u)ux]x+
1

f ′(u)
[af(u)+bf(w)+c] f(u) =ϕ(t)x+ψ(t)

(3.4.3.41)

(3.4.3.42)

ut= a[g′(u)ux]x+b+
1

g′(u)
f
(
g(u)−g(w)

) g(u) =ϕ(x)+ψ(t),

see (3.4.3.74)
(3.4.3.28)

ut= a[g′(u)ux]x+bg(u)+
g(u)
g′(u)

f
(
g(w)/g(w)

) g(u)=ϕ(x)ψ(t),

see (3.4.3.76), (3.4.3.77)
(3.4.3.8)

3.4.4. Exact Solutions to Nonlinear Delay Klein–Gordon
Type Wave Equations

The method of functional constraints is also effective in constructing exact solutions

to nonlinear wave equations with delay. These equations can formally be obtained

from reaction-diffusion equations (3.4.1.1) and (3.4.3.1) by replacing the first deriva-

tive ut on the left-hand side with the second derivative utt or a linear combination of

these derivatives, autt + but.

To illustrate the above, we will briefly describe some nonlinear delay Klein–

Gordon type wave equations and their exact solutions obtained by the method of

functional constraints; see [419, 429, 497] for other nonlinear delay hyperbolic equa-

tions and their exact solutions.
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3.4. Method of Functional Constraints 195

Table 3.10. Exact solutions to multi-dimensional reaction-diffusion equations with an arbi-

trary variable delay ut = div[G(u)∇u] + F (u,w), where w = u(x, t− τ ) and τ = τ (t).

Reaction-diffusion equation Form of exact solutions
Determining

equations

ut= a div(uk∇u)+uf(w/u)+buk+1 u=ψ(t)ϕ1/(k+1)(x)
(3.4.3.8)

(3.4.3.88)

ut= a div(uk∇u)+b+u−kf(uk+1−wk+1) u=
[
ϕ(x)+ψ(t)

]1/(k+1) (3.4.3.17)

(3.4.3.93)

ut= a div(eλu∇u)+f(u−w)+beλu u=ψ(t)+ 1
λ
lnϕ(x)

(3.4.3.28)

(3.4.3.100)

ut= a div(eλu∇u)+b+e−λuf(eλu−eλw) u= 1
λ
ln
[
ϕ(x)+ψ(t)

] (3.4.3.35)

(3.4.3.103)

ut= a div[g′(u)∇u]+b+ 1
g′(u)

f
(
g(u)−g(w)

)
g(u)=ϕ(x)+ψ(t)

(3.4.3.28)

(3.4.3.90)

ut= a div[g′(u)∇u]+bg(u)+ g(u)
g′(u)

f
(
g(w)/g(u)

)
g(u)=ϕ(x)ϕ(t)

(3.4.3.8)

(3.4.3.133)

Equation 1. Consider the nonlinear Klein–Gordon type wave equation with con-

stant delay that involves a single arbitrary function dependent on the ratio w/u:

utt = auxx + uf(w/u), w = u(x, t− τ). (3.4.4.1)

It differs from the reaction-diffusion equation (3.4.2.1) on the left-hand side, where

ut is replaced with utt.
1◦. Equation (3.4.4.1) admits, just as equation (3.4.2.1), a multiplicative separa-

ble solution

u = ϕ(x)ψ(t), (3.4.4.2)

where the functionsϕ=ϕ(x) and ψ=ψ(t) are described by the ODE and delay ODE

ϕ′′
xx = kϕ, (3.4.4.3)

ψ′′(t) = akψ(t) + ψ(t)f(ψ(t− τ)/ψ(t)), (3.4.4.4)

where k is an arbitrary constant.

The general solution of ODE (3.4.4.3) is defined by formulas (3.4.2.6). The

delay ODE (3.4.4.4) admits exponential particular solutions of the form

ψ(t) = C3e
λt,

where C3 is an arbitrary constant, and λ is a root of the transcendental equation

λ2 = ak + f(e−λτ ).

2◦. Equation (3.4.4.1) admits exact solutions of the form

u = ectv(x, t), v(x, t) = v(x, t − τ), (3.4.4.5)

where c is an arbitrary constant and v = v(x, t) is a τ -periodic function. Substituting

(3.4.4.5) into equation (3.4.4.1) gives a linear problem for v:

vtt + svt = avxx + bv, v(x, t) = v(x, t− τ), (3.4.4.6)

where s = 2c and b = f(e−cτ )− c2.
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The general solution of problem (3.4.4.6), which we denote by v=U1(x, t; b, s),
can be represented as [429]:

U1(x, t; b, s) =

∞∑

n=0

exp(−λnx)
[
An cos(βnt− γnx) +Bn sin(βnt− γnx)

]

+
∞∑

n=1

exp(λnx)
[
Cn cos(βnt+ γnx) +Dn sin(βnt+ γnx)

]
,

(3.4.4.7)

βn =
2πn

τ
, γn =

[√
(b + β2

n)
2 + s2β2

n + b+ β2
n

2a

]1/2
, λn =

sβn
2aγn

,

(3.4.4.8)

where An, Bn, Cn, and Dn are arbitrary constants such that the series (3.4.4.7)–

(3.4.4.8) and its derivatives (U1)t, (U1)tt, and (U1)xx are convergent. In particular,

the convergence occurs if An = Bn = Cn = Dn = 0 for n > N , where N is any

positive integer.

Considering the above, we eventually arrive at the following exact solution to

equation (3.4.4.1):

u = ectU1(x, t; b, s), b = f(e−cτ )− c2, s = 2c, (3.4.4.9)

where c is an arbitrary constant and U1(x, t; b, s) is a τ -periodic function defined by

formulas (3.4.4.7) and (3.4.4.8). If c = 0, solution (3.4.4.9) is a τ -periodic function.

3◦. Equation (3.4.4.1) also admits exact solutions of the form

u = ectv(x, t), v(x, t) = −v(x, t− τ), (3.4.4.10)

where c is an arbitrary constant and v = v(x, t) is a τ -antiperiodic function. Substi-

tuting (3.4.4.10) into (3.4.4.1) yields a linear problem for determining v:

vtt + svt = avxx + bv, v(x, t) = −v(x, t− τ), (3.4.4.11)

where s = 2c and b = f(−e−cτ)− c2.

The general solution of problem (3.4.4.11), which we denote by v=U2(x, t; b, s),
can be represented as the series [429]:

U2(x, t; b, s) =

∞∑

n=1

exp(−λnx)
[
An cos(βnt− γnx) +Bn sin(βnt− γnx)

]

+

∞∑

n=1

exp(λnx)
[
Cn cos(βnt+ γnx) +Dn sin(βnt+ γnx)

]
,

(3.4.4.12)

βn =
π(2n− 1)

τ
, γn =

[√
(b+ β2

n)
2 + s2β2

n + b+ β2
n

2a

]1/2
, λn =

sβn
2aγn

,

(3.4.4.13)
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3.4. Method of Functional Constraints 197

where An, Bn, Cn, and Dn are arbitrary constants such that the series (3.4.4.12)–

(3.4.4.13) and its derivatives (U1)t, (U1)tt, and (U1)xx are convergent.

As a result, we arrive at the following exact solution to equation (3.4.4.1):

u = ectU2(x, t; b, s), b = f(−e−cτ)− c2, s = 2c, (3.4.4.14)

where c is an arbitrary constant and U2(x, t; b, s) is a τ -antiperiodic function defined

by formulas (3.4.4.12) and (3.4.4.13).

Equation 2. Consider the nonlinear Klein–Gordon type wave equation with con-

stant delay that involves a single arbitrary function dependent on the differenceu−w:

utt = auxx + bu+ f(u− w), w = u(x, t− τ). (3.4.4.15)

It differs from the reaction-diffusion equation (3.4.2.19) on the left-hand side, where

the first derivative is replaced with the second derivative.

Equation (3.4.4.15) admits, just as equation (3.4.2.19), an additive separable

solution

u = ϕ(x) + ψ(t). (3.4.4.16)

The functions ϕ = ϕ(x) and ψ = ψ(t) satisfy the ODE and delay ODE

aϕ′′
xx + bϕ = k, (3.4.4.17)

ψ′′
tt(t) = bψ(t) + k + f(ψ(t)− ψ(t− τ)), (3.4.4.18)

where k is an arbitrary constant.

Notably, the general solution of equation (3.4.4.17) is described by formulas

(3.4.2.24), with b 6= 0 and k = 0, and (3.4.2.25), with b = 0 and k 6= 0.

Equation 3. Consider the nonlinear delay Klein–Gordon type wave equation

utt = auxx + bu+ f(u− kw), k > 0. (3.4.4.19)

1◦. Table 3.11 presents a few relatively simple generalized separable solutions

to equation (3.4.4.19).

2◦. More complex exact solutions to nonlinear delay Klein–Gordon type wave

equations (3.4.4.19) can be obtained with the following theorem.

Theorem (on nonlinear superposition of solutions) [429]. Let u0(x, t) be a

solution to the nonlinear equation (3.4.4.19) and let v = U1(x, t; b, s) be any τ -

periodic solution to the linear telegraph equation (3.4.4.6), where b and s are free

parameters. Then the function

u = u0(x, t) + ectU1(x, t; b− c2, 2c), c =
1

τ
ln k, (3.4.4.20)

is also a solution to equation (3.4.4.19). The general form of the functionU1(x,t;b,s)
is defined by formulas (3.4.4.7) and (3.4.4.8).
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Table 3.11. Generalized separable solutions to nonlinear delay Klein–Gordon type wave

equation (3.4.4.19). Notation: A and B are arbitrary constants.

No. Form of exact solution Equation for determining function

1
u= ect[A cos(λx) +B sin(λx)] +ψ(t),

c= 1
τ
lnk, λ= [(b− c2)/a]1/2 , b > c2

ψ′′
tt = bψ+ f(ψ− kψ̄), ψ̄ = ψ(t− τ)

2
u= ect[A exp(−λx)+B exp(λx)] +ψ(t),

c= 1
τ
lnk, λ= [(c2 − b)/a]1/2 , c2 > b

ψ′′
tt = bψ+ f(ψ− kψ̄), ψ̄ = ψ(t− τ)

3
u= ect[A cos(λx) +B sin(λx)] +ϕ(x),

c= 1
τ
lnk, λ= [(b− c2)/a]1/2 , b > c2

aϕ′′
xx+ bϕ+ f

(
(1− k)ϕ

)
= 0

4
u= ect[A exp(−λx) +B exp(λx)] +ϕ(x),

c= 1
τ
lnk, λ= [(c2 − b)/a]1/2 , c2 > b

aϕ′′
xx+ bϕ+ f

(
(1− k)ϕ

)
= 0

Formula (3.4.4.20) allows one to obtain a broad class of exact solutions to non-

linear delay Klein–Gordon type wave equations by taking advantage of simpler par-

ticular solutions.

The simplest particular solutions of equation (3.4.4.19) are constants, u0= const,

which are roots of the algebraic (transcendental) equation

bu0 + f
(
(1− k)u0

)
= 0.

In the special case k = 1, there is only one constant solution: u0 = −f(0)/b.
As the function u0(x, t) in (3.4.4.20), one can also take a spatially homogeneous

solution, u0 = u0(t), a stationary solution, u0 = u0(x), or a traveling wave solution,

u0 = θ(αx+ βt), where α and β are arbitrary constants. The solutions displayed in

Table 3.11 are also suitable.

Equation 4. Consider the nonlinear delay Klein–Gordon type wave equation

utt = a(ukux)x + uf(w/u), w = u(x, t− τ). (3.4.4.21)

It is easy to verify that it admits a multiplicative separable solution

u = ϕ(x)ψ(t).

The determining functions ϕ = ϕ(x) and ψ = ψ(t) satisfy the nonlinear ODE and

delay ODE

a(ϕkϕ′
x)

′
x = bϕ,

ψ′′(t) = bψk+1(t) + ψ(t)f
(
ψ(t− τ)/ψ(t)

)
,

where b is an arbitrary constant.

Equation 5. The nonlinear delay Klein–Gordon type wave equation

utt = a(eλuux)x + f(u− w), w = u(x, t− τ), (3.4.4.22)
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3.4. Method of Functional Constraints 199

admits an additive separable solution of the form

u =
1

λ
ln(Ax2 +Bx+ C) + ψ(t),

where A, B, and C are arbitrary constants; the function ψ = ψ(t) satisfies the delay

ODE

ψ′′(t) = 2a(A/λ)eλψ(t) + f
(
ψ(t)− ψ(t− τ)

)
.

Equation 6. The nonlinear delay PDE

utt = [(a lnu+ b)ux]x − cu lnu+ uf(w/u) (3.4.4.23)

admits two multiplicative separable solutions

u = exp(±λx)ψ(t), λ =
√
c/a,

where the function ψ(t) is described by the delay ODE

ψ′′(t) = λ2(a+ b)ψ(t) + ψ(t)f
(
ψ(t− τ)/ψ(t)

)
.

Remark 3.34. Many other exact solutions to nonlinear delay Klein–Gordon type wave
equations and more complex nonlinear telegraph-type equations (hyperbolic reaction-diffusion
equations with delay) can be found in [316, 419, 429, 497].
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4. Analytical Methods and Exact

Solutions to Nonlinear Delay

PDEs. Part II

4.1. Methods for Constructing Exact Solutions to

Nonlinear Delay PDEs Using Solutions to

Simpler Non-Delay PDEs

This section describes the methods developed in [414, 415] for constructing exact

solutions of nonlinear delay PDEs, which rely on employing special solutions to

simpler auxiliary PDEs without delay. We give examples of applying these methods

to construct solutions of nonlinear reaction-diffusion and wave-type equations with

delay dependent on arbitrary functions.

Remark 4.1. Methods for constructing solutions of complex nonlinear PDEs without
delay using solutions of simpler PDEs can be found in [9]. Examples of applying these
methods are also given there.

4.1.1. The First Method for Constructing Exact Solutions
to Delay PDEs. General Description and Simple
Examples

General description of the method. We will be dealing with nonlinear PDEs

without delay in two independent variables of the form

Φ(x, u, ux, ut, uxx, uxt, utt, . . . ;β1, . . . , βm) = 0, (4.1.1.1)

where u = u(x, t) is the unknown function and β1, . . . , βm are free parameters.

We will show that in certain cases, exact solutions to equations (4.1.1.1) can be

used to construct exact solutions to more complicated nonlinear delay equations. The

following statement is true.

Proposition 1. Let equation (4.1.1.1) admit a generalized traveling wave solution

that can be represented in the implicit form

F (u) = kt+ θ(x), (4.1.1.2)

where k is a constant determined from an algebraic (transcendental) equation

P (k, β1, . . . , βm) = 0, (4.1.1.3)
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202 4. ANALYTICAL METHODS AND EXACT SOLUTIONS TO DELAY PDES. PART II

and the function θ = θ(x) satisfies an ordinary differential equation

Q(x, θ, θ′x, θ
′′
xx, . . . ;β1, . . . , βm) = 0. (4.1.1.4)

Then the more complex nonlinear delay PDE obtained from (4.1.1.1) by formally

replacing the free parameters β1, . . . , βm with functions ϕ1, . . . , ϕm by the rule

βi =⇒ ϕi
(
F (u)− F (w)

)
, w = u(x, t− τ), i = 1, . . . ,m, (4.1.1.5)

where ϕi(z) are some functions (defined quite arbitrarily), also admits exact solu-

tions of the form (4.1.1.2). In this case, the constant k and function θ = θ(x) are

determined from equations (4.1.1.3) and (4.1.1.4) in which one should set

βi = ϕi(kτ), i = 1, . . . ,m. (4.1.1.6)

Proof. Using solutions (4.1.1.2), we get F (w) = k(t−τ)+θ(x) =F (u)−kτ , or

F (u)− F (w) = kτ = const. (4.1.1.7)

Then any delay PDE obtained from (4.1.1.1) by replacing the parameters β1, . . . , βm
with functions ϕ1, . . . , ϕm by the rule (4.1.1.5) is equivalent, by virtue of solution

(4.1.1.2) and relation (4.1.1.7), to equation (4.1.1.1) under condition (4.1.1.6).

Proposition 1 can be employed to construct exact solutions in explicit or implicit

form for some delay PDEs.

Remark 4.2. In degenerate cases, equation (4.1.1.4) can be algebraic or transcendental
(i.e., involving no derivatives of θ) or even define the function θ explicitly. In particular, any
traveling wave solution can be written in the form (4.1.1.2) with θ(x) = αx, where α is an
arbitrary constant. Furthermore, equation (4.1.1.3) can sometimes be absent at all, and then
the constant k will serve as a free parameter.

Simple illustrative examples of the practical application of the method.

◮ Example 4.1. To illustrate the practical use of Proposition 1, we will look at

the linear diffusion equation without delay

ut = uxx + a, (4.1.1.8)

where β = a is a free parameter.

Equation (4.1.1.8) admits a simple additive separable solution that can be written

explicitly as

u = kt+ λx2 + C1x+ C2, (4.1.1.9)

where C1, C2, and λ are arbitrary constants, and the parameter k is expressed in

terms of a and λ as follows:

k = 2λ+ a. (4.1.1.10)

Solution (4.1.1.9) is a special case of solution (4.1.1.2) with F (u) = u and

θ(x) = λx2 + C1x + C2. Substituting the function F (u) = u into (4.1.1.7) gives

F (u) − F (w) = u − w = kτ . Applying Proposition 1 to equation (4.1.1.8), we
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4.1. Methods for Constructing Exact Solutions to Delay PDEs Using Other Solutions 203

replace the parameter a with ϕ(u − w), where ϕ(z) is an arbitrary function. As a

result, we arrive at the nonlinear delay PDE

ut = uxx + ϕ(u − w).

It admits the exact solution (4.1.1.9) where the constant k is determined from the

algebraic (transcendental) equation

k = 2λ+ ϕ(kτ),

which is obtained from (4.1.1.10) with a = ϕ(kτ). ◭

◮ Example 4.2. Consider the nonlinear reaction-diffusion equation without

delay

ut = (unux)x + au1−n, (4.1.1.11)

where β = a is a free parameter.

Equation (4.1.1.11) admits the traveling wave solution

u = (kt+ λx+ C1)
1/n, (4.1.1.12)

where C1 and λ are arbitrary constants, and the parameter k is expressed via a, λ,

and n as follows:

k = an+
λ2

n
. (4.1.1.13)

Solution (4.1.1.12) is a special case of solution (4.1.1.2) with F (u) = un. Sub-

stituting this function into (4.1.1.7) gives F (u)−F (w) = un−wn = kτ . Applying

Proposition 1 to equation (4.1.1.11), we replace the parameter a with ϕ(un − wn),
where ϕ(z) is an arbitrary function. As a result, we arrive at the nonlinear delay

equation

ut = (unux)x + u1−nϕ(un − wn).

It admits an exact solution of the form (4.1.1.12) where the constant k is determined

from the algebraic (transcendental) equation

k = nϕ(kτ) +
λ2

n
,

which derives from (4.1.1.13) with a = ϕ(kτ). ◭

4.1.2. Using the First Method for Constructing Exact
Solutions to Nonlinear Delay PDEs

Equation 1. The nonlinear reaction-diffusion type equation without delay

ut = [a(x)f(u)ux]x + σ +
β

f(u)
, (4.1.2.1)
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which involves two arbitrary functions, a(x) and f(u), and two free parameters,

σ and β, admits a generalized traveling wave solution in implicit form [396]:

∫
f(u) du = kt− σ

∫
x dx

a(x)
+ C1

∫
dx

a(x)
+ C2, (4.1.2.2)

where C1 and C2 are arbitrary constants, and the constant k is linked to the parame-

ter β by the linear relation

k = β. (4.1.2.3)

Solution (4.1.2.2) is a solution of the form (4.1.1.2) with F (u) =
∫
f(u) du.

Applying Proposition 1 to equation (4.1.2.1), we replace the parameters σ and β
with arbitrary functions ϕ(F (u) − F (w)) and ψ(F (u) − F (w)), respectively. As a

result, we arrive at the new nonlinear reaction-diffusion type equation with delay

ut = [a(x)f(u)ux]x + ϕ(F (u)− F (w)) +
1

f(u)
ψ(F (u)− F (w)),

F (u) =

∫
f(u) du.

(4.1.2.4)

It depends on four arbitrary functions and has the exact solution

∫
f(u) du = kt− ϕ(kτ)

∫
x dx

a(x)
+ C1

∫
dx

a(x)
+ C2, (4.1.2.5)

where the constant k is determined from the algebraic (transcendental) equation

k = ψ(kτ), (4.1.2.6)

which derives from (4.1.2.3) with β = ψ(kτ).

◮ Example 4.3. By setting

F (u)=un+1, f(u)= (n+1)un, a(x)= a0/(n+1)= const, ψ(z)= (n+1)ψ̄(z)

in (4.1.2.4)–(4.1.2.6), we obtain the nonlinear delay PDE

ut = a0(u
nux)x + ϕ(un+1 − wn+1) + u−nψ̄(un+1 − wn+1).

It depends on two arbitrary functions, ϕ(z) and ψ̄(z), and has the exact solution in

explicit form

u =
[
kt− n+ 1

2a0
ϕ(kτ)x2 + C1x+ C2

] 1
n+1

, (4.1.2.7)

in which the constant k is a root of the algebraic (transcendental) equation k =
(n+ 1)ψ̄(kτ). ◭

◮ Example 4.4. Setting

F (u) = eλu, f(u) = λeλu, a(x) = a0/λ = const, ψ(z) = λψ̄(z)
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in (4.1.2.4)–(4.1.2.6) yields the nonlinear delay PDE

ut = a0(e
λuux)x + ϕ(eλu − eλw) + e−λuψ̄(eλu − eλw),

which has the exact solution

u =
1

λ
ln
[
kt− λ

2a0
ϕ(kτ)x2 + C1x+ C2

]
, (4.1.2.8)

where k is a root of the algebraic (transcendental) equation k = λψ̄(kτ). ◭

Equation 2. The nonlinear delay PDE

ut = [a(x)f(u)ux]x + b(x)ϕ
(
F (u)− F (w)

)
+

1

f(u)
ψ
(
F (u)− F (w)

)
,

which is more general than (4.1.2.4) and dependent on five arbitrary functions a(x),
b(x), f(u), ϕ(z), and ψ(z), has the exact solution

∫
f(u) du = kt− ϕ(kτ)

∫
1

a(x)

(∫
b(x) dx

)
dx+ C1

∫
dx

a(x)
+ C2,

where the constant k is a root of the algebraic (transcendental) equations (4.1.2.6).

Omitting details, we will list below a few more nonlinear PDEs without delay

that admit exact solutions of the form (4.1.1.2) together with more complex nonlinear

delay PDEs they generate with their exact solutions.

Equation 3. Consider the nonlinear PDE without delay

ut = [a(x)f(u)ux]x − µa(x)f(u)ux + σ +
β

f(u)
,

which admits the exact solution [400]:

∫
f(u) du = kt+

σ

µ

∫
dx

a(x)
+ C1

∫
eµx

a(x)
dx+ C2, (4.1.2.9)

where the constant k is linked to the parameter β through the linear relation (4.1.2.3).

By reasoning as for equation (4.1.2.1), we obtain the nonlinear delay PDE

ut = [a(x)f(u)ux]x−µa(x)f(u)ux+ϕ
(
F (u)−F (w)

)
+

1

f(u)
ψ
(
F (u)−F (w)

)
,

whose exact solution is given by formula (4.1.2.9) with σ=ϕ(kτ), and the constant k
is a root of the algebraic (transcendental) equation (4.1.2.6).

Equation 4. The nonlinear Klein–Gordon type wave equation without delay

utt = [a(x)f(u)ux]x + σ − β
f ′
u(u)

f3(u)
,
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which involves two arbitrary functions, a(x) and f(u), and two free parameters,

β and σ, admits the generalized traveling wave solution [399]:

∫
f(u) du = kt− σ

∫
x dx

a(x)
+ C1

∫
dx

a(x)
+ C2, (4.1.2.10)

where C1 and C2 are arbitrary constants, and the constant k is linked to the parame-

ter β by

k2 = β.

For β > 0, we have two real solutions: k = ±
√
β.

Solution (4.1.2.10) is a solution of the form (4.1.1.2) with F (u) =
∫
f(u) du.

By reasoning as for equation (4.1.2.1), we arrive at the nonlinear delay Klein–

Gordon type wave equation

utt = [a(x)f(u)ux]x + ϕ
(
F (u)− F (w)

)
− f ′

u(u)

f3(u)
ψ
(
F (u)− F (w)

)
, (4.1.2.11)

whose exact solution can be written in the implicit form (4.1.2.10) with σ = ϕ(kτ);
the constant k is determined from the algebraic (transcendental) equation k2 =
ψ(kτ).

◮ Example 4.5. By setting

F (u)=un+1, f(u)= (n+1)un, a(x)=
a0

n+ 1
= const, ψ(z)=n−1(n+1)2ψ̄(z)

in (4.1.2.11), we arrive at the nonlinear delay PDE

utt = a0(u
nux)x + ϕ(un+1 − wn+1)− u−2n−1ψ̄(un+1 − wn+1),

which admits the exact solution (4.1.2.7), with the constant k determined from the

algebraic (transcendental) equation nk2 = (n+ 1)2ψ̄(kτ). ◭

◮ Example 4.6. By setting

F (u) = eλu, f(u) = λeλu, a(x) = a0/λ = const, ψ(z) = λψ̄(z)

in (4.1.2.11), we get the nonlinear delay PDE

utt = a0(e
λuux)x + ϕ(eλu − eλw)− e−2λuψ̄(eλu − eλw),

which admits the exact solution (4.1.2.8), with the constant k determined from the

algebraic (transcendental) equation k2 = λψ̄(kτ). ◭

Equation 5. The nonlinear Klein–Gordon type wave equation without delay

utt = [a(x)ux]x + β
a′x(x)√
a(x)

f(u), (4.1.2.12)
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involving two arbitrary functions, a(x) and f(u), admits two exact solutions [399]:

∫
du

f(u)
= ±2kt− 2k

∫
dx√
a(x)

+ C, (4.1.2.13)

where the constant k is linked to the parameter β by the linear relation (4.1.2.3).

Solution (4.1.2.13) is a solution of the form (4.1.1.2) with F (u) =
∫
[du/f(u)].

Equation (4.1.2.12) generates the more complex delay PDE

utt = [a(x)ux]x +
a′x(x)√
a(x)

f(u)ψ
(
F (u)− F (w)

)
, F (u) =

∫
du

f(u)
,

which has exact solutions defined by formula (4.1.2.13) with the constant k found

from the algebraic (transcendental) equation k = ψ(kτ).

4.1.3. The Second Method for Constructing Exact
Solutions to Delay PDEs. General Description and
Simple Examples

General description of the method. The second method for constructing exact

solutions to nonlinear delay PDEs relies on the following statement.

Proposition 2. Let equation (4.1.1.1) have a functional separable solution of the

special form

F (u) = ektθ(x), (4.1.3.1)

where the constant k is determined from the algebraic (transcendental) equation

(4.1.1.3), and the function θ = θ(x) satisfies ODE (4.1.1.4). Then the more complex

nonlinear delay PDE obtained from (4.1.1.1) by formally replacing the free parame-

ters β1, . . . , βm with functions by the rule

βi =⇒ ϕi
(
F (w)/F (u)

)
, w = u(x, t− τ), i = 1, . . . ,m, (4.1.3.2)

where ϕi(z) are some (quite arbitrary) given functions, also admits an exact solution

of the form (4.1.3.1). The constant k and function θ = θ(x) are determined from

equations (4.1.1.3) and (4.1.1.4), in which one should set

βi = ϕi(e
−kτ ), i = 1, . . . ,m. (4.1.3.3)

Proof. With solutions of the form (4.1.3.1), we have F (w) = ek(t−τ)θ(x) =
e−kτF (u), or

F (w)/F (u) = e−kτ = const. (4.1.3.4)

It follows that any delay equation obtained from (4.1.1.1) by replacing the constants

β1, . . . , βm with functions according to (4.1.3.2) is equivalent, by virtue of solutions

(4.1.3.1) and relation (4.1.3.4), to equation (4.1.1.1) under condition (4.1.3.3).

Proposition 2 can be employed to construct exact solutions, in explicit or implicit

form, to some delay PDEs.
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Remark 4.3. Proposition 2 reduces to Proposition 1. To this end, while assuming that
F (u) > 0, one should take the logarithm of solution (4.1.3.1) and then rename lnF (u) =⇒
F (u) and ln θ =⇒ θ; the case F (u) < 0 is treated likewise. However, in practice, one often
deals directly with a solution representation in the form (4.1.3.1), which is simpler and more
convenient to use.

Simple illustrative examples of the practical application of the method.

◮ Example 4.7. Consider the linear diffusion equation

ut = uxx + au, (4.1.3.5)

where β = a is a free parameter.

Equation (4.1.3.5) admits a separable solution

u = ektθ(x), (4.1.3.6)

where k is an arbitrary constant, and the function θ = θ(x) satisfies the second-order

linear ODE with constant coefficients

θ′′xx + (a− k)θ = 0. (4.1.3.7)

Solution (4.1.3.6) is a special case of solution (4.1.3.1) with F (u) = u. Substi-

tuting this function into (4.1.3.4) gives F (w)/F (u) = w/u = e−kτ . Using Proposi-

tion 2, we replace in equation (4.1.3.5) the parameter a with ϕ(w/u), where ϕ(z) is

an arbitrary function. As a result, we arrive at the nonlinear delay PDE

ut = uxx + uϕ(w/u),

which admits the exact solution (4.1.3.6), where k is an arbitrary constant, and the

function θ = θ(x) satisfies the linear ODE

θ′′xx + [ϕ(e−kτ )− k]θ = 0.

This equation is obtained by substituting the constant a= ϕ(e−kτ ) into (4.1.3.7) and

is easy to integrate. ◭

◮ Example 4.8. Consider the reaction-diffusion equation with a quadratic non-

linearity

ut = (uux)x + au+ bu2, (4.1.3.8)

where a and b are free parameters.

For b > 0, equation (4.1.3.8) admits a separable solution in explicit form

u = ekt
√
|C1 cos(βx) + C2 sin(βx)|, β =

√
2b, (4.1.3.9)

which is a special case of solution (4.1.3.6), where the parameter k satisfies the linear

relation

k = a. (4.1.3.10)

As in example 4.7, we have F (u) = u and, hence, F (w)/F (u) = w/u = e−kτ .

Using Proposition 2, we replace in equation (4.1.3.8) the parameters a and b with
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ϕ(w/u) and ψ(w/u), respectively, where ϕ(z) and ψ(z) are arbitrary functions. As

a result, we arrive at the nonlinear delay PDE

ut = (uux)x + uϕ(w/u) + u2ψ(w/u),

which admits an exact solution of the form (4.1.3.9), where k is determined from the

algebraic (transcendental) equation

k = ϕ(e−kτ ),

obtained from (4.1.3.10) by substituting a = ϕ(e−kτ ). ◭

4.1.4. Employing the Second Method to Construct Exact
Solutions to Nonlinear Delay PDEs

Equation 1. Consider the nonlinear reaction-diffusion type equation without delay

ut = [f(u)ux]x +
[
b +

c

f(u)

]
F (u), F (u) =

∫
f(u) du, (4.1.4.1)

dependent on an arbitrary function, f(u), and two free parameters, b and c. This

equation admits an exact solution representable in implicit form [422]:

∫
f(u) du = ektθ(x), (4.1.4.2)

where

k = c, (4.1.4.3)

and the function θ = θ(x) is determined from the second-order linear ODE

θ′′xx + bθ = 0. (4.1.4.4)

Solution (4.1.4.2) is a solution of the form (4.1.3.1) with F (u) =
∫
f(u) du.

Using Proposition 2, we replace in equation (4.1.4.1) the parameters b and c with

arbitrary functions ϕ(F (w)/F (u)) and ψ(F (w)/F (u)), respectively. As a result,

we arrive at the more complex nonlinear reaction-diffusion type equation with delay

ut = [f(u)ux]x + F (u)

[
ϕ

(
F (w)

F (u)

)
+

1

f(u)
ψ

(
F (w)

F (u)

)]
, F (u) =

∫
f(u) du,

(4.1.4.5)

which involves three arbitrary functions and has exact solutions of the form (4.1.4.2).

The constant k in (4.1.4.2) is a root of the algebraic (transcendental) equation

k = ψ(e−kτ ), (4.1.4.6)

obtained from (4.1.4.3) by substituting c = ψ(e−kτ ). The function θ = θ(x) is

determined by the second-order linear ODE (4.1.4.4) with b = ϕ(e−kτ ).
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Equation 2. The nonlinear delay PDE

ut = [a(x)f(u)ux]x + b(x)F (u)ϕ
(F (w)
F (u)

)
+
F (u)

f(u)
ψ
(F (w)
F (u)

)
,

more general than (4.1.4.5) and dependent on five arbitrary functions, a(x), b(x),
f(u), ϕ(z), and ψ(z), admits an exact solution of the form (4.1.4.2), where the

constant k is a root of the algebraic (transcendental) equation (4.1.4.6), and the

function θ = θ(x) satisfies the second-order linear ODE

[a(x)θ′x]
′
x + ϕ(e−kτ )b(x)θ = 0.

Equation 3. The nonlinear PDE without delay

ut = [f(u)ux]x + µf(u)ux +
λ

f(u)
F (u), F (u) =

∫
f(u) du, (4.1.4.7)

dependent on an arbitrary function, f(u), and two free parameters, µ and λ, admits

the exact solution [400]:

∫
f(u) du = ekt(C1 + C2e

−µx), (4.1.4.8)

where k = λ.

Using Proposition 2, one can see, for example, that the nonlinear delay PDE

ut = [f(u)ux]x + µf(u)ux +
F (u)

f(u)
ϕ

(
F (w)

F (u)

)
, F (u) =

∫
f(u) du, (4.1.4.9)

admits an exact solution of the form (4.1.4.8), where the constant k is determined

from the algebraic (transcendental) equation k = ϕ(e−kτ ).

◮ Example 4.9. By setting ϕ(z) = λz in (4.1.4.9), we get the equation

ut = [f(u)ux]x + µf(u)ux +
λ

f(u)
F (w),

which follows from equation (4.1.4.7) if we formally rename F (u) =⇒ F (w). ◭

Equation 4. The nonlinear PDE without delay

ut=[f(u)ux]x−2αf(u)ux+
[
α2+

β

f(u)

]
F (u), F (u)=

∫
f(u) du, (4.1.4.10)

dependent on an arbitrary function, f(u), and two free parameters, α and β, admits

the exact solution in implicit form [400]:

∫
f(u) du = ekt+αx(C1x+ C2), (4.1.4.11)

where C1 and C2 are arbitrary constants and k = β.
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The nonlinear delay PDE

ut = [f(u)ux]x − 2αf(u)ux + α2F (u) +
F (u)

f(u)
ϕ

(
F (w)

F (u)

)
,

which is more complex than equation (4.1.4.10), also admits the exact solution

(4.1.4.11), where the constant k is determined from the algebraic (transcendental)

equation k = ϕ(e−kτ ).

Equation 5. Consider the nonlinear non-delay wave-type PDE with variable

coefficients

utt = [f(x)unux]x + g(x, a)un+1 + bu, (4.1.4.12)

where f(x) and g(x, a) are arbitrary functions, while a and b are free parameters.

Equation (4.1.4.12) admits a separable solution of the form (4.1.3.6), where the

parameter k satisfies the quadratic relation

k2 = b, (4.1.4.13)

and the function θ = θ(x) is described by the nonlinear second-order ODE

[f(x)θnθ′x]
′
x + g(x, a)θn+1 = 0. (4.1.4.14)

In this case, we have F (u) = u and F (w)/F (u) = w/u = e−kτ . Using

Proposition 2, we replace in equation (4.1.4.12) the parameters a and bwith arbitrary

functions ϕ(w/u) and ψ(w/u), respectively. As a result, we arrive at the nonlinear

delay PDE

utt = [f(x)unux]x + un+1g(x, ϕ(w/u)) + uψ(w/u),

which has an exact solution of the form (4.1.3.6), where k is determined from the

algebraic (transcendental) equation

k2 = ψ(e−kτ ),

obtained from (4.1.4.13) by substituting b=ψ(e−kτ ). The function θ= θ(x) satisfies

the nonlinear ODE

[f(x)θnθ′x]
′
x + g(x, a)θn+1 = 0, a = ϕ(e−kτ ).

With the change of variable ξ(x) = θn+1(x), this equation can be reduced to a linear

second-order ODE.

Remark 4.4. The article [415] lists several exact solutions to more complicated nonlinear
PDEs and systems of delay PDEs.
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4.2. Systems of Nonlinear Delay PDEs.

Generating Equations Method

4.2.1. General Description of the Method and Application
Examples

Preliminary remarks. Developed in [436], the method of generating equations

allows one to find solutions to nonlinear systems of delay PDEs by employing sim-

pler exact solutions of isolated delay PDEs. The method relies on the method of

functional constraints (see Section 3.4).

Description of the method. We consider two different independent (isolated)

nonlinear PDEs with constant delay

ut = F
(
u, ū, ux, uxx, f(z1)

)
, ū = u(x, t− τ), z1 = z1(u, ū); (4.2.1.1)

vt = G
(
v, v̄, vx, vxx, g(z2)

)
, v̄ = v(x, t− τ), z2 = z2(v, v̄), (4.2.1.2)

involving arbitrary functions of a single argument, f(z1) and g(z2), with τ > 0.

We will assume that equations (4.2.1.1) and (4.2.1.2) have generalized separable

solutions of the form

u =

N1∑

n=1

ϕ1n(x)ψ1n(t), v =

N2∑

n=1

ϕ2n(x)ψ2n(t) (4.2.1.3)

and both these solutions satisfy any functional constraints of the same type (see

Section 3.4). For example, either of the two variants is possible:

z1(u, ū) = p1(x), z2(v, v̄) = p2(x) (functional constraints of the first kind);

z1(u, ū) = q1(t), z2(v, v̄) = q2(t) (functional constraints of the second kind).
(4.2.1.4)

The generating equations method relies on the following principle.

The principle of constructing delay systems and their exact solutions. Suppose

that the isolated nonlinear delay PDEs (4.2.1.1) and (4.2.1.2) admit the generalized

separable solutions (4.2.1.3) each satisfying two functional constraints of the same

form (4.2.1.4). Then the more complicated nonlinear system of two coupled nonlin-

ear delay PDEs

ut = F
(
u, ū, ux, uxx, f(z1, z2)

)
, ū = u(x, t− τ), z1 = z1(u, ū); (4.2.1.5)

vt = G
(
v, v̄, vx, vxx, g(z1, z2)

)
, v̄ = v(x, t− τ), z2 = z2(v, v̄), (4.2.1.6)

where f(z1, z2) and g(z1, z2) are arbitrary functions of two arguments, admits exact

solutions of the form (4.2.1.3).

In what follows, we will call the initial independent equations (4.2.1.1) and

(4.2.1.2) generating equations.

Notably, in simple cases, the generating equations (4.2.1.1) and (4.2.1.2) can

be the same up to obvious renaming of the determining parameters and arbitrary

functions.
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Remark 4.5. Rather than nonlinear delay PDEs admitting generalized separable solutions
(4.2.1.3), one can also take, as generating equations, nonlinear delay PDEs that have more
complicated, functional separable solutions [436].

Illustrative examples. Below we describe in more detail the procedure of em-

ploying the generating equations method with two specific examples.

◮ Example 4.10. To obtain both generating equations, we use one reaction-

diffusion type equation with delay (3.4.2.1). After obvious renaming, we will rewrite

it as two similar independent equations:

ut = a1uxx + uf(ū/u), ū = u(x, t− τ);

vt = a2vxx + vg(v̄/v), v̄ = v(x, t− τ).
(4.2.1.7)

These involve two arbitrary functions of a single argument, f(z1) and g(z2), where

z1 = ū/u and z2 = v̄/v.

1◦. Equations (4.2.1.7) coincide, up to obvious renaming, with equation (3.4.2.1)

and, therefore, admit, for example, a multiplicative separable solution of the form:∗

u = cos(βx)ψ1(t), v = cos(βx)ψ2(t), (4.2.1.8)

where β is an arbitrary constant. Functions (4.2.1.8) satisfy the functional constraints

of the second kind (4.2.1.4) with z1 = ū/u = ψ1(t − τ)/ψ1(t) and z2 = v̄/v =
ψ2(t− τ)/ψ2(t).

In this case, the associated nonlinear system of delay reaction-diffusion equa-

tions (4.2.1.5)–(4.2.1.6) is written as

ut = a1uxx + uf(ū/u, v̄/v),

vt = a2vxx + vg(ū/u, v̄/v),
(4.2.1.9)

where f(z1, z2) and g(z1, z2) are arbitrary functions of two arguments.

Following the generating equations method, we look for exact solutions to the

system of delay PDEs (4.2.1.9) in the form (4.2.1.8). On substituting (4.2.1.8) into

(4.2.1.9), we obtain the following system of delay ODEs for ψ1(t) and ψ2(t):

ψ′
1(t) = −a1β2ψ1(t) + ψ1(t)f

(
ψ1(t− τ)/ψ1(t), ψ2(t− τ)/ψ2(t)

)
,

ψ′
2(t) = −a2β2ψ2(t) + ψ2(t)g

(
ψ1(t− τ)/ψ1(t), ψ2(t− τ)/ψ2(t)

)
.

(4.2.1.10)

2◦. The generating equations (4.2.1.7) also admit other multiplicative separable

solutions (see solutions to equation (3.4.2.1)):

u = sinh(γx)ψ1(t), v = sinh(γx)ψ2(t), (4.2.1.11)

where γ is an arbitrary constant. Solution (4.2.1.11) satisfies the same functional

constraints of the second kind as solution (4.2.1.8). Therefore, the nonlinear system

of delay reaction-diffusion equations (4.2.1.9) admits exact solutions of the form

∗Recall that additive and multiplicative separable solutions are the simplest generalized separable

solutions.
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(4.2.1.11). In this case, the functions ψ1(t) and ψ2(t) are described by the system of

delay ODEs that derives from (4.2.1.10) if one formally replaces β2 with −γ2.

3◦. The generating equations (4.2.1.7) admit two classes of different exact so-

lutions, (4.2.1.8) and (4.2.1.11), with both classes satisfying functional constraints

of the second kind. Therefore, the nonlinear system of delay reaction-diffusion

equations (4.2.1.9) also admits exact solutions of mixed type:

u = cos(βx)ψ1(t), v = sinh(γx)ψ2(t). (4.2.1.12)

The functionsψ1(t) and ψ2(t) are described by the system of delay ODEs consisting

of the first equations of system (4.2.1.10) and a modified second equation of the same

system obtained by formally replacing β2 with −γ2.

4◦. The system of delay reaction-diffusion equations (4.2.1.9) admits a more

general multiplicative separable solution

u = ϕ1(x)ψ1(t), v = ϕ2(x)ψ2(t), (4.2.1.13)

which includes solutions (4.2.1.8), (4.2.1.11), and (4.2.1.12). ◭

Remark 4.6. The nonlinear system of delay reaction-diffusion equations

ut = a1uxx + uf(u/v, ū/u, v̄/v),

vt = a2vxx + vg(u/v, ū/u, v̄/v),

which is more general than system (4.2.1.9) and in which f(z1, z2, z3) and g(z1, z2, z3)
are arbitrary functions of three arguments, admits exact solutions of the form (4.2.1.8) and
(4.2.1.11) as well as solution (4.2.1.13) with ϕ1(x) = ϕ2(x).

◮ Example 4.11. To obtain two generating equations, we take one reaction-

diffusion type equation with delay (3.4.2.19). After obvious renaming, we rewrite it

as two similar independent equations

ut = a1uxx + b1u+ f(u− ū), ū = u(x, t− τ);

vt = a2vxx + b2v + g(v − v̄), v̄ = v(x, t− τ),
(4.2.1.14)

which involve two arbitrary functions of a single argument, f(z1) and g(z2), where

z1 = u− ū and z2 = v − v̄.

1◦. Equations (4.2.1.14) coincide, up to notation, with equation (3.4.2.19) and,

therefore, have the additive separable solutions

u = ϕ1(x) + ψ1(t), v = ϕ2(x) + ψ2(t). (4.2.1.15)

The functions (4.2.1.15) satisfy the functional constraints of the second kind (4.2.1.4)

with z1 = u− ū = ψ1(t)− ψ1(t− τ) and z2 = v − v̄ = ψ2(t)− ψ2(t− τ).
The independent equations (4.2.1.14) generate a nonlinear system of reaction-

diffusion equations with delay

ut = a1uxx + b1u+ f(u− ū, v − v̄),

vt = a2vxx + b2v + g(u− ū, v − v̄),
(4.2.1.16)

where f(z1, z2) and g(z1, z2) are arbitrary functions of two arguments.

Following the generating equations method, we seek an exact solution to system

(4.2.1.16) in the form (4.2.1.15). After separating the variables, we obtain two

independent systems for the determining functions:

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 214

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 214
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(i) a system of independent linear second-order ODEs with constant coefficients

for ϕ1(x) and ϕ2(x):

a1ϕ
′′
1 + b1ϕ1 = 0,

a2ϕ
′′
2 + b2ϕ2 = 0,

(4.2.1.17)

(ii) a system of coupled nonlinear first-order delay ODEs for ψ1(t) and ψ2(t):

ψ′
1(t) = b1ψ1(t) + f

(
ψ1(t)− ψ1(t− τ), ψ2(t)− ψ2(t− τ)

)
,

ψ′
2(t) = b2ψ2(t) + g

(
ψ1(t)− ψ1(t− τ), ψ2(t)− ψ2(t− τ)

)
.

(4.2.1.18)

Notably, the general solution of equations (4.2.1.17) with b1 > 0 and b2 < 0 is

given by

ϕ1 = C11 cos(β1x) + C12 sin(β1x), β1 =
√
b1/a1,

ϕ2 = C21 exp(−β2x) + C22 exp(β2x), β2 =
√
−b2/a2,

where Cij are arbitrary constants. Solutions of equations (4.2.1.17) with other signs

of the coefficients b1 and b2 can be obtained likewise.

2◦. The generating equations (4.2.1.14) also admit generalized separable solu-

tions (see solution (3.4.2.27) of equation (3.4.2.19)):

u = ξ1(x)t + η1(x), v = ξ2(x)t+ η2(x), (4.2.1.19)

where the functions (4.2.1.19) satisfy the functional constraints of the first kind

(4.2.1.4) with z1 = u− ū = τξ1(x) and z2 = v − v̄ = τξ2(x).
On substituting (4.2.1.19) into the system of delay reaction-diffusion equations

(4.2.1.16), we obtain the following system of ODEs for the determining functions:

a1ξ
′′
1 + b1ξ1 = 0,

a2ξ
′′
2 + b2ξ2 = 0,

a1η
′′
1 + b1η1 = ξ1 − f

(
τξ1, τξ2

)
,

a2η
′′
2 + b2η2 = ξ2 − g

(
τξ1, τξ2

)
.

Up to obvious renaming, the first two equations coincide with equations (4.2.1.17)

and are easy to integrate. Then one substitutes the resulting functions ξ1 and ξ2
into the right-hand sides of the last two equations. As a result, they become linear

nonhomogeneous second-order ODEs with constant coefficients and so are also easy

to integrate. ◭

4.2.2. Quasilinear Systems of Delay Reaction-Diffusion
Equations and Their Exact Solutions

This subsection briefly describes a few quasilinear systems of reaction-diffusion

equations with constant delay that are linear in all derivatives. These systems and

their exact solutions are obtained using the method of generating equations.
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System 1. To get two generating equations, we use one reaction-diffusion type

equation with constant delay (3.4.2.31) that admits generalized separable solutions

satisfying a functional constraint of the first kind. As a result, we arrive at the

quasilinear system of delay reaction-diffusion equations

ut = a1uxx + b1u+ f(u− k1ū, v − k2v̄), ū = u(x, t− τ);

vt = a2vxx + b2v + g(u− k1ū, v − k2v̄), v̄ = v(x, t− τ),
(4.2.2.1)

where k1 and k2 are arbitrary positive constants.

System (4.2.2.1) admits the generalized separable solutions

u = ξ1(x) exp(s1t) + η1(x), s1 = (ln k1)/τ,

v = ξ2(x) exp(s2t) + η2(x), s2 = (ln k2)/τ.
(4.2.2.2)

The system of ODEs for the functions ξ1,2(x) and η1,2(x) is omitted.

Remark 4.7. The quasilinear system of delay reaction-diffusion equations

ut = a1uxx + f1(u− k1ū, v − k2v̄) + uf2(u− k1ū, v − k2v̄) + vf3(u− k1ū, v − k2v̄),

vt = a2vxx + g1(u− k1ū, v − k2v̄) + ug2(u− k1ū, v − k2v̄) + vg3(u− k1ū, v − k2v̄),

which is more general than system (4.2.2.1) and involves six arbitrary functions of two argu-
ments, fm(z1, z2) and gm(z1, z2) with m = 1, 2, 3, also admits exact solutions of the form
(4.2.2.2).

System 2. We take the two different reaction-diffusion type equations with con-

stant delay

ut = a1uxx + bu+ f(u− ū), ū = u(x, t− τ);

vt = a2vxx + vg(v̄/v), v̄ = v(x, t − τ),
(4.2.2.3)

as the generating equations. The former coincides with the first equation of (4.2.1.14)

at b= b1 and admits an additive separable solution. The latter one coincides with the

second equation of (4.2.1.7) and admits a multiplicative separable solution. Both so-

lutions to equations (4.2.2.3) satisfy appropriate functional constraints of the second

kind.

By applying the generating equations method to equations (4.2.2.3), we arrive at

the system of coupled reaction-diffusion type equations with constant delay

ut = a1uxx + bu+ f(u− ū, v̄/v),

vt = a2vxx + vg(u− ū, v̄/v),
(4.2.2.4)

where f(z1, z2) and g(z1, z2) are arbitrary functions of two arguments.

By combining solutions to equations (4.2.2.3), we get an exact solution to system

(4.2.2.4):

u = ϕ1(x) + ψ1(t), v = ϕ2(x)ψ2(t). (4.2.2.5)

In this case, the system components u and v have different structures. We will refer

to such solutions as mixed-type solutions.
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On substituting (4.2.2.5) into system (4.2.2.4) and separating the variables, we

arrive at the following ODEs and delay ODEs:

a1ϕ
′′
1 + bϕ1 = A1,

ϕ′′
2 −A2ϕ2 = 0,

ψ′
1(t) = bψ1(t) +A1 + f

(
ψ1(t)− ψ1(t− τ), ψ2(t− τ)/ψ2(t)

)
,

ψ′
2(t) = A2a2ψ2(t) + ψ2(t)g

(
ψ1(t)− ψ1(t− τ), ψ2(t− τ)/ψ2(t)

)
,

(4.2.2.6)

where A1 and A2 are arbitrary constants. The first two equations of (4.2.2.6) are

independent and easy to integrate, since both are linear second-order ODEs with con-

stant coefficients. The last two equations of (4.2.2.6) make up a system of coupled

nonlinear delay ODEs. At b = 0, this system admits exact solutions of the form

ψ1(t) = βt+ C1, ψ2(t) = C2e
λt,

whereC1 andC2 are arbitrary constants, and the coefficients β and λ are determined

from the algebraic (transcendental) system

β = A1 + f(βτ, e−λτ ), λ = A2a2 + g(βτ, e−λτ ).

System 3. As the generating equations, we use two special cases of one reaction-

diffusion type equation with delay (3.4.2.48), which has generalized separable solu-

tions satisfying a functional constraint of the first kind. As a result, we arrive at the

quasilinear system of delay reaction-diffusion equations

ut = a1uxx + uf(u2 + ū2, v2 + v̄2),

vt = a2vxx + vg(u2 + ū2, v2 + v̄2),
(4.2.2.7)

which admits the generalized separable solutions

u = ϕ1(x) cos(λt) + ψ1(x) sin(λt), λ =
π

2τ
,

v = ϕ2(x) cos(λt) + ψ2(x) sin(λt).
(4.2.2.8)

The functions ϕ1,2(x) and ψ1,2(x) are described by the system of ODEs

a1ϕ
′′
1 + ϕ1f(ϕ

2
1 + ψ2

1 , ϕ
2
2 + ψ2

2)− λψ1 = 0,

a1ψ
′′
1 + ψ1f(ϕ

2
1 + ψ2

1 , ϕ
2
2 + ψ2

2) + λϕ1 = 0,

a2ϕ
′′
2 + ϕ2g(ϕ

2
1 + ψ2

1 , ϕ
2
2 + ψ2

2)− λψ2 = 0,

a2ψ
′′
2 + ψ2g(ϕ

2
1 + ψ2

1 , ϕ
2
2 + ψ2

2) + λϕ2 = 0.

(4.2.2.9)

Remark 4.8. The more general nonlinear system of delay PDEs

ut = a1uxx + uf1(u
2 + ū2, v2 + v̄2) + ūf2(u

2 + ū2, v2 + v̄2)

+ vf3(u
2 + ū2, v2 + v̄2) + v̄f4(u

2 + ū2, v2 + v̄2),

vt = a2vxx + ug1(u
2 + ū2, v2 + v̄2) + ūg2(u

2 + ū2, v2 + v̄2)

+ vg3(u
2 + ū2, v2 + v̄2) + v̄g4(u

2 + ū2, v2 + v̄2),

involving eight arbitrary functions of two arguments, fn(z1, z2) and gn(z1, z2), also admits
exact solutions of the form (4.2.2.8).
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Remark 4.9. The constant λ = π
2τ

in (4.2.2.8) and (4.2.2.9) can be replaced with

λn =
π(2n+ 1)

2τ
, n = 0, ±1, ±2, . . . .

System 4. As the generating equations, we take two different reaction-diffusion

type equations with constant delay: the first one coincides with the first equation

of (4.2.1.14) at b1 = b and the second is a special case of equation (3.4.2.48), up

to notation. Both these equations have generalized separable solutions that sat-

isfy functional constraints of the first kind. By employing the generating equations

method and by reasoning as previously, we arrive at the following system of reaction-

diffusion type equations with delay:

ut = a1uxx + bu+ f(u− ū, v2 + v̄2),

vt = a2vxx + vg(u− ū, v2 + v̄2).
(4.2.2.10)

It admits the mixed-type exact solutions

u = tξ(x) + η(x),

v = ϕ(x) cos(λt) + ψ(x) sin(λt), λ = π
2τ .

The associated system of ODEs for the functions ξ(x), η(x), ϕ(x), and ψ(x) is

omitted here.

4.2.3. Nonlinear Systems of Delay Reaction-Diffusion
Equations and Their Exact Solutions

System 1. We use one reaction-diffusion type equation with constant delay (3.4.3.2)

to get two generating equations. It admits a multiplicative separable solution satis-

fying a functional constraint of the second kind. Following the procedure described

in Subsection 4.2.1, we arrive at the nonlinear system of delay reaction-diffusion

equations

ut = a1(u
kux)x + uf(ū/u, v̄/v), ū = u(x, t− τ),

vt = a2(v
mvx)x + vg(ū/u, v̄/v), v̄ = v(x, t− τ).

(4.2.3.1)

System (4.2.3.1) inherits the solution structure of the generating equations. Con-

sequently, it admits the multiplicative separable solutions

u = ϕ1(x)ψ1(t), v = ϕ2(x)ψ2(t). (4.2.3.2)

Substituting (4.2.3.2) into (4.2.3.1) and rearranging, we obtain the following system

of two independent ODEs and two coupled delay ODEs for ϕ1=ϕ1(x), ϕ2 =ϕ2(x),
ψ1 = ψ1(t), and ψ2 = ψ2(t):

a1(ϕ
k
1ϕ

′
1)

′ = C1ϕ1,

a2(ϕ
m
2 ϕ

′
2)

′ = C2ϕ2,

ψ′
1 = C1ψ

k+1
1 + ψ1f

(
ψ̄1/ψ1, ψ̄2/ψ2

)
, ψ̄1 = ψ1(t− τ),

ψ′
2 = C2ψ

m+1
2 + ψ2g

(
ψ̄1/ψ1, ψ̄2/ψ2

)
, ψ̄2 = ψ2(t− τ),

(4.2.3.3)

where C1 and C2 are arbitrary constants.
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The general solutions of the first two autonomous ODEs in (4.2.3.3) can be

represented in implicit form. If k,m 6= 0 and k,m 6= −2, these equations have the

particular solutions

ϕ1 =

[
C1k

2x2

2a1(k + 2)

]1/k
, ϕ2 =

[
C2m

2x2

2a2(m+ 2)

]1/m
.

System 2. If we use one PDE with constant delay (3.4.3.6), which has a mul-

tiplicative separable solution satisfying a functional constraint of the second kind,

as two generating equations, then we will arrive at the nonlinear system of delay

reaction-diffusion equations

ut = a1(u
kux)x + b1u

k+1 + uf(ū/u, v̄/v), ū = u(x, t− τ),

vt = a2(v
mvx)x + b2v

m+1 + vg(ū/u, v̄/v), v̄ = v(x, t − τ),
(4.2.3.4)

which is more general than system (4.2.3.1).

This system admits a multiplicative separable solution of the form (4.2.3.2),

where the functions ϕ1 = ϕ1(x) and ϕ2 = ϕ2(x) are described by the independent

autonomous ODEs:
a1(ϕ

k
1ϕ

′
1)

′ + b1ϕ
k+1
1 = C1ϕ1,

a2(ϕ
m
2 ϕ

′
2)

′ + b2ϕ
m+1
2 = C2ϕ2.

(4.2.3.5)

The functionsψ1 =ψ1(t) and ψ2 =ψ2(t) satisfy the coupled delay ODEs coinciding

with the last two equations of system (4.2.3.3).

Let us focus on a few special cases where the system of delay reaction-diffusion

equations (4.2.3.4) has simple exact solutions expressible in terms of elementary

functions; all these cases correspond to C1 = C2 = 0 in (4.2.3.5).

1◦. For b1(k + 1) > 0 and b2(m+ 1) > 0, the system of PDEs (4.2.3.4) has the

multiplicative separable solution

u= [A1 cos(β1x)+A2 sin(β1x)]
1/(k+1)ψ1(t), β1=

√
b1(k+1)/a1,

v= [B1 cos(β2x)+B2 sin(β2x)]
1/(m+1)ψ2(t), β2=

√
b2(m+1)/a2,

(4.2.3.6)

whereA1, A2, B1, andB2 are arbitrary constants, and the functions ψ1 = ψ1(t) and

ψ2 = ψ2(t) are described by the system of the last two delay ODEs in (4.2.3.3) with

C1 = C2 = 0. This system has exponential particular solutions

ψ1(t) = D1 exp(λ1t), ψ2(t) = D2 exp(λ2t), (4.2.3.7)

whereD1 andD2 are arbitrary constants, and the constants λ1 and λ2 are determined

by the algebraic (transcendental) system of equations

λ1 − f(e−λ1τ , e−λ2τ ) = 0, λ2 − g(e−λ1τ , e−λ2τ ) = 0. (4.2.3.8)

2◦. For b1(k + 1) < 0 and b2(m+ 1) < 0, the system of PDEs (4.2.3.4) has the

multiplicative separable solution

u=[A1exp(−β1x)+A2exp(β1x)]
1

k+1ψ1(t), β1=
√
−b1(k+1)/a1,

v=[B1 exp(−β2x)+B2exp(β2x)]
1

m+1ψ2(t), β2=
√
−b2(m+1)/a2,

(4.2.3.9)
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whereA1, A2, B1, andB2 are arbitrary constants, and the functions ψ1 = ψ1(t) and

ψ2 = ψ2(t) are described by the system of the last two delay ODEs of (4.2.3.3) with

C1 = C2 = 0. This system has exponential particular solutions of the form (4.2.3.7),

where the constants λ1 and λ2 are determined by the algebraic (transcendental)

system of equations (4.2.3.8).

3◦. The system of PDEs (4.2.3.4) also admits two multiplicative separable so-

lutions of mixed type. Specifically, if b1(k + 1) > 0 and b2(m + 1) < 0, system

(4.2.3.4) has an exact solution determined by the first formula of (4.2.3.6) and second

formula of (4.2.3.9). The functions ψ1 = ψ1(t) and ψ2 = ψ2(t) appearing in this

mixed solution are described, as before, by the system consisting of the last two

delay ODEs of (4.2.3.3) with C1 = C2 = 0. This system has exponential particular

solutions of the form (4.2.3.7), in which the constants λ1 and λ2 are determined from

the algebraic (transcendental) system of equations (4.2.3.8).

For b1(k + 1) < 0 and b2(m + 1) > 0, system (4.2.3.4) has an exact solution

defined by the second formula of (4.2.3.6) and first formula of (4.2.3.9).

System 3. To obtain the generating equations, we use one partial differential

equation with constant delay (3.4.3.12), which admits a functional separable solution

satisfying a functional constraint of the second kind. As a result, we arrive at the

nonlinear system of delay reaction-diffusion equations

ut = a1(u
kux)x + b1 + u−kf(uk+1 − ūk+1, vm+1 − v̄m+1),

vt = a2(v
mvx)x + b2 + v−mg(uk+1 − ūk+1, vm+1 − v̄m+1).

(4.2.3.10)

System (4.2.3.10) inherits the form of solutions of the generating equations and

for k,m 6= −1, it has functional separable solutions of the form

u = [ϕ1(x) + ψ1(t)]
1/(k+1), v = [ϕ2(x) + ψ2(t)]

1/(m+1). (4.2.3.11)

Substituting (4.2.3.11) into PDEs (4.2.3.10) gives the following system of two inde-

pendent linear ODEs, for ϕ1 = ϕ1(x) and ϕ2 = ϕ2(x), and two coupled nonlinear

delay ODEs, for ψ1 = ψ1(t) and ψ2 = ψ2(t):

a1ϕ
′′
1 + b1(k + 1) = 0,

a2ϕ
′′
2 + b2(m+ 1) = 0,

ψ′
1 = (k + 1)f

(
ψ1 − ψ̄1, ψ2 − ψ̄2

)
, ψ̄1 = ψ1(t− τ),

ψ′
2 = (m+ 1)g

(
ψ1 − ψ̄1, ψ2 − ψ̄2

)
, ψ̄2 = ψ2(t− τ).

(4.2.3.12)

The general solutions of the first two ODEs (4.2.3.12) are expressed as

ϕ1 = − b1(k + 1)

2a1
x2 + C1x+ C2, ϕ2 = − b2(m+ 1)

2a2
x2 + C3x+ C4,

where C1, . . . , C4 are arbitrary constants. The system of the last two coupled delay

ODEs (4.2.3.12) has the simple particular solution

ψ1 = A1t, ψ2 = A2t,
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where the constants A1 and A2 are determined from the algebraic (transcendental)

system

A1 = (k + 1)f(A1τ, A2τ), A2 = (m+ 1)g(A1τ, A2τ).

System 4. To get the generating equations, we use one reaction-diffusion type

equation with constant delay (3.4.3.21). It admits an additive separable solution sat-

isfying a functional constraint of the second kind. Following the procedure described

in Subsection 4.2.1, we arrive at the nonlinear system of delay reaction-diffusion

equations

ut = a1(e
λuux)x + f(u− ū, v − v̄), ū = u(x, t− τ),

vt = a2(e
βvvx)x + g(u− ū, v − v̄), v̄ = v(x, t− τ).

(4.2.3.13)

Since the system of PDEs (4.2.3.13) inherits the form of solutions of the gener-

ating equations, it admits the additive separable solutions

u = ϕ1(x) + ψ1(t), v = ϕ2(x) + ψ2(t), (4.2.3.14)

where the functions ϕ1 = ϕ1(x), ϕ2 = ϕ2(x), ψ1 = ψ1(t), ψ2 = ψ2(t) are described

by the system of two independent ODEs and two coupled nonlinear delay ODEs

(eλϕ1ϕ′
1)

′ = C1,

(eβϕ2ϕ′
2)

′ = C2,

ψ′
1 = a1C1e

λψ1 + f
(
ψ1 − ψ̄1, ψ2 − ψ̄2

)
, ψ̄1 = ψ1(t− τ),

ψ′
2 = a2C2e

βψ2 + g
(
ψ1 − ψ̄1, ψ2 − ψ̄2

)
, ψ̄2 = ψ2(t− τ),

(4.2.3.15)

where C1 and C2 are arbitrary constants.

The general solutions of the first two ODEs of (4.2.3.15) are given by

ϕ1 =
1

λ
ln
( 1

2
C1λx

2 +A1x+B1

)
, ϕ2 =

1

β
ln
( 1

2
C2βx

2 +A2x+B2

)
,

where A1, B1, A2, B2 are arbitrary constants.

System 5. As the generating equations, we take two different reaction-diffusion

type equations with constant delay (3.4.3.2) and (3.4.3.21). The former one has a

multiplicative separable solution and the latter one has an additive separable solution;

both solutions satisfy functional constraints of the second kind. Employing the

generating equations method and reasoning as previously, we arrive at the following

system of reaction-diffusion type equations with delay:

ut = a1(u
kux)x + uf(ū/u, v − v̄), ū = u(x, t− τ),

vt = a2(e
λvvx)x + g(ū/u, v − v̄), v̄ = v(x, t − τ),

(4.2.3.16)

where f(z1, z2) and g(z1, z2) are arbitrary functions of two arguments.

Since the system of delay PDEs (4.2.3.16) inherits the form of solutions of the

generating equations, it admits exact solutions of the form

u = ϕ1(x)ψ1(t), v = ϕ2(x) + ψ2(t). (4.2.3.17)
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The functions ϕ1 = ϕ1(x), ϕ2 = ϕ2(x), ψ1 = ψ1(t), and ψ2 = ψ2(t) are described

by the system of two independent ODEs and two coupled delay ODEs

(ϕk1ϕ
′
1)

′ = C1ϕ1,

(eλϕ2ϕ′
2)

′ = C2,

ψ′
1 = a1C1ψ

k+1
1 + ψ1f

(
ψ̄1/ψ1, ψ2 − ψ̄2

)
, ψ̄1 = ψ1(t− τ),

ψ′
2 = a2C2e

λψ2 + g
(
ψ̄1/ψ1, ψ2 − ψ̄2

)
, ψ̄2 = ψ2(t− τ),

where C1 and C2 are arbitrary constants.

System 6. To get two generating equations, we use one reaction-diffusion type

equation with constant delay (3.4.3.30). It admits a functional separable solution

satisfying a functional constraint of the second kind. As a result, we arrive at the

nonlinear system of delay reaction-diffusion equations

ut = a1(e
λ1uux)x + b1 + e−λ1uf(eλ1u − eλ1ū, eλ2v − eλ2v̄),

vt = a2(e
λ2vvx)x + b2 + e−λ2vg(eλ1u − eλ1ū, eλ2v − eλ2v̄).

(4.2.3.18)

System (4.2.3.18) inherits the form of solutions of the generating equations.

Therefore, it admits functional separable solutions of the form

u =
1

λ1
ln
[
ϕ1(x) + ψ1(t)

]
, ϕ1(x) = − b1λ1

2a1
x2 + C1x+ C2,

v =
1

λ2
ln
[
ϕ2(x) + ψ2(t)

]
, ϕ2(x) = − b2λ2

2a2
x2 + C3x+ C4,

where C1, . . . , C4 are arbitrary constants, and the functions ψ1(t) and ψ2(t) are

described by the nonlinear system of delay ODEs

ψ′
1(t) = λ1f

(
ψ1(t)− ψ1(t− τ), ψ2(t)− ψ2(t− τ)

)
,

ψ′
2(t) = λ2g

(
ψ1(t)− ψ1(t− τ), ψ2(t)− ψ2(t− τ)

)
.

This system has simple particular solutions ψ1(t) =A1t and ψ2(t) =A2t, where the

coefficientsA1 andA2 are determined from the algebraic (transcendental) system of

equations

A1 = λ1f(A1τ, A2τ), A2 = λ2g(A1τ, A2τ).

Remark 4.10. By using the equations and their exact solutions listed in Section 3.4,
one can obtain other systems of nonlinear reaction-diffusion type equations that admit exact
solutions (see also [436]).

4.2.4. Some Generalizations

Below we describe a few generalizations associated with the method of generating

equations.
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Systems with two constant delay times. The common constant delay time τ
in a system of delay PDEs obtained by the method of generating equations can be

replaced with two different delay times as follows:

ū = u(x, t− τ) =⇒ ū = u(x, t− τ1),

v̄ = v(x, t− τ) =⇒ v̄ = v(x, t− τ2),
(4.2.4.1)

where τ1 > 0 and τ2 > 0 are arbitrary constants. Then the form of the exact solution

(4.2.1.3) will remain unchanged. What will change is the delay time in the delay

ODEs for the determining functions ψ1n(t) and ψ2n(t):

ψ1n(t− τ) =⇒ ψ1n(t− τ1),

ψ2n(t− τ) =⇒ ψ2n(t− τ2).
(4.2.4.2)

◮ Example 4.12. In the system of PDEs (4.2.3.1), we will substitute the con-

stant delay time τ with different delay times by rule (4.2.4.1). As a result, we get the

more complicated system

ut = a1(u
kux)x + uf(ū/u, v̄/v), ū = u(x, t− τ1),

vt = a2(v
mvx)x + vg(ū/u, v̄/v), v̄ = v(x, t− τ2).

(4.2.4.3)

The form of the exact solution of system (4.2.4.3), just as that of system (4.2.3.1),

is given by (4.2.3.2). Eventually, we arrive at the determining system of equations

consisting of the first two ODEs in (4.2.3.3), for ϕ1(x) and ϕ2(x), and the system of

two ODEs for ψ1(t) and ψ2(t) with different delays

ψ′
1 = C1ψ

k+1
1 + ψ1f

(
ψ̄1/ψ1, ψ̄2/ψ2

)
, ψ̄1 = ψ1(t− τ1),

ψ′
2 = C2ψ

m+1
2 + ψ2g

(
ψ̄1/ψ1, ψ̄2/ψ2

)
, ψ̄2 = ψ2(t− τ2).

(4.2.4.4)

System (4.2.4.4) is obtained from the last two delay ODEs of (4.2.3.3) by rule

(4.2.4.2). ◭

Systems with variable delay times. Suppose that both determining equations

have exact solutions satisfying the functional constraints of the second kind (4.2.1.4),

where q1(t) 6= const and q2(t) 6= const. Then the common constant delay time τ in

the resulting system of delay PDEs can be replaced with two different delay times

of general form by rule (4.2.4.1), where τ1 = τ1(t) and τ2 = τ2(t) are arbitrary

positive continuous functions. The form of the exact solution (4.2.1.3) will remain

unchanged, while the delay terms in the delay ODEs for the determining function

ψ1n(t) and ψ2n(t) will change by rule (4.2.4.2), where τ1 = τ1(t) and τ2 = τ2(t).

◮ Example 4.13. Exact solutions to the generating equations used to derive

system (4.2.3.1) satisfy functional constraints of the second kind. Therefore, the

constant delay time τ in (4.2.3.1) can be replaced with two different delay times of

general form by rule (4.2.4.1). As a result, we arrive at system (4.2.4.3) in which

one should set τ1 = τ1(t) and τ2 = τ2(t). In this case, the determining system of

equations consists of the first two ODEs of (4.2.3.3) and system of two delay ODEs

(4.2.4.4) where τ1 = τ1(t) and τ2 = τ2(t). ◭
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Systems with any number of space variables. The method of generating

equations can also be extended to systems of equations with any number of space

variables. We will illustrate this with a specific example.

◮ Example 4.14. We use one multi-dimensional reaction-diffusion type equa-

tion with constant delay (3.4.3.86) with b= k=0 to obtain two generating equations.

It admits a multiplicative separable solution satisfying a functional constraint of the

second kind. As a result, we arrive at the nonlinear system of delay reaction-diffusion

equations [436]:

ut = a1∆u+ uf(ū/u, v̄/v),

vt = a2∆v + vg(ū/u, v̄/v),
(4.2.4.5)

which is a multi-dimensional generalization of system (4.2.1.9). We have used the

following notations:

u = u(x, t), ū = u(x, t− τ), v = v(x, t), v̄ = v(x, t− τ),

x = (x1, . . . , xn), ∆ ≡
n∑

m=1

∂2

∂x2m
.

System (4.2.4.5) admits the multiplicative separable solution

u = ϕ1(x)ψ1(t), v = ϕ2(x)ψ2(t), (4.2.4.6)

which generalizes solution (4.2.1.13) to the one-dimensional system (4.2.1.9).

Substituting (4.2.4.6) into system (4.2.4.5) and separating the variables, we ob-

tain two independent linear equations (Helmholtz equations) for ϕ1(x) and ϕ2(x),

∆ϕ1 = λ1ϕ1, ∆ϕ2 = λ2ϕ2,

where λ1 and λ2 are arbitrary constants, and a system of coupled nonlinear ODEs

for ψ1(t) and ψ2(t):

ψ′
1(t) = a1λ1ψ1(t) + ψ1(t)f

(
ψ1(t− τ)/ψ1(t), ψ2(t− τ)/ψ2(t)

)
,

ψ′
2(t) = a2λ2ψ2(t) + ψ2(t)g

(
ψ1(t− τ)/ψ1(t), ψ2(t− τ)/ψ2(t)

)
.

Notably, this system admits exponential particular solutions:

ψ1(t) = C1 exp(β1t),

ψ2(t) = C2 exp(β2t),

where C1 and C2 are arbitrary constants, and the constants β1 and β2 are described

by an algebraic (transcendental) system of equations. ◭

Systems with any number of equations and systems of higher-order equa-

tions. The method of generating equations extends to systems of hyperbolic equa-

tions, systems of higher-order equations, and systems with any number of equations.

The generalizations are obvious and so are omitted. For examples of constructing

systems of hyperbolic second-order and higher-order PDEs, see the article [436].
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4.3. Reductions and Exact Solutions of Lotka–

Volterra Type Systems and More Complex

Systems of PDEs with Several Delays

4.3.1. Reaction-Diffusion Systems with Several Delays.
The Lotka–Volterra System

Preliminary remarks. Subsections 4.3.1–4.3.3 deal with a nonlinear system con-

sisting of two reaction-diffusion equations of a reasonably general form that involve

three arbitrary functions and several delays. It includes, as an important special

case, a multiparameter Lotka–Volterra diffusion system with several delays. These

nonlinear systems are shown to reduce in different ways to simpler systems: (i) a

system of stationary equations, (ii) a system of delay ODEs, (iii) a system of sta-

tionary equations with a linear Schrödinger equation, and (iv) a system of delay

ODEs with a linear heat equation. A number of exact solutions to the nonlinear

Lotka–Volterra system with several arbitrary delays are obtained. All of them are

generalized separable or incomplete separable solutions with several free parameters.

An exact solution involving infinitely many free parameters is also described.

The reaction-diffusion system of PDEs concerned. The Lotka–Volterra sys-

tem. Following [417], we will look at the nonlinear reaction-diffusion system of

partial differential equations with several constant delays

ut = a1∆u+ b1u+ c1uf(k1ū1 − k2v̄2) + g(k1ū1 − k2v̄2),

vt = a2∆v + b2v + c2vf(k1ū3 − k2v̄4) + h(k1ū3 − k2v̄4),
(4.3.1.1)

where u = u(x, t) and v = v(x, t) are the unknown functions, t is time, x =
(x1, . . . , xn), ūi = u(x, t − τi) (i = 1, 3), v̄j = v(x, t − τj) (j = 2, 4), τi ≥ 0 and

τj ≥ 0 are delay times, f = f(z) is a monotonic arbitrary function such that f(0)= 0,

g = g(z1) and h = h(z2) are arbitrary functions; a1 > 0, a2 > 0, b1, b2, k1 6= 0,

and k2 6= 0 are free parameters; c1 6= 0 and c2 6= 0 are some constant to be defined

below; and ∆ =
∑n

k=1
∂2

∂x2
k

is the n-dimensional Laplace operator.

◮ Example 4.15. In the case of a single space variable with f(z1,2) = z1,2 and

g(z1) = h(z2) = 0, the delay reaction-diffusion system (4.3.1.1) becomes

ut = a1uxx + u[b1 + c1(k1ū1 − k2v̄2)],

vt = a2vxx + v[b2 + c2(k1ū3 − k2v̄4)].
(4.3.1.2)

This is a special case of the Lotka–Volterra diffusive system of delay PDEs [224],

which describes the interaction between two species. The studies [95, 151] investi-

gated the stability of solutions of a simpler system with two delays (with τ1= τ4=0).

The articles [98, 99, 101] (see also [422]) dealt with symmetries and exact so-

lutions to the nonlinear system (4.3.1.2) and related Lotka–Volterra type systems in

the case of no delays, τ1 = τ2 = τ3 = τ4 = 0. ◭
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The case of a1 = a2 and b1 = b2 = 0 with no delays, τ1 = τ2 = τ3 = τ4 = 0,

some reductions and exact solutions to system (4.3.1.1) with one space variable are

described in [422].

The main idea used below to find exact solutions of system (4.3.1.1) is that the

form of the unknowns u and v is chosen so that the arguments of the functions

f(. . . ), g(. . . ), and h(. . . ) only depend on x or t alone.

Simplest solutions (stationary points). The constants (stationary points)

u = u◦ = const, v = v◦ = const (4.3.1.3)

are the simplest solutions of system (4.3.1.1). These are determined from the non-

linear algebraic system

u◦[b1 + c1f(k1u
◦ − k2v

◦)] + g(k1u
◦ − k2v

◦) = 0,

v◦[b2 + c2f(k1u
◦ − k2v

◦)] + h(k1u
◦ − k2v

◦) = 0.
(4.3.1.4)

System (4.3.1.4) normally has several roots. In particular, if g = h = 0, it splits into

four independent subsystems whose roots possess the properties

(a) u◦ = v◦ = 0; (b) u◦ 6= 0, v◦ = 0; (c) u◦ = 0, v◦ 6= 0;

(d) u◦ = (k2/k1)v
◦ + const, v◦ is any if b1/c1 = b2/c2.

(4.3.1.5)

◮ Example 4.16. For the Lotka–Volterra type system (4.3.1.1) with f(z) = z
and g(z) = h(z) = 0, the associated system (4.3.1.4) has the following solutions:

(a) u◦ = v◦ = 0; (b) u◦ = − b1
c1k1

, v◦ = 0; (c) u◦ = 0, v◦ =
b2
c2k2

;

(d) u◦ =
k2
k1
v◦ − b1

c1k1
, v◦ is any, If

b1
c1

=
b2
c2
.

(4.3.1.6)

In what follows, the stationary points (4.3.1.3) will be used to construct more

complex, nonstationary spatially nonhomogeneous solutions to system (4.3.1.1). ◭

4.3.2. Reductions and Exact Solutions of Systems of PDEs
with Different Diffusion Coefficients (a1 6= a2)

Reduction of the system of PDEs with three arbitrary delays to the Helmholtz

equation. Suppose that the four delay times in system (4.3.1.1) are linked by a single

relation

τ2 − τ1 = τ4 − τ3, (4.3.2.1)

implying that any three of them can be set arbitrarily. Notably, relation (4.3.2.1)

holds, for example, in the following three special cases:

τ2 = τ1, τ4 = τ3, τ1, τ3 are arbitrary;

τ3 = τ1, τ4 = τ2, τ1, τ2 are arbitrary;

τm = mτ, m = 1, 2, 3, 4, τ is arbitrary.
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We seek a generalized separable solution of the nonlinear delay system (4.3.1.1)

in the form

u = k2e
λ(t+τ1)θ(x) + u◦, v = k1e

λ(t+τ2)θ(x) + v◦, (4.3.2.2)

where u◦ and v◦ are the stationary points (4.3.1.3) of system (4.3.1.1). We impose

an additional restriction (linear differential constraint) on the function θ = θ(x):

∆θ = µθ, (4.3.2.3)

which is the Helmholtz equation. The constants λ and µ involved in (4.3.2.2) and

(4.3.2.3) are found in a subsequent analysis, and the function θ is determined from

equation (4.3.2.3). For exact solutions to this equation with several space variables,

see, for example, [404].

◮ Example 4.17. In the one-dimensional case, we have ∆θ = θ′′xx, and the

general solution to the linear ODE (4.3.2.3) with µ 6= 0 is written as

θ(x) =

{
C1 cos(

√
|µ|x) + C2 sin(

√
|µ|x) if µ < 0,

C1 exp(−
√
µx) + C2 exp(

√
µx) if µ > 0,

(4.3.2.4)

where C1 and C2 are arbitrary constants. ◭

The functions (4.3.2.2) are chosen so that the arguments of the functions f , g,

and h, appearing in system (4.3.1.1), become constant. Indeed, considering (4.3.2.1),

we get

k1ū1 − k2v̄2 = k1u
◦ − k2v

◦ = const,

k1ū3 − k2v̄4 = k1u
◦ − k2v

◦ = const.
(4.3.2.5)

We substitute (4.3.2.2) into (4.3.1.1) and use relations (4.3.1.4) and (4.3.2.5)

as well as equation (4.3.2.3). After simple rearrangements, we obtain the linear

algebraic system

λ = a1µ+ b1 + c1f(k1u
◦ − k2v

◦),

λ = a2µ+ b2 + c2f(k1u
◦ − k2v

◦)
(4.3.2.6)

that serves to determine the parameters λ and µ. If a1 6= a2, system (4.3.2.6) has the

solution

λ =
a2b1 − a1b2 + (a2c1 − a1c2)f

◦

a2 − a1
, µ =

b1 − b2 + (c1 − c2)f
◦

a2 − a1
, (4.3.2.7)

where f◦ = f(k1u
◦ − k2v

◦), and u◦ and v◦ are stationary points satisfying the

algebraic system (4.3.1.4).

◮ Example 4.18. In the case g = h = 0, the coefficients (4.3.2.7) associated

with the first three points (4.3.1.5) are independent of the form of the kinetic func-
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tion f and can be expressed as

(a) λ =
a2b1 − a1b2
a2 − a1

, µ =
b1 − b2
a2 − a1

;

(b) λ =
a1(b1c2 − b2c1)

c1(a2 − a1)
, µ =

λ

a1
=
b1c2 − b2c1
c1(a2 − a1)

;

(c) λ =
a2(b1c2 − b2c1)

c2(a2 − a1)
, µ =

λ

a2
=
b1c2 − b2c1
c2(a2 − a1)

.

(4.3.2.8)

In case (d), the parameters degenerate, λ = µ = 0; the associated solutions are of no

interest.

Formulas (4.3.2.2), (4.3.2.4), and (4.3.2.8) and the first three stationary points

(4.3.1.5) define six nondegenerate exact solutions (three for µ>0 and three for µ<0)

to the nonlinear system (4.3.1.1) with g = h = 0, a1 6= a2, and four constant delays

satisfying condition (4.3.2.1). For exact solutions to the one-dimensional system

(4.3.1.1) associated with the stationary point (b) in (4.3.1.5), see [417]; these are also

given below.

1◦. Solution with µ = b1c2−b2c1
c1(a2−a1) < 0:

u = k2e
a1µ(t+τ1)

[
C1 cos

(√
|µ|x

)
+ C2 sin

(√
|µ|x

)]
+ u◦,

v = k1e
a1µ(t+τ2)

[
C1 cos

(√
|µ|x

)
+ C2 sin

(√
|µ|x

)]
,

(4.3.2.9)

where C1 and C2 are arbitrary constants.

2◦. Solution with µ = b1c2−b2c1
c1(a2−a1) > 0:

u = k2e
a1µ(t+τ1)

[
C1 exp

(
−√

µx
)
+ C2 exp

(√
µx

)]
+ u◦,

v = k1e
a1µ(t+τ2)

[
C1 exp

(
−√

µx
)
+ C2 exp

(√
µx

)]
.

(4.3.2.10)

Notably, for the Lotka–Volterra type system (4.3.1.2) defined by the functions

f(z) = z and g = h = 0, one should set u◦ = −b1/(c1k1) in formulas (4.3.2.9) and

(4.3.2.10). ◭

Remark 4.11. The more general, than (4.3.1.1), reaction-diffusion system of PDEs with
four delays

ut = a1∆u+ b1u+ uf1(k1ū1 − k2v̄2) + g(k1ū1 − k2v̄2),

vt = a2∆v + b2v + vf2(k1ū3 − k2v̄4) + h(k1ū3 − k2v̄4),
(4.3.2.11)

where f1 = f1(z1) and f2 = f2(z2) are arbitrary functions such that f1(0) = f2(0) = 0, can
be treated likewise. The other notations are the same as in system (4.3.1.1).

Suppose that the four delay times in system (4.3.2.11) are constrained by one relation
(4.3.2.1). As before, we look for exact solutions to system (4.3.2.11) in the form (4.3.2.2),
where θ = θ(x) satisfies the Helmholtz equation (4.3.2.3). It can be shown that if a1 6= a2, the
parameters λ and µ appearing in solution (4.3.2.2) and the linear PDE (4.3.2.3) are expressed
as

λ =
a2b1 − a1b2 + a2f

◦
1 − a1f

◦
2

a2 − a1
, µ =

b1 − b2 + f◦
1 − f◦

2

a2 − a1
, (4.3.2.12)
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where f◦
1 = f1(k1u

◦−k2v◦) and f◦
2 = f2(k1u

◦−k2v◦), and u◦ and v◦ are stationary points
satisfying the algebraic system

u◦[b1 + f1(k1u
◦ − k2v

◦)] + g(k1u
◦ − k2v

◦) = 0,

v◦[b2 + f2(k1u
◦ − k2v

◦)] + h(k1u
◦ − k2v

◦) = 0.

Two reductions of the system of PDEs with three arbitrary delays to a sta-

tionary system. We will assume that the four delays in system (4.3.1.1) are con-

strained by one relation (4.3.2.1).

1◦. Generalized separable solutions exponential in t. We look for generalized

separable solutions to system (4.3.1.1) in the form [417]:

u = k2e
λ(t+τ1)θ(x) + ϕ(x), v = k1e

λ(t+τ2)θ(x) + ψ(x), (4.3.2.13)

where the functions θ = θ(x), ϕ = ϕ(x), and ψ = ψ(x) and parameter λ are to be

determined in the subsequent analysis.

The functions (4.3.2.13) are chosen so that the arguments of the functions f , g,

and h in system (4.3.1.1) are only dependent on x. Indeed, considering relation

(4.3.2.1), we get
k1ū1 − k2v̄2 = k1ϕ(x)− k2ψ(x),

k1ū3 − k2v̄4 = k1ϕ(x)− k2ψ(x).
(4.3.2.14)

Substituting (4.3.2.13) into (4.3.1.1) and taking into account (4.3.2.14), we ob-

tain

k2e
λ(t+τ1)

[
a1∆θ+(b1 −λ+ c1f̂)θ] + a1∆ϕ+(b1+ c1f̂)ϕ+ ĝ = 0,

k1e
λ(t+τ2)

[
a2∆θ+(b2 −λ+ c2f̂)θ] + a2∆ψ+(b2+ c2f̂)ψ+ ĥ= 0,

(4.3.2.15)

where the short notations f̂=f(k1ϕ−k2ψ), ĝ=g(k1ϕ−k2ψ), and ĥ=h(k1ϕ−k2ψ)
have been introduced.

Relations (4.3.2.15) can be satisfied by setting

a1∆ϕ+ (b1 + c1f̂)ϕ+ ĝ = 0,

a2∆ψ + (b2 + c2f̂)ψ + ĥ = 0,

a1∆θ + (b1 − λ+ c1f̂)θ = 0,

a2∆θ + (b2 − λ+ c2f̂)θ = 0.

(4.3.2.16)

The first two equations in (4.3.2.16) form a closed system for ϕ and ψ, and the

last two equations in (4.3.2.16) form an overdetermined system for one function θ.

Requiring that the last two equations of system (4.3.2.16) must coincide, we find the

parameter λ and other constants:

λ =
a2b1 − a1b2
a2 − a1

, c1 = a1, c2 = a2 (a1 6= a2). (4.3.2.17)

In selecting c1 and c2, it has been taken into account that the function f is defined up

to a constant multiplier.
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Substituting (4.3.2.17) into (4.3.2.16) gives the system of stationary PDEs

a1∆ϕ+ (b1 + a1f̂)ϕ+ ĝ = 0,

a2∆ψ + (b2 + a2f̂)ψ + ĥ = 0,

∆θ +
( b2 − b1
a2 − a1

+ f̂
)
θ = 0,

(4.3.2.18)

where f̂ = f(k1ϕ− k2ψ), ĝ = g(k1ϕ− k2ψ), and ĥ = h(k1ϕ− k2ψ).

Remark 4.12. The determining system of stationary PDEs (4.3.2.18) is independent of the
delays. Therefore, solutions of the form (4.3.2.13) to the nonstationary systems (4.3.1.1) and
(4.3.1.2) with no delays (τ1 = τ2 = τ3 = τ4 =0) generate exact solutions to more complicated
systems (4.3.1.1) and (4.3.1.2) with several delays satisfying condition (4.3.2.1).

If ĝ=0 (or ĥ=0), system (4.3.2.18) significantly simplifies so that the functionϕ
(orψ) can be set equal to zero. In these cases, there are only two equations remaining.

◮ Example 4.19. For the one-dimensional delay Lotka–Volterra type system

(4.3.1.2), one should set f(z1,2) = z1,2 and g(z1) = h(z2) = 0 in the respective

truncated system (4.3.2.18). If ψ = 0, the system reduces to two ODEs

ϕ′′
xx + (b+ kϕ)ϕ = 0, (4.3.2.19)

θ′′xx + (β + kϕ)θ = 0, (4.3.2.20)

in which the notations b= b1/a1, k= k1, and β = (b2−b1)/(a2−a1) are employed.

In what follows, we assume that ϕ(x) 6≡ const (the special case ϕ= u◦ = const was

discussed in Example 4.18).

The linear transformation

ϕ = ϕ1 −
b

k
, θ = θ1 (transformation G1)

converts the system of ODEs (4.3.2.19)–(4.3.2.20) to a similar system with different

determining parameters

(ϕ1)
′′
xx + (−b+ kϕ1)ϕ1 = 0,

(θ1)
′′
xx + (β − b+ kϕ1)θ1 = 0.

The linear transformation

ϕ = −ϕ2, θ = θ2, z = ix, i2 = −1 (transformation G2),

also converts system (4.3.2.19)–(4.3.2.20) to a similar system with different deter-

mining parameters

(ϕ2)
′′
zz + (−b+ kϕ2)ϕ2 = 0,

(θ2)
′′
zz + (−β + kϕ2)θ2 = 0.

Let (b, β) denote system (4.3.2.19)–(4.3.2.20). Then the transformations G1 and

G2 and their composition G1 ◦ G2 relate the system to three other similar systems,

which can be schematically displayed as

(b, β)
G 1−−→ (−b, β − b); (b, β)

G 2−−→ (−b,−β); (b, β)
G 1◦G 2−−−−−→ (b, b− β).
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These transformations allow one to construct exact solutions to system (4.3.2.19)–

(4.3.2.20). The following statement is true.

Proposition. Let the functions

ϕ = Φ(x, b, k), θ = Θ(x, b, β, k)

represent an exact solution to the system of ODEs (4.3.2.19)–(4.3.2.20). Then the

three pairs of formulas specified in the last three rows of Table 4.1 define exact

solutions to this system with other values of the determining parameters b and β
(k remains unchanged).

Table 4.1. Exact solutions to related systems of ODEs (4.3.2.19)–(4.3.2.20) that can be

expressed through the solution to the original system (b, β).

System of ODEs Function ϕ Function θ

(b, β), original system Φ(x, b, k) Θ(x, b, β, k)

(−b, β − b) Φ(x, b, k) + bk−1 Θ(x, b, β, k)

(−b,−β) −Φ(ix, b, k) Θ(ix, b, β, k)

(b, b− β) −Φ(ix, b, k)− bk−1 Θ(ix, b, β, k)

The general solution of the autonomous ODE (4.3.2.19) can be represented in

the implicit form

C1 ± x =

∫
dϕ√

C2 − bϕ2 − 2
3kϕ

3
, (4.3.2.21)

where C1 and C2 are arbitrary constants. If C2 = 0 and b = 0, C2 = 0 and b 6= 0, or

C2=
1
3 b

3/k2 and b 6=0, the integral in (4.3.2.21) is computable in terms of elementary

functions, and the function ϕ can be expressed in explicit form. In general, the

integral on the right-hand side of (4.3.2.21) is not expressible in terms of elementary

functions.

If for someϕ(x), a nontrivial particular solution θ0=θ0(x) of the linear homoge-

neous equation (4.3.2.20) is known, the general solution of the equation is expressed

as [423]:

θ = θ0

(
C3 + C4

∫
dx

θ20

)
, (4.3.2.22)

where C3 and C4 are arbitrary constants.

Remark 4.13. For β=b, equation (4.3.2.20) with θ=ϕ coincides with equation (4.3.2.19).
It follows that in this case, the function θ0 = ϕ is a particular solution to equation (4.3.2.20).
Substituting θ0=ϕ into (4.3.2.22) yields the general solution of equation (4.3.2.20) with β=b.

Table 4.2 summarizes exact elementary-function solutions to the system of ODEs

(4.3.2.19)–(4.3.2.20) for various values of the determining parameters b and β. These

solutions were obtained in [431] using formulas (4.3.2.21) and (4.3.2.22), transfor-

mations G1, G2, and G1 ◦G2, and the handbooks [421, 423].
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232 4. ANALYTICAL METHODS AND EXACT SOLUTIONS TO DELAY PDES. PART II

Notably, the Bessel functions and modified Bessel functions of the fractional

order ν = 5/2, which define the function θ in Table 4.2 (see rows 2 and 3), are

expressible in terms of elementary functions by the formulas [423]:

J5/2(ζ) =

√
2

π

3 sin ζ − 3 ζ cos ζ − ζ2 sin ζ

ζ5/2
,

Y5/2(ζ) = −
√

2

π

3 cos ζ + 3 ζ sin ζ − ζ2 cos ζ

ζ5/2
,

I5/2(ζ) =

√
2

π

3 sinh ζ − 3 ζ cosh ζ + ζ2 sinh ζ

ζ5/2
,

K5/2(ζ) =

√
π

2

3 + 3 ζ + ζ2

eζ ζ5/2
.

◭

Remark 4.14. The value β= b in Table 4.2 corresponds to stationary solutions of the form
(4.3.2.13) with ψ =0 to the system of PDEs (4.3.1.2) with parameters (4.3.2.17) where λ=0.

2◦. Generalized separable solutions linear in t. System (4.3.1.1) with four de-

lays satisfying one relation (4.3.2.1) also admit exact generalized separable solutions

of the form

u = k2(t+ τ1)θ(x) + ϕ(x), v = k1(t+ τ2)θ(x) + ψ(x). (4.3.2.23)

An analysis similar to that performed previously allows us to find the parameters of

equations (4.3.1.1):

b1 = σa1, b2 = σa2, c1 = a1, c2 = a2, (4.3.2.24)

where σ is an arbitrary constant. In this case, the functions θ = θ(x), ϕ = ϕ(x), and

ψ = ψ(x) are described by the stationary system of PDEs

a1[∆ϕ+ (σ + f̂)ϕ] + ĝ − k2θ = 0,

a2[∆ψ + (σ + f̂)ψ] + ĥ− k1θ = 0,

∆θ + (σ + f̂)θ = 0.

(4.3.2.25)

where f̂ = f(k1ϕ− k2ψ), ĝ = g(k1ϕ− k2ψ), ĥ = h(k1ϕ− k2ψ).

◮ Example 4.20. For the one-dimensional delay Lotka–Volterra type system

(4.3.1.2), one should set f(z1,2) = z1,2 and g(z1) = h(z2) = 0 in the respective

reduced system (4.3.2.25). Then, the functions ϕ = ϕ(x), ψ = ψ(x), and θ = θ(x)
are described by the stationary system of ODEs

ϕ′′
xx + (σ + ρ)ϕ− (k2/a1)θ = 0,

ψ′′
xx + (σ + ρ)ψ − (k1/a2)θ = 0,

θ′′xx + (σ + ρ)θ = 0, ρ = k1ϕ− k2ψ.

(4.3.2.26)

Let us look at the special case a1 = a2 = a. Adding up the first two equations

in (4.3.2.26) multiplied by k1 and −k2, respectively, we obtain an isolated ODE
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Table 4.2. Solutions to the system of ODEs (4.3.2.19), (4.3.2.20) at various values of the

determining parameters. Notations: J5/2(ξ) and Y5/2(ξ) are the Bessel functions of the first

and second kind, I5/2(ξ) andK5/2(ξ) are the modified Bessel functions of the first and second

kind, and A and B are arbitrary constants.

No.
Parameters

b and β
Function ϕ,

ODE (4.3.2.19)

Function θ,

ODE (4.3.2.20)

Function

ξ=ξ(x)

1 b=0, β=0 − 6
k
x−2 Ax−2+Bx3 —

2 b=0, β>0 − 6
k
x−2

√
x
[
AJ5/2(

√
βx)+BY5/2(

√
βx)

]
—

3 b=0, β<0 − 6
k
x−2

√
x
[
AI5/2(

√
−βx)+BK5/2(

√
−βx)

]
—

4 b<0, β=0 − 3b
2k

+ 3b
2k

tanh2ξ
A(3tanh2ξ−1)

+B
[
3tanh ξ+(3tanh2ξ−1)artanhξ

] 1
2

√
−bx

5 b<0, β=0 − 3b
2k

+ 3b
2k

coth2ξ
A(3coth2ξ−1)

+B
[
3cothξ+(3coth2ξ−1)arcothξ

] 1
2

√
−bx

6 b>0, β=0 − 3b
2k

− 3b
2k

tan2ξ
A(3tan2ξ+1)

+B
[
3tanξ+(3tan2ξ+1)arctanξ

] 1
2

√
bx

7 b>0, β=0 − 3b
2k

− 3b
2k

cot2ξ
A(3cot2ξ+1)

+B
[
3cotξ+(3cot2ξ+1)arccotξ

] 1
2

√
bx

8 b<0, β=0 b
2k

+ 3b
2k

tan2ξ Acos−2ξ+B
[
sin(2ξ)+3tan ξ+3ξ cos−2ξ

]
1
2

√
−bx

9 b<0, β=0 b
2k

+ 3b
2k

cot2ξ Asin−2ξ+B
[
cos(2ξ)+3cot ξ+3ξ sin−2ξ

]
1
2

√
−bx

10 b>0, β=0 b
2k

− 3b
2k

tanh2ξ
Acosh−2ξ

+B
[
sinh(2ξ)+3tanh ξ+3ξ cosh−2ξ

] 1
2

√
bx

11 b>0, β=0 b
2k

− 3b
2k

coth2ξ
Asinh−2ξ

+B
[
cosh(2ξ)+3coth ξ+3ξ sinh−2ξ

] 1
2

√
bx

12
b<0,

β=−3b
b
2k

+ 3b
2k

tan2ξ
Asinξ cos3ξ

+B
(
2+cos−2ξ+8cos2ξ−16cos4ξ

) 1
2

√
−bx

13
b<0,

β=−3b
b
2k

+ 3b
2k

cot2ξ
Acosξ sin3ξ

+B
(
2+sin−2ξ+8sin2ξ−16sin4ξ

) 1
2

√
−bx

14
b>0,

β=−3b
b
2k

− 3b
2k

tanh2ξ
Asinhξ cosh3ξ

+B
(
2+cosh−2ξ+8cosh2ξ−16cosh4ξ

) 1
2

√
bx

15
b>0,

β=−3b
b
2k

− 3b
2k

coth2ξ
Acoshξ sinh3ξ

+B
(
2+sinh−2ξ+8sinh2ξ−16sinh4ξ

) 1
2

√
bx

16
b<0,

β=− 5
4
b

b
2k

+ 3b
2k

tan2ξ Acos3ξ+B sinξ
(
4+3cos−2ξ+8cos2ξ

)
1
2

√
−bx

17
b<0,

β=− 5
4
b

b
2k

+ 3b
2k

cot2ξ Asin3ξ+B cosξ
(
4+3sin−2ξ+8sin2ξ

)
1
2

√
−bx

18
b>0,

β=− 5
4
b

b
2k

− 3b
2k

tanh2ξ Acosh3ξ+B sinhξ
(
4+3cosh−2ξ+8cosh2ξ

)
1
2

√
bx

19
b>0,

β=− 5
4
b

b
2k

− 3b
2k

coth2ξ Asinh3ξ+B coshξ
(
4+3sinh−2ξ+8sinh2ξ

)
1
2

√
bx
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Table 4.2. (Continued)

No.
Parameters

b and β
Function ϕ,

ODE (4.3.2.19)

Function θ,

ODE (4.3.2.20)

Function

ξ=ξ(x)

20
b<0,

β= 1
4
b − 3b

2k
+ 3b

2k
tanh2ξ

Asinhξ cosh−2ξ
+B cosh−1ξ

(
3ξ tanhξ−3+cosh2ξ

) 1
2

√
−bx

21
b<0,

β= 1
4
b − 3b

2k
+ 3b

2k
coth2ξ

Acoshξ sinh−2ξ
+B sinh−1ξ

(
3ξ cothξ−3+sinh2ξ

) 1
2

√
−bx

22
b>0,

β= 1
4
b − 3b

2k
− 3b

2k
tan2ξ

Asinξ cos−2ξ
+B cos−1ξ

(
3ξ tan ξ+3−cos2ξ

) 1
2

√
bx

23
b>0,

β= 1
4
b − 3b

2k
− 3b

2k
cot2ξ

Acosξ sin−2ξ
+B sin−1ξ

(
3ξ cot ξ+3−sin2ξ

) 1
2

√
bx

24
b<0,

β= 3
4
b

b
2k

+ 3b
2k

tan2ξ
Asinξ cos−2ξ

+B cos−1ξ
(
3ξ tan ξ+3−cos2ξ

) 1
2

√
−bx

25
b<0,

β= 3
4
b

b
2k

+ 3b
2k

cot2ξ
Acosξ sin−2ξ

+B sin−1ξ
(
3ξ cot ξ+3−sin2ξ

) 1
2

√
−bx

26
b>0,

β= 3
4
b

b
2k

− 3b
2k

tanh2ξ
Asinhξ cosh−2ξ

+B cosh−1ξ
(
3ξ tanhξ−3+cosh2ξ

) 1
2

√
bx

27
b>0,

β= 3
4
b

b
2k

− 3b
2k

coth2ξ
Acoshξ sinh−2ξ

+B sinh−1ξ
(
3ξ cothξ−3+sinh2ξ

) 1
2

√
bx

28 b<0, β=b b
2k

+ 3b
2k

tan2ξ A
(
1+3tan2ξ

)
+B

[
ξ
(
1+3tan2ξ

)
+3tanξ

]
1
2

√
−bx

29 b<0, β=b b
2k

+ 3b
2k

cot2ξ A
(
1+3cot2ξ

)
+B

[
ξ
(
1+3cot2ξ

)
+3cotξ

]
1
2

√
−bx

30 b>0, β=b b
2k

− 3b
2k

tanh2ξ
A
(
1−3tanh2ξ

)

+B
[
ξ
(
1−3tanh2ξ

)
+3tanhξ

] 1
2

√
bx

31 b>0, β=b b
2k

− 3b
2k

coth2ξ
A
(
1−3coth2ξ

)

+B
[
ξ
(
1−3coth2ξ

)
+3cothξ

] 1
2

√
bx

32 b<0, β=b − 3b
2k

+ 3b
2k

tanh2ξ
Acosh−2ξ

+B
[
(3+2cosh2ξ)tanhξ+3ξ cosh−2ξ

] 1
2

√
−bx

33 b<0, β=b − 3b
2k

+ 3b
2k

coth2ξ
Asinh−2ξ

+B
[
(3+2sinh2ξ)cothξ+3ξ sinh−2ξ

] 1
2

√
−bx

34 b>0, β=b − 3b
2k

− 3b
2k

tan2ξ Acos−2ξ+B
[
(3+2cos2ξ)tanξ+3ξ cos−2ξ

]
1
2

√
bx

35 b>0, β=b − 3b
2k

− 3b
2k

cot2ξ Asin−2ξ+B
[
(3+2sin2ξ)cotξ+3ξ sin−2ξ

]
1
2

√
bx

36
b<0,

β= 9
4
b − 3b

2k
+ 3b

2k
tanh2ξ Acosh3ξ+B sinhξ

(
4+3cosh−2ξ+8cosh2ξ

)
1
2

√
−bx

37
b<0,

β= 9
4
b − 3b

2k
+ 3b

2k
coth2ξ Asinh3ξ+B coshξ

(
4+3sinh−2ξ+8sinh2ξ

)
1
2

√
−bx

38
b>0,

β= 9
4
b − 3b

2k
− 3b

2k
tan2ξ Acos3ξ+B sinξ

(
4+3cos−2ξ+8cos2ξ

)
1
2

√
bx

39
b>0,

β= 9
4
b − 3b

2k
− 3b

2k
cot2ξ Asin3ξ+B cosξ

(
4+3sin−2ξ+8sin2ξ

)
1
2

√
bx
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Table 4.2. (Continued)

No.
Parameters

b and β
Function ϕ,

ODE (4.3.2.19)

Function θ,

ODE (4.3.2.20)

Function

ξ=ξ(x)

40
b<0,

β=4b − 3b
2k

+ 3b
2k

tanh2ξ
Asinhξ cosh3ξ

+B
(
2+cosh−2ξ+8cosh2ξ−16cosh4ξ

) 1
2

√
−bx

41
b<0,

β=4b − 3b
2k

+ 3b
2k

coth2ξ
Acoshξ sinh3ξ

+B
(
2+sinh−2ξ+8sinh2ξ−16sinh4ξ

) 1
2

√
−bx

42
b>0,

β=4b − 3b
2k

− 3b
2k

tan2ξ
Asinξ cos3ξ

+B
(
2+cos−2ξ+8cos2ξ−16cos4ξ

) 1
2

√
bx

43
b>0,

β=4b − 3b
2k

− 3b
2k

cot2ξ
Acosξ sin3ξ

+B
(
2+sin−2ξ+8sin2ξ−16sin4ξ

) 1
2

√
bx

for ρ = k1ϕ − k2ψ. Together with the third and first ODEs of (4.3.2.26) and the

algebraic relation for ρ, we get the following mixed algebraic-differential system of

equations:
ρ′′xx + (σ + ρ)ρ = 0,

θ′′xx + (σ + ρ)θ = 0,

ϕ′′
xx + (σ + ρ)ϕ− (k2/a)θ = 0,

ρ = k1ϕ− k2ψ.

(4.3.2.27)

We will give two simple classes of exact solutions to system (4.3.2.27) that

correspond to ρ = const and then describe a number of more complicated solutions.

1◦. Exact solution of system (4.3.2.27) with ρ = −σ:

ρ = −σ, ϕ = C1x+ C2 +
k2
a

(
1

6
C3x

3 +
1

2
C4x

2

)
,

ψ =
1

k2
(k1ϕ+ σ), θ = C3x+ C4,

where C1, . . . , C4 are arbitrary constants.

2◦. Exact solution of system (4.3.2.27) with ρ = 0:

ρ=0, ϕ=ϕp(x)+

{
C1 cos(

√
σ x)+C2 sin(

√
σ x) if σ> 0,

C1 cosh(
√
|σ|x)+C2 sinh(

√
|σ|x) if σ< 0,

ψ=
k1
k2
ϕ, θ=

{
C3 cos(

√
σ x)+C4 sin(

√
σ x) if σ> 0,

C3 cosh(
√
|σ|x)+C4 sinh(

√
|σ|x) if σ< 0,

ϕp(x) =






− k2x

2a
√
σ

[
C4 cos(

√
σx)−C3 sin(

√
σ x)

]
+
C3k2
2aσ

cos(
√
σ x)

if σ > 0,

k2x

2a
√
|σ|

[
C4 cosh(

√
|σ|x)+C3 sinh(

√
|σ|x)

]
+
C3k2
2aσ

cosh(
√

|σ|x)

if σ < 0.
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3◦. Up to notation, the first two ODEs of system (4.3.2.27) coincide with system

(4.3.2.19)–(4.3.2.20) where k = 1 and β = b, whose exact solutions were described

above. For given ρ = ρ(x), the second equation in (4.3.2.27) for θ is a second-

order linear homogeneous ODE, which admits the particular solution θ0 = ρ(x).
Hence, its general solution is expressed by formula (4.3.2.22). For given θ, the third

equation in (4.3.2.27) is a second-order linear nonhomogeneous ODE for ϕ = ϕ(x),
with ϕ0 = ρ(x) being a particular solution of the respective homogeneous ODE.

Considering the above and employing relevant formulas presented in [423], we can

find the general solution of the ODE for ϕ. As a result, we obtain a solution to system

(4.3.2.27) in the form

ρ=ρ(x), θ=C1ρ(x)+C2ω(x), ϕ=C3ρ(x)+C4ω(x)+ϕp(x),

ψ=
1

k2
[(C3k1−1)ρ(x)+C4k1ω(x)+k1ϕp(x)], ω(x)=ρ(x)

∫
dx

ρ2(x)
,

(4.3.2.28)

where C1, . . . , C4 are arbitrary constants, and ϕp(x) is a particular solution to the

third ODE of system (4.3.2.27), which is expressed as

ϕp(x) =
k2
a

[
ω(x)

∫
ρ(x)θ(x)

dx

W(x)
− ρ(x)

∫
ω(x)θ(x)

dx

W(x)

]
. (4.3.2.29)

The functionW(x)=ρω′
x−ωρ′x is the Wronskian determinant. Simple computations

show that W(x) = 1.

To obtain exact solutions of system (4.3.2.27), one should substitute the func-

tions ρ(x) and ω(x) displayed in Table 4.3 into formulas (4.3.2.28) and (4.3.2.29)

with W(x) = 1. ◭

Reduction of the system of PDEs with a single delay to a nonstationary

system of delay ODEs. Suppose that the four delays in system (4.3.1.1) are all equal:

τ1 = τ2 = τ3 = τ4 = τ. (4.3.2.30)

We look for generalized separable solutions to system (4.3.1.1) under condition

(4.3.2.30) in the form [417]:

u = k2ξ(t)θ(x) + ϕ(t), v = k1ξ(t)θ(x) + ψ(t), (4.3.2.31)

where the functions θ= θ(x), ξ = ξ(t), ϕ= ϕ(t), and ψ = ψ(t) are to be determined

in the subsequent analysis.

The functions (4.3.2.31) are chosen so that the arguments of the functions f , g,

and h appearing in system (4.3.1.1) become dependent on t alone. We impose an

additional condition (a linear differential constraint) on the function θ = θ(x):

∆θ = µθ + ε, (4.3.2.32)

where the constant µ and ε are found in the subsequent investigation.

Notably, in the nondegenerate case of µ 6= 0 in (4.3.2.32), we can set ε = 0
without loss of generality, since a translation of θ by a constant simply leads, by
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4.3. Reductions and Exact Solutions of Lotka–Volterra Type Systems with Several Delays 237

Table 4.3. The functions ρ(x) and ω(x) determining exact solutions of the form (4.3.2.28) to

the system of ODEs (4.3.2.27) (according to [431]).

No. Parameter σ Function ρ Function ω Function ξ

1 σ=0 − 6
k
x−2 x3 —

2 σ< 0 σ
2
+ 3σ

2
tan2 ξ ξ

(
1+3 tan2 ξ

)
+3 tan ξ 1

2

√
−σ x

3 σ< 0 σ
2
+ 3σ

2
cot2 ξ ξ

(
1+3 cot2 ξ

)
+3 cot ξ 1

2

√
−σ x

4 σ> 0 σ
2
− 3σ

2
tanh2 ξ ξ

(
1−3 tanh2 ξ

)
+3 tanh ξ 1

2

√
σ x

5 σ> 0 σ
2
− 3σ

2
coth2 ξ ξ

(
1−3 coth2 ξ

)
+3 coth ξ 1

2

√
σ x

6 σ< 0 − 3σ
2

+ 3σ
2

tanh2 ξ (3+2 cosh2 ξ) tanh ξ+3 ξ cosh−2 ξ 1
2

√
−σ x

7 σ< 0 − 3σ
2

+ 3σ
2

coth2 ξ (3+2 sinh2 ξ) coth ξ+3 ξ sinh−2 ξ 1
2

√
−σ x

8 σ> 0 − 3σ
2

− 3σ
2

tan2 ξ (3+2 cos2 ξ) tan ξ+3 ξ cos−2 ξ 1
2

√
σ x

9 σ> 0 − 3σ
2

− 3σ
2

cot2 ξ (3+2 sin2 ξ) cot ξ+3 ξ sin−2 ξ 1
2

√
σ x

virtue of (4.3.2.31), to redefinitions of the functions ϕ(t) and ψ(t). In the one-

dimensional case, the general solution of equation (4.3.2.32) is defined by formulas

(4.3.2.4).

Substituting (4.3.2.31) into (4.3.1.1) and taking into account (4.3.2.32), we ob-

tain the relations

k2[(a1µ+ b1 + c1f̄)ξ − ξ′t]θ + a1k2εξ + b1ϕ+ c1ϕf̄ + ḡ − ϕ′
t = 0,

k1[(a2µ+ b2 + c2f̄)ξ − ξ′t]θ + a2k1εξ + b2ψ + c2ψf̄ + h̄− ψ′
t = 0,

(4.3.2.33)

where we have used the short notations f̄ = f(k1ϕ̄ − k2ψ̄), ḡ = g(k1ϕ̄ − k2ψ̄),
h̄ = h(k1ϕ̄− k2ψ̄), ϕ̄ = ϕ(t− τ), and ψ̄ = ψ(t− τ).

Relations (4.3.2.33) can be satisfied by setting

ϕ′
t = a1k2εξ + b1ϕ+ c1ϕf̄ + ḡ,

ψ′
t = a2k1εξ + b2ψ + c2ψf̄ + h̄,

ξ′t = (a1µ+ b1 + c1f̄)ξ,

ξ′t = (a2µ+ b2 + c2f̄)ξ.

(4.3.2.34)

The system of ODEs (4.3.2.34) is overdetermined, since it consists of four equa-

tions for three functions, ξ, ϕ, and ψ. Requiring that the last two equations in

(4.3.2.34) must coincide, we find the parameter µ and other constants:

µ =
b1 − b2
a2 − a1

, c1 = c2 = 1 (a1 6= a2). (4.3.2.35)
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238 4. ANALYTICAL METHODS AND EXACT SOLUTIONS TO DELAY PDES. PART II

The values of c1 and c2 have been chosen considering that the function f is defined

up to a constant multiplier.

If b1 6= b2, it follows from (4.3.2.35) that µ 6= 0, and hence, we can set ε = 0 in

equations (4.3.2.32) and (4.3.2.34). For ε = 0, the first two equations of (4.3.2.34)

are independent of ξ = ξ(t) and make up a closed nonlinear system of the first-order

delay ODEs for ϕ = ϕ(t) and ψ = ψ(t):

ϕ′
t = b1ϕ+ ϕf(k1ϕ̄− k2ψ̄) + g(k1ϕ̄− k2ψ̄),

ψ′
t = b2ψ + ψf(k1ϕ̄− k2ψ̄) + h(k1ϕ̄− k2ψ̄),

(4.3.2.36)

where ϕ̄ = ϕ(t − τ) and ψ̄ = ψ(t − τ). Integrating the last equation of (4.3.2.34)

and taking into account relations (4.3.2.35), we find that ξ = ξ(t) is expressed via

ϕ = ϕ(t) and ψ = ψ(t) as

ξ = A exp

[
a2b1 − a1b2
a2 − a1

t+

∫
f(k1ϕ̄− k2ψ̄) dt

]
, (4.3.2.37)

where A is an arbitrary constant.

Notably, if g = 0 or h = 0, the system of delay ODEs (4.3.2.36) admits one-

component solutions of the form ϕ = 0, ψ = ψ(t) or ϕ = ϕ(t), ψ = 0, respectively.

If there are no delays and the functions f and h (or g) are given, these solutions can

be represented in implicit form, as they are described by first-order separable ODEs.

If g = h = 0, it is not difficult to show that the system of delay ODEs (4.3.2.36)

with arbitrary f admits the first integral

ψ = C3e
(b2−b1)tϕ, (4.3.2.38)

where C3 is an arbitrary constant that may depend on the delay time τ . In this case,

system (4.3.2.36) reduces to a single equation

ϕ′
t = b1ϕ+ ϕf

(
(k1 − k2C3e

(b2−b1)(t−τ))ϕ̄
)
, ϕ̄ = ϕ(t − τ). (4.3.2.39)

◮ Example 4.21. For the Lotka–Volterra type system of PDEs (4.3.1.1) with

τ = 0, f(z) = z, and g = h = 0, ODE (4.3.2.39) becomes a Bernoulli equation.

Integrating this equation and taking into account (4.3.2.38), we obtain the exact

solution to the system of ODEs (4.3.2.36):

ϕ =

[
C3k2
b2

e(b2−b1)t + C4e
−b1t − k1

b1

]−1

,

ψ = C3e
(b2−b1)t

[
C3k2
b2

e(b2−b1)t + C4e
−b1t − k1

b1

]−1

,

(4.3.2.40)

where C4 is an arbitrary constant. The associated function ξ(t) is determined by

formula (4.3.2.37) with τ = 0 and f(z) = z. This function can be expressed in terms

of elementary functions if, for example,

b1 = 0; b2 = 0; b1 = b2; C3 = 0; C4 = 0.
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4.3. Reductions and Exact Solutions of Lotka–Volterra Type Systems with Several Delays 239

In particular, by setting τ = 0 and C3 = 0 in (4.3.2.37) and (4.3.2.40), we find that

ϕ=
b1e

b1t

b1C4−k1eb1t
, ψ=0, ξ=

A

b1C4−k1eb1t
exp

( a2b1−a1b2
a2−a1

t
)
. (4.3.2.41)

Formulas (4.3.2.4), (4.3.2.31), (4.3.2.35), and (4.3.2.41) describe an exact solution

to the one-dimensional Lotka–Volterra type system of PDEs (4.3.1.1) without delay.

Likewise, at b1 = b2 = b and τ = 0, we have

ϕ=
bebt

C4b+(C3k2−k1)ebt
, ψ=

bC3e
bt

C4b+(C3k2−k1)ebt
, ξ=

A

b
ϕ. (4.3.2.42)

◭

In the general case, the function ϕ in the delay ODEs (4.3.2.39) must be set on

the interval [−τ, 0]:
ϕ = ϕ0(t) at −τ ≤ t ≤ 0. (4.3.2.43)

A Cauchy-type problem for equation (4.3.2.39) with the initial data (4.3.2.43)

can be solved by the method of steps (see Subsection 1.1.5 and [37, 144]). To this

end, we subdivide time t into intervals of length τ and denote

ϕ(t) = ϕm(t) for tm−1 ≤ t ≤ tm, (4.3.2.44)

where tm =mτ , m = 0, 1, 2, . . . On integrating equation (4.3.2.39) from tm−1 to t,
we obtain

ϕm(t) = ϕ◦
m exp

[
b1(t− tm−1) +

∫ t

tm−1

f
(
(k1 − k2C3e

(b2−b1)(t−τ))ϕm−1(t)
)
dt

]
,

ϕ◦
m = ϕm(tm−1) = ϕm−1(tm),

(4.3.2.45)

on the interval [tm−1, tm]. The left-hand side of formula (4.3.2.45) is the function

ϕm(t), which is sought on the interval [tm−1, tm], while the right-hand side includes

ϕm−1(t), which is defined on the preceding interval [tm−2, tm−1]. The computation

is carried out sequentially starting from m = 1, when the known function defined

on the initial interval (4.3.2.43) is used on the right-hand side. This results in ϕ1(t).
Then one proceeds to m = 2 to determine ϕ2(t), which is expressed in terms of

the already known function ϕ1(t) using (4.3.2.45). The procedure is then repeated

likewise.

If ε 6= 0, the functions ξ = ξ(t), ϕ= ϕ(t), and ψ = ψ(t) are determined through

the solution of the nonlinear system (4.3.2.34) with b1 = b2 = b, c1 = c2 = 1, and

µ = 0 (in this case, the last two equations coincide).

4.3.3. Reductions and Exact Solutions of Systems of PDEs
with Equal Diffusion Coefficients (a1 = a2)

Reduction of the system of PDEs with three arbitrary delays to a stationary

system of PDEs and a linear Schrödinger equation. We will assume that the four

delay times in system (4.3.1.1) are constrained by one relation (4.3.2.1).
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We look for exact solutions to system (4.3.1.1) with a1 = a2 = a, b1 = b2 = b,
and c1 = c2 = 1 in the form

u = k2e
λ(t+τ1)θ(x, t) + ϕ(x), v = k1e

λ(t+τ2)θ(x, t) + ψ(x), (4.3.3.1)

where λ is a free parameter, and the functions θ = θ(x, t), ϕ = ϕ(x), and ψ = ψ(x)
are to be determined in the subsequent analysis.

Solutions of the form (4.3.3.1), in which the function θ depends on all its argu-

ments and the parameter λ is arbitrary, substantially generalize solutions of the form

(4.3.2.13), where θ is independent of time t and λ is expressed in terms of the system

constants.

We impose a periodicity condition on the function θ = θ(x, t):

θ(x, t+ τ2 − τ1) = θ(x, t). (4.3.3.2)

It is not difficult to verify that if conditions (4.3.2.1) and (4.3.3.2) hold, rela-

tions (4.3.2.14) remain valid. Considering the above and substituting (4.3.3.1) into

(4.3.1.1), we obtain the following closed system of two stationary equations for ϕ
and ψ:

a∆ϕ+ [b + f(k1ϕ− k2ψ)]ϕ+ g(k1ϕ− k2ψ) = 0,

a∆ψ + [b+ f(k1ϕ− k2ψ)]ψ + h(k1ϕ− k2ψ) = 0.
(4.3.3.3)

The function θ = θ(x, t) is described by the linear Schrödinger equation

θt = a∆θ + (b − λ+ f̂)θ, f̂ = f(k1ϕ− k2ψ), (4.3.3.4)

and the periodic condition (4.3.3.2). Notably, the function f̂ only depends on the

space coordinates.

Below we note two important cases where the periodicity condition (4.3.3.2)

holds automatically.

1◦. Condition (4.3.3.2) can be satisfied by seeking a stationary solution θ= θ(x)
of equation (4.3.3.4).

2◦. Condition (4.3.3.2) also holds if τ2 = τ1 and τ3 = τ4, in which case relation

(4.3.2.1) is satisfied automatically.

◮ Example 4.22. We set f(z1,2) = z1,2 and g(z1) = h(z2) = 0 in the reduced

system (4.3.3.3)–(4.3.3.4) of the one-dimensional Lotka–Volterra type system of

delay PDEs (4.3.1.2). Then the functions ϕ = ϕ(x), ψ = ψ(x), and θ = θ(x, t) are

described by the system of two stationary ODEs and one nonstationary PDE

aϕ′′
xx + (b+ k1ϕ− k2ψ)ϕ = 0, (4.3.3.5)

aψ′′
xx + (b + k1ϕ− k2ψ)ψ = 0, (4.3.3.6)

θt = aθ′′xx + (b − λ+ k1ϕ− k2ψ)θ. (4.3.3.7)

Notably, the coefficients of equation (4.3.3.7) are only dependent on the space vari-

able x, and the θ must satisfy the one-dimensional periodic condition (4.3.3.2).
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Let us multiply ODE (4.3.3.5) by k1 and ODE (4.3.3.6) by −k2 and add together.

This results in an ODE for ρ = k1ϕ− k2ψ. We supplement this equation with ODE

(4.3.3.5) and PDE (4.3.3.7) to obtain the mixed algebraic-differential system

aρ′′xx + (b+ ρ)ρ = 0, (4.3.3.8)

aϕ′′
xx + (b+ ρ)ϕ = 0, (4.3.3.9)

ρ = k1ϕ− k2ψ, (4.3.3.10)

θt = aθ′′xx + (b− λ+ ρ)θ. (4.3.3.11)

System (4.3.3.8)–(4.3.3.11) can be solved step by step from one equation to

another. We start with the isolated stationary ODE (4.3.3.8), which, when divided

by a, coincides with equation (4.3.2.19) up to obvious renaming. PDE (4.3.3.11)

should be equipped with the additional conditions (4.3.2.1) and (4.3.3.2), which hold,

for example, in the stationary case of θ = θ(x) and the nonstationary case if τ2 = τ1
and τ4 = τ3.

Below we specify two simple classes of stationary exact solutions to system

(4.3.3.8)–(4.3.3.11) that correspond to ρ= const and then describe a number of more

complicated solutions.

1◦. Stationary exact solution to system (4.3.3.8)–(4.3.3.11) with ρ = 0:

ρ = 0, ϕ =

{
C1 cos(

√
b x) + C2 sin(

√
b x) if b > 0,

C1 cosh(
√
−b x) + C2 sinh(

√
−b x) if b < 0;

(4.3.3.12)

ψ =





k1
k2

[C1 cos(
√
b x) + C2 sin(

√
b x)] if b > 0,

k1
k2

[C1 cosh(
√
−b x) + C2 sinh(

√
−b x)] if b < 0;

(4.3.3.13)

θ =






C3 cos[
√
(b − λ)/a x] + C4 sin[

√
(b− λ)/ax] if λ < b,

C3 cosh[
√
(λ − b)/ax] + C4 sinh[

√
(λ − b)/ax] if λ > b,

C3x+ C4 if λ = b,

(4.3.3.14)

where C1, . . . , C4 are arbitrary constants.

2◦. Stationary exact solution to system (4.3.3.8)–(4.3.3.11) with ρ = −b:

ρ = −b, ϕ = C1x+ C2, ψ =
k1
k2

(C1x+ C2) +
b

k2
, (4.3.3.15)

θ =

{
C3 cosh(

√
λ/a x) + C4 sinh(

√
λ/ax) if λ > 0,

C3 cos(
√
−λ/ax) + C4 sin(

√
−λ/ax) if λ < 0.

(4.3.3.16)

3◦. More complex stationary solutions of system (4.3.3.8)–(4.3.3.11) with ρ =
ρ(x) 6= const and θ = θ(x) can be constructed in several steps as described below.

(i) The isolated subsystem of two ODEs (4.3.3.8) and (4.3.3.9) for ρ and ϕ
coincides, up to notation, with system (4.3.2.19)–(4.3.2.20) where β = b. It follows

that one can obtain exact solutions to equations (4.3.3.8) and (4.3.3.9) using the
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formulas from Table 4.2 with β = b by replacing the functions and determining

parameters as follows: ϕ⇒ ρ, θ ⇒ ϕ, b⇒ b/a, β ⇒ b/a, and k ⇒ 1/a.

(ii) The function ψ is determined by substituting the functions ρ and ϕ obtained

in step (i) into (4.3.3.10), which results in

ψ = (k1ϕ− ρ)/k2.

(iii) The isolated subsystem of two equations (4.3.3.8) and (4.3.3.11) for ρ and θ,

with θt = 0, coincides, up to notation, with system (4.3.2.19)–(4.3.2.20). Therefore,

one can obtain exact solutions to equations (4.3.3.8) and (4.3.3.11) using formulas

from Table 4.2 by replacing the functions and determining parameters as follows:

ϕ⇒ ρ, ψ ⇒ θ, b⇒ b/a, β ⇒ (b− λ)/a, and k ⇒ 1/a.

Table 4.4 summarizes stationary solutions of system (4.3.3.8)–(4.3.3.11) rep-

resented in terms of elementary functions for various values of the determining

parameters a, b, and λ.

4◦. For τ2 = τ1 and τ2 = τ4, some nonstationary exact solutions of system

(4.3.3.8)–(4.3.3.11) with ρ = 0 are defined by formulas (4.3.3.12) and (4.3.3.13) for

ϕ and ψ and any of the following expressions of θ = θ(x, t):

θ =
[
(x2 + 2at) + C

]
e(b−λ)t,

θ = exp
[
(aµ2 + b− λ)t ± µx

]
,

θ =
1√
t
exp

[
− x2

4at
+ (b − λ)t

]
,

θ = exp
[
(b − λ− aµ2)t

]
cos(µx),

θ = exp
[
(b − λ− aµ2)t

]
sin(µx),

θ = exp[−µx+ (b − λ)t] cos(µx− 2aµ2t),

θ = exp[−µx+ (b − λ)t] sin(µx − 2aµ2t),

θ = exp(−µx) cos(βx − 2aβµt), β =
√
µ2 + (b− λ)/a,

θ = exp(−µx) sin(βx − 2aβµt), β =
√
µ2 + (b− λ)/a,

(4.3.3.17)

where C and µ are arbitrary constants. Some other nonstationary exact solutions of

system (4.3.3.8)–(4.3.3.11) with ρ= 0 can be obtained using formulas (4.3.3.12) and

(4.3.3.13) and the expression θ = e(b−λ)tξ, where ξ = ξ(x, t) is any solution of the

standard linear heat equation ξt = aξxx.

5◦. For τ2 = τ1 and τ3 = τ4, some nonstationary exact solutions of system

(4.3.3.8)–(4.3.3.11) with ρ = −b are defined by formulas (4.3.3.15) for ϕ and ψ and

any of the expressions from (4.3.3.17) with b = 0. ◭

◮ Example 4.23. If τ2 = τ1 and τ3 = τ4, one can take for ϕ and ψ any simple

solution of the form (4.3.1.3) that satisfies the algebraic system (4.3.1.4) with b1 =
b2 = b and c1 = c2 = 1. Equation (4.3.3.4) can then be reduced with the substitution

θ = exp[(b− λ+ f◦)t]ζ, f◦ = f(k1ϕ
◦ − k2ψ

◦), (4.3.3.18)
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Table 4.4. Stationary solutions of system (4.3.3.8)–(4.3.3.11) for various values of the

determining parameters. Notations: ξ = 1
2

√

|b/a|x, cosh−1 ξ = 1/ cosh ξ, sinh−1 ξ =
1/ sinh ξ, cos−1 ξ = 1/ cos ξ, sin−1 ξ = 1/ sin ξ, and C1, . . . , C4 are arbitrary constants.

The function ψ is expressed as ψ = (k1ϕ− ρ)/k2 (according to [431]).

No.
Parameters

b and λ
Function ρ,

ODE (4.3.3.8)

Function ϕ,

ODE (4.3.3.9)

Function θ,

equation (4.3.3.11)

1 λ<0, b=0 −6ax−2 C1x−2+C2x3
√
x
[
C3J5/2(

√
−λ/ax)

+C4Y5/2(
√

−λ/ax)
]

2 λ>0, b=0 −6ax−2 C1x−2+C2x3
√
x
[
C3I5/2(

√
λ/ax)

+C4K5/2(
√
λ/ax)

]

3
λ=−3b,
b<0

3b
2

(
tanh2ξ−1

) C1cosh
−2ξ+C2

×
[
(3+2cosh2ξ)tanhξ

+3ξ cosh−2ξ
]

C3 sinhξ cosh
3ξ+C4

(
2+cosh−2ξ

+8cosh2ξ−16cosh4ξ
)

4
λ=−3b,
b<0

3b
2

(
coth2ξ−1

) C1 sinh
−2ξ+C2

×
[
(3+2sinh2ξ)cothξ

+3ξ sinh−2ξ
]

C3coshξ sinh
3ξ+C4

(
2+sinh−2ξ

+8sinh2ξ−16sinh4ξ
)

5
λ=−3b,
b>0 − 3b

2

(
tanh2ξ+1

) C1cos−2ξ+C2

×
[
(3+2cos2ξ)tanξ

+3ξ cos−2ξ
]

C3 sinξ cos3ξ+C4

(
2+cos−2ξ

+8cos2ξ−16cos4ξ
)

6
λ=−3b,
b>0 − 3b

2

(
coth2ξ+1

) C1sin−2ξ+C2

×
[
(3+2sin2ξ)cotξ

+3ξ sin−2ξ
]

C3cosξ sin3ξ+C4

(
2+sin−2ξ

+8sin2ξ−16sin4ξ
)

7
λ=− 5

4
b,

b<0
3b
2

(
tanh2ξ−1

) C1cosh
−2ξ+C2

×
[
(3+2cosh2ξ)tanhξ

+3ξ cosh−2ξ
]

C3cosh
3ξ+C4sinhξ

×
(
4+3cosh−2ξ+8cosh2ξ

)

8
λ=− 5

4
b,

b<0
3b
2

(
coth2ξ−1

) C1 sinh
−2ξ+C2

×
[
(3+2sinh2ξ)cothξ

+3ξ sinh−2ξ
]

C3 sinh
3ξ+C4coshξ

×
(
4+3sinh−2ξ+8sinh2ξ

)

9
λ=− 5

4
b,

b>0
− 3b

2

(
tan2ξ+1

) C1cos−2ξ+C2

×
[
(3+2cos2ξ)tanξ

+3ξ cos−2ξ
]

C3cos3ξ+C4sinξ
×
(
4+3cos−2ξ+8cos2ξ

)

10
λ=− 5

4
b,

b>0
− 3b

2

(
cot2ξ+1

) C1sin−2ξ+C2

×
[
(3+2sin2ξ)cotξ

+3ξ sin−2ξ
]

C3sin3ξ+C4cosξ
×
(
4+3sin−2ξ+8sin2ξ

)

11
λ= 1

4
b,

b<0
b
2

(
1+3tan2ξ)

C1
(
1+3tan2ξ

)

+C2
[
ξ
(
1+3tan2ξ

)

+3tanξ
]

C3 sinξ cos−2ξ+C4cos−1ξ
×
(
3ξ tanξ+3−cos2ξ

)

12
λ= 1

4
b,

b<0
b
2

(
1+3cot2ξ)

C1
(
1+3cot2ξ

)

+C2
[
ξ
(
1+3cot2ξ

)

+3cotξ
]

C3cosξ sin−2ξ+C4sin−1ξ
×
(
3ξ tan ξ+3−sin2ξ

)

13
λ= 1

4
b,

b>0
b
2

(
1−3tanh2ξ)

C1

(
1−3tanh2ξ

)

+C2

[
ξ
(
1−3tanh2ξ

)

+3tanhξ
]

C3sinhξ cosh
−2ξ+C4cosh

−1ξ
×
(
3ξ tanh ξ−3+cosh2ξ

)

14
λ= 1

4
b,

b>0
b
2

(
1−3coth2ξ)

C1
(
1−3coth2ξ

)

+C2
[
ξ
(
1−3coth2ξ

)

+3cothξ
]

C3coshξ sinh
−2ξ+C4sinh

−1ξ
×
(
3ξ coth ξ−3+sinh2ξ

)
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Table 4.4. (Continued)

No.
Parameters

b and λ
Function ρ,

ODE (4.3.3.8)

Function ϕ,

ODE (4.3.3.9)

Function θ,

equation (4.3.3.11)

15
λ= 3

4
b,

b<0
3b
2

(
tanh2ξ−1

) C1cosh
−2ξ+C2

×
[
(3+2cosh2ξ)tanhξ

+3ξ cosh−2ξ
]

C3sinhξ cosh
−2ξ+C4cosh

−1ξ
×
(
3ξ tanh ξ−3+cosh2ξ

)

16
λ= 3

4
b,

b<0
3b
2

(
coth2ξ−1

) C1 sinh
−2ξ+C2

×
[
(3+2sinh2ξ)cothξ

+3ξ sinh−2ξ
]

C3coshξ sinh
−2ξ+C4sinh

−1ξ
×
(
3ξ coth ξ−3+sinh2ξ

)

17
λ= 3

4
b,

b>0
− 3b

2

(
tan2ξ+1

) C1cos−2ξ+C2

×
[
(3+2cos2ξ)tanξ

+3ξ cos−2ξ
]

C3 sinξ cos−2ξ+C4cos−1ξ
×
(
3ξ tanξ+3−cos2ξ

)

18
λ= 3

4
b,

b>0
− 3b

2

(
cot2ξ+1

) C1sin−2ξ+C2

×
[
(3+2sin2ξ)cotξ

+3ξ sin−2ξ
]

C3cosξ sin−2ξ+C4sin−1ξ
×
(
3ξ cot ξ+3−sin2ξ

)

19 λ=b, b<0 3b
2

(
tanh2ξ−1

) C1cosh
−2ξ+C2

×
[
(3+2cosh2ξ)tanhξ

+3ξ cosh−2ξ
]

C3(3tanh
2ξ−1)+C4

[
3tanh ξ

+(3tanh2ξ−1)artanhξ
]

20 λ=b, b<0 3b
2

(
coth2ξ−1

) C1 sinh
−2ξ+C2

×
[
(3+2sinh2ξ)cothξ

+3ξ sinh−2ξ
]

C3(3coth
2ξ−1)+C4

[
3coth ξ

+(3coth2ξ−1)arcothξ
]

21 λ=b, b<0 b
2

(
1+3tan2ξ)

C1

(
1+3tan2ξ

)
+C2

×
[
ξ
(
1+3tan2ξ

)

+3tanξ
]

C3cos−2ξ+C4

[
sin(2ξ)

+3tanξ+3ξ cos−2ξ
]

22 λ=b, b<0 b
2

(
1+3cot2ξ)

C1

(
1+3cot2ξ

)
+C2

×
[
ξ
(
1+3cot2ξ

)

+3cotξ
]

C3sin
−2ξ+C4

[
cos(2ξ)

+3tanξ+3ξ sin−2ξ
]

23 λ=b, b>0 − 3b
2

(
tan2ξ+1

) C1cos−2ξ+C2

×
[
(3+2cos2ξ)tanξ

+3ξ cos−2ξ
]

C3(3tan2ξ+1)+C4
[
3tanξ

+(3tan2ξ+1)arctanξ
]

24 λ=b, b>0 − 3b
2

(
cot2ξ+1

) C1sin−2ξ+C2

×
[
(3+2sin2ξ)cotξ

+3ξ sin−2ξ
]

C3(3cot2ξ+1)+C4

[
3cot ξ

+(3cot2ξ+1)arccotξ
]

25 λ=b, b>0 b
2

(
1−3tanh2ξ)

C1

(
1−3tanh2ξ

)

+C2
[
ξ
(
1−3tanh2ξ

)

+3tanhξ
]

C3cosh
−2ξ+C4

[
sinh(2ξ)

+3tanhξ+3ξ cosh−2ξ
]

26 λ=b, b>0 b
2

(
1−3coth2ξ)

C1
(
1−3coth2ξ

)

+C2
[
ξ
(
1−3coth2ξ

)

+3cothξ
]

C3 sinh
−2ξ+C4

[
cosh(2ξ)

+3cothξ+3ξ sinh−2ξ
]

27
λ= 9

4
b,

b<0
b
2

(
1+3tan2ξ)

C1

(
1+3tan2ξ

)

+C2

[
ξ
(
1+3tan2ξ

)

+3tanξ
]

C3cos3ξ+C4sinξ
(
4+3cos−2ξ

+8cos2ξ
)
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Table 4.4. (Continued)

No.
Parameters

b and λ
Function ρ,

ODE (4.3.3.8)

Function ϕ,

ODE (4.3.3.9)

Function θ,

equation (4.3.3.11)

28
λ= 9

4
b,

b<0
b
2

(
1+3cot2ξ)

C1

(
1+3cot2ξ

)

+C2

[
ξ
(
1+3cot2ξ

)

+3cotξ
]

C3sin3ξ+C4cosξ
(
4+3sin−2ξ

+8sin2ξ
)

29
λ= 9

4
b,

b>0
b
2

(
1−3tanh2ξ)

C1

(
1−3tanh2ξ

)

+C2

[
ξ
(
1−3tanh2ξ

)

+3tanhξ
]

C3cosh
3ξ+C4sinhξ

(
4+3cosh−2ξ

+8cosh2ξ
)

30
λ= 9

4
b,

b>0
b
2

(
1−3coth2ξ)

C1
(
1−3coth2ξ

)

+C2

[
ξ
(
1−3coth2ξ

)

+3cothξ
]

C3sinh
3ξ+C4coshξ

(
4+3sinh−2ξ

+8sinh2ξ
)

31
λ=4b,
b<0

b
2

(
1+3tan2ξ)

C1

(
1+3tan2ξ

)

+C2

[
ξ
(
1+3tan2ξ

)

+3tanξ
]

C3 sinξ cos3ξ+C4

(
2+cos−2ξ

+8cos2ξ−16cos4ξ
)

32
λ=4b,
b<0

b
2

(
1+3cot2ξ)

C1
(
1+3cot2ξ

)

+C2
[
ξ
(
1+3cot2ξ

)

+3cotξ
]

C3cosξ sin3ξ+C4
(
2+sin−2ξ

+8sin2ξ−16sin4ξ
)

33
λ=4b,
b>0

b
2

(
1−3tanh2ξ)

C1

(
1−3tanh2ξ

)

+C2

[
ξ
(
1−3tanh2ξ

)

+3tanhξ
]

C3 sinhξ cosh
3ξ+C4

(
2+cosh−2ξ

+8cosh2ξ−16cosh4ξ
)

34
λ=4b,
b>0

b
2

(
1−3coth2ξ)

C1
(
1−3coth2ξ

)

+C2

[
ξ
(
1−3coth2ξ

)

+3cothξ
]

C3coshξ sinh
3ξ+C4

(
2+sinh−2ξ

+8sinh2ξ−16sinh4ξ
)

to the standard linear heat equation

ζt = a∆ζ, (4.3.3.19)

whose exact solutions are described, for example, in [404]. ◭

For τ1 6= τ2, exact solutions to equation (4.3.3.4) that satisfy the periodicity

condition (4.3.3.2) can be sought in the form

θm(x, t) = ξm(x) cos(βmt) + ηm(x) sin(βmt), (4.3.3.20)

βm =
2πm

τ2 − τ1
, m = 0, 1, 2, . . . ,

where m = 0 corresponds to a stationary solution. Substituting (4.3.3.20) into

(4.3.3.4) gives the following linear stationary system of PDEs for ξm = ξm(x) and

ηm = ηm(x):

a∆ξm + [b− λ+ f(k1ϕ− k2ψ)]ξm − βmηm = 0,

a∆ηm + [b− λ+ f(k1ϕ− k2ψ)]ηm + βmξm = 0.
(4.3.3.21)
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Equation (4.3.3.4) is linear in θ; therefore, an arbitrary linear combination of exact

solutions of the form (4.3.3.20),

θ =

∞∑

m=1

αmθm(x, t) =

∞∑

m=1

αm[ξm(x) cos(βmt) + ηm(x) sin(βmt)],

where αm are arbitrary constants, is also an exact solution to this equation.

If we take, as ϕ and ψ, any simple solution (4.3.1.3) that satisfies the algebraic

system (4.3.1.4) with b1 = b2 = b and c1 = c2 = 1, then system (4.3.3.21) will

become a system with constant coefficients, whose exact solutions are sought as a

linear combination of exponentials.

◮ Example 4.24. In the one-dimensional case, the general solution of the lin-

ear PDE (4.3.3.4) corresponding to any solution (4.3.1.3) and satisfying the periodic

condition (4.3.3.2) can be represented as

θ(x, t)=
∞∑

m=0

exp(−µmx)
[
Am cos(βmt−γmx)+Bm sin(βmt−γmx)

]

+

∞∑

m=1

exp(µmx)
[
Cm cos(βmt+γmx)+Dm sin(βmt+γmx)

]
, (4.3.3.22)

where

µm =

(√
d2 + β2

m − d

2a

)1/2

, γm =

(√
d2 + β2

m + d

2a

)1/2

,

d = b− λ+ f(k1ϕ
◦ − k2ψ

◦), βm =
2πm

τ2 − τ1
,

and Am, Bm, Cm, and Dm are arbitrary constants such that the series (4.3.3.22)

and the respective derivatives θt and θxx are convergent; the convergence can, for

example, be ensured by choosing Am = Bm = Cm = Dm = 0 for m > M , where

M is an arbitrary positive integer.

Below we note two special cases:

(i) formula (4.3.3.22) withA0 =B0 =0 andCm=Dm=0,m=1, 2, . . . defines

time periodic solutions decaying as x→ ∞;

(ii) formula (4.3.3.22) with Cm = Dm = 0, m = 1, 2, . . . defines time periodic

solutions bounded as x→ ∞. ◭

Reduction of the system of PDEs with one delay to a nonstationary system

of ODEs and a linear heat equation. We look for incomplete separable solutions

to system (4.3.1.1) with a1 = a2 = a, b1 = b2 = b, c1 = c2 = 1, and one common

delay time (4.3.2.30) in the form

u = k2θ(x, t) + ϕ(t), v = k1θ(x, t) + ψ(t), (4.3.3.23)

where the functions θ = θ(x, t), ϕ = ϕ(t), and ψ = ψ(t) are to be determined in

the subsequent analysis. The functions (4.3.3.23) are chosen so that the arguments

of the functions f , g, and h depend on t alone.
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Substituting (4.3.3.23) into the system of PDEs (4.3.1.1) yields a nonlinear sys-

tem of first-order delay ODEs for ϕ and ψ,

ϕ′
t = bϕ+ ϕf(k1ϕ̄− k2ψ̄) + g(k1ϕ̄− k2ψ̄), ϕ̄ = ϕ(t− τ),

ψ′
t = bψ + ψf(k1ϕ̄− k2ψ̄) + h(k1ϕ̄− k2ψ̄), ψ̄ = ψ(t− τ),

(4.3.3.24)

and a linear parabolic PDE with variable coefficients for θ:

θt = a∆θ +
[
b+ f(k1ϕ̄− k2ψ̄)]θ. (4.3.3.25)

The system of delay ODEs (4.3.3.24) coincides with system (4.3.2.36) at b1 =
b2 = b. For a procedure to integrate this system and for some of its exact solutions,

see Subsection 4.3.2. With the substitution

θ = exp

[
bt+

∫
f(k1ϕ̄1 − k2ψ̄1) dt

]
ξ(x, t), (4.3.3.26)

equation (4.3.3.25) can be reduced to the standard linear heat equation

ξt = a∆ξ, (4.3.3.27)

whose exact solutions can be found, for example, in [404].

4.3.4. Systems of Delay PDEs Homogeneous in the
Unknown Functions

This subsection describes a few exact solutions of two nonlinear homogeneous sys-

tems of PDEs with two delays that remain unchanged under transformations of the

form u = C1U , v = C1V , x = X + C2, t = T + C3, where C1, C2, and C3 are

arbitrary constants.

System 1. Consider the reaction-diffusion system of equations with two delays

ut = auxx + uf(u/v, ū1/u, v̄2/v),

vt = bvxx + vg(u/v, ū1/u, v̄2/v),
(4.3.4.1)

where f(z, z1, z2) and g(z, z1, z2) are arbitrary functions; ū1 = u(x, t − τ1) and

v̄2 = v(x, t− τ2).
In the special case of f(z, 1, 1) = k1 − k2z

−1 and g(z, 1, 1) = k2 − k1z with

no delays, τ1 = τ2 = 0, system (4.3.4.1) describes a two-component diffusion

complicated by a first-order reversible chemical reaction [122]. The Eigen–Schuster

model describes the competition of populations for a nutrient substrate at constant

breeding rates, variable population size and no delay. This model leads to the above

system with f(z, 1, 1) = kz
z+1 and g(z, 1, 1) = − k

z+1 , where k is the difference

between the breeding coefficients [142] (see also [457], pp. 31 and 32).

Below we describe several exact solutions to the nonlinear system of PDEs

(4.3.4.1).
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1◦. A multiplicative separable solution periodic in x:

u = [C1 sin(kx) + C2 cos(kx)]ϕ(t),

v = [C1 sin(kx) + C2 cos(kx)]ψ(t),
(4.3.4.2)

whereC1,C2, and k are arbitrary constants, and the functionsϕ=ϕ(t) and ψ=ψ(t)
are described by the system of first-order delay ODEs

ϕ′
t = −ak2ϕ+ ϕf(ϕ/ψ, ϕ̄1/ϕ, ψ̄2/ψ),

ψ′
t = −bk2ψ + ψg(ϕ/ψ, ϕ̄1/ϕ, ψ̄2/ψ).

(4.3.4.3)

Notations: ϕ̄1 = ϕ(t− τ1) and ψ̄2 = ψ(t− τ2).
2◦. A multiplicative separable solution:

u = [C1 exp(kx) + C2 exp(−kx)]ϕ(t),
v = [C1 exp(kx) + C2 exp(−kx)]ψ(t),

(4.3.4.4)

whereC1,C2, and k are arbitrary constants, and the functionsϕ=ϕ(t) and ψ=ψ(t)
are described by the system of first-order delay ODEs

ϕ′
t = ak2ϕ+ ϕf(ϕ/ψ, ϕ̄1/ϕ, ψ̄2/ψ),

ψ′
t = bk2ψ + ψg(ϕ/ψ, ϕ̄1/ϕ, ψ̄2/ψ).

(4.3.4.5)

Remark 4.15. The systems of delay ODEs (4.3.4.3) and (4.3.4.5) admit exponential exact
solutions of the form

ϕ(t) = Ae−λt, ψ(t) = Be−λt, (4.3.4.6)

where λ is an arbitrary constant. The constants A and B are determined from the algebraic
(transcendental) equations

± ak2 + λ+ f
(

A/B, eλτ1 , eλτ2
)

= 0,

± bk2 + λ+ g
(

A/B, eλτ1 , eλτ2
)

= 0,

where the lower sign corresponds to system (4.3.4.3), while the upper sign corresponds to
system (4.3.4.5).

3◦. Also, there is a degenerate solution of the form

u = (C1x+ C2)ϕ(t), v = (C1x+ C2)ψ(t).

4◦. A multiplicative separable solution:

u = e−λty(x), v = e−λtz(x), (4.3.4.7)

where λ is an arbitrary constant, and the functions y = y(x) and z = z(x) are

described by the system of second-order ODEs

ay′′xx + λy + yf(y/z, eλτ1, eλτ2) = 0,

bz′′xx + λz + zg(y/z, eλτ1, eλτ2) = 0.

5◦. Also, there are solutions of the form

u = e−λty(ξ), v = e−λtz(ξ), ξ = x+ kt,

where k is an arbitrary constant, which generalize the solution of Item 4◦.
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System 2. Consider the reaction-diffusion system of equations with two delays

ut = auxx + uf(u/v, ū1/v̄1, ū2/v̄2),

vt = avxx + vg(u/v, ū1/v̄1, ū2/v̄2),
(4.3.4.8)

where ū1 = u(x, t− τ1), ū2 = u(x, t− τ2), v̄1 = v(x, t− τ1), and v̄2 = v(x, t− τ2).
1◦. The system of delay PDEs (4.3.4.8) admits three sets of multiplicative sepa-

rable solutions (4.3.4.2), (4.3.4.4), and (4.3.4.7) (the details are omitted).

2◦. An incomplete separable solution:

u = ϕ(t)θ(x, t), v = ψ(t)θ(x, t).

The functionsϕ=ϕ(t) and ψ=ψ(t) are described by the system of first-order delay

ODEs

ϕ′
t = ϕf(ϕ/ψ, ϕ̄1/ψ̄1, ϕ̄2/ψ̄2), ψ′

t = ψg(ϕ/ψ, ϕ̄1/ψ̄1, ϕ̄2/ψ̄2),

ϕ̄j = ϕ(t− τj), ψ̄j = ψ(t− τj), j = 1, 2.
(4.3.4.9)

The function θ = θ(x, t) satisfies the linear heat equation

θt = aθxx. (4.3.4.10)

Notably, the system of delay ODEs (4.3.4.9) admits an exponential exact solution

of the form (4.3.4.6).

In the general case, system (4.3.4.9) can be reduced with the substitution ϕ=ωψ
to a single equation for the function ω = ω(t):

ω′
t = ω[f(ω, ω̄1, ω̄2)− g(ω, ω̄1, ω̄2)], (4.3.4.11)

where ω̄1 = ω(t − τ1) and ω̄2 = ω(t − τ2). Once ω is determined, the functions ϕ
and ψ are found as

ϕ = ωψ, ψ = C exp

[∫
g(ω, ω̄1, ω̄2) dt

]
,

where C is an arbitrary constant. Equation (4.3.4.11) is integrable in terms of ele-

mentary functions if, for example,

f(ω, ω̄1, ω̄2) = b1ω
k + c1 + h(ω̄1, ω̄2), g(ω, ω̄1, ω̄2) = b2ω

k + c2 + h(ω̄1, ω̄2),

where h(ω̄1, ω̄2) is an arbitrary function, and b1, b2, c1, c2, and k are arbitrary

constants.

3◦. An incomplete separable solution with g(z, z1, z2) = −z2f(z, z1, z2):

u = θ(x, t) sinϕ(t), v = θ(x, t) cosϕ(t).

The function ϕ = ϕ(t) satisfies the first-order delay ODE

ϕ′
t = f(tanϕ, tan ϕ̄1, tan ϕ̄2) tanϕ, ϕ̄1 = ϕ(t− τ1), ϕ̄2 = ϕ(t− τ2).
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The function θ = θ(x, t) is described by the linear heat equation (4.3.4.10).

4◦. An incomplete separable solution with g(z, z1, z2) = z2f(z, z1, z2):

u = θ(x, t) sinhϕ(t), v = θ(x, t) coshϕ(t).

The function ϕ = ϕ(t) satisfies the first-order delay ODE

ϕ′
t = f(tanhϕ, tanh ϕ̄1, tanh ϕ̄2) tanhϕ, ϕ̄1 = ϕ(t− τ1), ϕ̄2 = ϕ(t− τ2).

The function θ = θ(x, t) is described by the linear heat equation (4.3.4.10).

5◦. Also, there are solutions of the form

u = θ(x, t) coshϕ(t), v = θ(x, t) sinhϕ(t).

4.4. Nonlinear PDEs with Proportional

Arguments. Principle of Analogy of

Solutions

This section deals with nonlinear partial differential equations with proportional ar-

guments that involve, besides the unknown function u=u(x, t), a few functions with

one or more scaled independent variables such as u(px, t), u(x, qt), or u(px, qt),
where p and q are the scaling parameters (0 < p < 1, 0 < q < 1).

4.4.1. Principle of Analogy of Solutions

Below we describe a reasonably general method for constructing exact solutions to

nonlinear PDEs with proportional arguments. It relies on the following principle

[9, 416].

The principle of analogy of solutions. The structure of exact solutions to PDEs

with proportional arguments

F (x, t, u, ux, ut, uxx, uxt, utt, . . . , w, wx, wt, wxx, wxt, wtt, . . . ) = 0,

w = u(px, qt),
(4.4.1.1)

is frequently (but not always) determined by the solution structure of the simpler

PDEs with regular arguments

F (x, t, u, ux, ut, uxx, uxt, utt, . . . , u, ux, ut, uxx, uxt, utt, . . . ) = 0. (4.4.1.2)

Equation (4.4.1.2) does not involve the unknown function with proportional ar-

guments; it is formally obtained from (4.4.1.1) by replacing w with u.

Figure 4.1 displays a schematic of applying the analogy principle to a second-

order proportional argument PDE solved for ut.
Below we illustrate the application of the analogy principle with three examples

of proportional argument PDEs that have different types of solution.
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PDEs with proportional arguments
u f u u u wt x xx x xx= ( )! ! ! ! ! !, , , , ,w w

w u px qt= ( )" !,

u f u u u u u ut x xx x xx= ( )! ! ! ! ! !, , , , ,
Simpler PDEsExact

solutions

Figure 4.1. A schematic of using the analogy principle to construct exact solutions for

nonlinear PDEs with proportional arguments.

◮ Example 4.25. Consider the reaction-diffusion equation with proportional

arguments

ut = auxx + bumwk, w = u(px, qt), (4.4.1.3)

that involve a power-law nonlinearity.

Following the analogy principle, we set w = u in equation (4.4.1.3) to obtain

a simpler nonlinear heat (diffusion) equation with a power-law nonlinearity and

without proportional arguments:

ut = auxx + bum+k. (4.4.1.4)

The equation admits a self-similar solution [134]:

u(x, t) = t
1

1−m−k U(z), z = xt−1/2, k 6= 1−m. (4.4.1.5)

While using the analogy principle, we look for a solution to the nonlinear equa-

tion with proportional arguments (4.4.1.3) in the same form (4.4.1.5). As a result,

we obtain the following nonlinear ODE with proportional argument for the function

U = U(z):

aU ′′
zz +

1

2
zU ′

z −
1

1−m− k
U + bq

k
1−m−k UmW k = 0,

W = U(sz), s = pq−1/2.
(4.4.1.6)

◭

Remark 4.16. Interestingly, in the special case p = q1/2, the PDE with proportional
arguments (4.4.1.3) with 0 < p < 1 and 0 < q < 1 has the exact solution (4.4.1.5), which
is expressed through a solution to the ODE without delay (4.4.1.6), at s = 1. If p < q1/2,
equation (4.4.1.3) reduces to a delay ODE with s< 1 and if p>q1/2, it reduces to an advanced
ODE, with s > 1. Furthermore, if p > 1 and q > 1, solutions to equation (4.4.1.3) can also
be expressed, for suitable values of p and q, through solutions of a delay ODE (s < 1), ODE
without delay (s = 1), or advanced ODE (s > 1).
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◮ Example 4.26. Now consider the reaction-diffusion equation with propor-

tional arguments and exponential nonlinearities

ut = auxx + beµu+λw, w = u(px, qt). (4.4.1.7)

Following the analogy principle, we set w = u in equation (4.4.1.7) to get the

simpler nonlinear heat (diffusion) equation with ordinary arguments and an expo-

nential source

ut = auxx + be(µ+λ)u. (4.4.1.8)

This equation admits an invariant solution of the form [134]:

u(x, t) = U(z)− 1

µ+ λ
ln t, z = xt−1/2, µ 6= −λ. (4.4.1.9)

According to the analogy principle, we seek a solution to the nonlinear PDE

with proportional arguments (4.4.1.7) in the form (4.4.1.9). As a result, we obtain

the following nonlinear ODE with proportional argument for U = U(z):

aU ′′
zz +

1

2
zU ′

z +
1

µ+ λ
+ bq

− λ
µ+λ eµU+λW = 0,

W = U(sz), s = pq−1/2.
◭

◮ Example 4.27. Consider the PDE with proportional arguments and a loga-

rithmic nonlinearity

ut = auxx + u(b lnu+ c lnw + d), w = u(px, qt). (4.4.1.10)

By setting w = u in equation (4.4.1.10), we get the simpler nonlinear equation

without delay

ut = auxx + u[(b+ c) lnu+ d],

which admits a multiplicative separable solution [422]:

u(x, t) = ϕ(x)ψ(t). (4.4.1.11)

According to the analogy principle, we look for a solution to the nonlinear PDE

with proportional arguments (4.4.1.10) in the form (4.4.1.11). On separating the

variables, we obtain the following nonlinear ODEs with proportional arguments for

ϕ = ϕ(x) and ψ = ψ(t):

aϕ′′
xx + ϕ(b lnϕ+ c ln ϕ̄) = Kϕ, ϕ̄ = ϕ(px);

ψ′
t = ψ(b lnψ + c ln ψ̄) + (d+K)ψ, ψ̄ = ψ(qt),

where K is an arbitrary constant. ◭

In the next subsection, we describe some nonlinear reaction-diffusion and wave

type equations with proportional delay and their exact solutions. Many of them (but

not all) were obtained in [411, 416]. Most of these solutions were constructed using

the analogy principle.

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 252

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 252



4.4. Nonlinear PDEs with Proportional Arguments. Principle of Analogy of Solutions 253

4.4.2. Exact Solutions to Quasilinear Diffusion Equations
with Proportional Delay

This subsection deals with quasilinear reaction-diffusion equations with proportional

delay that are linear in both derivatives.

Equations involving free parameters.

Most of the solutions given below were obtained in [416].

Equation 1. The PDE with proportional delay and a logarithmic nonlinearity

ut = auxx + u(b lnu+ c lnw + d), w = u(x, qt), (4.4.2.1)

admits functional separable solutions of the form

u(x, t) = exp[ψ2(t)x
2 + ψ1(t)x + ψ0(t)],

where the functionsψn = ψn(t) are described by the nonlinear system of ODEs with

proportional delay

ψ′
2 = 4aψ2

2 + bψ2 + cψ̄2, ψ̄2 = ψ2(qt),

ψ′
1 = 4aψ1ψ2 + bψ1 + cψ̄1, ψ̄1 = ψ1(qt),

ψ′
0 = a[ψ2

1 + 2ψ2] + bψ0 + cψ̄0 + d, ψ̄0 = ψ0(qt).

Equation 2. The PDE with proportional delay and a logarithmic nonlinearity

ut = auxx + u(b ln2 u+ c lnu+ d lnw + s), w = u(x, qt), (4.4.2.2)

admits two exact solutions depending on the sign of ab. These are given below.

1◦. A functional separable solution for ab > 0:

u(x, t) = exp[ψ1(t)ϕ(x) + ψ2(t)],

ϕ(x) = A cos(λx) +B sin(λx), λ =
√
b/a,

where A and B are arbitrary constants, and the functions ψn = ψn(t) are described

by the nonlinear system of ODEs with proportional delay

ψ′
1 = 2bψ1ψ2 + (c− b)ψ1 + dψ̄1, ψ̄1 = ψ1(qt),

ψ′
2 = b(A2 +B2)ψ2

1 + bψ2
2 + cψ2 + dψ̄2 + s, ψ̄2 = ψ2(qt).

2◦. A functional separable solution for ab < 0:

u(x, t) = exp[ψ1(t)ϕ(x) + ψ2(t)],

ϕ(x) = A cosh(λx) +B sinh(λx), λ =
√
−b/a,

where A and B are arbitrary constants, and the functions ψn = ψn(t) are described

by the nonlinear system of ODEs with proportional delay

ψ′
1 = 2bψ1ψ2 + (c− b)ψ1 + dψ̄1, ψ̄1 = ψ1(qt),

ψ′
2 = b(A2 −B2)ψ2

1 + bψ2
2 + cψ2 + dψ̄2 + s, ψ̄2 = ψ2(qt).

If A = ±B, we get ϕ(x) = Ae±λx. In this case, the second equation of the system

becomes independent, while the first one is linear in ψ1.
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Remark 4.17. Equations (4.4.2.1) and (4.4.2.2) and their solutions admit generalizations
to the case of a variable delay of general form, so that w = u(x, t − τ (t)), where τ (t) is an
arbitrary function.

Equations involving arbitrary functions of the form f(u−w).

Equation 3. The nonlinear PDE with proportional delay

ut = auxx + f(u− w), w = u(x, qt), (4.4.2.3)

admits an additive separable solution

u(x, t) = C1x
2 + C2x+ ψ(t),

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the nonlinear first-order ODE with proportional delay

ψ′
t = 2aC1 + f(ψ − ψ̄), ψ̄ = ψ(qt).

Equation 4. The nonlinear PDE with proportional argument

ut = auxx + f(u− w), w = u(px, t), (4.4.2.4)

admits an additive separable solution

u(x, t) = Ct+ ϕ(x),

where C is an arbitrary constant, and the function ϕ = ϕ(x) is described by the

nonlinear second-order ODE with proportional argument

aϕ′′
xx − C + f(ϕ− ϕ̄) = 0, ϕ̄ = ϕ(px).

Equation 5. The nonlinear PDE with proportional delay

ut = auxx + bu+ f(u− w), w = u(x, qt), (4.4.2.5)

admits two exact solutions depending on the sign of ab as shown below.

1◦. An additive separable solution with ab < 0:

u(x, t) = A cosh(λx) +B sinh(λx) + ψ(t), λ =
√
−b/a,

where A and B are arbitrary constants, and the function ψ = ψ(t) is described by

the nonlinear first-order ODE with proportional delay

ψ′
t = bψ + f(ψ − ψ̄), ψ̄ = ψ(qt). (4.4.2.6)

2◦. An additive separable solution with ab > 0:

u(x, t) = A cos(λx) +B sin(λx) + ψ(t), λ =
√
b/a,

where A and B are arbitrary constants, and the function ψ = ψ(t) is described by

the nonlinear first-order ODE with proportional delay (4.4.2.6).

It is noteworthy that equation (4.4.2.5) and its solutions admit generalizations to

the case of a variable delay of general form, so that w = u(x, t − τ(t)), where τ(t)
is an arbitrary function.
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Equation 6. The nonlinear PDE with proportional argument

ut = auxx + bu+ f(u− w), w = u(px, t), (4.4.2.7)

admits an additive separable solution

u(x, t) = Cebt + ϕ(x),

where C is an arbitrary constant and ϕ = ϕ(x) is a function satisfying the nonlinear

second-order ODE with proportional argument

aϕ′′
xx + bϕ+ f(ϕ− ϕ̄) = 0, ϕ̄ = ϕ(px).

Equation 7. The nonlinear PDE with proportional arguments

ut = auxx + eλuf(u− w), w = u(px, qt), (4.4.2.8)

admits exact solutions of the form

u(x, t) = U(z)− 1

λ
ln t, z = xt−1/2,

where U = U(z) is a function satisfying the nonlinear ODE with proportional argu-

ment

aU ′′
zz +

1

2
zU ′

z +
1

λ
+ eλUf

(
U −W +

1

λ
ln q

)
= 0,

W = U(sz), s = pq−1/2.

Equations involving arbitrary functions of the form f(w/u).

Equation 8. The nonlinear PDE with proportional delay

ut = auxx + uf(w/u), w = u(x, qt), (4.4.2.9)

admits a few multiplicative separable solutions listed below.

1◦. A solution with hyperbolic functions:

u(x, t) = [A cosh(λx) +B sinh(λx)]ψ(t),

where A, B, and λ are arbitrary constants, and the function ψ = ψ(t) is described

by the nonlinear first-order ODE with proportional delay

ψ′
t = aλ2ψ + ψf(ψ̄/ψ), ψ̄ = ψ(qt).

2◦. A solution with trigonometric functions periodic in x:

u(x, t) = [A cos(λx) +B sin(λx)]ψ(t),

where A, B, and λ are arbitrary constants, and the function ψ = ψ(t) is described

by the nonlinear first-order ODE with proportional delay

ψ′
t = −aλ2ψ + ψf(ψ̄/ψ), ψ̄ = ψ(qt).
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3◦. A degenerate solution:

u(x, t) = (Ax+B)ψ(t),

where A, B, and λ are arbitrary constants, and the function ψ = ψ(t) is described

by the nonlinear first-order ODE with proportional delay

ψ′
t = ψf(ψ̄/ψ), ψ̄ = ψ(qt).

Equation 9. The nonlinear PDE with proportional argument

ut = auxx + uf(w/u), w = u(px, t), (4.4.2.10)

admits a multiplicative separable solution

u(x, t) = eλtϕ(x),

where λ is an arbitrary constant and ϕ = ϕ(x) is a function satisfying the nonlinear

second-order ODE with proportional argument

aϕ′′
xx + ϕ[f(ϕ̄/ϕ)− λ] = 0, ϕ̄ = ϕ(px).

Equation 10. The nonlinear PDE with proportional delay

ut = auxx + bu lnu+ uf(w/u), w = u(x, qt), (4.4.2.11)

admits a multiplicative separable solution

u(x, t) = ϕ(x)ψ(t),

where ϕ = ϕ(x) and ψ = ψ(t) are functions satisfying the nonlinear second-order

ODE and first-order ODE with proportional delay

aϕ′′
xx = C1ϕ− bϕ lnϕ,

ψ′
t = C1ψ + ψf(ψ̄/ψ) + bψ lnψ, ψ̄ = ψ(qt),

(4.4.2.12)

with C1 being an arbitrary constant.

The first equation in (4.4.2.12) is autonomous. Its general solution can be ob-

tained in implicit form. A particular one-parameter solution to the equation is

ϕ = exp
[
− b

4a
(x + C2)

2 +
C1

b
+

1

2

]
,

where C2 is an arbitrary constant.

Notably, equation (4.4.2.11) and its solutions admit a generalization to the case

of a variable delay of general form, so that w = u(x, t − τ(t)), where τ(t) is an

arbitrary function.
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Equation 11. The nonlinear PDE with proportional argument

ut = auxx + bu lnu+ uf(w/u), w = u(px, t) (4.4.2.13)

admits a multiplicative separable solution

u(x, t) = exp(Cebt)ϕ(x),

where C is an arbitrary constant and ϕ = ϕ(x) is a function satisfying the nonlinear

ODE with proportional argument

aϕ′′
xx + bϕ lnϕ+ ϕf(ϕ̄/ϕ) = 0, ϕ̄ = ϕ(px).

4.4.3. Exact Solutions to More Complicated Nonlinear
Diffusion Equations with Proportional Delay

Equations with a variable power-law transfer coefficient.

Equation 1. The nonlinear PDE with proportional delay

ut = a(ukux)x + uf(w/u), w = u(x, qt), (4.4.3.1)

admits a multiplicative separable solution

u(x, t) = ϕ(x)ψ(t).

The functions ϕ = ϕ(x) and ψ = ψ(t) are determined from the ODE without delay

and ODE with proportional delay

a(ϕkϕ′
x)

′
x = bϕ,

ψ′
t = bψk+1 + ψf

(
ψ̄/ψ

)
, ψ̄ = ψ(qt),

where b is an arbitrary constant.

Equation 2. The nonlinear PDE with proportional argument

ut = a(ukux)x + uf(w/u), w = u(px, t), (4.4.3.2)

admits exact solutions of the form

u(x, t) = e2λtU(z), z = e−kλtx,

where λ is an arbitrary constant and U = U(z) is a function satisfying the ODE with

proportional argument

2λU − kλzU ′
z = a(UkU ′

z)
′
z + Uf(W/U), W = U(pz).

Equation 3. The nonlinear PDE with proportional delay

ut = a(ukux)x + buk+1 + uf(w/u), w = u(x, qt), (4.4.3.3)
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258 4. ANALYTICAL METHODS AND EXACT SOLUTIONS TO DELAY PDES. PART II

admits three multiplicative separable solutions listed below.

1◦. Solution with b(k + 1) > 0:

u(x, t) = [C1 cos(βx) + C2 sin(βx)]
1/(k+1)ψ(t), β =

√
b(k + 1)/a,

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the ODE with proportional delay

ψ′
t = ψf

(
ψ̄/ψ

)
, ψ̄ = ψ(qt). (4.4.3.4)

2◦. Solution with b(k + 1) < 0:

u(x, t) = [C1 exp(−βx) + C2 exp(βx)]
1/(k+1)ψ(t), β =

√
−b(k + 1)/a,

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

ODE with proportional delay (4.4.3.4).

3◦. Solution with k = −1:

u(x, t) = C1 exp
(
− b

2a
x2 + C2x

)
ψ(t),

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

ODE proportional delay (4.4.3.4).

Equation 4. The nonlinear PDE with proportional delay

ut = a(ukux)x + uk+1f(w/u), w = u(x, qt), (4.4.3.5)

admits the exact solution

u(x, t) = t−1/kϕ(z), z = x+ λ ln t,

where λ is an arbitrary constant, and the function ϕ=ϕ(z) satisfies the second-order

ODE with constant delay

a(ϕkϕ′
z)

′
z − λϕ′

z +
1

k
ϕ+ ϕk+1f(q−1/kϕ̄/ϕ) = 0, ϕ̄ = ϕ(z + λ ln q).

Equation 5. The nonlinear PDE with proportional arguments

ut = a(ukux)x + unf(w/u), w = u(px, qt), (4.4.3.6)

admits two exact solutions given below.

1◦. A self-similar solution:

u(x, t) = t
1

1−n U(z), z = xt
n−k−1
2(1−n) ,

where U = U(z) is a function satisfying the second-order ODE with proportional

argument

1

1−nU+
n−k−1

2(1−n) zU
′
z= a(UkU ′

z)
′
z+U

nf(W/U), W =U(sz), s= pq
n−k−1
2(1−n) .
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4.4. Nonlinear PDEs with Proportional Arguments. Principle of Analogy of Solutions 259

2◦. A traveling wave solution with q = p:

u(x, t) = U(z), z = kx− λt,

where k and λ are arbitrary constants, and the functionU =U(z) satisfies the second-

order ODE with proportional argument

ak2(UkU ′
z)

′
z + λU ′

z + Unf(W/U) = 0, W = U(pz).

Equation 6. The nonlinear PDE with proportional delay

ut = a(ukux)x + b + u−kf(uk+1 − wk+1), w = u(x, qt), (4.4.3.7)

admits a functional separable solution

u(x, t) =
[
ψ(t)− b(k + 1)

2a
x2 + C1x+ C2

]1/(k+1)

,

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the ODE with proportional delay

ψ′
t = (k + 1)f(ψ − ψ̄

)
, ψ̄ = ψ(qt).

Equation 7. The nonlinear PDE with proportional argument

ut = a(ukux)x + bu−k + f(uk+1 − wk+1), w = u(px, t), (4.4.3.8)

admits a functional separable solution

u =
[
b(k + 1)t+ ϕ(x)

] 1
k+1 ,

where the function ϕ = ϕ(x) is described by the ODE with proportional argument

aϕ′′
xx + (k + 1)f(ϕ− ϕ̄) = 0, ϕ̄ = ϕ(px).

Equations with an exponential transfer coefficient.

Equation 8. The nonlinear PDE with proportional delay

ut = a(eλuux)x + f(u− w), w = u(x, qt), (4.4.3.9)

admits an additive separable solution

u =
1

λ
ln(Ax2 +Bx+ C) + ψ(t),

where A, B, and C are arbitrary constants, and the function ψ(t) is described by the

ODE with proportional delay

ψ′ = 2a(A/λ)eλψ + f(ψ − ψ̄), ψ̄ = ψ(qt).
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Equation 9. The nonlinear PDE with proportional delay

ut = a(eλuux)x + beλu + f(u− w), w = u(x, qt), (4.4.3.10)

admits two additive separable solutions.

1◦. Solution with bλ > 0:

u(x, t) =
1

λ
ln[C1 cos(βx) + C2 sin(βx)] + ψ(t), β =

√
bλ/a,

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the ODE with proportional delay

ψ′
t = f

(
ψ − ψ̄

)
, ψ̄ = ψ(qt). (4.4.3.11)

2◦. Solution with bλ < 0:

u(x, t) =
1

λ
ln[C1 exp(−βx) + C2 exp(βx)] + ψ(t), β =

√
−bλ/a,

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the ODE with proportional delay (4.4.3.11).

Equation 10. The nonlinear PDE with proportional argument

ut = a(eλuux)x + eλuf(u− w), w = u(px, t), (4.4.3.12)

admits an additive separable solution

u(x, t) = − 1

λ
ln t+ ϕ(x),

where the function ϕ = ϕ(x) is described by the ODE with proportional argument

a(eλϕϕ′
x)

′
x +

1

λ
+ eλϕf(ϕ− ϕ̄) = 0, ϕ̄ = ϕ(px).

Equation 11. The nonlinear PDE with proportional arguments

ut = a(eλuux)x + eµuf(u− w), w = u(px, qt), (4.4.3.13)

admits the exact solution

u(x, t) = U(z)− 1

µ
ln t, z = xt

λ−µ
2µ ,

where the function U = U(z) is described by the nonlinear ODE with proportional

argument

λ− µ

2µ
zU ′

z −
1

µ
= a(eλUU ′

z)
′
z + eµUf

(
U −W +

1

µ
ln q

)
,

W = U(sz), s = pq
λ−µ
2µ .
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Equation 12. The nonlinear PDE with proportional delay

ut = a(eλuux)x + b+ e−λuf(eλu − eλw), w = u(x, qt), (4.4.3.14)

admits a functional separable solution

u(x, t) =
1

λ
ln
[
ψ(t)− bλ

2a
x2 + C1x+ C2

]
,

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the ODE with proportional delay

ψ′
t = λf

(
ψ − ψ̄

)
, ψ̄ = ψ(qt).

Other equations with a variable transfer coefficient.

Equation 13. The PDE with proportional delay and a variable logarithmic trans-

fer coefficient

ut = [(a lnu+ b)ux]x − cu lnu+ uf(w/u), w = u(x, qt), (4.4.3.15)

admits two multiplicative separable solutions

u(x, t) = exp(±
√
c/ax)ψ(t),

where the function ψ = ψ(t) is described by the ODE with proportional delay

ψ′
t = c(1 + b/a)ψ + ψf

(
ψ̄/ψ

)
, ψ̄ = ψ(qt).

Equation 14. The PDE with proportional delay and a transfer coefficient of

general form

ut = [uf ′
u(u)ux]x +

1

f ′
u(u)

[af(u) + bf(w) + c], w = u(x, qt), (4.4.3.16)

admits a solution in implicit form

f(u) = ϕ(t)x+ ψ(t),

where the functionsϕ=ϕ(t) and ψ=ψ(t) satisfy the ODEs with proportional delay

ϕ′
t = aϕ+ bϕ̄, ϕ̄ = ϕ(qt),

ψ′
t = aψ + bψ̄ + c+ ϕ2, ψ̄ = ψ(qt).

Equation 15. The PDE with proportional delay and a transfer coefficient of

general form

ut = a[f ′
u(u)ux]x + b+

1

f ′
u(u)

g
(
f(u)− f(w)

)
, w = u(x, qt), (4.4.3.17)
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admits a functional separable solution in implicit form

f(u) = ψ(t) − b

2a
x2 + C1x+ C2,

where the function ψ = ψ(t) is described by the ODE with proportional delay

ψ′
t = g

(
ψ − ψ̄

)
, ψ̄ = ψ(qt).

Equation 16. The PDE with proportional delay and a transfer coefficient of

general form

ut = a[f ′
u(u)ux]x + bf(u) +

f(u)

f ′
u(u)

g
(
f(w)/f(u)

)
, w = u(x, qt), (4.4.3.18)

admits two functional separable solutions in implicit form depending on the sign of

ab.
1◦. Solution with ab > 0:

f(u) =
[
C1 cos(λx) + C2 sin(λx)

]
ψ(t), λ =

√
b/a,

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the ODE with proportional delay

ψ′
t = ψg

(
ψ̄/ψ

)
, ψ̄ = ψ(qt). (4.4.3.19)

2◦. Solution with ab < 0:

f(u) =
[
C1 exp(−λx) + C2 exp(λx)

]
ψ(t), λ =

√
−b/a,

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the ODE with proportional delay (4.4.3.19).

Remark 4.18. Equations (4.4.3.1), (4.4.3.3), (4.4.3.7), (4.4.3.9), (4.4.3.10), and (4.4.3.14)–
(4.4.3.18) and their solutions admit generalizations to the case of a variable delay of general
form, so that w = u(x, t− τ (t)), where τ (t) is an arbitrary function.

Equation 17. The PDE with a proportional argument and a transfer coefficient

of general form

ut = [f ′
u(u)ux]x +

a

f ′
u(u)

+ g(f(u)− f(w)), w = u(px, t), (4.4.3.20)

admits a functional separable solution in implicit form

f(u) = at+ ϕ(x),

where the function ϕ = ϕ(x) is described by the ODE with proportional argument

ϕ′′
xx + g(ϕ− ϕ̄) = 0, ϕ̄ = ϕ(px).
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Equation 18. The PDE with proportional arguments and a transfer coefficient

of general form

ut = [f(u,w)ux]x, w = u(px, qt), (4.4.3.21)

admits a self-similar solution

u(x, t) = U(z), z = xt−1/2,

where the function U = U(z) is described by the nonlinear ODE with proportional

argument

[f(U,W )U ′
z]

′
z +

1
2 zU

′
z = 0, W = U(sz), s = pq−1/2.

If f(u,w) = aw, equation (4.4.3.21) has a simple solution that can be expressed

in terms of elementary functions:

u(x, t) = − qx2

6ap2t
.

Equation 19. The second-order evolution PDE of general form with propor-

tional arguments

ut = F (u,w, ux, uxx), w = u(px, pt),

admits the traveling wave solution

u(x, t) = U(z), z = kx− λt,

where the function U = U(z) is described by the nonlinear ODE with proportional

argument

F (U,W, kU ′
z, k

2U ′′
zz) + λU ′

z = 0, W = U(pz).

Remark 4.19. For more nonlinear reaction-diffusion type equations with proportional
delay that admit exact solutions, see [416].

4.4.4. Exact Solutions to Nonlinear Wave-Type Equations
with Proportional Delay

Quasilinear equations with constant speed linear in the derivatives.

Most of the solutions given below were obtained in [418].

Equation 1. The nonlinear Klein–Gordon type wave equation with proportional

arguments and a power-law nonlinearity

utt = auxx + bwk, w = u(px, qt), (4.4.4.1)

admits, for k 6= 1, a self-similar solution

u(x, t) = t
2

1−k U(z), z = x/t,
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where the function U = U(z) is described by the nonlinear ODE with proportional

argument

2(1 + k)

(1− k)2
U − 2(1 + k)

1− k
zU ′

z + z2U ′′
zz = aU ′′

zz + bq
2k

1−k W k,

W = U(sz), s = p/q.

Equation 2. The nonlinear Klein–Gordon type wave equation with proportional

arguments and a power-law nonlinearity

utt = auxx + bumwk, w = u(px, qt), (4.4.4.2)

admits, for k +m 6= 1, a self-similar solution

u(x, t) = t
2

1−k−m U(z), z = x/t,

where the function U = U(z) is described by the nonlinear ODE with proportional

argument

2(1 + k +m)

(1− k −m)2
U − 2(1 + k +m)

1− k −m
zU ′

z + z2U ′′
zz = aU ′′

zz + bq
2k

1−k−m UmW k,

W = U(sz), s = p/q.

Equation 3. The nonlinear Klein–Gordon type wave equation with proportional

arguments and an exponential nonlinearity

utt = auxx + beµu+λw, w = u(px, qt), (4.4.4.3)

admits, for µ+ λ 6= 0, an exact solution of the form

u(x, t) = U(z)− 2

µ+ λ
ln t, z =

x

t
,

where the function U = U(z) is described by the nonlinear ODE with proportional

argument

(z2U ′
z)

′
z +

2

µ+ λ
= aU ′′

zz + bq
− 2λ
µ+λ eµU+λW ,

W = U(sz), s = p/q.

Equation 4. The nonlinear Klein–Gordon type wave equation with proportional

arguments and a logarithmic nonlinearity

utt = auxx + u(b lnu+ c lnw), w = u(px, qt), (4.4.4.4)

admits a multiplicative separable solution

u(x, t) = ϕ(x)ψ(t),
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where the functions ϕ = ϕ(x) and ψ = ψ(t) are described by the nonlinear second-

order ODEs with proportional arguments

aϕ′′
xx + ϕ(b lnϕ+ c ln ϕ̄) = 0, ϕ̄ = ϕ(px);

ψ′′
tt = ψ(b lnψ + c ln ψ̄), ψ̄ = ψ(qt).

Equation 5. The nonlinear Klein–Gordon type wave equation with proportional

delay

utt = auxx + f(u− w), w = u(x, qt), (4.4.4.5)

which involves an arbitrary function f(z), admits an additive separable solution

u(x, t) = C1x
2 + C2x+ ψ(t),

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the nonlinear second-order ODE with proportional delay

ψ′′
tt = 2aC1 + f(ψ − ψ̄), ψ̄ = ψ(qt).

Equation 6. The nonlinear wave-type equation with proportional argument

utt = auxx + f(u− w), w = u(px, t), (4.4.4.6)

involving an arbitrary function f(z), admits an additive separable solution

u(x, t) = C1t
2 + C2t+ ϕ(x),

where C1 and C2 are arbitrary constants, and the function ϕ = ϕ(x) is described by

the nonlinear second-order ODE with proportional argument

aϕ′′
xx − 2C1 + f(ϕ− ϕ̄) = 0, ϕ̄ = ϕ(px).

Equation 7. The nonlinear wave-type equation with proportional delay

utt = auxx + bu+ f(u− w), w = u(x, qt), (4.4.4.7)

involving an arbitrary function f(z), admits two additive separable solutions depend-

ing on the sign of ab as shown below.

1◦. Solution with ab < 0:

u(x, t) = A cosh(λx) +B sinh(λx) + ψ(t), λ =
√
−b/a,

where A and B are arbitrary constants, and the function ψ = ψ(t) is described by

the nonlinear second-order ODE with proportional delay

ψ′′
tt = bψ + f(ψ − ψ̄), ψ̄ = ψ(qt). (4.4.4.8)

2◦. Solution with ab > 0:

u(x, t) = A cos(λx) +B sin(λx) + ψ(t), λ =
√
b/a,
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where A and B are arbitrary constants, and the function ψ = ψ(t) is described by

the nonlinear second-order ODE with proportional delay (4.4.4.8).

Notably, equation (4.4.4.7) and its solution admit a generalization to the case of

a variable delay of general form, so that w= u(x, t−τ(t)), where τ(t) is an arbitrary

function.

Equation 8. The nonlinear wave-type equation with proportional arguments

utt = auxx + eλuf(u− w), w = u(px, qt), (4.4.4.9)

involving an arbitrary function f(z), admits exact solutions of the form

u(x, t) = U(z)− 2

λ
ln t, z =

x

t
,

where the function U = U(z) is described by the nonlinear ODE with proportional

argument

(z2U ′
z)

′
z +

2

λ
= aU ′′

zz + eλUf
(
U −W +

2

λ
ln q

)
= 0,

W = U(sz), s = p/q.

Equation 9. The nonlinear wave-type equation with proportional argument

utt = auxx + uf(w/u), w = u(px, t), (4.4.4.10)

admits two nondegenerate multiplicative separable solutions given below.

1◦. Exact solution:

u(x, t) = (Ae−λt +Beλt)ϕ(x),

where A, B, and λ are arbitrary constants, and the function ϕ = ϕ(x) is described

by the nonlinear second-order ODE with proportional argument

aϕ′′
xx + ϕ[f(ϕ̄/ϕ)− λ2] = 0, ϕ̄ = ϕ(px).

2◦. Exact solution:

u(x, t) = [A cos(λt) +B sin(λt)]ϕ(x),

where A, B, and λ are arbitrary constants, and the function ϕ = ϕ(x) is described

by the nonlinear second-order ODE with proportional argument

aϕ′′
xx + ϕ[f(ϕ̄/ϕ) + λ2] = 0, ϕ̄ = ϕ(px).

Remark 4.20. Equations (4.4.4.6) and (4.4.4.10) and their exact solutions admit general-
izations to the case of a variable delay of general form, so that w = u(x − τ (x), t), where
τ (x) is an arbitrary function.
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More complicated nonlinear equations.

Equation 10. The nonlinear wave-type equation with proportional delay

utt = a(ukux)x + uf(w/u), w = u(x, qt), (4.4.4.11)

admits a multiplicative separable solution

u(x, t) = ϕ(x)ψ(t),

where the functions ϕ(x) and ψ(t) satisfy the ODE without delay and ODE with

proportional delay

a(ϕkϕ′
x)

′
x = bϕ,

ψ′′
tt = bψk+1 + ψf

(
ψ̄/ψ

)
, ψ̄ = ψ(qt),

with b being an arbitrary constant.

Equation 11. The nonlinear wave-type equation with proportional argument

utt = a(ukux)x + uf(w/u), w = u(px, t), (4.4.4.12)

admits exact solutions of the form

u(x, t) = e2λtU(z), z = e−kλtx,

where λ is an arbitrary constant and U = U(z) is a function satisfying the ODE with

proportional argument

4λ2U − 4kλ2zU ′
z + k2λ2z(zU ′

z)
′
z = a(UkU ′

z)
′
z + Uf(W/U), W = U(pz).

Equation 12. The nonlinear wave-type equation with proportional delay

utt = a(ukux)x + uf(w/u) + buk+1, w = u(x, qt), (4.4.4.13)

can have three different multiplicative separable solutions depending on the values

of the coefficients b and k as shown below.

1◦. Solution with b(k + 1) > 0:

u(x, t) = [C1 cos(βx) + C2 sin(βx)]
1/(k+1)ψ(t), β =

√
b(k + 1)/a,

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the ODE with proportional delay

ψ′′
tt = ψf

(
ψ̄/ψ

)
, ψ̄ = ψ(qt). (4.4.4.14)

2◦. Solution with b(k + 1) < 0:

u(x, t) = [C1 exp(−βx) + C2 exp(βx)]
1/(k+1)ψ(t), β =

√
−b(k + 1)/a,
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where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the ODE with proportional delay (4.4.4.14).

3◦. Solution with k = −1:

u(x, t) = C1 exp
(
− b

2a
x2 + C2x

)
ψ(t),

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by

the ODE with proportional delay (4.4.4.14).

Remark 4.21. Equations (4.4.4.11) and (4.4.4.13) and their solutions admit generaliza-
tions to the case of a variable delay of general form, so that w = u(x, t− τ (t)), where τ (t) is
an arbitrary function.

Equation 13. The nonlinear wave-type equation with proportional delay

utt = a(ukux)x + uk+1f(w/u), w = u(x, qt), (4.4.4.15)

admits an exact solution of the form

u(x, t) = t−2/kϕ(z), z = x+ λ ln t,

where λ is an arbitrary constant, and the function ϕ=ϕ(z) satisfies the second-order

ODE with constant delay

2(k + 2)

k2
ϕ− λ

k + 4

k
ϕ′
z + λ2ϕ′′

zz = a(ϕkϕ′
z)

′
z + ϕk+1f(q−2/kϕ̄/ϕ),

ϕ̄ = ϕ(z + λ ln q), λ ln q < 0.

Equation 14. The nonlinear wave-type equation with proportional arguments

utt = a(ukux)x + unf(w/u), w = u(px, qt), (4.4.4.16)

admits a self-similar solution

u(x, t) = t
2

1−n U(z), z = xt
n−k−1
1−n ,

where the function U = U(z) satisfies the second-order ODE with proportional

argument

2(1 + n)

(1− n)2
U +

(n− k − 1)(2n− k + 2)

(1− n)2
zU ′

z +
(n− k − 1)2

(1− n)2
z2U ′′

zz

= a(UkU ′
z)

′
z + Unf(q

2
1−nW/U), W = U(sz), s = pq

n−k−1
1−n .

Equation 15. The nonlinear wave-type equation with proportional delay

utt = a(eλuux)x + f(u− w), w = u(x, qt), (4.4.4.17)

admits an additive separable solution

u(x, t) =
1

λ
ln(Ax2 +Bx+ C) + ψ(t),
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where A, B, and C are arbitrary constants, and the function ψ = ψ(t) is described

by the ODE with proportional delay

ψ′′
tt = 2a(A/λ)eλψ + f

(
ψ − ψ̄

)
, ψ̄ = ψ(qt).

Equation 16. The nonlinear wave-type equation with proportional arguments

utt = a(eλuux)x + eµuf(u− w), w = u(px, qt), (4.4.4.18)

admits an exact solution of the form

u(x, t) = U(z)− 2

µ
ln t, z = xt

λ−µ
µ ,

where the function U = U(z) is described by the nonlinear ODE with proportional

argument

2

µ
+
µ− λ

µ
zU ′

z +
(λ− µ)2

µ2
z(zU ′

z)
′
z = a(eλUU ′

z)
′
z + eµUf

(
U −W +

2

µ
ln q

)
,

W = U(sz), s = pq
λ−µ
µ .

Equation 17. The nonlinear wave-type equation with proportional arguments

utt = [f(w)ux]x, w = u(px, qt), (4.4.4.19)

admits a self-similar solution

u(x, t) = U(z), z = x/t,

where the function U = U(z) is described by the nonlinear ODE with proportional

argument

(z2U ′
z)

′
z = [f(W )U ′

z]
′
z, W = U(sz), s = p/q.

This equation admits the first integral

z2U ′
z = f(W )U ′

z + C, (4.4.4.20)

where C is an arbitrary constant. In the special case C = 0, equation (4.4.4.20)

degenerates into a transcendental equation leading to the solution z2 = f(W ), which

generates an exact solution in implicit form to the original equation (4.4.4.19):

u(x, t) = U(z), z2 = f(U(sz)), z = x/t, s = p/q.

This solution can be represented as u=f−1
(
x2/(st)2

)
, where f−1 is the inverse of f .

Equation 18. The nonlinear PDE with proportional arguments

utt = F (u,w, ux, uxx), w = u(px, pt),

admits the traveling wave solution

u(x, t) = U(z), z = kx− λt,

where the function U = U(z) is described by the nonlinear ODE with proportional

argument

F (U,W, kU ′
z, k

2U ′′
zz)− λ2U ′′

zz = 0, W = U(pz).
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4.5. Unstable Solutions and Hadamard

Ill-Posedness of Some Delay Problems

4.5.1. Solution Instability for One Class of Nonlinear PDEs
with Constant Delay

Global instability of solutions. Let us consider the class of nonlinear reaction-

diffusion equations with constant delay

ut = auxx −
bk(u− w)

1− k
+ F

( u− kw

1− k

)
, w = u(x, t− τ), (4.5.1.1)

where F (u) is an arbitrary function (other than a constant), a> 0, and k > 0 (k 6= 1).

The following theorem holds true [434].

Theorem. Let u0 = u0(x, t) be a solution to the nonlinear equation (4.5.1.1).

Then the function

u = u0(x, t) + δect sin(γx+ ν),

c = (ln k)/τ, γ =
√
(b− c)/a, b− c > 0,

(4.5.1.2)

where δ and ν are arbitrary constants, is also a solution to this equation.

The theorem is proved by a direct check. It is a special case of Theorem 2 for

equation (3.4.2.31) in which one should set

f(z) ≡ −b z

1− k
+ F

( z

1− k

)
, z = u− kw.

Assuming that δ ≪ 1 and the points x satisfy the inequality sin(γx + ν) 6= 0,

we find from formula (4.5.1.2) that two solutions, u0 and u, indefinitely close in

the initial stage, will exponentially diverge from each other over time under the

conditions

k > 1, b > 0, τ > (ln k)/b. (4.5.1.3)

The divergence conditions (4.5.1.3) are purely geometric, and they do not depend

on the sign or form of the kinetic function F (u), implying that we face a global

solution instability here. Moreover, the results are exact, as they were obtained

without any approximations or simplifications. Hence, they hold for any solutions to

the class of equations concerned.

Some remarks. Assuming that τ =0 (or k=0) in (4.5.1.1), meaning that there is

no delay, we get the standard nonlinear diffusion equation with a volumetric reaction

ut = auxx + F (u). (4.5.1.4)

Notably, the delay PDE (4.5.1.1) and PDE (4.5.1.4) have identical stationary solu-

tions, u0 = u0(x), including the simplest solution u0 = const, where u0 is a root of

the algebraic (transcendental) equation F (u0) = 0.
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We choose the kinetic function F (z) so as to ensure that the stationary solution

u0 = u0(x) to the diffusion equation without delay (4.5.1.4) is stable. This stationary

solution will also solve the delay equation (4.5.1.1). In the original delay PDE

(4.5.1.1), we fix the parameters k > 1 and b > 0 and will gradually increase the

delay time τ starting from τ = 0. For a sufficiently large τ that satisfies the last

inequality in (4.5.1.3), the stationary solution will become unstable. In other words,

introducing a delay into a mathematical model can make a stable solution unstable.

4.5.2. Hadamard Ill-Posedness of Some Delay Problems

Hadamard ill-posedness of some delay problems with initial data. Suppose that

u0 = u0(x, t) is a solution to the Cauchy-type problem for equation (4.5.1.1) in the

domain −∞ < x <∞ and with initial data of general form

u0(x, t) = ϕ(x, t) at −τ ≤ t ≤ 0. (4.5.2.1)

We assume that the function u0 is bounded as x→ ±∞ for any fixed t > 0.

Equation (4.5.1.1) also has the solution u defined by formulas (4.5.1.2). Com-

paring u and u0 on the initial time interval, we find that

|u− u0| ≤ δ at −τ ≤ t ≤ 0. (4.5.2.2)

Therefore, for fixed τ and k (with k > 1 and so c > 0), the difference between the

solutions u and u0 can be made arbitrarily small through choosing a suitable δ. This

means that the initial data for these solutions will differ little on −τ ≤ t ≤ 0. On the

other hand, under conditions (4.5.1.3) and assuming that ν = 0, we obtain

|u− u0| = δect → ∞ as t → ∞

at the point x = π/(2γ). Hence, under the global instability conditions (4.5.1.3),

solutions of two Cauchy problems for equation (4.5.1.1) that are close in the initial

data will indefinitely diverge over time.

The solution instability with respect to the initial data make the Cauchy problem

for the delay equations (4.5.1.1) ill-posed in the sense of Hadamard (under conditions

(4.5.1.3)). Notably, this instability is general (global instability), and it does not

depend on the form of the kinetic function F (u).

Remark 4.22. The statement of the Cauchy-type problem for equation (4.5.1.1) in the
domain −∞ < x < ∞ and with initial conditions of general form (4.5.2.1) included the
additional condition for u0 that the solution must be bounded as x → ±∞ for any fixed
t > 0. Such conditions are typically used for linear heat equations without delay. It would
be interesting to see what happens if we replace the boundedness condition in this problem
with the stronger condition u0 → 0 as x → ±∞ (if f(z) → 0 as z → 0) and assume that
inequalities (4.5.1.3) hold.

Hadamard ill-posedness of some initial-boundary value problems. If condi-

tions (4.5.1.3) hold, solutions to nonlinear initial-boundary value problems for the

delay equation (4.5.1.1) can be globally unstable when boundary conditions of the

first, second, or third kind are used in the region 0 ≤ x ≤ h (for some h).
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Let u0=u0(x, t) be a solution of the initial-boundary value problem for the delay

equation (4.5.1.1) subjected to the initial condition (4.5.2.1) and general boundary

conditions of the first kind:

u0 = ψ1(x, t) at x = 0, u0 = ψ2(x, t) at x = h (t > 0), (4.5.2.3)

where h = π/γ, and the coefficient γ is defined in (4.5.1.2).

Formula (4.5.1.2) for u with ν = 0 gives a solution to equation (4.5.1.1) that sat-

isfies the boundary conditions (4.5.2.3) exactly. Through selecting an appropriate δ,

this solution can be made indefinitely close to the solution u0 = u0(x, t) in the initial

data interval −τ ≤ t ≤ 0 (see inequality (4.5.2.2)). However, if the global instability

conditions (4.5.1.3) hold, the initially close solutions u0 and u of the initial-boundary

value problems will exponentially diverge as t → ∞ at x = h/2. This instability

of solutions in equation (4.5.1.1) with respect to the initial data makes the initial-

boundary value problem in question ill-posed in the sense of Hadamard.

For other initial-boundary value problems, the solution u0 should be compared

with the solution u obtained by formula (4.5.1.2). The constant ν and the length of

the interval h must be chosen so that u0 and u satisfy the same boundary conditions.

In particular, as u, one should choose solution (4.5.1.2) with ν = π/2 in the case of

boundary conditions of the second kind on the interval of length h = π/γ, when the

derivatives ux are set on the boundaries of the region.

Remark 4.23. The global instability and Hadamard ill-posedness of some initial-boundary
value problems also occur for a more complex nonlinear reaction-diffusion equation with
constant delay. The equation is formally obtained by replacing the first time derivative ut on
the left-hand side of equation (4.5.1.1) with the linear combination of derivatives εutt + σut
[410].
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5. Numerical Methods for Solving

Delay Differential Equations

5.1. Numerical Integration of Delay ODEs

5.1.1. Main Concepts and Definitions

Consider the following Cauchy problem for an ODE with constant delay:

u′(t) = f(t, u(t), u(t− τ)), t0 < t ≤ T, (5.1.1.1)

u(t) = ϕ(t), t0 − τ ≤ t ≤ t0. (5.1.1.2)

Here and henceforth, it is assumed that the range of the independent variable t is

limited by a quantity T , which is set by the researcher based on the main purposes

and capabilities of the computer and software used.

The numerical methods for solving problem (5.1.1.1)–(5.1.1.2) rely on replacing

the equation for the continuous function u(t) with an approximate equation (or

system of equations) for functions of a discrete argument defined on a discrete set of

points from the interval [t0, T ]. A set of points G = {t0, t1, . . . , tK = T } is called

a grid, the points tk are called grid nodes (also known as grid points), and a discrete

function of the discrete argument uh = {uk = uh(tk), k = 0, 1, . . . ,K} is called a

grid function. The spacing between two neighboring nodes of a grid is called a grid

step size (or simply step size) and denoted hk+1 = tk+1 − tk. If hk = const for any

k, the grid step size is said to be constant; otherwise, it is variable. A continuous

approximation (obtained with interpolation) of the function uh(t) will be denoted

by ũh(t).

Solving the Cauchy problem (5.1.1.1)–(5.1.1.2) numerically suggests the follow-

ing. Let an initial function u(t) =ϕ(t) be given on the interval [−τ, t0]. It is required

to select a suitable step size hk and find approximate values uk of the unknown

function u(t) at the nodes tk, where k = 1, . . . ,K .

For a constant delay, one should select a step size (constant or variable) such that

hk ≤ τ , or tk−τ ≤ tk−1. The value of u(t−τ) is then known at each step and equal,

depending on t− τ , to either the value of the initial function ϕ(t − τ) or that of the

continuous approximation ũh(t− τ). In other words, at step k + 1, it is required to

solve the following subproblem for the ODE without delay:

u′(t) = f(t, u(t), u(t− τ)), tk < t ≤ tk+1,

u(tk) = uk,
(5.1.1.3)
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274 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

where uk = uh(tk) and

u(t− τ) =

{
ϕ(t− τ) if t ≤ t0 + τ ,

ũh(t− τ) if t0 + τ < t ≤ tk+1.

The numerical integration of problem (5.1.1.3) results in the value uk+1 of the grid

function uh and prolongation of the continuous approximation ũh(t) to the interval

[tk, tk+1], with ũh(tk+1) = uk+1.

Remark 5.1. If the delay is variable, τ = τ (t), it may happen that t − τ (t) > tk
for t ∈ [tk, tk+1], meaning that the value of the delayed argument lies within the interval
concerned. Then one fails to reduce the problem to an ODE without delay, in which case
interpolation is required (see [42, Section 3.3]).

To characterize the properties of numerical methods, it is conventional to use the

concepts and definitions specified below (see also [247, 248, 464]).

In the space of grid functions, the norm is introduced analogously to that in the

space of continuous functions:

‖uh‖ = max
0≤k≤K

|uk|, uk = uh(tk). (5.1.1.4)

For grid functions with three arguments, the norm is defined as

‖fh‖ = max
0≤k≤K

|fk|, fk = f(tk, uk, wk).

A numerical method is said to be convergent if

‖uh − u‖ → 0 as h→ 0.

A method is said to be convergent with order p > 0 if the estimate

‖uh − u‖ ≤ Chp

holds, where C is some positive constant independent of h.

Remark 5.2. Here and henceforth, for a variable step size hk, the expression h → 0 is
understood in the sense that ‖h‖ → 0, where ‖h‖ = max

1≤k≤K
hk .

It is convenient to rewrite the delay ODE (5.1.1.1) in the operator notation as

L [u] = f.

Likewise, the problem of numerical integration can be represented as

Lh[uh] = fh, (5.1.1.5)

where Lh[uh] is a finite-difference differentiation operator. For the first-order delay

ODE (5.1.1.1), the operator reads Lh[uh] = [uh(tk+1)−uh(tk)]/hk+1, where fh =
f(tk, uh(tk), ũh(tk − τ)).
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We shall call the grid function ψh = Lh[u] − fh a residual grid function or

approximation error of a numerical method. It follows that the unknown function u
satisfies the approximate equation (5.1.1.5) up to the approximation error. A numer-

ical method is said to approximate the original equation if

‖ψh‖ → 0 as h→ 0

or approximates with order p > 0 if the estimate

‖ψh‖ ≤ Chp

holds, where C is some positive constant independent of h.

Scheme (5.1.1.5) with the initial data (5.1.1.2) is called stable if the solution uh
depends continuously on the input data determined by the functions f and ϕ, and

this dependence is uniform with respect to the grid step size. In other words, for any

ε > 0 there exists a δ(ε), independent of the step h, at least for sufficiently small h,

such that if two pairs of functions f I, ϕI and f II, ϕII satisfy the conditions

‖f I − f II‖ ≤ δ and ‖ϕI − ϕII‖ ≤ δ,

then the respective grid functions satisfy the inequality

‖uI
h − uII

h‖ ≤ ε.

The fact that the solution is continuously dependent on f is referred to as stability

with respect to the right-hand side and if the solution is continuously dependent onϕ,

it is said to be stable with respect to the initial data.

Numerical methods suitable for solving ODEs and delay ODEs must be stable,

capable of approximating the problems well, and convergent to the exact solution.

5.1.2. Qualitative Features of the Numerical Integration of
Delay ODEs

Working with delay ODEs is complicated by the presence of the unknown function

with a delayed argument t−τ . Its values may lie outside the gridG; this is especially

true for ODEs with a variable delay τ = τ(t). Therefore, one has to compute

continuous approximations ũh(t) of the grid function uh. The function ũh(t) can be

constructed using a posterior interpolation of the values of uh obtained by a discrete

method or using the so-called continuous methods, which calculate ũh(t) at each

step.

We assume that for the problem in question, a grid G can be built such that

the following condition holds: for any tk ∈ G, we have either tk − τ(tk) < t0 or

tk − τ(tk) ∈ G. We can then employ methods that only rely on the nodes of the

grid G. One of them is the explicit Euler method, which uses the formula

uk+1 = uk + hk+1f(tk, uk, uq), q < k.
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For a constant delay, τ = const, the condition tk − τ ∈ G will hold if we choose

a constant step size h such that τ = Nh, where N is a positive integer.

This approach is inapplicable for ODEs with proportional delay. As an illustra-

tion, we will look at the model problem

u′(t) = u(t/2), 0 < t ≤ 1,

u(0) = 1.

For any tk ∈G, the value tk/2 must also lie on the grid, which implies that no initial

step is possible. Furthermore, as the grid nodes satisfy the condition tk+1 = 2tk for

k ≥ 1, we get hk+1 = tk. Hence, the last step size always equals 1/2, which means

that the method convergence condition cannot be met.

In the case of a variable delay of general form, with τ(t) > 0, the grid G can

be built on any bounded interval [t0, T ] with an arbitrarily small step size (see [42,

pp. 37, 38]). To this end, starting from the node t0, one should first identify all points

of discontinuity of the derivative and include them in G. Then, one should build the

grid in the reverse direction starting from the last node tK = T and using a desired

maximum step size. Each node tk generates a preceding node, tk−1 = tk − τ(tk),
which must be included in the grid. For some delays, this approach may result in an

irregular or redundant distribution of points (e.g., if the finite argumentα(t)= t−τ(t)
has a horizontal asymptote).

Another essential feature to be considered when developing numerical methods

for integrating delay ODEs is the propagation of discontinuities in the derivatives. As

shown in Subsection 1.1.2, the solution of the Cauchy problem with delay may have a

discontinuity in the derivative at the initial time t0. This discontinuity further extends

to higher-order derivatives. Therefore, for a numerical method to have the required

order of accuracy, the solution of the Cauchy problem must be sufficiently smooth

on each integration interval [tk, tk+1]: a method can have the order of accuracy p
if the solution has continuous derivatives up to order p + 1 inclusive. To meet this

requirement, all points of discontinuity of the unknown function and its derivatives

up to order p+ 1 inclusive must be added to the grid.

In the case of a constant delay, a point of discontinuity of order m is determined

from the simple relation t∗m = t0 +mτ . For a variable delay, the discontinuities are

identified in two main ways. The first one is known as tracking of discontinuities

(see [29, 154, 380, 381, 555] and the references in [42, p. 49]) and relies on seeking

discontinuities t∗m,j > t0 that satisfy the system of equations

t∗m,j − τ(t∗m,j) = t∗m−1,i for some i, (5.1.2.1)

where j is the number of a discontinuity of orderm induced by the ith discontinuity

of order m − 1; the discontinuities are assumed to be in ascending order and such

that j > i.

◮ Example 5.1. Consider the following problem for a delay ODE with a dis-

continuity at t0 = 0:

u′(t) = u(t− 2t1/2), t > 0;

u(t) = 1, −1 ≤ t ≤ 0.
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The derivative has a discontinuity of order m at the point t∗m, which is found from

the equation t∗m − 2(t∗m)1/2 = t∗m−1, where t∗m > t∗m−1 and t∗0 = 0. It follows that

discontinuities occur at t∗m =
(
1 +

√
t∗m−1 + 1

)2
for any positive integer m. ◭

The other approach relies on controlling the step size in the discontinuity region

by estimating the local error. Although easier to program, such algorithms involve

a large number of ‘rejected’ step sizes and can lead to numerous tiny steps in the

vicinity of low-order discontinuities (see [29, Section 3.4], [380] and references

therein).

Remark 5.3. Some other approaches to integrating problems with discontinuities in the
derivatives are outlined, with literature references, in [42, p. 39].

Furthermore, difficulties also occur in problems for ODEs with proportional

delay

u′(t) = f(t, u(t), u(pt)), t > 0;

u(0) = u0,
(5.1.2.2)

where 0 < p < 1. On the first integration interval, 0 < t ≤ h1, an ‘overlapping’

arises for any step size h1: the argument pt of the delay function u(pt) lies inside the

interval, which makes it impossible to use the method of steps. However, the method

of steps can already be employed starting from the second step, for t ≥ h1, provided

that the condition hk+1 < hk/p holds, which ensures that the argument pt lies on the

preceding integration interval (see [42, Subsection 6.4.1]).

Remark 5.4. At the first step 0 < t ≤ h1, one can use an approximate analytical solution
obtained as a truncated power series in the independent variable (see Subsection 1.4.2 and
[471, 473, 474]).

Remark 5.5. Notably, in Cauchy problems for ODEs with proportional delay where the
initial condition is set at t = 0, discontinuities of the first derivative do not extend to higher-
order derivatives, and hence, no associated additional restrictions on the selection of grid nodes
are required.

Differential equations with proportional delay can be classified as equations with

an infinite delay: as time passes, the t−pt gap between the current and past moment

increases indefinitely. As shown in [309], this circumstance leads to a significant

shortage of RAM in numerical computations on uniform grids. To resolve this issue

for the Cauchy problem with proportional delay (5.1.2.2), one uses the transforma-

tion x = ln t, v = u, which results in a problem for an ODE with constant delay:

v′(x) = exf(ex, v(x), v(x − τ)), x > −∞,

v(−∞) = u0,

where τ = − ln p > 0. This problem is complicated by the fact that the initial point

becomes negative infinity. Therefore, the numerical solution of problem (5.1.2.2) is

reasonable to carry out in two stages. First, one solves the original problem (5.1.2.2)
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on the interval 0 < t ≤ t0. Then, the transformed problem is solved on the semi-

infinite interval x > x0 = ln t0:

v′(x) = exf(ex, v(x), v(x − τ)), x > x0,

v(x) = u(ex), x ≤ x0.

In view of the above, we can conclude that the presence of delay affects the

accuracy and stability of numerical algorithms (see examples in [42, pp. 9–19]).

Therefore, the formal application of numerical methods designed for ODEs without

delay to problems with delay is not optimal. Consequently, numerical methods for

integrating delay ODEs should be developed considering the equations’ properties

and their solutions’ behavior.

5.1.3. Modified Method of Steps

Subsection 1.1.5 described the method of steps, which is a simple natural method

for solving delay ODEs. The resulting ODEs without delay can be treated using

appropriate numerical methods. The study [43] suggested, as a more convenient

alternative for numerical integration, a modification of the methods of steps for

constant delays. It was further extended in [44] to the case of a monotonically

decreasing and non-vanishing variable delay. We will outline this modification below

(see also [42, Section 3.4] and [29, 43, 44]).

Consider the Cauchy problem for an ODE with constant delay

u′(t) = f(t, u(t), u(t− τ)), t0 < t ≤ T ;

u(t) = ϕ(t), −τ ≤ t ≤ t0.
(5.1.3.1)

Discontinuities of the derivative are found as t∗m = t0 +mτ , m = 1, 2, . . . We will

be integrating problem (5.1.3.1) on the intervals from one discontinuity to the next

one until the condition t0 +m∗τ ≥ T holds at some step m∗. On the first interval

[t0, t0 + τ ], we have

u′(t) = f(t, u(t), ϕ(t− τ)), t0 < t ≤ t0 + τ,

u(t0) = ϕ(t0).
(5.1.3.2)

By integrating problem (5.1.3.2) with a suitable numerical method, we find approxi-

mate values uh(t) of the desired function u(t) on the interval [t0, t0 + τ ].
We will now consider the second interval: [t0 + τ, t0 + 2τ ]. By determining the

functions u1(t) = u(t − τ) and u2(t) = u(t), we represent problem (5.1.3.1) as a

system of two equations:

u′1(t) = f(t− τ, u1(t), ϕ(t − 2τ)), t0 + τ < t ≤ t0 + 2τ,

u′2(t) = f(t, u2(t), u1(t)), t0 + τ < t ≤ t0 + 2τ,

u1(t0 + τ) = ϕ(t0),

u2(t0 + τ) = uh(t0 + τ).

(5.1.3.3)
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5.1. Numerical Integration of Delay ODEs 279

The first equation of system (5.1.3.3) is independent. Integrating system (5.1.3.3)

using a suitable numerical method, we find approximate values uh(t) of the desired

function u2(t) = u(t) on the interval [t0 + τ, t0 + 2τ ].
By reasoning in the same way, we arrive at the general formula representing the

original problem (5.1.3.1) on the interval [t0 + (m − 1)τ, t0 +mτ ], m = 1, 2, . . . ,
as a system of m equations:

u′i(t) = f(t− (m− i)τ, ui(t), ui−1(t)), i = 1, . . . ,m,

ui(t0 + (m− 1)τ) = uh(t0 + (i− 1)τ), i = 1, . . . ,m,
(5.1.3.4)

where u0(t) = ϕ(t−mτ) and ui(t) = u(t− (m− i)τ).
Formula (5.1.3.4) allows one to integrate the original problem (5.1.3.1) step by

step with a numerical method. The set of values uk of the function uh(t) computed

at each step k represents approximate values of the desired function u(t). Notably,

one has to solve system (5.1.3.4) of an increasingly high order m at each step.

The method’s main advantage is that system (5.1.3.4) does not include delay and

so can be integrated by ‘conventional’ numerical methods. The main disadvantage

is that previously computed values must be recalculated at each step. However,

it is compensated by the fact that no interpolation is required or lack-of-memory

problems arise. The method of steps is applicable to ODEs with a variable delay

τ = τ(t) (see [42, Section 3.4]).

5.1.4. Numerical Methods for ODEs with Constant Delay

Preliminary remarks. The previous section discussed a modified method of steps

suitable for the numerical solution of delay ODEs. In what follows, we outline

more effective numerical methods for integrating ODEs with constant delay. For

simplicity, these methods will be exemplified by the following Cauchy problem for

a nonlinear first-order ODE:

u′(t) = f(t, u(t), u(t− τ)), t0 < t ≤ T,

u(t) = ϕ(t), −τ ≤ t ≤ t0.
(5.1.4.1)

Importantly, the methods outlined below admit natural generalizations to several

constant delays, a variable delay, and higher-order ODEs and systems of ODEs.

First-order Euler methods. Integrating the delay ODE (5.1.4.1) on the grid

interval [tk, tk+1], we write

u(tk+1) = u(tk) +

∫ tk+1

tk

f(t, u(t), u(t− τ)) dt. (5.1.4.2)

Approximating the integral on the right-hand side by the rectangle method, we obtain

[115, 144]:

uk+1 = uk + hf(tk, uk, uk−N ), k = 0, 1, . . . ,K − 1,

uk = ϕ(tk), k = −N,−N + 1, . . . , 0.
(5.1.4.3)
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280 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

These formulas constitute the explicit Euler method. The constant step size of the

grid, h, should be chosen as h = τ/N , where N is a positive integer, to ensure

that the points tk−N always belong to the grid. Then, if the last N values of the

grid function uh are stored in RAM, the value uk−N will also be known. The Euler

method is the simplest explicit first-order method.

Now consider the case of a variable step, with step sizes hk. In general, we have

tk − τ 6= tk−N , meaning that tk − τ is not a grid node. The Euler method formulas

will then become

uk+1 = uk + hk+1f
(
tk, uk, ũh(tk − τ)

)
, k = 0, 1, . . . ,K − 1,

ũh(t) = ϕ(t), −τ ≤ t ≤ t0,
(5.1.4.4)

where ũh(t) is a continuous approximation of the grid function uh. The value

ũh(tk − τ) is computed by interpolation on the interval [tq, tq+1], where tq is a grid

node such that tq ≤ tk − τ ≤ tq+1. For example, the simplest piecewise linear

interpolation can be used:

ũh(t) =
tq+1 − t

hq+1
uq +

t− tq
hq+1

uq+1, tq ≤ t ≤ tq+1. (5.1.4.5)

There are so-called continuous methods that compute values of the function ũh(t)
by special algorithms. In this case, the function ũh(t) is called an interpolant of

a numerical method. Continuous methods are especially effective when a variable

delay, τ = τ(t), is used. The information given below on continuous methods for

integrating delay ODEs relies on [42].

The continuous Euler method is defined by the formulas [40, 42, 116]:

uk+1 = ũh(tk + hk+1), k = 0, 1, . . . ,K − 1,

ũh(tk + θhk+1) = uk + θhk+1f
(
tk, uk, ũh(tk − τ)

)
, 0 ≤ θ ≤ 1,

ũh(t) = ϕ(t), −τ ≤ t ≤ t0.

The implicit Euler method with a constant step size is defined by

uk+1 = uk + hf(tk+1, uk+1, uk+1−N ), k = 0, 1, . . . ,K − 1,

uk = ϕ(tk), k = −N,−N + 1, . . . , 0.
(5.1.4.6)

Implicit methods are characterized by an extended stability region but require

solving a system of algebraic equations at each step to compute uk+1. A continuous

analogue with variable step size hk has the interpolant

ũh(tk + θhk+1) = uk + θhk+1f
(
tk+1, uk+1, ũh(tk+1 − τ)

)
, 0 ≤ θ ≤ 1.

Second-order methods. There are more accurate second-order modifications of

Euler’s method. For example, the midpoint method first computes the intermediate

values

tk+ 1
2
= tk +

1
2h, uk+ 1

2
= uk +

1
2hf(tk, uk, uk−N )
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5.1. Numerical Integration of Delay ODEs 281

and then determines uk+1 as

uk+1 = uk + hf
(
tk+ 1

2
, uk+ 1

2
, uk−N+ 1

2

)

≡ uk + hf
(
tk +

1
2h, uk +

1
2hfk, uk−N + 1

2hfk−N ), (5.1.4.7)

where fk = f(tk, uk, uk−N ), k = 0, 1, . . . ,K − 1, and N is a positive integer such

that h = τ/N .

The continuous midpoint method with a variable step size hk has the interpolant

ũh(tk + θhk+1) = uk + θhk+1f
(
tk +

1
2hk+1, uk +

1
2hk+1f̃k, ũh(tk − τ)

)
,

where 0 ≤ θ ≤ 1 and f̃k = f(tk, uk, ũh(tk − τ)).
Another second-order method is based on the formula

uk+1 =uk+
1
2h

[
f(tk, uk, uk−N )+f(tk+1, uk+hfk, uk−N+hfk−N )

)
(5.1.4.8)

and called Heun’s method. Its continuous analogue is discussed in [40, 116] and has

the interpolant

ũh(tk + θhk+1) = uk + (θ − 1
2 θ

2)hk+1f̃k

+ 1
2 θ

2hk+1f
(
tk+1, uk + hk+1f̃k, ũh(tk+1 − τ)

]
, 0 ≤ θ ≤ 1.

Besides (5.1.4.7) and (5.1.4.8), there is an implicit second-order method called

the trapezoidal method and defined by

uk+1 = uk +
1
2h

[
f(tk, uk, uk−N ) + f(tk+1, uk+1, uk+1−N )

]
. (5.1.4.9)

The interpolant of the continuous trapezoidal method with a variable step size is

expressed as

ũh(tk + θhk+1) = uk + (θ − 1
2 θ

2)hk+1f
(
tk, uk, ũh(tk − τ)

)

+ 1
2 θ

2hk+1f(tk+1, uk+1, ũh(tk+1 − τ)
)
.

Remark 5.6. The above first- and second-order methods are special cases of Runge–
Kutta methods. For similar discrete methods for ODEs without delay, see, for example, [247,
pp. 243–247], [464, pp. 214–220], and [423, pp. 64, 65]. Continuous methods for ODEs
without delay are described in [42, Section 5].

Fourth-order Runge–Kutta methods. The values uk of the grid function uh
are calculated as

uk+1 = uk +
1
6h

(
r
(1)
k+1 + 2r

(2)
k+1 + 2r

(3)
k+1 + r

(4)
k+1

)
,

r
(1)
k+1 = f(tk, uk, uk−N ),

r
(2)
k+1 = f

(
tk +

1
2h, uk +

1
2hr

(1)
k+1, uk−N + 1

2hr
(1)
k+1−N

)
,

r
(3)
k+1 = f

(
tk +

1
2h, uk +

1
2hr

(2)
k+1, uk−N + 1

2hr
(2)
k+1−N

)
,

r
(4)
k+1 = f

(
tk+1, uk + hr

(3)
k+1, uk−N + hr

(3)
k+1−N

)
,
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where h is a constant step size, N is a positive integer such that h = τ/N . The

interpolant for the continuous method with a variable step size hk can approximately

be represented as

ũh(tk+θhk+1)=uk+
1
6hk+1

[
(4θ−3θ2)r

(1)
k+1+2θr

(2)
k+1+2θr

(3)
k+1+(3θ2−2θ)r

(4)
k+1

]
,

where 0 ≤ θ ≤ 1. Alternatively, it can be defined by

ũh(tk + θhk+1) = uk +
1
6hk+1

[
(4θ3 − 9θ2 + 6θ)r

(1)
k+1

+ (6θ2 − 4θ3)r
(2)
k+1 + (6θ2 − 4θ3)r

(3)
k+1 + (4θ3 − 3θ2)r

(4)
k+1

]
.

The Runge–Kutta methods. General scheme. Below we outline the principle

of constructing the family of Runge–Kutta methods. Integrating equation (5.1.4.1)

on the interval [tk, tk+1], we obtain equation (5.1.4.2). Let us introduce auxiliary

nodes

t
(m)
k+1 = tk + αmhk+1, m = 1, 2, . . . ,M,

where 0=α1≤α2≤ · · ·≤αM ≤ 1. Note that t
(1)
k+1 = tk and t

(M)
k+1 ≤ tk+1. Replacing

the integral on the right-hand side of (5.1.4.2) by the quadrature formula involving

the nodes t
(m)
k+1, we obtain

u(tk+1) ≈ u(tk) + hk+1

M∑

m=1

cmf
(
t
(m)
k+1, u(t

(m)
k+1), u(t

(m)
k+1 − τ)

)
, (5.1.4.10)

where cm are weights of the quadrature formula (0 ≤ cm ≤ 1). To take advantage

of formula (5.1.4.10), we need to know the values u(t
(m)
k+1), m = 2, 3, . . . ,M . These

can be found likewise by integrating equation (5.1.4.1):

u(t
(m)
k+1) = u(tk) +

∫ t
(m)
k+1

tk

f(t, u(t), u(t− τ))dt, m = 2, 3, . . . ,M. (5.1.4.11)

Replacing the integral on the right-hand side of (5.1.4.11) by the quadrature formula

with nodes t
(1)
k+1, t

(2)
k+1, . . . , t

(m−1)
k+1 , we arrive at the approximate relations

u(t
(2)
k+1) ≈ u(tk) + hk+1β21f

(
t
(1)
k+1, u(t

(1)
k+1), u(t

(1)
k+1 − τ)

)
,

u(t
(3)
k+1) ≈ u(tk) + hk+1β31f

(
t
(1)
k+1, u(t

(1)
k+1), u(t

(1)
k+1 − τ)

)

+ hk+1β32f
(
t
(2)
k+1, u(t

(2)
k+1), u(t

(2)
k+1 − τ)

)
, (5.1.4.12)

. . .

u(t
(m)
k+1) ≈ u(tk) + hk+1

m−1∑

j=1

βmjf
(
t
(j)
k+1, u(t

(j)
k+1), u(t

(j)
k+1 − τ)

)
,

where βmj are weights of the quadrature formulas.
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5.1. Numerical Integration of Delay ODEs 283

To summarize, considering (5.1.4.11) and (5.1.4.12) and relying on formula

(5.1.4.10), we can write the standard scheme of the M -staged explicit Runge–Kutta

method as

uk+1 = uk + hk+1

M∑

m=1

cmr
(m)
k+1, (5.1.4.13)

r
(m)
k+1 = f

(
tk + αmhk+1, uk + hk+1

m−1∑

j=1

βmjr
(j)
k+1, u(tk + αmhk+1 − τ)

)
.

The method computes approximate values uk=uh(tk) of the unknown function u(t)
at the points of the grid G. It depends on the set of parameters cm, αm, and βmj ,
whose values are selected to ensure the required order of accuracy. Examples of

specific values of these parameters can be found, for example, in [203, 464] (see also

the second- and fourth-order Runge–Kutta methods described above).

◮ Example 5.2. Heun’s scheme (5.1.4.8) corresponds to M = 2, c1 = c2 =
1
2 ,

α1 =0, α2 =1, and β21 =1 and a constant step size hk+1 = h in (5.1.4.13), provided

that τ = Nh, where N is a positive integer, and u(tk − τ) = uk−N . ◭

Remark 5.7. The schemes of implicit Runge–Kutta methods can be obtained by replacing
the summation limitm−1 in the second formula of (5.1.4.13) withM∗, wherem≤M∗ ≤M .
Implicit methods are more stable and suitable for solving stiff problems. For details, see
Subsection 5.1.7.

The values of the function with delay u(tk + αmhk+1 − τ) are generally not

known and are usually computed using interpolation on the interval [tq, tq+1], where

q is a positive integer such that tq ≤ tk + αmhk+1 − τ ≤ tq+1. Continuous Runge–

Kutta methods (see [595, 596] and [42, Sections 5, 6]) allow one to compute at each

step an approximate continuous solution (interpolant) ũh(t) by the special formula

ũh(tk + θhk+1) = uk + hk+1

M∑

m=1

cm(θ)r
(m)
k+1, 0 ≤ θ ≤ 1, (5.1.4.14)

where cm(θ) are polynomials satisfying the conditions

cm(0) = 0, cm(1) = cm, m = 1, . . . ,M,

and some additional constraints associated with the order of accuracy (e.g., see [42,

pp. 118, 119]).

Different variants of continuous Runge–Kutta methods for delay ODEs that em-

ploy interpolation can be found, for example, in [42, 203, 214, 230, 366, 373, 476]

(see also the references in [29, 380]).

5.1.5. Numerical Methods for ODEs with Proportional
Delay. Cauchy Problem

Preliminary remarks. Equations in question. Numerical methods for integrating

differential equations with proportional delay and related equations, as well as exam-
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ples of their application, are discussed in many studies (e.g., see [75, 133, 149, 196,

294, 312, 471, 588, 590]). Some qualitative features of the numerical integration of

ODEs with proportional delay were discussed above in Subsection 5.1.2.

For simplicity and clarity, we will exemplify relevant numerical methods by

looking at the Cauchy problem for a nonlinear first-order ODE with proportional

delay

u′(t) = f(t, u(t), u(pt)), 0 < t ≤ T ;

u(0) = u0,
(5.1.5.1)

where 0 < p < 1.

Notably, the methods outlined below admit a natural extension to linear and

nonlinear higher-order ODEs with several delays as well as to systems of higher-

order delay ODEs.

Quasi-geometric grid. The study [39] suggested a quasi-geometric grid that is

useful in dealing with proportional delay ODEs. Suppose a solution is known up to

a certain time T0 = t0 > 0. We build a primary grid by the formula

Tn =
Tn−1

p
, n = 1, 2, . . .

We will be using so-called primary intervals

Hn = Tn − Tn−1 = T0
1− p

pn
, n = 1, 2, . . .

Note that the lengths of the intervals Hn increase exponentially. Now we introduce

a global grid by dividing each primary interval into m equal subintervals:

hk+1 =
H[k/m]+1

m
=
T0
m

1− p

p[k/m]+1
, k = 0, 1, . . . ,

where [A] stands for the integer part of the number A. Then the grid nodes are

defined as

tk = T[k/m] + rk/mhk, k = 0, 1, . . . , (5.1.5.2)

where rk/m = k−m[k/m]≡ k mod m is the integer remainder of dividing k bym.

For k > m, we obtain the following recurrence relation from (5.1.5.2):

tk = p−1tk−m.

The global grid (5.1.5.2) depends on t0, m, and p. It has the advantage that the

delayed arguments involving pt become known at each step, as there is no ‘overlap-

ping’, meaning that pt < tk for any t ∈ [tk, tk+1].
These kinds of grids are used in Runge–Kutta methods [294, 312, 576] and

weighting methods [39, 196, 309, 310], which are described below.

Remark 5.8. A more general similar grid can be built by dividing the primary intervals
into m subintervals of arbitrary length (see [39]).
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5.1. Numerical Integration of Delay ODEs 285

Weighting method. The simplest method for integrating ODEs with propor-

tional delay relies on the formula

uk+1=uk+hk+1[(1−σ)f(tk,uk, ũh(ptk))+σf(tk+1,uk+1, ũh(ptk+1))], 0≤σ≤1.

If σ = 0, we get the explicit first-order Euler method, while σ = 1 corresponds to

the implicit first-order Euler method. If σ = 1
2 , we get the second-order trapezoidal

rule. A continuous approximation of the solution ũh(t) is built using interpolation.

For example, the study [309] employs piecewise linear interpolation (5.1.4.5). Also,

there are continuous methods analogous to those described above for ODEs with

constant delay.

For more details and the investigation of weighting methods for linear ODEs

with proportional delay, see [39, 196, 309]. Weighting methods for related nonlinear

ODEs are discussed in [310].

Runge–Kutta methods. The principles of constructing Runge–Kutta methods

for ODEs with proportional delay (5.1.5.1) are generally the same as those described

above for ODEs with constant delay. The only difference is that the proportional

delay is zero at t = 0, and hence, the integration must be performed in two stages

[42, Subsection 6.4.1]. The first stage consists of one step, with step size h1, where

the following value is found:

ũh(θh1) = u0 + h1

M∑

m=1

cm(θ)r
(m)
1 , 0 ≤ θ ≤ 1,

r
(m)
1 = f

(
t
(m)
1 , u0 + h1

m−1∑

j=1

βmjr
(j)
1 , u0 + h1

m−1∑

j=1

cj(pαm)r
(j)
1

)
.

After that, the computation is carried out by the formulas

ũh(tk + θhk+1) = uk + hk+1

M∑

m=1

cm(θ)r
(m)
k+1, 0 ≤ θ ≤ 1,

r
(m)
k+1 = f

(
t
(m)
k+1, uk + hk+1

m−1∑

j=1

βmjr
(j)
k+1, Ū

(m)
k+1

)
,

where

Ū
(m)
k+1 =




uk + hk+1

m−1∑
j=1

cj

(
pt

(m)
k+1

−tk
hk+1

)
r
(j)
k+1 if pt

(m)
k+1 > tk;

ũh
(
pt

(m)
k

)
if pt

(m)
k+1 ≤ tk.

For questions of stability of Runge–Kutta methods for equations with propor-

tional delay, see [279, 294, 312, 576].

Spectral collocation methods. The main idea of the collocation method was

outlined in Subsection 1.4.6. Depending on the basis functions selected, the method
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286 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

Table 5.1. Basis functions in spectral collocation methods for ODEs with proportional delay.

Name Basis functions ϕn(t) Literature

Power-law functions tn [200, 471, 474]

Exponentials e−nt [590]

Shifted Chebyshev polynomials Tn(t) = cos[n arccos(2tL−1 − 1)] [470, 582]

Hermite polynomials Hn(t) = (−1)net
2 dn

dtn
(e−t

2
) [578]

Bessel polynomials of the first kind Jn(t) =
∑[ N−n

2
]

k=0
(−1)k

k!(k+n)!

(
t
2

)2k+n [589]

Jacobi rational functions
R

(α,β)
n (t) = t−1

t+1
P

(α,β)
n (t),

P
(α,β)
n (t) are Jacobi polynomials (see below)

[133]

Bernoulli polynomials Bn(t) (see below) [518]

generates a number of special techniques known as spectral collocation methods.

Table 5.1 gives several examples of basis functions used in the spectral collocation

methods for ODEs with proportional delay.

The Jacobi polynomials appearing in Table 5.1 (see the penultimate row) are

defined as [402, 553]:

P (α,β)
n (t) =

(−1)n

2nn!
(1− t)−α(1 + t)−β

dn

dtn
[(1− t)α+n(1 + t)β+n]

= 2−n
n∑

m=0

Cmn+αC
n−m
n+β (t− 1)n−m(t+ 1)m,

where C0
a = 1 and Cka = a(a−1)...(a−k+1)

k! for k = 1, 2, . . .
The Bernoulli polynomials mentioned in the last row of Table 5.1 are defined as

[369, 402, 553]:

Bn(t) =

n∑

k=0

BkC
k
nx

n−k (n = 0, 1, 2, . . .),

whereCkn =
n!

k!(n−k)! are binomial coefficients andBk are Bernoulli numbers, which

are found using the double sum

Bn =

n∑

k=0

1

k + 1

k∑

m=0

(−1)mCmk m
n

or the recurrence relations

B0 = 1,
n−1∑

k=0

CknBk = 0.
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5.1. Numerical Integration of Delay ODEs 287

Notably, the Bernoulli numbers arise when the following generating function is

expanded in a Taylor series:

t

et − 1
=

∞∑

n=0

Bn
tn

n!
, |t| < 2π.

Sometimes, this expansion is used as the definition of the Bernoulli numbers.

All Bn with odd n, expect for B1, are zero; the Bernoulli numbers with even n
have alternating signs. Below are several first Bernoulli numbers:

B0 = 1, B1 = − 1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 ,

B8 = − 1
30 , B10 = − 5

66 , B12 = − 691
2730 , B14 = 7

6 .

5.1.6. Shooting Method (Boundary Value Problems)

Preliminary remarks. The main idea of the shooting method is to reduce solving

a boundary problem for a given ODE with proportional delay to solving a series of

simpler Cauchy problems of the same type for the same equation. For conditions

where the shooting method applies to ODEs with variable delay, see [124]. For clar-

ity, we will denote the independent variable by x rather than t and restrict ourselves

to second-order ODEs with proportional delay, which, in addition to the unknown

function u = u(x), also involve w = u(px), where 0 < p ≤ 1.

Boundary value problems with boundary conditions of the first, second, or

third kind or with mixed boundary conditions. Suppose we deal with a boundary

value problem, in the domain x1 ≤ x≤ x2 (either x1 = 0, x2 = L or x1 = L, x2 = L
allowed), for a second-order ODE with proportional delay:

u′′xx = f(x, u, u′x, w, w
′
x), w = u(px). (5.1.6.1)

The equation is subjected to the boundary conditions of the first kind

u(x1) = a, u(x2) = b, (5.1.6.2)

where a and b are given numbers.

Consider the auxiliary Cauchy problem for equation (5.1.6.1) with the initial

conditions

u(x1) = a, u′x(x1) = λ. (5.1.6.3)

For any λ, a solution to this problem, obtained with a Runge–Kutta method or any

other suitable numerical method, will satisfy the first boundary condition (5.1.6.2) at

the point x = x1. The original problem will be solved if one finds a λ = λ∗ such

that the solution u = u(x, λ∗) coincides at x = x2 with the value prescribed by the

second boundary condition (5.1.6.2):

u(x2, λ∗) = b.
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288 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

Let us first set an arbitrary value λ = λ1 (e.g., λ1 = 0) and solve the Cauchy

problem (5.1.6.1), (5.1.6.3) numerically to obtain the number

∆1 = u(x2, λ1)− b. (5.1.6.4)

Then we choose a different value λ = λ2 and solve the problem to obtain

∆2 = u(x2, λ2)− b. (5.1.6.5)

Suppose that λ2 was chosen such that ∆1 and ∆2 have unlike signs (perhaps, a

few attempts will be required to get a suitable λ2). By virtue of solution continuity

in λ, the desired value λ∗ will lie between λ1 and λ2. Then, for example, we set

λ3 = 1
2 (λ1 + λ2) and solve the Cauchy problem again to obtain ∆3. Out of the

two preceding values λj (j = 1, 2), we only keep the one for which ∆j and ∆3

have unlike signs. The desired λ∗ will lie between λj and λ3. On setting further

λ4 = 1
2 (λj + λ3), we find ∆4 and so on. We will repeat this procedure until we

obtain λ∗ with the required accuracy.

Remark 5.9. The above algorithm can be improved by using, instead of bisection, the
formulas

λ3 =
|∆2|λ1 + |∆1|λ2

|∆2|+ |∆1|
, λ4 =

|∆3|λj + |∆j |λ3

|∆3|+ |∆j |
, . . .

Statements of initial conditions for the auxiliary Cauchy problem. Table 5.2

lists the initial conditions to be used in the auxiliary Cauchy problem for the numer-

ical solution of boundary value problems for second-order ODEs with proportional

delay (5.1.6.1) and different linear and nonlinear boundary conditions at the left

endpoint. The parameter λ in the Cauchy problem is selected to satisfy the boundary

condition at the right endpoint.

Table 5.2. Initial conditions in the auxiliary Cauchy problem used to solve boundary value

problems by the shooting method (x1 ≤ x ≤ x2).

No. Boundary value problem
Boundary condition

at left endpoint

Initial conditions

for the Cauchy problem

1 First boundary value problem u(x1) = a u(x1) = a, u′x(x1) = λ

2 Second boundary value problem u′x(x1) = a u(x1) = λ, u′x(x1) = a

3 Third boundary value problem u′x(x1)− ku(x1) = a u(x1) = λ, u′x(x1) = a+ kλ

4
Problem with a nonlinear

boundary condition
u′x(x1) = ϕ(u(x1)),
ϕ(z) is a given function

u(x1) = λ, u′x(x1) = ϕ(λ)

5
Problem with a nonlinear

boundary condition
u(x1) = ϕ(u′x(x1)),
ϕ(z) is a given function

u(x1) = ϕ(λ), u′x(x1) = λ

Importantly, nonlinear boundary value problems can have one, several, or no

solutions. See Examples 3.14 and 3.17 in the book [423, pp. 142, 148], illustrat-

ing the three scenarios by constructing exact solutions to combustion-theory one-

parameter problems without delay. Therefore, one should take special care when
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5.1. Numerical Integration of Delay ODEs 289

solving nonlinear problems: once a suitable value λ = λ1 is found, one should look

for other allowed values in a wide range of variation of λ. If no suitable λ1 is found,

one should consider the possibility that the problem may have no solutions. The

studies [192, 252, 468] dealt with existence and uniqueness conditions for solutions

to boundary value problems for nonlinear delay equations.

Linear boundary value problems. Modified shooting method. Consider the

linear boundary value problem for a second-order ODE with proportional delay

u′′xx + f1(x)u
′
x + f2(x)w

′
x + f3(x)u + f4(x)w = g(x), w = u(px), (5.1.6.6)

subjected to general homogeneous boundary conditions of the third kind

a1u
′
x + b1u = 0 at x = 0, (5.1.6.7)

a2u
′
x + b2u = 0 at x = l. (5.1.6.8)

We assume that a solution to problem (5.1.6.6)–(5.1.6.8) exists and is unique.

The linear boundary value problem (5.1.6.6)–(5.1.6.8) is the easiest to solve

using the modified shooting method outlined below.

First, let us find the auxiliary function u1 = u1(x) that solves the auxiliary

Cauchy problem for the linear nonhomogeneous equation (5.1.6.6) with the initial

conditions

u = a1 at x = 0; u′x = −b1 at x = 0. (5.1.6.9)

If follows from (5.1.6.9) that u1 = u1(x) satisfies the left boundary condition

(5.1.6.7). Then we find the auxiliary function u0 = u0(x) that solves another auxil-

iary Cauchy problem, for the linear homogeneous equation (5.1.6.6) with g(x) = 0
and the boundary conditions (5.1.6.9). By virtue of the linearity of the problem

and homogeneity of the boundary conditions, the function Cu0(x) will also solve

equation (5.1.6.6) and satisfy the left boundary condition (5.1.6.7). Therefore, we

seek a solution to original boundary value problem (5.1.6.6)–(5.1.6.8) as the sum

u(x) = u1(x) + Cu0(x). (5.1.6.10)

Since the function (5.1.6.10) must satisfy the right boundary condition (5.1.6.8), we

get the following linear algebraic equation for the constant C:

a2u
′
1(l) + b2u1(l) + C[a2u

′
0(l) + b2u0(l)] = 0. (5.1.6.11)

To sum up, solving the original boundary value problem (5.1.6.6)–(5.1.6.8) has

reduced to solving two auxiliary Cauchy problems, which can be integrated using

any numerical method described in this chapter. When dealing with a boundary

value problem subjected to nonhomogeneous boundary conditions, one should use

a transformation reducing it to a problem with homogeneous boundary conditions.

This can always be done with the change of variable u = v +A2x
2 +A1x+A0 by

appropriately selecting the constants Am.
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290 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

5.1.7. Integration of Stiff Systems of Delay ODEs Using the
Mathematica Software

Preliminary remarks. The previous sections discussed several numerical methods

for integrating delay ODEs. These methods can be extended to systems of ODEs.

However, not all of them work well with stiff systems. In particular, such systems

arise from the spatial discretization of delay PDEs in the method of lines (see Sub-

section 5.2.2 below). A system is called stiff if it describes processes occurring on

extremely different time scales [63, 464]. When solving such problems numerically,

restrictions on the step size are imposed not to improve the accuracy but to ensure

the algorithm stability [63], and only tiny step sizes are usually suitable. One uses

implicit methods from the families of Runge–Kutta or multi-step Gear methods to

solve stiff systems.

For the numerical solution of stiff systems of ODEs with constant delay, it is

advisable to employ the widely used software packages Mathematica and Maple,

which allow computations and programming in an analytical (symbolic) form. In

what follows, we restrict ourselves to describing the practical application of Mathe-

matica for solving such equations.

Mathematica uses the NDSolve function [558–560] to solve stiff systems of

ODEs with constant delay (including those with several delays). If no additional op-

tions are specified, NDSolve employs a sophisticated approach in which the method

and its parameters are automatically selected. With the Method option, the user can

manually specify one of the built-in methods for solving stiff systems: the implicit

Runge–Kutta method [561, 562] or the implicit multi-step Gear method. The latter

is based on the backward differentiation formula (BDF) [563].

Below we will exemplify the use of the method by looking at the Cauchy problem

for a system of ODEs with constant delay written in vector form:

u′
t = f(t,u,u(t− τ)), 0 < t ≤ T ;

u(t) = ϕ(t), −τ ≤ t ≤ 0,
(5.1.7.1)

where u= (u1, . . . , uN)
T , ϕ= (ϕ1, . . . , ϕN )T , and f = (f1, . . . , fN)

T are column

vectors.

Implicit Runge–Kutta method. The principles of constructing Runge–Kutta

schemes for delay ODEs are described in Subsection 5.1.4. Implicit Runge–Kutta

schemes for stiff systems of ODEs (5.1.7.1) are constructed likewise and defined by

the formulas [42, 561, 562]:

uk+1 = uk + hk+1

M∑

m=1

cmr
(m)
k+1, k = 0, . . . ,K − 1, (5.1.7.2)

r
(m)
k+1 = f

(
tk + αmhk+1, uk + hk+1

M∗∑

j=1

βmjr
(j)
k+1, u(tk + αmhk+1 − τ)

)
,

(5.1.7.3)
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5.1. Numerical Integration of Delay ODEs 291

where r
(m)
k =

(
r
(m)
1,k , r

(m)
2,k , . . . , r

(m)
N,k

)T
is a column vector of auxiliary functions

r
(m)
n,k each associated with the unknown function un, time layer tk, and stage m, n=
1, . . . , N , k=1, . . . ,K ,m=1, . . . ,M ; hk+1= tk+1−tk is the grid step size, cm are

weights of the quadrature formula (0≤ cm ≤ 1), αm are coefficients determining the

nodes of the quadrature formula, and βmj are weights of the intermediate quadrature

formulas. The values of the delayed functions u(tk + αmhk+1 − τ) are computed

using interpolation on the interval [tq, tq+1], where q is a positive integer such that

tq ≤ tk + αmhk+1 − τ ≤ tq+1 if tk + αmhk+1 − τ lies outside the grid nodes, and

coincide with the values uq computed previously on layer tq if tk+αmhk+1−τ = tq .

The different Runge–Kutta methods are generated by different quadrature formulas

defined by the sets of coefficients βmj , cm, and αm.

The method based on formulas (5.1.7.2)–(5.1.7.3) is an implicit M -staged

method. Besides being designed for systems, it differs from the explicit method

(5.1.4.13) in that the sum in (5.1.7.3) is computed up to M∗ rather than m − 1. If

M∗ = m − 1, we get the explicit method (5.1.4.13) written for systems of delay

ODEs. IfM∗=m, the values r
(m)
k are found consecutively from individual nonlinear

equations. If M∗ =M , the values r
(m)
k must be sought for all stages at once from a

system of N ×M equations; by default, Mathematica solves it by Newton’s method

(see [248, 464] for its description).

Selecting appropriate coefficients in the quadrature formulas is essential to han-

dle stiff problems successfully. By default, Mathematica determines the values of the

coefficients automatically. However, the type of the coefficients can be set manually

using the property Coefficients of the option Method of NDSolve [562]. For exam-

ple, these can be Lobatto IIIC coefficients, which appear in the Lobatto quadrature

formula [204, 311]. The first and last nodes in the Lobatto formula coincide with the

beginning and end of the integration interval. Therefore, α1 = 0 and αM = 1. The

other coefficients αm are zeros of the derivatives of shifted Legendre polynomials:

dM−2

dαM−2
m

(
αM−1
m (αm − 1)M−1

)
= 0. (5.1.7.4)

As a result, one obtains quadrature formulas of order 2M − 2. The weights

c1, . . . , cM and coefficients βmj in the Lobatto quadrature formulas are determined

from the conditions

M∑

m=1

cmα
γ−1
m =

1

γ
, γ = 1, . . . , 2M − 2;

M∑

j=1

βmjα
γ−1
j =

αγm
γ
, m = 1, . . . ,M, γ = 1, . . . ,M − 1;

βm1 = c1, m = 1, . . . ,M.

(5.1.7.5)

Mathematica determines the step size hk in the method (5.1.7.2)–(5.1.7.3) au-

tomatically based on estimating the local error of the solution [561]. To this end,

Mathematica compares the solutions obtained by the main method of order p with
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292 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

weights cm to those obtained by the auxiliary method of order p̂ with weights ĉm
(by default, p̂ = p − 1). The coefficients αm and βmj in both methods coincide,

and hence, the values s
(m)
k also coincide, which eliminates the need to solve the

nonlinear system (5.1.7.3) again.

Remark 5.10. In problems with solutions attaining huge absolute values (for example,
see Test problem 2 from Section 5.2, where the solution grows exponentially and reaches
absolute values of order 108 or higher), the NDSolve function with the Runge–Kutta method
selected can take a significant time, several minutes to an hour, to construct a solution. In-
creasing the allowed absolute and relative errors with the options AccuracyGoal → q and
PrecisionGoal → p can seriously reduce the running time to only a few seconds. For given
q and p, the algorithm will attempt to ensure that the error of the numerical solution does not
exceed 10−q + 10−p|x|.

Gear method. The Gear method, also known as the BDF (Backward Differenti-

ation Formula) method, is implemented in Mathematica as part of the package IDA

included in the library of methods SUNDIALS, developed by Lawrence Livermore

National Laboratory, USA. IDA stands for Implicit Differential-Algebraic implicit

solver, and SUNDIALS stands for SUite of Nonlinear and DIfferential/ALgebraic

equation Solvers, a collection of nonlinear and differential-algebraic solvers [563].

The codes of the IDA methods (see the user manual [215]) rely on DASPK [73, 74],

a collection of Fortran subroutines for solving differential-algebraic systems of high

dimension.

The M -step Gear method for system (5.1.7.1) is based on the formula [63, 215,

464]:

α0uk − hkf(tk,uk,u(tk − τ)) = −
M∑

m=1

αmuk−m. (5.1.7.6)

The values u(tk − τ) are calculated using interpolation on the interval [tq, tq+1],
where q is a positive integer such that tq ≤ tk−τ ≤ tq+1 if tk−τ lies outside the grid

nodes, and coincide with uq, computed previously on layer tq, if tk − τ = tq . The

system of nonlinear algebraic equations (5.1.7.6) can be solved using one or another

iterative method (e.g., Newton’s method).

For the Gear method to have the pth order of accuracy, one should set [464,

p. 255]:

α0=−
M∑

m=1

αm,

M∑

m=1

mαm=−1,

M∑

m=1

mjαm=0, j=2, 3, . . . , p. (5.1.7.7)

The highest achievable order of accuracy of the M -step Gear method is M .

Setting M = 1 in (5.1.7.6)–(5.1.7.7), we get the formula of the implicit Euler

method (5.1.4.6). For M = 2, M = 3, and M = 4 we get the relations [464, p. 256]:

3uk − 4uk−1 + uk−2 = 2hkf(tk,uk,u(tk − τ)),

11uk − 18uk−1 + 9uk−2 − 2uk−3 = 6hkf(tk,uk,u(tk − τ)),

25uk − 48uk−1 + 36uk−2 − 16uk−3 + 3uk−4 = 12hkf(tk,uk,u(tk − τ)),

which determine the second-, third-, and fourth-order Gear method, respectively.
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5.1. Numerical Integration of Delay ODEs 293

In Mathematica, the Gear method computes, on each time layer, a local error

estimate, Ek, and automatically selects a step size hk and orderM to ensure that the

relationEk/‖ωk‖ holds, where the nth componentωn,k of the vectorωk is evaluated

as

ωn,k =
1

10−p|un,k|+ 10−q
.

The values of p and q are determined with the options PrecisionGoal → p and

AccuracyGoal → q of NDSolve. By default, NDSolve selects the norm ‖ · ‖
automatically depending on the solution method; however, the norm can be set

manually. The Gear method uses the norm ‖x‖2 =
√∑

|xi|2 [564].

NDSolve selects the step sizes hk automatically. By default, the maximum

number of steps in which the algorithm must build a solution is estimated by the

initial step size [565]. This approach may fail if, for example, the solution increases

indefinitely exponentially (e.g., see Test problem 2 from Section 5.2). This restriction

can be eliminated by using the option MaxSteps → ∞ in the function NDSolve.

5.1.8. Test Problems for Delay ODEs. Comparison of
Numerical and Exact Solutions

Some exact solutions to delay ODEs can be found in [135, 136, 412, 495]. We will

take advantage of the results of these studies to construct a few model problems and

test Mathematica’s NDSolve function.

In the test problems for delay ODEs presented below, we mostly carried out the

solution on the time interval T = 50 τ for three delay times: τ = 0.05, τ = 0.1, and

τ = 0.5. We used the following numerical methods implemented in Mathematica

(Version 11.2.0):

(i) the second-order Runge–Kutta method,

(ii) the fourth-order Runge–Kutta method,

(iii) the Gear method,

(iv) an automatic method (when Mathematica automatically selects the best

method for a particular computation).

The relative error, σ, of a numerical solution uk = uh(tk) to a test problem for a

delay ODE will be understood as

σ = max
1≤k≤K

|(ue − uk)/ue|,

where ue = ue(tk) is the value obtained from the exact solution to the problem at

t = tk, and K is the number of time steps selected by NDSolve automatically.

Test problem 1. The Cauchy problem for a nonlinear ODE with constant delay

u′t = a(1− abτ2) + b(u− w)2, w = u(t− τ), t > 0;

u(t) = at+ c, −τ ≤ t ≤ 0,
(5.1.8.1)

has the exact solution

u(t) = at+ c, t > 0, (5.1.8.2)

where a, b, and c are free parameters.
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294 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

The Cauchy problem (5.1.8.1) was solved on the entire time interval for all three

delay times by the four numerical methods with a relative error of the order of 10−15.

The Runge–Kutta methods run into some problems in the initial times: the algorithm

chooses the step size automatically and makes it so small that the number of iterations

becomes extremely large, which can significantly increase the running time of the

method. Figure 5.1 shows by open circles the numerical solutions obtained by the

second-order Runge–Kutta method and Gear method for the delay time τ = 0.5 and

parameters a = 0.5, b = 1, and c = 1; the solid lines indicate the exact solutions of

the form (5.1.8.2).

u (a)

0 5 10 15 20 t

5

10

15
u (b)

0 � 10 �� 20 t

�

10

��

Figure 5.1. Exact solutions (solid line) and numerical solutions (open circles) of the test

problem (5.1.8.1) with a = 0.5, b = 1, and c = 1 and τ = 0.5 obtained by (a) the second-

order Runge–Kutta and (b) the Gear method.

Test problem 2. The Cauchy problem for a nonlinear ODE with constant delay

u′t = w2/u, w = u(t− τ), t > 0;

u(t) = eβt, −τ ≤ t ≤ 0,
(5.1.8.3)

has the exact solution

u(t) = eβt, t > 0. (5.1.8.4)

For given τ , the value of the parameter β is determined numerically from the tran-

scendental equation

β − e−2βτ = 0

using the FindRoot function [566]. Note that solution (5.1.8.4) decreases as the

parameter τ increases (we have β = 1 for τ = 0 and β = 0 for τ → ∞).

We solved the Cauchy problem (5.1.8.3) on the entire time interval for all three

delay times by the four numerical methods. The following relative errors were de-

tected: 10−7 for the automatic and Gear methods, 10−8 for the second-order Runge–

Kutta method, and 10−13 for the fourth-order Runge–Kutta method. Figure 5.2 plots

the exact solution (5.1.8.4) and the numerical solution obtained using the fourth-

order Runge–Kutta method for problem (5.1.8.3) with delay times τ = 0.05 (β =
0.912765) and τ = 0.5 (β = 0.567143).
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Figure 5.2. Exact solutions (solid lines) and numerical solutions (open circles), obtained by

the fourth-order Runge–Kutta method, for problem (5.1.8.3) at two delay times: (a) τ = 0.05
and (b) τ = 0.5; the dashed line indicates et (τ = 0).

Test problem 3. The Cauchy problem for a nonlinear ODE with constant delay

u′t = w exp(u2 + w2), w = u(t− τ), t > 0;

u(t) =
√
lnβ cos(βt), β =

3π

2τ
, −τ ≤ t ≤ 0,

(5.1.8.5)

has a periodic exact solution

u(t) =
√
lnβ cos(βt), t > 0. (5.1.8.6)

When integrating problem (5.1.8.5), each numerical method describes several

periods well, then fails with an error. The time intervals of adequate computation

with the Runge–Kutta methods are broader than those of the Gear and automatic

methods. As the delay time τ increases, these intervals expand. Figure 5.3 displays in

open circles the numerical solutions to problem (5.1.8.5) obtained by the fourth-order

Runge–Kutta method for delay times τ = 0.05 and τ = 0.5. The numerical solutions

obtained by the other methods are qualitatively similar to those in Figure 5.3 and

therefore are omitted here. The solid lines indicate the exact solutions of the form

(5.1.8.6).

Notably, solution (5.1.8.6) rapidly oscillates for small τ and is singular with

respect to the delay parameter because this solution does not have a limit as τ → 0.

This circumstance restricts the usage of the employed numerical methods for small τ .

The failure of the numerical solution at moderate τ is likely due to the instability of

the periodic solution. The instability (in linear approximation) of the only stationary

solution u = 0 can indirectly confirm the stated assumption.

Remark 5.11. We also employed the numerical methods implemented in Mathematica
and described in Subsection 5.1.7 to solve Cauchy problems for some nonlinear delay ODEs.
Subsection 6.1.1 discusses a numerical solution obtained by the second-order Runge–Kutta
to the Cauchy problem for Hutchinson’s equation. Subsection 6.1.2 describes a solution
obtained by the Gear method to the problem for Nicholson’s equation. Subsection 6.1.3 solves
the Cauchy problem for a Mackey–Glass type system using the fourth-order Runge–Kutta
method.
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Figure 5.3. Exact solutions (solid lines) and numerical solutions (open circles), obtained by

the fourth-order Runge–Kutta method, for problem (5.1.8.5) at two delay times: (a) τ = 0.05
and (b) τ = 0.5.

5.2. Numerical Integration of Delay PDEs

5.2.1. Preliminary Remarks. Method of Time-Domain
Decomposition

Preliminary remarks. A problem for delay reaction-diffusion equations. The

key features and issues in the numerical integration of delay PDEs are similar to those

in delay ODEs (see Subsection 5.1.2). These complicate the numerical solution of

delay PDEs as compared to respective PDEs without delay.

Notably, the statements of the initial data and boundary conditions for nonlinear

delay PDEs (see Chapter 3 for examples of such equations) coincide with those for

linear delay PDEs, which are specified in Section 2.2.

Consider the initial-boundary value problem for the quasilinear reaction-diffusion

type equation with constant delay

ut = auxx + f(u,w), 0 < x < L, t > 0, (5.2.1.1)

where u = u(x, t), w = u(x, t− τ), and a > 0, subjected to the initial condition

u(x, t) = g(x, t), 0 < x < L, −τ ≤ t ≤ 0, (5.2.1.2)

and homogeneous boundary conditions of the first kind

u(0, t) = u(L, t) = 0, t > 0. (5.2.1.3)

Remark 5.12. The problem described by the delay PDE (5.2.1.1) with initial data (5.2.1.2)
and nonhomogeneous boundary conditions of the first kind

u(0, t) = h1(t), u(L, t) = h2(t), t > 0,

where h1(t) and h2(t) are given functions, can be converted, with the substitution

u = U + h1(t) +
x

L
[h2(t)− h1(t)],

to a delay initial-boundary value problem for U = U(x, t) with homogeneous boundary
conditions. The resulting equation will then explicitly depend on x and t, which is a minor
complication to the problem.
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The time-domain decomposition method for delay PDEs. For a constant

delay, the time interval 0 ≤ t ≤ T can be broken down into several subintervals

of equal length [0, τ ], [τ, 2τ ], . . . (e.g., see [212]). In this case, problem (5.2.1.1)–

(5.2.1.3) on the first interval 0 < t ≤ τ becomes

ut = auxx + f(u, g), 0 < x < L, 0 < t ≤ τ,

u(x, 0) = g(x, 0), 0 < x < L,

u(0, t) = u(L, t) = 0, 0 ≤ t ≤ τ.

(5.2.1.4)

It has been taken into account that w(x, t) ≡ g(x, t) on 0 < t ≤ τ . Suppose we have

found a solution u1(x, t) to problem (5.2.1.4), which is a problem without delay.

Then we can proceed to solve the problem on the next interval, τ < t ≤ 2τ :

ut = auxx + f(u, u1), 0 < x < L, τ < t ≤ 2τ,

u(x, τ) = u1(x, τ), 0 < x < L,

u(0, t) = u(L, t) = 0, τ < t ≤ 2τ.

(5.2.1.5)

Here we have w(x, t) ≡ u1(x, t) on τ < t ≤ 2τ . By reasoning likewise, we

can eventually solve the original problem (5.2.1.1)–(5.2.1.3) on the time interval in

question. Each subproblem is one without delay, which can be solved by any suitable

analytical or numerical method for partial differential equations without delay (e.g.,

a finite difference method or the finite element method).

Remark 5.13. The time-domain decomposition method is a natural generalization of the
method of steps, which is used to solve Cauchy problems for delay ODEs (see Subsection
1.1.5). If f(u, w) = f1(w)u+ f0(w) in equation (5.2.1.1), the subproblems on all intervals
[0, τ ], [τ, 2τ ], . . . will be linear.

5.2.2. Method of Lines—Reduction of a Delay PDE to a
System of Delay ODEs

Preliminary remarks. Presently, the theory of solving delay ODEs is fairly well

developed as compared to the theory of solving delay PDEs. This applies to both

analytical methods (e.g., see Chapter 1 and [37, 138, 144, 146, 205, 275, 276, 283,

482]) and numerical methods (e.g., see Section 5.1 and [42, 284, 479]). In addition,

the widely used software packages such as Maple™, Mathematica®, and MATLAB®

have the ability to solve first-order delay ODEs [334, 336, 560]. Therefore, it is use-

ful to first reduce the partial differential equation with delay to a system of ordinary

differential equations with delay and then solve this system rather than the original

equation. This approach is often implemented with the method of lines [217, 385].

The book [469] presents a large number of codes to analyze delay PDE models using

the method of lines.

Reaction-diffusion type PDEs with delay. We use a space grid xn = nh, n =
0, 1, . . . , N , where h = L/N is the step size of the grid and N is the number of

space intervals. Let us reduce problem (5.2.1.1)–(5.2.1.3) to a system of ODEs by
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298 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

approximating the space derivative with a finite difference analogue and writing the

equation for a node xn:

(un)
′
t = aδxxun + f(un, wn), n = 1, . . . , N − 1, 0 < t ≤ T ;

u0(t) = uN (t) = 0, 0 ≤ t ≤ T ; (5.2.2.1)

un(t) = gn(t), n = 1, . . . , N − 1, −τ ≤ t ≤ 0,

where δxxun=h−2(un+1−2un+un−1). System (5.2.2.1) involvesN−1 unknown

functions un(t) and the same number of equations as well as two known functions,

u0(t) and uN(t).
The main drawback of this approach is that the resulting system of delay ODEs

is often stiff, when the step size has to be reduced for stability rather than to increase

the algorithm’s accuracy. Such systems have to be solved using specially developed

methods with increased stability [29, 479]. These are usually algorithms from the

class of implicit Runge–Kutta methods [42, 230, 366]. Their use requires computa-

tions at several points tm +αjsm, where sm is the temporal step size, and so entails

calculating the values of delayed functions at the points tm + αjsm − τ , which

may not coincide with grid nodes. In this case, interpolation algorithms have to be

employed. See Subsections 5.1.4 and 5.1.7 for a detailed description of Runge–Kutta

methods.

Higher accuracy can be achieved via space discretization by using Chebyshev–

Gauss–Lobatto nodes [58, 235, 340, 382]:

xn =
L

2
+
L

2
cos

( πn
N

)
, n = 0, 1, . . . , N.

Then the space derivative is approximated as

uxx(xn, t) ≈
N∑

i=0

cniu(xi, t),

where cni are coefficients of the differential matrix; see [84, 164, 554] for details. As

a result, considering the homogeneous boundary conditions, we obtain the nonlinear

system of delay ODEs

(un)
′
t = a

N−1∑

i=1

cniui + f(un, wn), n = 1, . . . , N − 1, 0 < t ≤ T ;

un(t) = gn(t), n = 0, 1, . . . , N, −τ ≤ t ≤ 0.

(5.2.2.2)

If f(u,w) = ur(w), system (5.2.2.2) can be conveniently written in operator

notation [235]:

u′
t = aCu + Ru, 0 < t ≤ T ;

u = g, −τ ≤ t ≤ 0,
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5.2. Numerical Integration of Delay PDEs 299

where u and g are column vectors, C = [cni]
N−1
n,i=1 is the differential matrix, and

R = diag{r(w1), . . . , r(wN−1)} is a diagonal matrix. We apply the Gauss–Jacobi

decomposition:

C = A+ B, A = diag{C}, B = C− A.

Approximating the delayed function w by the values from the preceding iteration,

w(k), we obtain the system of ODEs for the values at the next iteration, u(k+1):

(u(k+1))′t = (aA+ R
(k))u(k+1) + aBu(k), 0 < t ≤ T ;

u(k+1) = g, −τ ≤ t ≤ 0,

where k = 0, 1, . . . and u(0) is an arbitrary initial value. One usually takes

u(0) =

{
g(t), −τ ≤ t ≤ 0,

g(0), t > 0.

The resulting linear system of ODEs is suitable for parallel computing [235] and can

be solved by the methods described in Subsections 5.1.4 and 5.1.7.

Wave-type delay PDEs. Now consider the initial-boundary value problem for a

wave-type nonlinear delay equation of a general form:

εutt + σut = [p(x, u)ux]x + q(x, u, w)ux + f(x, u, w), t > 0, 0 ≤ x ≤ L;

u(x, t) = ϕ0(x, t), ut(x, t) = ϕ1(x, t), −τ ≤ t ≤ 0; (5.2.2.3)

u(0, t) = ψ0(t), u(1, t) = ψ1(t), t > 0,

where w = u(x, t − τ). The functions p, q, and f can additionally depend on t.
Special cases of the equation include delay reaction-diffusion equations (ε = 0 and

σ = 1), delay Klein–Gordon equations (ε = 1 and σ = 0), and nonlinear delay

telegraph equations (ε = 1 and σ 6= 0).

For the method of lines to be applicable to hyperbolic equations, we have to

introduce the second unknown, v = ut. As a result, we obtain

ut = v, t > 0, 0 ≤ x ≤ L;

εvt + σv = [p(x, u)ux]x + q(x, u, w)ux + f(x, u, w), t > 0, 0 ≤ x ≤ L;

u(x, t) = ϕ0(x, t), v(x, t) = ϕ1(x, t), −τ ≤ t ≤ 0; (5.2.2.4)

u(0, t) = ψ0(t), u(L, t) = ψ1(t), t > 0,

v(0, t) = (ψ0)
′
t, v(L, t) = (ψ1)

′
t, t > 0.

We use the space grid xn = nh, where n = 0, 1, . . . , N , h = L/N is the step

size, and N is the number of spatial intervals. Approximating the derivatives with

respect to x by finite difference analogues and writing the equation for the node xn,
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300 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

we reduce problem (5.2.2.4) to the system of ODEs

(un)
′
t=vn, n=1, . . .N−1, 0<t≤T ;

ε(vn)
′
t+σvn=δx[pnδxun]+qnδxun+fn, n=1, . . . ,N−1, 0<t≤T ;

un(t)=ϕ0(xn, t), vn(t)=ϕ1(xn, t), n=0,1, . . . ,N, −τ≤ t≤0;

u0(t)=ψ0(t), uN(t)=ψ1(t), 0<t≤T ;
v0(t)=(ψ0)

′
t, vN(t)=(ψ1)

′
t, 0<t≤T,

(5.2.2.5)

where un = un(t) = u(xn, t), vn = vn(t) = v(xn, t), wn = u(xn, t − τ), pn =
p(xn, un), qn = q(xn, un, wn), fn = f(xn, un, wn), T is the endpoint of the com-

putational temporal interval, and δx is the difference operator expressed as

δxun =
1

h
(un+1 − un),

δx[pnδxun] =
1

h2
[pn(un+1 − un)− pn−1(un − un−1)].

System (5.2.2.5) involves N − 1 unknown functions un(t), N − 1 unknown func-

tions vn(t), and 2N − 2 equations as well as four known functions u0(t), uN(t),
v0(t), and vN (t).

A procedure for numerically solving delay problems by the method of lines

using Mathematica. Figure 5.4 schematically displays a procedure for the numeri-

cal integration of the initial-boundary value problem (5.2.2.3) using the Mathematica

software. The procedure involves the following sequence of actions.

1◦. State the problem by specifying the equation, initial data, and boundary

conditions.

2◦. Select the number of spatial intervals N .

3◦. If the equation is hyperbolic, introduce the new variable v = ut.

4◦. Apply the method of lines to obtain a system of delay ODEs consisting of

(a) N − 1 equations and N − 1 initial conditions (plus two algebraic relations at

the boundary of the domain) if the equation is parabolic or (b) 2N − 2 equations

and 2N − 2 initial conditions (plus four algebraic relations at the boundary of the

domain) if the equation is hyperbolic.

5◦. Select the temporal interval 0 < t ≤ T at which the system is integrated.

6◦. Solve the system of ODEs from step 4◦ using one of the methods of the

NDSolve function.

7◦. In case of a computation error, reduce the temporal interval from step 5◦ and

try to obtain a satisfactory solution on the shorter interval.

8◦. Eventually obtain the values of the unknown at all desired (or possible)

temporal layers, the absolute and relative error estimates of the exact solution (if

known), and plots and animations of the numerical solution (as well as the exact

solution).

It is noteworthy that the constant coefficient σ in equation (5.2.2.3) can be re-

placed with a function σ = σ(x, u, w).
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Statement of problem:
delay PDE, initial data and boundary conditions

Selection of , the number of spatial intervalsN

Any errors?

Parabolic Hyperbolic

Discretization to obtain
a system of delay ODEs:

delay equations,N - 1
initial conditions,N - 1

2 algebraic relations
at region boundary

Discretization to obtain
a system of delay ODEs:

2 delay equations,N - 2
2 initial conditions,N - 2

4 algebraic relations
at region boundary

Selection of temporal integration interval
(temporal step size determined automatically)

Solving the ODE system with Mathematica’s
NDSolve function using one of three methods:

implicit Runge Kutta second-order,–
implicit Runge Kutta fourth-order,–

implicit Gear

Error description
and interruption time

Output of results:
values of unknown function at all grid points,

errors, plots, animations

End of program

Equation type

Substitution u
t
= v

No Yes

Figure 5.4. A flowchart for the numerical integration of reaction-diffusion and wave-type

delay problems by the method of lines.
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302 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

Remark 5.14. Apart from uniform grids in x, one can use grids with a variable step size
[281]. For nonuniform grids with step size hn = xn − xn−1, the second derivative uxx is
approximated as

uxx ≈ 2

hn + hn+1

( un+1 − un
hn+1

− un − un−1

hn

)

,

where
∑

hn = L (with 0 ≤ x ≤ L).

Remark 5.15. The method of lines can also be employed to integrate 2D and 3D reaction-
diffusion type delay equations. The terms [p(x, u)ux]x and q(x, u,w)ux should then be
replaced with ∇ · [p(x, u)∇u] and q(x, u, w) ·∇u. In particular, in the two-dimensional case
on a uniform grid, the Laplace operator, ∆u = uxx + uyy, is approximated as follows:

∆u ≈ 1

h2
1

(un+1,m − 2un,m + un−1,m) +
1

h2
2

(un,m+1 − 2un,m + un,m−1),

where un,m = u(xn, ym, t), xn = nh1, ym = mh2 (n = 0, 1, . . . , N ; m = 0, 1, . . . ,M ),
and h1 = L1/N and h2 = L2/M are the step sizes in the space variables x and y.

5.2.3. Finite Difference Methods

Basic concepts and definitions of the theory of finite difference methods. Finite

difference methods (or difference methods for short) are the most common numerical

methods for solving problems for partial differential equations without delay. With

these, independent variables are treated on a discrete set of points, while suitable

difference analogues are employed to approximate all continuous derivatives of the

unknown function. Appropriate modifications of these methods can be used to solve

problems for delay PDEs like (5.2.1.1)–(5.2.1.3). Following [248], we present below

the basic concepts and definitions from the theory of difference methods.

We will use a space grid Gx = {x0 = 0, x1, . . . , xN = L} and a temporal grid

Gt = {t0 = 0, t1, . . . , tK = T }. Through these discrete points, we draw straight

lines parallel to the x and t axes. The points of intersection of these lines define

nodes of the spatio-temporal grid G = {(xn, tk)}. The collection of all grid nodes

lying on a straight line t = tk is called a temporal layer. The line t = 0 is called the

initial layer. The spatial points x0 = 0 and xN = L are the boundary nodes, while

x1, . . . , xN−1 are inner nodes.

A spatial step size of the grid is denoted hn = xn − xn−1 and a temporal step

size is denoted sk = tk+1 − tk. A rectangle [xn−1, xn; tk, tk+1] is called a grid cell.

If hn = h= const and sk = s= const for any n and k, then the grid is called uniform,

otherwise it is nonuniform.

All derivatives involved in the equation and boundary conditions are replaced

with differences (or suitable linear combinations) of the values of the unknown

u(x, t) at the grid nodes. The resulting algebraic equations are called a finite differ-

ence scheme or difference scheme for short. Solving the algebraic system, one finds

the values of the discrete grid functions uh = {un,k = uh(xn, tk), n = 0, 1, . . . , N,
k = 0, 1, . . . ,K}, which provide an approximate (difference) solution at the nodes.

Within the region under consideration, we only replace the partial differential

equation with the difference scheme, using the same configuration of nodes called a
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5.2. Numerical Integration of Delay PDEs 303

stencil. A scheme with a stencil containing only one node of the new layer is called

explicit. One computes the value at this node via the values from the original layer

(or a few previous layers) in finitely many steps. A scheme is called implicit if it has

a stencil with several new-layer nodes. The values at the new layer are found from

a system of many algebraic equations. Solving such systems is often non-trivial and

requires the development of special algorithms.

Suppose the equation involves only the first time derivative ut. Then the differ-

ence scheme is usually two-layer, meaning that it only has two layers: the current one

tk and the new one tk+1. However, at least three layers are required if the equation

contains the second time derivative utt, in which case the previous layer tk−1 has to

be used in addition to the current and new ones.

The numerical integration of problem (5.2.1.1)–(5.2.1.3) suggests that one has

to select appropriate step sizes hn and sk and find approximate values un,k of the

unknown function u(x, t) at the discrete nodes (xn, tk), where n = 1, . . . , N and

k = 1, . . . ,K .

Characterizing the properties of numerical methods requires using certain con-

cepts and definitions (e.g., see [248]) that we describe below.

For convenience, we rewrite equation (5.2.1.1) briefly in the operator form

L [u] = f, (x, t) ∈ Q, (5.2.3.1)

where L [u] = ut − auxx, Q = {0 < x < L, 0 < t ≤ T }. We introduce a grid G
in the domain Q. The numerical finite-difference scheme (difference scheme or just

scheme for short) for problem (5.2.1.1)–(5.2.1.3) can be written as

Lh[uh] = fh, (x, t) ∈ G, (5.2.3.2)

where Lh[uh] is a finite-difference differentiation operator, and the right-hand side

is defined by fh = f(uh(xn, tk), w̃h(xn, tk)); the tilde denotes a continuous approx-

imation of a grid function.

The delay reaction-diffusion equations (5.2.1.1) most frequently come with the

operator

Lh[uh] = s−1[uh(xn, tk + s)− uh(xn, tk)]

− h−2[uh(xn+1, tk)− 2uh(xn, tk) + uh(xn−1, tk)].

The norm used in the space of grid functions is similar to that of continuous

functions:

‖uh‖ = max
(xn,tk)∈G

|uh(xn, tk)|.

The numerical solution uh is only defined on the grid G, and hence, the con-

tinuous operator L , defined for all (x, t) ∈ Q, is inapplicable to it. The exact

solution u(x, t) is defined for all (x, t), including the gridG; therefore, the difference

operator Lh can be applied to u(x, t).
The proximity of a difference scheme to the original equation is determined by

the magnitude of the residual

ψh = Lh[u]− fh, (x, t) ∈ G.
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A difference scheme is said to approximate a PDE if

‖ψh‖ → 0 as h→ 0 and s→ 0 (5.2.3.3)

and has approximation orders p > 0 in x and q > 0 in t if

‖ψh‖ = O(hp + sq).

If ‖ψh‖ → 0 regardless of how s and h tend to zero, the approximation is called

unconditional. For some schemes, the norm of the residual is defined as ‖ψh‖ =
O(hp+ sq+ sr/hm). In this case, the additional condition sr/hm → 0 must hold for

‖ψh‖ → 0. This kind of approximation is called conditional.

If the numerical result does not tend to the exact solution as the grids condense

and, on the contrary, the initially small errors indefinitely increase, the scheme is

called unstable.

Scheme (5.2.3.2) with the initial data (5.2.1.2) and boundary conditions (5.2.1.3)

is said to be stable if the solution uh is continuously dependent on the input data,

defined by the functions f and ϕ, and this dependence is uniform with respect to the

grid step size [247]. In other words, for any ε > 0 there exists a δ(ε), independent

of the step size h (at least for sufficiently small h), such that if two pairs of functions

f I, ϕI and f II, ϕII satisfy the conditions

‖f I − f II‖ ≤ δ and ‖ϕI − ϕII‖ ≤ δ,

then the respective grid functions satisfy the inequality

‖uI
h − uII

h‖ ≤ ε.

A solution continuously dependent on f is called stable with respect to the right-

hand side and that continuously dependent on ϕ is called stable with respect to the

initial data.

Numerical methods for integrating PDEs can also be conditionally or uncondi-

tionally stable. A method is called unconditionally stable if the above relations hold

for any step sizes in time and space as long as they are small enough. If additional

relations are imposed on the step sizes, then the method is called conditionally stable.

The grid solution of the initial layer is affected by the errors of the initial data. On

each successive layer, the grid solutions are also affected by the approximation errors

of the differential equation and boundary conditions. These errors are transferred to

the subsequent layers and can accumulate during the computation. To obtain good

accuracy, one has to ensure that all these errors remain small and do not increase

much.

A difference solution is said to converge to the exact solution if

‖uh − u‖ → 0 as h→ 0 and s→ 0.

The method is convergent with order p > 0 in x and order q > 0 in t if

‖uh − u‖ = O(hp + sq) as h→ 0.
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5.2. Numerical Integration of Delay PDEs 305

The difference scheme (5.2.3.2) is called well-defined if it is stable and its solu-

tion exists and is unique for any allowed f .

Below we discuss a few difference methods (schemes) for problems of the form

(5.2.1.1)–(5.2.1.3) with constant delay.

Explicit finite-difference scheme. Data storage optimization in RAM. Con-

sider a uniform spatial grid xn = nh (n=0, 1, . . . , N ), where h=L/N is the spatial

step size. Let s denote a temporal step size such that Ms= τ , whereM is a positive

integer. We approximate the time derivative with a finite difference analogue as

ut ≈ s−1(un,k+1 − un,k)

and the space derivative with the second-order finite-difference derivative

uxx ≈ δxxun,k = h−2(un+1,k − 2un,k + un−1,k).

We represent problem (5.2.1.1)–(5.2.1.3) as the difference scheme

un,k+1 = un,k + asδxxun,k + sf(un,k, un,k−M ),

n = 1, 2, . . . , N − 1, k = 0, . . . ,K − 1;

u0,k = uN,k = 0, k = 0, 1, . . . ,K;

un,k = gn,k, n = 0, 1, . . . , N, k = −M, . . . , 0.

(5.2.3.4)

It is apparent from (5.2.3.4) that computing values at layer k + 1 requires data from

not only the preceding layer n but also layer n −M . Hence, one has to store the

data from all temporal layers within the delay time range, since they are used for

the solution. Furthermore, the situation is complicated by the need to ensure that the

Currant criterion

s <
h2

2‖u(x, t)‖
holds for the explicit scheme (5.2.3.4) to be stable.

When solving problems with delay, one has to store a sufficiently large amount

of data to which it is necessary to have constant access. Most often, the amount

of data exceeds the CPU’s fast cache memory, meaning that RAM must be used.

Consequently, the computation speed depends on the speed of data exchange with

RAM. Notably, storing data on external media is unacceptable since the reading and

writing time would be prohibitively too high.

The studies [48, 70, 594] discuss an algorithm that can significantly reduce

RAM-related costs. The authors propose storing data from only a few reference

temporal layers rather than all layers and restoring intermediate values using inter-

polation. The number of reference layers within the delay range can be varied during

the computation to maintain the balance between the algorithm’s accuracy and the

amount of data stored; this will depend on the smoothness of the functions. The type

of interpolation has to be selected based on the specific parameters and properties of

the model.
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306 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

The smoothness of the functions will be determined by the formula [70, 594]:

Γ(t+ s) = max
1≤n≤N

∣∣∣
u(xn, t+ s)− u(xn, t)

u(xn, t)

∣∣∣.

We introduce a parameter p such that each pth layer inside the delay range is a

reference layer. To minimize the interpolation errors while preserving a reasonably

high computational speed, one should choose the value of p from the range 1 to 20.

If the values of u change too quickly, then layers should be preserved to retain the

required accuracy of the algorithm by choosing p= 1. If u varies slowly (Γ< 0.01),

one should set p = 20. In this case, the proposed algorithm shows the highest

efficiency. The studies [70, 594] suggest an empirical rule to optimize the number of

reference layers for reaction-diffusion problems:

p = τs−1[1 + exp(2 − 50 Γ(t))]−1.

The total number of stored layers q in the delay range depends on p and the temporal

step size s. In the simplest case of fixed p and s, one can take advantage of the

formula q = τp−1s−1.

Suppose t̂j is the time of the jth reference layer (j = 1, . . . , q) and ûn,j is the

value of u at layer j. To restore the values of u at the intermediate layers from

q reference layers, or to find u(xn, t) for tk−M ≤ t ≤ tk−1, one can use Newton’s

interpolation polynomial [70, 594]:

u(xn, t) = R(ûn,1) + (t− t̂1)R(ûn,1, ûn,2) + · · ·
+ (t− t̂1)(t− t̂2) . . . (t− t̂q−1)R(ûn,1, . . . , ûn,q),

where the divided differencesR(. . . ) are defined as

R(ûn,1) = ûn,1,

R(ûn,1, ûn,2) =
ûn,2 − ûn,1

t̂2 − t̂1
,

R(ûn,1, . . . , ûn,q) =
R(ûn,2, . . . , ûn,q)−R(ûn,1, . . . , ûn,q−1)

tq − t1
.

Importantly, the above algorithm is independent of the numerical scheme but

only establishes the data storage order during the system’s evolution (or the delay in-

terval). Therefore, it can be easily generalized to use with other difference schemes.

Implicit finite-difference scheme. We are going to solve problem (5.2.1.1)–

(5.2.1.3) consecutively on the intervals [0, τ ], [τ, 2τ ], . . . using temporal decomposi-

tion. We construct a uniform grid such that xn = nh (n = 0, 1, . . . , N ) and tk = ks
(k = 0, 1, . . . ,K), where h = L/N is the spatial step size, s = τ/M is the temporal

step size, and M is a positive integer. We approximate the time derivative with the

finite difference analogue

ut ≈ s−1(un,k+1 − un,k)
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and the spatial derivative with the second-order difference derivative

uxx ≈ δxxun,k+1 = h−2(un+1,k+1 − 2un,k+1 + un−1,k+1).

Considering that w(x, t) = g(x, t) for 0 < t ≤ τ , we write the implicit difference

scheme of problem (5.2.1.1)–(5.2.1.3) on this interval:

(1− asδxx)un,k+1 = un,k + sf(un,k+1, gn,k+1−M ),

n = 1, 2, . . . , N − 1, k = 0, . . . ,K − 1;

u0,k+1 = uN,k+1 = 0, k = 0, 1, . . . ,K;

un,0 = gn,0, n = 0, 1, . . . , N.

(5.2.3.5)

The values of w(x, t) will be known on the next interval τ < t ≤ 2τ and equal to the

appropriate values of u(x, t) calculated on the current interval 0< t≤ τ . Continuing

the computation of the subsequent intervals, we will obtain a solution on the entire

time interval of interest. The study [212] established uniqueness conditions for the

solution obtained using scheme (5.2.3.5). The study [156] proved convergence of

this scheme with order h2 + s and analyzed its stability.

Remark 5.16. Scheme (5.2.3.5) represents a nonlinear system of difference equations,
which can be solved using an iterative method such as, for example, the Picard–Schwarz
method [212] or the method of upper and lower solutions [321, 322, 378, 379].

Weighted finite-difference scheme. Let us consider problem (5.2.1.1)–(5.2.1.3)

in the domain Q = {0 ≤ x ≤ L, 0 ≤ t ≤ T }. We use a uniform grid such that

xn = nh (n = 0, 1, . . . , N ) and tk = ks (k = 0, 1, . . . ,K), where h = L/N is the

spatial step size, s = τ/M is the temporal step size, and M is a positive integer.

We denote fn,k = f(un,k, wn,k(t)) and write a weighted scheme (e.g., see [293,

384, 386]):

(1− σasδxx)un,k+1 = [1 + (1− σ)asδxx]un,k + sfn,k,

n = 1, 2, . . . , N − 1, k = 0, 1, . . . ,K − 1;

u0,k = uN,k = 0, k = 0, 1, . . . ,K;

un,k = gn,k, n = 0, 1, . . . , N, k = −M, . . . ,−1, 0,

(5.2.3.6)

where 0 ≤ σ ≤ 1. The weight σ = 0 corresponds to the implicit scheme. For

0 < σ ≤ 1, we get a linear tridiagonal system of linear algebraic equations, which is

solved by the sweep method. For σ ≥ 1/2, the scheme is unconditionally stable; see

[293] for details on stability, including the case σ < 1/2.

Remark 5.17. The studies [386, 387] discuss a related weighted scheme for a hyperbolic
delay equation. See [573] for a weighted scheme for a parabolic equation with a delayed
diffusion term.

Higher-order finite-difference schemes. For sufficiently smooth solutions to

equation (5.2.1.1), one can use the following stable multistep difference scheme of

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 307

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 307
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the higher order of approximation h4 + s2 [506]:

(A − 1
2 asδxx)un,k+1 = (A+ 1

2 asδxx)un,k

+ sAf( 32un,k − 1
2un,k−1,

1
2un,k+1−M + 1

2un,k−M ),

n = 1, . . . , N − 1, k = 0, 1, . . . , N − 1,

where A is a difference operator defined as

Aun,k = 1
12 (un−1,k + 10un,k + un+1,k).

Remark 5.18. The studies [601, 602] deal with similar multistep higher-order difference
schemes for related more complicated reaction-diffusion type equations.

Two special finite-difference schemes for a linear problem. The paper [219]

discusses two special finite-difference schemes for problem (5.2.1.1)–(5.2.1.3) with

a linear kinetic function f(u,w) = bw. The schemes have the same region of

stability as the original problem. This is ensured through selecting suitable spatial

and temporal step sizes and using a special approximation technique.

Both schemes use the same grid. The spatial step size is computed as h̃ =
2 sin( 12h), where h is the classical step size of a rectangular grid. The temporal step

size is selected as s = τ/(M − ε), whereM is a positive integer and 0 ≤ ε < 1. No-

tably, unlike the schemes discussed above, the intervals [0, τ ], [τ, 2τ ], . . . generally

involve a non-integer number of temporal steps.

The first scheme is constructed using the trapezoid rule, where the space deriva-

tive and delayed term are calculated as the mean of the two adjacent temporal layers:

uxx ≈ 1

2
δ̃xx(un,k+1 + un,k), bw ≈ b

2
(wn,k+1 + wn,k),

where δ̃xxun,k = h̃−2(un+1,k − 2un,k + un−1,k). The grid function wn,k approxi-

mates w(x, t) at the node (xn, tk) using linear interpolation:

wn,k = εun,k−M+1 + (1− ε)un,k−M . (5.2.3.7)

Then equation (5.2.1.1) is approximated as follows:

(2−asδ̃xx)un,k+1=(2+asδ̃xx)un,k+bs[εun,k−M+2+un,k−M+1+(1−ε)un,k−M ].

The other difference scheme is based on a second-order backward differentiation

formula for approximating the temporal derivative. It can be written as

1

2s
(3un,k+2 − 4un,k+1 + un,k) = aδ̃xxun,k+2 + bwn,k+2.

Using the linear interpolation (5.2.3.7) for wn,k+2 and rearranging the terms, we

obtain

(
3− 2asδ̃xx

)
un,k+2 = 4un,k+1 − un,k + 2bs[εun,k−M+3 + (1 − ε)un,k−M+2].

The values un,1 (n= 1, . . . , N−1) are required here; these can be obtained with the

first difference scheme.
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5.3. Construction, Selection, and Usage of Test

Problems for Delay PDEs

5.3.1. Preliminary Remarks

The qualitative features of delay PDEs significantly complicate obtaining adequate

numerical solutions. The point is that even in the absence of delay, theoretical

estimates of the accuracy of numerical solutions to nonlinear PDEs involve constants

that depend on solution smoothness and cannot usually be calculated in advance.

This is especially true for non-smooth solutions, which are typical for delay equa-

tions. Moreover, the practical convergence of numerical methods based on refining

the grid cannot guarantee the reliability of the employed schemes or computational

accuracy. This issue mainly arises near the values of the problem parameters cor-

responding to unstable solutions or near the values of variables corresponding to

equation singularities or large gradients of solutions.

In many cases, the most effective and apparent way to evaluate the scope and

accuracy of numerical methods is a direct comparison of numerical and exact so-

lutions to test problems. Chapters 3 and 4 discussed many classes of delay partial

differential equations that admit exact solutions in terms of elementary functions.

These equations and their exact solutions involve several free parameters (which can

be varied). They can serve as test problems to evaluate the accuracy of numerical

methods (see Sections 5.3.4 and 5.3.5).

5.3.2. Main Principles for Selecting Test Problems

For nonlinear partial differential equations with delay (or without delay), when se-

lecting test problems intended for checking the adequacy and estimating the accuracy

of the corresponding numerical and approximate analytical methods, it is helpful to

be guided by the following principles [409, 499].

1◦. The most reliable test problems are those obtained using the exact solutions

to delay partial differential equations.

2◦. Choosing simple test problems with solutions expressed in terms of elemen-

tary functions is preferable.

3◦. It is preferable to choose test problems involving free parameters (which can

vary in a wide range) or arbitrary functions.

4◦. Selecting test problems from a broader class of equations of a similar type is

allowed. (There is no need to use exact solutions of the equation in question, which

are not always possible to obtain).

5◦. Using several different test problems is advisable.

6◦. Numerical methods should first be tested using simple problems with mono-

tonic solutions that have small gradients of the unknowns.

7◦. Numerical methods should be tested using problems with large gradients of

the unknowns in the initial data or boundary conditions (e.g., with rapidly oscillating

initial data).
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8◦. Testing numerical methods should be done using rapidly growing solutions

for sufficiently large times.

9◦. If possible, the accuracy of the numerical methods should be tested near

critical values of the parameters and independent variables that define singular points

of the equation, unstable solutions, or solutions with large gradients.

Importantly, well-chosen test problems allow one to compare and improve ‘work-

able’ numerical methods and weed out those of little use.

Remark 5.19. For nonlinear delay PDEs, one should not be limited to test problems
derived from exact solutions to simpler nonlinear PDEs without delay.

5.3.3. Constructing Test Problems

Examples of exact solutions to delay PDEs that can be employed to formulate

test problems. Test problems should be constructed using available exact solutions

to nonlinear delay PDEs. An extensive list of such solutions can be found in Chapters

3 and 4 of this book.

Consider the nonlinear reaction-diffusion equation with delay

ut = auxx + bu[1− s(u − kw)], w = u(x, t− τ), (5.3.3.1)

which involves five parameters a > 0, b, k, s, and τ > 0 and is a special case of

equation (3.4.2.43) with g(z) = h(z) ≡ 0 and f(z) = b(1 − sz). We choose the

values of the parameters such that the equation has the stationary solutions u0 = 0
and u0 = 1. The trivial stationary solution u0 = 0 is already present. To obtain the

second stationary solution, we substitute u= 1 into (5.3.3.1) and rearrange the terms

to find that s = 1/(1− k). As a result, we arrive at the equation

ut = auxx + bu
(
1− u− kw

1− k

)
, w = u(x, t− τ), (5.3.3.2)

which can be rewritten in the alternative form

ut = auxx + bu[1− (σ1u+ σ2w)], σ1 + σ2 = 1,

where σ1 = 1/(1− k).
For k → 0, equation (5.3.3.2) becomes the Fisher equation and for k → ±∞,

it becomes the diffusive logistic equation with delay. Below are two groups of the

simplest exact solutions to equation (5.3.3.2).

(i) Solutions for k > 0 (k 6= 1):

u = ect[A cos(γx) +B sin(γx)], γ =
√
(b− c)/a if b > c;

u = ect(Ae−γx +Beγx), γ =
√
(c− b)/a if b < c;

u = ect(Ax +B), if b = c; (5.3.3.3)

u = 1 + ect[A cos(γx) +B sin(γx)], γ =
√
−c/a if c < 0;

u = 1 + ect(Ae−γx +Beγx), γ =
√
c/a if c > 0,

where c = (ln k)/τ ; A and B are arbitrary constants.
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(ii) Solutions for k < 0:

u = Ane
ct∓λnx cos(βnt∓ γnx+ Cn), βn =

π(2n− 1)

τ
,

γn =
βn

2aλn
, λn =

(√
(b− c)2 + β2

n − b+ c

2a

)1/2

;

u = 1 +Ane
ct∓λnx cos(βnt∓ γnx+ Cn), βn =

π(2n− 1)

τ
,

γn =
βn

2aλn
, λn =

(√
c2 + β2

n + c

2a

)1/2

,

(5.3.3.4)

where c = (ln |k|)/τ ; An and Cn are arbitrary constants; n = 1, 2, . . .
To test methods for numerical integration of nonlinear delay reaction-diffusion

equations, one can choose any of the above exact solutions to equation (5.3.3.2). Be-

low we note some qualitative features of these solutions to facilitate the comparison

with numerical results.

The first and fourth solutions from group (i) are periodic functions in the space

variable x. They are suitable as test solutions for initial-boundary value problems

with boundary conditions of the first or second kind on the interval 0 ≤ x ≤ mπ/γ
(m = 1, 2, . . . ). An appropriate choice of the free constants A and B can make the

unknown function equal to zero or one at the boundary (for boundary conditions of

the first kind) or make the derivative with respect to x vanish at the boundary (for

boundary conditions of the second kind). For problems with mixed boundary condi-

tions, it is convenient to consider these solutions on the intervals 0 ≤ x ≤ 1
2mπ/γ

(m=1, 2, . . . ). The initial data at −τ ≤ t≤ 0 (or 0≤ t≤ τ ) derive from the solutions

used as test problems. It is reasonable to compare numerical and exact solutions of

the test problem for k close to 1 (when the solutions change little over time) and for

sufficiently large k (when the solutions change rapidly).

Solutions from group (ii) for k = −1 are periodic in time and rapidly oscillating

in both variables for τ → 0. Such solutions are useful for assessing the accuracy of

numerical methods in problems with large gradients.

One formulates test problems as follows: the equation and its exact solution are

supplemented with the initial data at −τ ≤ t ≤ 0 and boundary conditions at x = 0
and x = L obtained from the exact solution. Below we give a few test problems

formulated in this way.

Test problems for delay reaction-diffusion equations. Below we use known

exact solutions to formulate several reaction-diffusion type model problems with

delay. These problems can serve to determine the scope and assess the accuracy of

numerical methods. All test problems involve a few free parameters.

Test problem 1. In the first formula of (5.3.3.3), we set

A = 1, B = 2, b = (ln k)/τ + aπ2/4, c = (ln k)/τ, k > 0. (5.3.3.5)

This results in the following exact solution to equation (5.3.3.2):

u = U1(x, t) ≡ ect[cos(πx/2) + 2 sin(πx/2)], c = (ln k)/τ. (5.3.3.6)
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Substituting −τ ≤ t ≤ 0 and then x = 0 and x = 1, we get the initial condition

u(x, t) = ect[cos(πx/2) + 2 sin(πx/2)], −τ ≤ t ≤ 0, (5.3.3.7)

and boundary conditions

u(0, t) = ect, t > 0; u(1, t) = 2ect, t > 0. (5.3.3.8)

As a result, we obtain a test problem described by equation (5.3.3.2) with parameter b
from (5.3.3.5), initial condition (5.3.3.7) and boundary conditions (5.3.3.8). The

exact solution to this problem is defined by formula (5.3.3.6), where 0≤ x≤ 1, t > 0.

Remark 5.20. Other test problems can be obtained likewise by using exact solutions
(5.3.3.3) and (5.3.3.4) to the reaction-diffusion equation (5.3.3.2).

Test problem 2. A direct verification shows that equation (5.3.3.1) with

b = −4a, k = e5aτ , s =
3

2(1− k)
(5.3.3.9)

admits the exact solution

u = U2(x, t) ≡ cosh−2(x) + ect cosh3(x), c = (ln k)/τ. (5.3.3.10)

By setting −τ ≤ t ≤ 0 and then x = 0 and x = 1 in (5.3.3.10), we obtain the initial

condition

u(x, t) = cosh−2(x) + ect cosh3(x), −τ ≤ t ≤ 0, (5.3.3.11)

and boundary conditions

u(0, t)= 1+ect, t> 0; u(1, t)= cosh−2(1)+ect cosh3(1), t> 0. (5.3.3.12)

This results in a test problem described by equation (5.3.3.1) with parameters

(5.3.3.9), initial condition (5.3.3.11), and boundary conditions (5.3.3.12). The exact

solution to this problem is given by formula (5.3.3.10), where 0 ≤ x ≤ 1 and t > 0.

Below we consider the nonlinear five-parameter reaction-diffusion equation with

delay

ut = auxx + bu− s(u− kw)2, w = u(x, t− τ), (5.3.3.13)

which is a special case of equation (3.4.2.31) with f(z) = −sz2. In the degenerate

cases k = 0 and τ = 0, it becomes the non-normalized Fisher equation.

Omitting details, we will only present the statements of two test problems and

their exact solutions.

Test problem 3. We set

k > 0, k 6= 1, b = (ln k)/τ − a, s = b/(1− k)2. (5.3.3.14)

Then the test problem described by equation (5.3.3.13)–(5.3.3.14), the initial condi-

tion

u(x, t) = U3(x, t)≡ 1+
ect+1

e2 − 1
(ex− e−x), c=

ln k

τ
, −τ ≤ t≤ 0, (5.3.3.15)
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and boundary conditions

u(0, t) = 1, t > 0; u(1, t) = 1 + ect, t > 0, (5.3.3.16)

has the exact solution u = U3(x, t) in the region 0 ≤ x ≤ 1, t > 0.

The solution u = U3(x, t) has been obtained using formula (3.4.2.33), where

ψ ≡ 1 and ϕ is the corresponding solution to the linear ODE (3.4.2.34).

Test problem 4. Suppose

k > 0, k 6= 1, b = 4aπ2 + (ln k)/τ − 1/(aτ2), s = b/(1− k)2. (5.3.3.17)

Then the test problem described by equation (5.3.3.13) with (5.3.3.17), the initial

condition

u(x, t) = U4(x, t) ≡ 1 + ect−λx cos(βt− 2πx), −τ ≤ t ≤ 0,

c = (ln k)/τ, λ = 1/(aτ), β = 4π/τ,
(5.3.3.18)

and boundary conditions

u(0, t)=1+ect cos(βt), t>0; u(1, t)=1+ect−λ cos(βt), t>0, (5.3.3.19)

has the exact solution u = U4(x, t) in the region 0 ≤ x ≤ 1, t > 0
The solution u = U4(x, t) has been obtained using formula (3.4.2.36), where

u0(x, t)≡ 1. The function V1(x, t; b−c) is defined by formulas (3.4.2.10)–(3.4.2.11)

in which A2 = 1 and the other constants An, Bn, Cn, and Dn are all equal to zero.

Test problems for delay Klein–Gordon type wave equations. We will take

advantage of the exact solutions from [429] and state a few model Klein–Gordon

type wave problems with delay that can be used to estimate the accuracy of numerical

methods. All test problems involve several free parameters.

Test problem 5. It is not difficult to verify that the nonlinear delay Klein–Gordon

type wave equation

utt = auxx + u(u− kw), w = u(x, t− τ), (5.3.3.20)

with k > 0 admits a simple exponential exact solution [429]:

u = U5(x, t) ≡ exp(ct+ cx/
√
a ), c = (ln k)/τ. (5.3.3.21)

This solution satisfies the initial data

u(x, t)=exp(ct+cx/
√
a ), ut(x, t)=c exp(ct+cx/

√
a ), −τ ≤ t≤0, (5.3.3.22)

and boundary conditions

u(0, t) = exp(ct), u(1, t) = exp(ct+ c/
√
a ), t > 0. (5.3.3.23)

Thus, we have a test problem described by equation (5.3.3.20) with 0 ≤ x ≤ 1
and t > 0, the initial conditions (5.3.3.22), and boundary conditions (5.3.3.23). The

exact solution of this problem is given by formula (5.3.3.21).
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314 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

Test problem 6. The nonlinear delay Klein–Gordon type wave equation (5.3.3.20)

with k = 1 also admits a trigonometric periodic solution of the form

u(x, t) = U6(x, t) ≡ sin(βx/
√
a ) cos(βt), β = 2π/τ, (5.3.3.24)

that satisfies the initial data

u(x, t) = sin(βx/
√
a ) cos(βt),

ut(x, t) = −β sin(βx/
√
a ) sin(βt), −τ ≤ t ≤ 0,

(5.3.3.25)

and boundary conditions

u(0, t) = 0, u(1, t) = sin(β/
√
a ) cos(βt), t > 0. (5.3.3.26)

So we have a test problem described by equation (5.3.3.20) with k = 1 in the

region 0 ≤ x ≤ 1, t > 0 and subjected to the initial conditions (5.3.3.25) and

boundary conditions (5.3.3.26). The exact solution of this problem is defined by

formula (5.3.3.24).

Test problem 7. Consider another nonlinear Klein–Gordon type wave equation

with delay

utt = auxx + bu− s(u − kw)2, w = u(x, t− τ), (5.3.3.27)

which depends on five parameters a > 0, b, k, s, and τ > 0 and is a special case of

equations 5 from Table 2 of the article [429] with f(z) = −sz2.

We assume that

k > 0, k 6= 1, b = (ln k)2/τ2 − a, s = b/(1− k)2. (5.3.3.28)

Then the test problem described by equation (5.3.3.27)–(5.3.3.28), the initial condi-

tions

u(x, t) = U7(x, t) ≡ 1 +
ect+1

e2 − 1
(ex − e−x), ut(x, t) =

∂

∂t
U7(x, t),

c =
ln k

τ
, −τ ≤ t ≤ 0,

(5.3.3.29)

and boundary conditions

u(0, t) = 1, t > 0; u(1, t) = 1 + ect, t > 0, (5.3.3.30)

has the exact solution u = U7(x, t) in the region 0 ≤ x ≤ 1, t > 0.

The solution u = U7(x, t) has been obtained from the respective formula speci-

fied in the right column for equation 5 in Table 2 of the article [429].

Test problem 8. Now we will look at the nonlinear five-parameter delay Klein–

Gordon type wave equation

utt = auxx + bu[1− s(u− kw)], w = u(x, t− τ), (5.3.3.31)
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which is a special case of equations 2 from Table 3 of the article [429] with f(z) =
b(1− sz) and g(z) = h(z) ≡ 0.

We assume that

k > 0, b = (ln k)2/τ2 + aπ2/4. (5.3.3.32)

Using the results of [429], we find that the test problem described by equation

(5.3.3.31)–(5.3.3.32) and subjected to the initial data

u(x, t) = U8(x, t) ≡ ect[cos(πx/2) + 2 sin(πx/2)], ut(x, t) =
∂

∂t
U8(x, t),

c = (ln k)/τ, −τ ≤ t ≤ 0,
(5.3.3.33)

and boundary conditions

u(0, t) = ect, t > 0; u(1, t) = 2ect, t > 0, (5.3.3.34)

has the exact solution u = U8(x, t) in the region 0 ≤ x ≤ 1, t > 0 .

A direct method for constructing test problems using related classes of delay

PDEs. To obtain test problems for a given class of nonlinear PDEs with delay

(or without delay), one can employ exact solutions from a wider class of related

equations. We will illustrate this with a concrete example.

We will take the class of delay reaction-diffusion equations

ut = auxx + F (u,w), w = u(x, t− τ), (5.3.3.35)

as the original class of equations. Instead of (5.3.3.35), we will look at the wider

class of equations

ut = auxx + F (u,w) +G(x, t), w = u(x, t− τ), (5.3.3.36)

which becomes (5.3.3.35) in the special case G ≡ 0. We choose a sufficiently

arbitrary function η= η(x, t) that satisfies prescribed boundary conditions (the initial

condition is determined based on the given function η). This function will be an

exact solution to equation (5.3.3.36) if

G(x, t) = ηt − aηxx − F (η, η̄), η̄ = η(x, t− τ). (5.3.3.37)

Equation (5.3.3.36)–(5.3.3.37) in conjunction with appropriate initial and boundary

conditions is a test problem with solution u = η(x, t). This solution should be

compared with a numerical solution to the test problem. Different functions η =
η(x, t) generate different equations (5.3.3.36) and different test problems.

Outlined in a broad form, the suggested simple method for constructing test

problems can generally have a serious flaw. The function η = η(x, t) is defined a

priori and is not related to the equation in question. Therefore, it does not have the

specific features inherent in exact solutions to delay PDEs. The appropriate choice of

these functions depends entirely on the researcher’s luck, intuition, and experience.

Remark 5.21. With the direct method, it is perfectly acceptable to use the exact solutions
to nonlinear delay reaction-diffusion and wave equations described in Chapters 3 and 4, as the
function η.
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316 5. NUMERICAL METHODS FOR SOLVING DELAY DIFFERENTIAL EQUATIONS

5.3.4. Comparison of Numerical and Exact Solutions to
Nonlinear Delay Reaction-Diffusion Equations

The numerical solutions to all test problems discussed in the present subsection

were obtained with the Mathematica software package using the method of lines in

combination with the second-order Runge–Kutta method or the Gear method. The

computations were carried out on the interval 0≤ t≤ T = 50 τ for three delay times

τ = 0.05, τ = 0.1, and τ = 0.5 and, sometimes, τ = 1 and τ = 5. For some test

problems, the integration interval was too large to construct a numerical solution:

the computations were interrupted with an error and an indication of the interruption

time. However, in most cases, an adequate numerical solution could be obtained by

appropriately reducing the time interval.

We will understand the absolute and relative errors of a numerical solution un,k=
uh(xn, tk) to a test problem for a delay PDE in the sense of the following quantities:

σa = max
n, k

|ue − un,k|, σr = max
n, k

|(ue − un,k)/ue|,

where ue = ue(xn, tk) is the value of the exact solution to the test problem on the

temporal layer tk at the node xn.

Comparison of exact and numerical solutions to test problems. The preced-

ing subsection formulated four test problems for nonlinear delay reaction-diffusion

equations (Fisher-type delay equations). The current subsection presents the results

of numerical integration of the test problems and compares the numerical solutions

with exact solutions to these problems. The numbers and statements of the test

problems discussed below coincide with those of Subsection 5.3.3.

Test problem 1. The exact solution u = U1(x, t) of test problem 1 from Subsec-

tion 5.3.3 with a=1, k=0.5, and s=0.2 monotonically decays in time. The relative

error of the numerical solution becomes noticeable at only sufficiently large times

when the solution practically vanishes. For the numerical methods employed, the

time interval at which the methods show a small relative error increases as the delay

time τ increases (from 0.05 to 5). ForN =100, the numerical solution obtained with

the second-order Runge–Kutta method starts to diverge from the exact solution upon

reaching absolute values of the order of 10−5 at τ = 0.05 and 10−20 at τ = 5. The

numerical solution obtained using the Gear method begins to deviate from the exact

solution upon reaching values of the order of 10−6 at τ = 0.05 and 10−10 at τ = 5.

Figure 5.5 displays three numerical solutions (with a logarithmic scale in the

vertical axis) obtained using the second-order Runge–Kutta method for test prob-

lem 1 where an approximating system of delay ODEs with N = 100 was solved.

Also included are the graphs of the respective exact solutions. The values of the

parameters were a = 1, k = 0.5, and s = 0.2 and the delay times were τ = 0.05 and

τ = 0.5. The respective graphs for the results obtained with the Gear method look

very similar and are not shown here.

Table 5.3 shows absolute errors of the numerical solutions obtained using the

second-order Runge–Kutta method and Gear method for five different delay times.

Test problem 2. The exact solution u = U2(x, t) of test problem 2 from Sub-

section 5.3.3 with a = 1 increases exponentially in time. When the solution reaches
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Figure 5.5. Exact solutions (solid lines) and respective numerical solutions (open circles)

obtained using a combination of the method of lines and the second-order Runge–Kutta

method for test problem 1 with a = 1, k = 0.5, s = 0.2, and N = 100 at different times

t̄ = t/τ . Two delay times were used: (a) τ = 0.05 and (b) τ = 0.5.

Table 5.3. Absolute errors of the numerical solutions to test problem 1 with a = 1, k = 0.5,

and s = 0.2 for five different delay times τ on the interval 0 ≤ t ≤ T = 50 τ .

Method N τ = 0.05 τ = 0.1 τ = 0.5 τ = 1 τ = 5

Second-order

Runge–Kutta

10

50

100

2.8× 10−4

1.3× 10−5

4.5× 10−6

4.6× 10−4

2.0× 10−5

6.1× 10−6

9.9× 10−4

4.1× 10−5

1.2× 10−5

1.2× 10−3

4.8× 10−5

1.3× 10−5

1.4× 10−3

5.6× 10−5

1.4× 10−5

Gear

10

50

100

2.8× 10−4

1.3× 10−5

2.8× 10−6

4.6× 10−4

1.9× 10−5

4.7× 10−6

9.9× 10−4

4.0× 10−5

9.9× 10−6

1.2× 10−3

4.7× 10−5

1.2× 10−5

1.4× 10−3

5.6× 10−5

1.4× 10−5

a large value, the program is interrupted by an error. For the second-order Runge–

Kutta method, this value is of the order of 108. For τ = 0.05, we managed to obtain

a solution on the entire interval up to T = 50 τ . Also, we obtained a solution up to

T = 35 τ for τ = 0.1 and up to T = 7.3 τ for τ = 0.5. The Gear method works

better, up to values of the order of 1013. We obtained a solution on the entire interval

up to T = 50 τ for τ = 0.05 and τ = 0.1 and up to T = 11.5 τ for τ = 0.5. It is

noteworthy that the Gear method builds solutions in only a few seconds, while the

second-order Runge–Kutta method takes a few minutes to tens of minutes to obtain

a solution. See Remark 5.10 for a possible running time reduction.

Figure 5.6 depicts a few numerical solutions (with a logarithmic scale in the

vertical axis) obtained using the Gear method for test problem 2 with a = 1 where

a system of ODEs with N = 100 was solved. Also included are the graphs of the

respective exact solutions. Two delay times were used: τ = 0.05 and τ = 0.5.

The respective graphs of the solutions obtained with the Runge–Kutta method are

qualitatively very similar and are not shown here.

Table 5.4 shows the relative errors of the numerical solutions obtained using the

second-order Runge–Kutta method and Gear method.

Test problem 3. Figure 5.7 displays the exact solution and respective numerical

solution obtained for three different values ofX using the second-order Runge–Kutta
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Figure 5.6. Exact solutions (solid lines) and respective numerical solutions (open circles)

obtained with a combination of the method of lines and Gear method for test problem 2 with

a = 1 and N = 100 at different times t̄ = t/τ . Two delay times were used: (a) τ = 0.05 and

(b) τ = 0.5.

Table 5.4. Relative errors of the numerical solutions for problem 2 with a = 1 and three

different delay times τ .

Method N τ = 0.05, T = 50 τ τ = 0.1, T = 35 τ τ = 0.5, T = 7.3 τ

Second-order

Runge–Kutta

10

50

100

1.8× 10−3

7.5× 10−5

2.0× 10−5

1.9× 10−3

7.8× 10−5

2.0× 10−5

2.5× 10−3

1.0× 10−4

2.6× 10−5

Gear

10

50

100

1.8× 10−3

7.3× 10−5

1.8× 10−5

1.9× 10−3

7.6× 10−5

1.9× 10−5

2.5× 10−3

1.0× 10−4

2.5× 10−5

u
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Figure 5.7. Exact solutions (solid lines) and respective numerical solutions (open circles)

obtained using a combination of the method of lines and second-order Runge–Kutta method

for test problem 3 with a = 1, k = 0.5, τ = 0.5, and N = 100 at different values of x.

method for test problem 3 from Subsection 5.3.3. A system of N = 100 ODEs was

solved with a= 1 and k = 0.5 and a moderate delay time τ = 0.5. The graphs of the

numerical solutions obtained using the Gear method look very similar and are not

included here. Both methods demonstrate good approximation of the exact solution

on the entire interval 0 ≤ t ≤ T = 50 τ .
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Table 5.5. Relative errors of the numerical solutions to problem 3 with a = 1 and k = 0.5 at

three different delay times τ on the interval 0 ≤ t ≤ T = 50 τ .

Method N τ = 0.5 τ = 1 τ = 5

Second-order

Runge–Kutta

10

50

100

7.1× 10−5

2.0× 10−6

2.5× 10−7

5.4× 10−5

1.9× 10−6

3.7× 10−7

4.8× 10−5

1.9× 10−6

5.1× 10−7

Gear

10

50

100

7.2× 10−5

2.8× 10−6

6.3× 10−7

5.5× 10−5

2.2× 10−6

5.1× 10−7

4.8× 10−5

1.9× 10−6

5.1× 10−7
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Figure 5.8. Exact solutions (solid lines) and respective numerical solutions (open circles,

second-order Runge–Kutta method, and crosses, Gear method) of test problem 3 with a = 1
and k=0.5 at the point x=0.5 forN =100 and two delay times: (a) τ =0.05 and (b) τ =0.1.

Table 5.5 displays the relative errors of the numerical solutions to problem 3

obtained by the second-order Runge–Kutta and Gear methods at moderate and large

delay times on the interval 0 ≤ t ≤ T = 50 τ .

For a = 1 and k = 0.5 and sufficiently small delay times τ = 0.05 and τ = 0.1,

the numerical solution to test problem 3 starts to deviate significantly from the exact

solution in the region where the solution enters the stationary mode. After that, the

program is interrupted by an error. This is because the parameter b appearing in the

test problem equation and defined in (5.3.3.14) increases unboundedly as O(τ−1)
for τ → 0. As a result, the stationary solution u = 1, approached by the problem’s

solution as t → ∞, becomes unstable for small τ . This fact is proved below in the

linear approximation.

To illustrate the above situation, we consider the graphs of the numerical and

exact solutions versus time for fixed x = 0.5 (Figure 5.8) with a = 1 and k = 0.5
and small delay times τ = 0.05 and τ = 0.1. The choice of the midpoint, x = 0.5,

from the range of the spatial variable is because it is the point of maximum deviation

between the numerical and exact solutions. For τ = 0.05, both numerical methods

only work adequately on a short initial interval (before their solutions start to turn

away from the asymptote). Then the second-order Runge–Kutta method produces

a nonmonotonic descending oscillating curve that has nothing to do with the exact

solution. The Gear method produces a curve that rises sharply and deviates strongly

from the exact solution. For τ = 0.1, the Runge–Kutta method and Gear methods
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provide a fairly accurate approximation of the desired solution over a substantial

time interval (staying on the asymptote for quite a while). The Gear method has a

slightly larger range of applicability in t. The solution error of the Gear method is

monotonic over time, while that of the Runge–Kutta method is nonmonotonic. In

both cases, the errors increase sharply soon after the steady state establishes. Below

we will show that the values τ = 0.05 and τ = 0.1 lie inside the instability region of

the stationary solution.

For test problem 3, Equation (5.3.3.13) becomes

ut = auxx + bu− b

(1− k)2
(u− kw)2, b =

ln k

τ
− a. (5.3.4.1)

It admits the stationary solution u0 = 1; the test problem solution asymptotically

approaches it as t → ∞. To investigate the linear stability and instability of the

solution u0 = 1, we will look at perturbed solutions of the form [410, 498]:

u = 1 + δe−λt sin(πnx), n = 1, 2, . . . , (5.3.4.2)

where δ is a small parameter and λ is a spectral parameter to be determined. The

perturbed solution (5.3.4.2) equals 1 for any t at the boundaries x = 0 and x = 1.

Substituting (5.3.4.2) into equation (5.3.4.1), dropping the terms of the order of δ2

and higher, and dividing by sin(πnx), we arrive at the dispersion equation for λ:

λ− a(πn)2 − b(1 + k)

1− k
+

2bk

1− k
eλτ = 0, b =

ln k

τ
− a. (5.3.4.3)

For a = n = 1, k = 0.5, and τ = 0.05, the dispersion equation (5.3.4.3)

has a negative root λ ≈ −27.0213. It follows that the second term in formula

(5.3.4.2) increases exponentially as t→ ∞, and hence, the stationary solution of the

delay reaction-diffusion equation (5.3.3.13) with τ = 0.05 is unstable in the linear

approximation. Up to τ∗ ≈ 0.09153 (the other parameters remain unchanged), the

transcendental equation (5.3.4.3) has one or two real negative roots, while for τ > τ∗,

the equation does not have real negative roots.

For a = n = 1, k = 0.5, and τ = 0.1, the dispersion equation (5.3.4.3) has

a complex root with a negative real part Reλ = −4.38498. Consequently, the

stationary solution of the delay reaction-diffusion equation (5.3.3.13) with τ = 0.1
is also unstable in the linear approximation.

Remark 5.22. The value τ = 0.5 lies outside the instability region of the stationary
solution to test problem 3. In this case, the dispersion equation (5.3.4.3) has a root with the
minimum real part Reλ = 0.0895394, and, as noted previously, the methods of numerical
integration work well.

Remark 5.23. It follows from the above considerations that the methods concerned pro-
vide accurate solutions of nonlinear delay reaction-diffusion equations on a certain initial time
interval even in the instability region. The length of the interval derives from comparing the
numerical solutions obtained by different methods. If the solutions practically coincide over
some time interval, so that the error of one numerical solution is acceptably small compared
to the others, then the solutions will likely be sufficiently accurate on this time interval.
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Figure 5.9. Exact solutions (solid lines) and respective numerical solutions (open circles)

obtained using a combination of the method of lines and second-order Runge–Kutta method

for test problem 4 with a = 1 and k = τ = 0.5 at different times t̄ = t/τ for N = 100.

Table 5.6. Relative errors of numerical solutions for test problem 4 with a = 1 and k = 0.5
for three different delay times τ on the interval 0 ≤ t ≤ T = 50 τ .

N τ = 0.5 τ = 1 τ = 5

10

50

100

7.3× 10−3

2.9× 10−4

7.3× 10−5

1.2× 10−2

5.1× 10−4

1.3× 10−4

7.4× 10−2

2.9× 10−3

7.3× 10−4

Test problem 4. Figure 5.9 displays the exact solution and respective numerical

solution at four different times t̄ = t/τ for test problem 4 with a = 1, k = 0.5, and

τ =0.5. The numerical solutions were obtained using the second-order Runge–Kutta

method by integrating an ODE system with N = 100. The graphs of the solutions

obtained using the Gear method look very similar and are omitted here.

Table 5.6 displays the relative errors of a few numerical solutions obtained using

the second-order Runge–Kutta and Gear methods for moderate and large delay times

on the interval 0 ≤ t ≤ T = 50 τ . Both methods show the same errors coinciding up

to two decimal places.

Notably, for delay times of the order of one (e.g., τ = 0.5), the solution oscilla-

tions are not high frequency and do not cause problems in the numerical integration

of the test problem, unlike the case of small delay times, which is discussed below.

At small delay times τ = 0.05 and τ = 0.1 and with a = 1 and k = 0.5, both

the Runge–Kutta and Gear methods fail to provide a numerical solution to the ODE

system with N = 100 for test problem 4. This circumstance is primarily due to the

fact that the parameter b, which occurs in the test problem equation and is defined

in (5.3.3.17), grows indefinitely as O(τ−2) for τ → 0. Here, the coefficient b grows

much faster than in test problem 3. Another complicating factor is the rapid oscilla-

tions of the solution in a small neighborhood of the left boundary x = 0; however,
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we have u ≈ 1 in the rest of the region. Obtaining adequate numerical results in

such cases is possible only with small spatial step sizes in the boundary-layer type

region, where the solution changes quickly. Using a variable spatial step size, that is,

a different number of equations for regions with and without rapid oscillations, in the

method of lines is problematic since it is difficult to anticipate in which region high-

frequency oscillations arise. However, using small steps in the entire computational

region is associated with an excessive increase in the running time of the method.

Remark 5.24. The method of lines in combination with the Gear method implemented in
Mathematica is employed in Subsection 6.3.4 to solve an initial-boundary value problem for
a diffusive Lotka–Volterra type system.

5.3.5. Comparison of Numerical and Exact Solutions to
Nonlinear Delay Klein–Gordon Type Wave Equations

Subsection 5.3.3 stated four test problems for nonlinear delay Klein–Gordon type

wave equations. The current subsection discusses the numerical results of integrat-

ing these problems using a combination of the method of lines and three solution

methods for delay ODE systems implemented in the Mathematica package. These

are the second-order Runge–Kutta method, fourth-order Runge–Kutta method, and

Gear method. We compare the numerical solutions with the exact solutions to the

test problems. The numbering and statements of the test problems discussed below

coincide with those from Subsection 5.3.3.

Test problem 5. The solution u = U5 of test problem 5 with a = 1 and k = 0.5
is an exponentially decaying function. Table 5.7 specifies the absolute errors of the

numerical solutions obtained using a combination of the method of lines with three

methods for solving a delay ODE system with different N and τ on the interval

0 ≤ t ≤ 50 τ . It is apparent from Table 5.7 that all methods did well to solve

the problem, with the fourth-order Runge–Kutta method having provided a better

approximation of the exact solution. As N increases, the absolute errors decrease,

and all methods give second-order approximation in space. It is also noteworthy that

the absolute errors decrease as the delay time increases.

Figure 5.10 depicts a few exact (solid lines) and numerical (open circles) solu-

tions for test problem 5 with a=1 and k=0.5. The numerical solutions are obtained

using the second-order Runge–Kutta method for τ = 0.05, τ = 0.5, and N = 100 at

three times t̄ ≈ 0.1, t̄ ≈ 1, and t̄ ≈ 3, where t̄ = t/τ . The graphs obtained with the

other methods look similar and are omitted here.

Test problem 6. The solution u = U6 of test problem 6 from Subsection 5.3.3

with a = k = 1 represents a non-decaying oscillatory process with period τ in both

variables. Importantly, the solution rapidly oscillates at small τ and is singular with

respect to the delay parameter (since u = U6 does not have a limit as τ → 0).

This circumstance restricts the capabilities of the employed numerical methods at

small τ since it requires a large number of grid nodes in x, and hence, a large

number of equations in the approximating system of delay ODEs. For example,

at τ = 0.05, one needs over 1000 nodes to achieve acceptable accuracy, while for
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Table 5.7. Absolute errors of numerical solutions for test problem 5 with a = 1 and k = 0.5
on the interval 0 ≤ t ≤ T = 50 τ .

Method N τ = 0.05 τ = 0.1 τ = 0.5 τ = 1

Second-order

Runge–Kutta

10

50

100

200

4.0× 10−2

2.0× 10−3

5.0× 10−4

1.2× 10−4

1.2× 10−2

5.0× 10−4

1.2× 10−4

3.0× 10−5

2.5× 10−4

1.0× 10−5

2.6× 10−6

7.2× 10−7

2.7× 10−5

1.9× 10−6

9.5× 10−7

6.0× 10−7

Fourth-order

Runge–Kutta

10

50

100

200

4.0× 10−2

2.0× 10−3

5.0× 10−4

1.2× 10−4

1.2× 10−2

5.0× 10−4

1.2× 10−4

3.0× 10−5

2.5× 10−4

9.8× 10−6

2.5× 10−6

6.1× 10−7

2.7× 10−5

1.1× 10−6

2.7× 10−7

6.7× 10−8

Gear

10

50

100

200

4.0× 10−2

2.0× 10−3

5.0× 10−4

1.2× 10−4

1.2× 10−2

5.0× 10−4

1.2× 10−4

3.1× 10−5

2.5× 10−4

9.8× 10−6

2.5× 10−6

6.5× 10−7

2.7× 10−5

1.3× 10−6

3.0× 10−7

1.3× 10−7
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Figure 5.10. Exact solutions (solid lines) and respective numerical solutions (open circles)

obtained using a combination of the method of lines and the second-order Runge–Kutta

method for test problem 5 with a = 1 and k = 0.5 at three different times t̄ = t/τ , N = 100,

and two delay times: (a) τ = 0.05 and (b) τ = 0.5.

τ = 0.1 andN = 1000, the absolute computational error of the second-order Runge–

Kutta method is quite large and equal to 4.1× 10−2.

Table 5.8 specifies the absolute errors of numerical solutions to test problem 6

obtained using a combination of the method of lines with the Gear method and

second-order Runge–Kutta method on the interval 0 ≤ t ≤ 50 τ for three moderate

delay times τ = 0.5, τ = 1, and τ = 2 and different numbers of grid nodes in the

space variable (N = 50, N = 100, and N = 200). It is apparent that as τ and

the number of equations N increase, the error of the numerical solution decreases.

The error also decreases if the temporal interval length T decreases. For example, at

τ = 0.5, both methods show an acceptable approximation to the exact solution for

N = 100 with an absolute error of 0.08 on the interval 0≤ t≤ T = 20 τ ; in contrast,
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Table 5.8. Absolute errors of a few numerical solutions to test problem 6 with a = k = 1 and

moderate delay times τ on the interval 0 ≤ t ≤ T = 50 τ .

Method N τ = 0.5 τ = 1 τ = 2

Second-order

Runge–Kutta

50

100

200

0.79

0.2

4.3× 10−2

0.2

4.4× 10−2

5.7× 10−3

4.6× 10−2

7.7× 10−3

1.9× 10−3

Gear

50

100

200

0.8

0.2

5.1× 10−2

0.2

5.1× 10−2

1.3× 10−2

5.1× 10−2

1.3× 10−2

3.2× 10−3

u (a)
t ≈ 15.91

t ≈ 16.00

0.125 0.375 
���� �

-1.0

-
��

0


��

1.0
u (b)

t ≈ 15.91

t ≈ 16.00

0.125 0.375 ����� �

-1.0

-���

0

���

1.0

Figure 5.11. Exact solutions (solid lines) and respective numerical solutions (open circles)

obtained using a combination of the method of lines and the second-order Runge–Kutta

method for test problem 6 with a = k = 1 and τ = 0.5 at times t = 15.91 and t = 16.00 for

systems of (a) N = 100 and (b) N = 200 equations.

for N = 200, the absolute error is four times less on the same interval. The errors

of the fourth-order Runge–Kutta method coincide with those of the Gear method

and, therefore, are omitted from Table 5.8. The oscillations in x have period τ ; that

is, the oscillation frequency decreases as the delay time increases, and hence, fewer

grid nodes are needed to achieve acceptable accuracy. We did not test the methods at

moderate or large delay times for largeN because this would require a large amount

of RAM and so, given the aforesaid, it was unnecessary. Notably, the second-order

Runge–Kutta method provides a slightly better approximation to the exact solution.

Figure 5.11 displays two exact solutions (solid lines) and two respective numer-

ical solutions (open circles) at a = 1 and τ = 0.5 for N = 100 and N = 200. The

numerical solutions were obtained with the second-order Runge–Kutta method at an

intermediate time t = 15.91 (chosen to highlight the error of the numerical solution)

and the time of maximum amplitude t = 16.00. One can see that the error decreases

as the number of equations N increases. The graphs of the respective solutions

obtained with the Gear method look alike and are omitted here.

Test problem 7. The exact solution u = U7 of test problem 7 from Subsection

5.3.3 with a = 1 and k = 0.5 is monotonically decaying in both variables. All three

methods (second-order Runge–Kutta, fourth-order Runge–Kutta, and Gear) work

adequately on the entire computational interval 0 ≤ t ≤ T = 50 τ at all delay times

considered. Figure 5.12 displays the graphs of the numerical solutions obtained using
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Figure 5.12. Exact solutions (solid lines) and respective numerical solutions (open circles)

obtained by a combination of the method of lines and Gear method for test problem 7 with

a = 1 and k = 0.5 at the points x = 0.1, x = 0.5, and x = 0.9 for N = 100 and two delay

times: (a) τ = 0.05 and (b) τ = 0.5.

Table 5.9. Absolute errors of some numerical solutions to test problem 7 with a = 1 and

k = 0.5 on the interval 0 ≤ t ≤ T = 50 τ .

Method N τ = 0.05 τ = 0.1 τ = 0.5 τ = 1

Second-order

Runge–Kutta

10

50

100

200

2.1× 10−6

9.4× 10−7

1.7× 10−6

1.3× 10−6

5.3× 10−6

1.8× 10−6

1.2× 10−6

1.2× 10−6

4.9× 10−5

2.5× 10−6

1.0× 10−6

6.5× 10−7

2.2× 10−3

6.6× 10−5

1.1× 10−5

1.4× 10−6

Fourth-order

Runge–Kutta

10

50

100

200

1.2× 10−6

5.5× 10−8

1.5× 10−8

3.4× 10−9

4.5× 10−6

2.8× 10−7

5.6× 10−8

1.2× 10−8

4.8× 10−5

1.9× 10−6

4.8× 10−7

1.2× 10−7

2.3× 10−3

7.9× 10−5

2.0× 10−5

4.9× 10−6

Gear

10

50

100

200

1.2× 10−6

8.4× 10−8

5.0× 10−8

6.3× 10−8

4.5× 10−6

3.2× 10−7

9.4× 10−8

3.6× 10−8

4.8× 10−5

1.9× 10−6

4.7× 10−7

1.3× 10−7

2.3× 10−3

8.0× 10−5

2.1× 10−5

5.3× 10−6

the Gear method for N = 100 and delay times τ = 0.05 and τ = 0.5. The graphs

of the solutions obtained with the other methods look very similar and are omitted

here. Table 5.9 specifies the absolute errors of some numerical solutions.

Test problem 8. The exact solution u = U8 of test problem 8 from Subsection

5.3.3 with a = 1, k = 0.5, and s = 0.2 is monotonically decreasing in time.

At moderate delay times, τ = 0.5 and τ = 1, all three methods (second-order

Runge–Kutta, fourth-order Runge–Kutta, and Gear) work adequately on the entire

computational interval 0 ≤ t ≤ T = 50 τ .

At small delay times, τ =0.05 and τ =0.1, all methods only work adequately on

the initial segment 0≤ t≤ 10 τ and then, after reaching the asymptote u= 0, start to

deviate strongly from the exact solution. This circumstance is due to the instability

of the stationary solution u = 0 at small τ .

Figure 5.13 illustrates the behavior of the methods at the midpoint x = 0.5 for

N = 200. The graphs of the numerical solutions obtained using the fourth-order
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Figure 5.13. Exact solutions (solid lines) and respective numerical solutions obtained with

the second-order Runge–Kutta method (open circles) and Gear method (crosses) for test

problem 8 with a = 1, k = 0.5, and s = 0.2 at the point x = 0.5 for N = 200 and two delay

times: (a) τ = 0.05 and (b) τ = 0.1.

Table 5.10. Absolute errors of some numerical solutions to test problem 8 with a=1, k=0.5,

and s = 0.2.

Method N τ = 0.05, T = 10 τ τ = 0.1, T = 10 τ τ = 0.5, T = 50 τ τ = 1, T = 50 τ

Second-order

Runge–Kutta

10

50

100

200

1.3× 10−2

9.4× 10−4

5.6× 10−4

4.8× 10−4

4.1× 10−2

1.8× 10−3

6.0× 10−4

2.9× 10−4

2.2× 10−3

8.8× 10−5

2.3× 10−5

6.8× 10−6

2.4× 10−3

9.6× 10−5

2.5× 10−5

7.2× 10−6

Fourth-order

Runge–Kutta

10

50

100

200

1.3× 10−2

5.4× 10−4

1.4× 10−4

3.4× 10−5

4.1× 10−2

1.6× 10−3

4.1× 10−4

1.0× 10−4

2.2× 10−3

8.6× 10−5

2.2× 10−5

5.4× 10−6

2.4× 10−3

9.4× 10−5

2.4× 10−5

5.9× 10−6

Gear

10

50

100

200

1.3× 10−2

5.4× 10−4

1.4× 10−4

3.5× 10−5

4.1× 10−2

1.6× 10−3

4.1× 10−4

1.0× 10−4

2.2× 10−3

8.6× 10−5

2.2× 10−5

5.4× 10−6

2.4× 10−3

9.4× 10−5

2.4× 10−5

6.1× 10−6

Runge–Kutta method are qualitatively similar to those of the respective solutions

obtained with the Gear method and omitted here. Clearly, the Gear method and the

fourth-order Runge–Kutta method have a slightly wider range of applicability in t.

Remark 5.25. Notably, the methods employed provide accurate solutions to nonlinear
delay Klein–Gordon type wave equations on some initial time interval, even in the instability
region. The length of the interval derives from comparing the numerical solutions obtained by
different methods. For example, suppose the solutions practically coincide on a time interval
so that the error of one numerical solution is acceptably small compared to the others. In that
case, the solutions will likely be accurate on this interval.

Note that the solution u = U8 to test problem 8 decays very rapidly at small τ .

The failure of the numerical solutions at small delay times τ =0.05 and τ =0.1 is due

to linear instability of the limiting stationary state of the solution (u→ 0 as t→∞).

Table 5.10 shows the absolute errors of some numerical solutions at different

delay times and on the relevant integration intervals.
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6. Models and Delay Differential

Equations Used in Applications

6.1. Models Described by Nonlinear Delay ODEs

6.1.1. Hutchinson’s Equation—a Delay Logistic Equation

Preliminary remarks. In the literature, one often encounters nonlinear delay ODEs

(and systems of delay equations) that describe a wide variety of processes. Models

with delay arise, as a rule, from generalizing simpler models without delay. Below

we will illustrate such generalizations by looking at a chain of population dynamics

models described by ODEs without delay, from simple to more complex, eventually

leading to a complicated model with delay.

Malthusian equation. In 1798, Thomas Malthus was the first to propose a

mathematical model to characterize the dynamics of species growth. According to

this model, under favorable conditions, any species increases its population by the

exponential law u(t) = u0e
bt, and consequently satisfies the linear ODE

u′t = bu. (6.1.1.1)

It was later called the Malthusian exponential model. The parameter b is the popula-

tion growth rate, equal to the difference between the birth and death rates; it is also

known as the Malthusian parameter of population growth and Malthusian coefficient

of linear growth. Under unfavorable conditions, the constant b can be negative.

Numerous experimental data well support the Malthusian model only if the pop-

ulation size is small, that is, when its size is not limited by anything.

Logistic differential equation. The Malthusian equation implies unrestricted

population growth. However, in reality, there are some limitations to the population

size (e.g., limited food or territory, unfavorable weather, competition with other

species, and so on). To take this into account, in 1835, Adolphe Quetelet and Pierre-

Françous Verhulst proposed a more complicated mathematical model than (6.1.1.1),

which is described by the nonlinear logistic differential equation

u′t = bu(1− u/k), (6.1.1.2)

where k is a positive parameter that characterizes the maximum sustainable popula-

tion size and is referred to as the carrying capacity of the habitat. In the limit case

k → ∞, equation (6.1.1.2) becomes the Malthusian model (6.1.1.1).

The exact solution of equation (6.1.1.2) with the initial condition u(t=0)=u0 is

u(t) =
k

1 + [(k/u0)− 1] exp(−bt) , t > 0. (6.1.1.3)
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Below are the main properties of solution (6.1.1.3).

1◦. If u0 > 0, we have u(t) > 0 for all t > 0.

2◦. The following limit relation holds: limt→∞ = k.

3◦. The function u(t) increases for 0 < u0 < k and decreases for u0 > k.

4◦. The equilibrium u = k is globally asymptotically stable.

Hutchinson’s equation and its properties. The logistic law (6.1.1.2) describes

well the growth dynamics of populations of single-celled organisms, but it does

not apply to model the population dynamics of most mammals. This is because

populations of such species are subject to intense cyclic fluctuations. To handle this

situation, George Evelyn Hutchinson [227] suggested a more sophisticated model

based on the nonlinear delay ODE

u′t = bu(1− w/k), w = u(t− τ). (6.1.1.4)

It describes the dynamics of a population taking into account the period of matura-

tion, when individuals are not capable of reproduction. Equation (6.1.1.4) includes

the population density, u = u(t) ≥ 0, reproductive rate, b > 0, saturation value,

k > 0, and delay time, τ > 0, characterizing the mean reproductive age of the

species. The rate of population growth is directly proportional to the population

size at the current time and the factor (k − w)/k; it is self-regulatory. In the limit

case τ = 0, equation (6.1.1.4) becomes the logistic differential equation (6.1.1.2).

Introducing a positive τ into the delay equation brings about an oscillatory process.

This is because the population growth does not stop immediately upon reaching

the saturation level k, as it would do in the absence of delay, but the time τ after.

Therefore, the population size exceeds the saturation level and, unable to maintain

its maximum, starts to decrease. Having dropped to saturation k, it also does not

stop but continues to decrease until it reaches its minimum size, after which growth

begins again. Then the cycle repeats.

The change of variable u = kv converts equation (6.1.1.4) to the simpler form

v′t = bv[1− v(t− τ)]. (6.1.1.5)

Below are a few qualitative and quantitative features of the solution to equation

(6.1.1.5); see [241, 274, 283, 567] for details.

1◦. The equilibrium v = 0 is unstable.

2◦. The equilibrium v=1 is asymptotically stable for 0<bτ ≤π/2 and unstable

for bτ > π/2.

3◦. For 0 < bτ ≤ 37
24 (the upper estimate can be improved [263]), all solutions

to equation (6.1.1.5), except for the zero solution, tend to 1 as t→ ∞.

4◦. For bτ > π/2, there is a nontrivial periodic solution [242, 245, 274]. Let

v∗(t, λ) denote this solution, where λ = bτ and its period is T∗(λ). If λ = bτ ≫ 1,
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the following asymptotic formulas hold:

T∗(λ) =
eλ + 1

λ
+O

(
e−λ

λ

)
,

max
0≤t≤T∗

v∗(t, λ) = eλ−1 + (2e)−1 +O(e−λ),

min
0≤t≤T∗

v∗(t, λ) = exp

[
−eλ + 2λ− 1 +

1 + (1 + λ) lnλ

λ
+O

(
ln2 λ

λ2

)]
.

Remark 6.1. The stability and instability conditions for generalized Hutchinson equations
are discussed in Subsection 1.3.4 (see examples 1.16 and 1.17).

Consider the Cauchy problem for equation (6.1.1.5) with b = 1 and the initial

condition

v(t) = 0.5, −τ ≤ t ≤ 0. (6.1.1.6)

Figure 6.1 shows in solid lines numerical solutions of this problem for two different

delay times, (a) τ = 0.5 and (b) τ = 2, which correspond to a stable and unstable

equilibrium v = 1. The dashed line indicates the solution without delay, at τ = 0.

All solutions were obtained using the implicit second-order Runge–Kutta method

with the Mathematica software package (see Subsections 5.1.4 and 5.1.7). It is

apparent that the solution to the problem without delay rises monotonically and

rapidly approaches the equilibrium state. The solution at τ = 0.5 oscillates about

the solution without delay and approaches it rapidly with t, which indicates a stable

equilibrium. The solution at τ = 2 also oscillates about the solution without delay,

but its amplitude increases with t, which indicates an unstable mode.

(a)

0 5 10 15 t

0.5

1.0

1.5
(b)
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1.5
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Figure 6.1. Numerical solutions to problem (6.1.1.5), (6.1.1.6) with b = 1 and two delay

times: (a) τ = 0.5 and (b) τ = 2; the dashed line indicates the solution at τ = 0.

The logistic model with limited food supply. It is easily seen from (6.1.1.2) that

the average growth rate of the population, u′t/u, is a linear function of the density.

However, experiments on bacteria cultures did not confirm this, which resulted in the

need to improve the logistic model (6.1.1.2). Consequently, a more sophisticated,

food-limited model was suggested in [481], which is described by the ODE

ut = bu
k − u

k + cu
, (6.1.1.7)
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where u = u(t) ≥ 0 is the population density, b > 0 is the reproductive rate with

unlimited food, k > 0 is the saturation value (when ut = 0), and τ is the delay time,

characterizing the mean reproductive age of the species. Although this model was

obtained with no attention to the properties or possible biological interpretations of

the new constant c > 0, the examination of the model [481] allows one to treat the

ratio b/c as the rate of replacement of mass per unit mass in the existing popula-

tion at saturation. This includes both the replacement of metabolic loss and dead

organisms. Model (6.1.1.7) considers that a growing population will use food faster

than a saturated population. This is due to the fact that during the growth phase

of a population, food is consumed both for maintenance and growth. In contrast,

when the population reaches saturation, food is mainly used for maintenance only.

Just as in equation (6.1.1.2), the solution of equation (6.1.1.7) tends monotonically

to k as t → ∞. However, it was established experimentally (e.g., see [361]) that

the population density usually tends to fluctuate about an equilibrium. In cases of

convergence, it tends to a positive equilibrium, with such a convergence being rarely

monotonic. To incorporate such oscillations in the food-limited population model

(6.1.1.7), the study [183] suggested a model described by the following delay ODE:

ut = bu
k − w

k + cw
, w = u(t− τ). (6.1.1.8)

For properties of equation (6.1.1.8) and its solutions, see, for example, [51, 183, 184,

188, 486, 536].

6.1.2. Nicholson’s Equation

Nicholson’s blowflies equation is another quite common delay model [198]:

u′t = pwe−κw − δu, w = u(t− τ). (6.1.2.1)

It is used to model the behavior of a blowflies population and agrees well with the

experiments described in [361]. Here p > 0 is the maximum possible per capita egg

production rate (corrected for egg-to-adult survival), 1/κ > 0 is the size at which the

population reproduces at its maximum rate, δ > 0 is per capita daily adult mortality

rate, and τ > 0 is the generation time, or the time taken from birth to maturity.

Equation (6.1.2.1) has two states of equilibrium: trivial u0 = 0 and positive

u∗ =
1

κ
ln
p

δ
, (6.1.2.2)

which exists if p > δ.

We will treat equation (6.1.2.1) in the region t > 0 with the initial condition

u = ϕ(t) at −τ ≤ t ≤ 0. (6.1.2.3)

Below we outline the key results of studying Nicholson’s equation (6.1.2.1).

1◦. Letϕ(t)≥0 in (6.1.2.3). Then the solution to the associated Cauchy problem

for equation (6.1.2.1) is nonnegative [485], that is, u(t) ≥ 0 for t > 0.
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2◦. For given positive initial data, all solutions of equation (6.1.2.1) remain

positive for all t > 0. Moreover, the following inequality holds [485]:

lim
t→∞

supu(t) ≤ p

eδκ
.

3◦. Suppose that p ≤ δ. Then for any solution of equation (6.1.2.1) the relation

u(t)→ 0 holds as t→∞ [485]. In other words, the trivial solution u0 =0 is a global

attractor, meaning that it is globally asymptotically stable, regardless of τ .

4◦. Suppose that p > δ. Then there is no nontrivial solution u(t) to equation

(6.1.2.1) such that

lim
t→∞

u(t) = 0.

Moreover, all solutions to equation (6.1.2.1) are uniformly stable [485]; that is, there

exists an η > 0 such that for any trajectory with positive initial values, the relation

lim
t→∞

inf u(t) > η holds.

Remark 6.2. The criteria of local asymptotic stability of the nontrivial equilibrium u∗

defined by (6.1.2.2) can be obtained by directly computing the roots of the characteristic
equation

λ+ δ + δ[ln(p/δ)− 1]e−τλ = 0,

which corresponds to the solution of equation (6.1.2.1) linearized about the stationary solution.

5◦. Suppose the bilateral inequality

1 < p/δ < e2

holds. Then the nontrivial stationary solution u∗ is uniformly stable. If

1 < p/δ < e,

the nontrivial stationary solution u∗ is uniformly asymptotically stable [259].

6◦. Suppose p/δ > e2. Then the positive equilibrium u∗ of equation (6.1.2.1) is

locally asymptotically stable if the following inequality holds [180]:

τ <
1

δ
ln
( c

c− 1

)
, c = ln

p

δ
− 1.

Moreover, there exists a periodic solution (other than constant) if

τ >
arccos(−1/c)

δ
√
c2 − 1

, c = ln
p

δ
− 1.

7◦. The following proposition was proved in [549]. For p/δ > e2, the solution

u = u∗ is locally asymptotically stable if τ ∈ (0, τ0) and unstable if τ > τ0, where

τ0 =
1

δ
√
c2 − 1

arcsin

√
c2 − 1

c

and the constant c is defined in Item 6◦.
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8◦. The condition

(eδτ − 1) ln(p/δ) < 1

guarantees that the positive equilibrium is globally asymptotically stable [485].

9◦. The positive solution u∗ of equation (6.1.2.1) is globally asymptotically

stable [314] if either

1 < p/δ ≤ e

or
p

δ
> e and e−δτ > c ln

c2 + c

c2 + 1
, c = ln

p

δ
− 1.

10◦. The following two statements hold [201, 287]:

a) Suppose

p/δ > e and δτeδτ [ln(p/δ)− 1] > e−1.

Then all solutions of equation (6.1.2.1) oscillate about u∗.

b) Suppose

p/δ > e2 and δτeδτ [ln(p/δ)− 1] ≤ e−1.

Then there exists a solution of equation (6.1.2.1) non-oscillating about u∗.

Definition 1. The function u(t) is said to be non-oscillating about a value K if

the differenceu(t)−K is either positive or negative at sufficiently large t. Otherwise,

the function u(t) is said to be oscillating about K .

11◦. Suppose that p > δ and u(t) is a positive non-oscillating function about the

solution u∗ of equation (6.1.2.1). Then limt→∞ u(t) = u∗ [485].

Definition 2. A nonzero solution u(t) to equation (6.1.2.1) is said to be rapidly

oscillating about u∗, if there exist sequences {tn} and {t′n} such that tn → ∞ and

t′n → ∞ and

tn 6= t′n, u(tn) = u(t′n) = u∗, |tn − t′n| ≤ τ, n ≥ 1.

Otherwise, the solution u(t) is said to be slowly oscillating about u∗.

12◦. The study [202] obtained some general results stated below.

If 1 < p/δ < e, then

a) equation (6.1.2.1) has positive solutions other than u∗ that are not oscillating

about u∗;

b) equation (6.1.2.1) has infinitely many positive solutions rapidly oscillating

about u∗;

c) equation (6.1.2.1) does not have positive solutions slowly oscillating aboutu∗;

For p/δ = e, all solutions of equation (6.1.2.1) other than u∗ are non-oscillating

about u∗.

For more details about the properties of Nicholson’s equations and related more

complicated nonlinear delay ODEs, see the review [53].

Consider the Cauchy problem for equation (6.1.2.1) subjected to the initial con-

dition

u(t) = u0 = 50, −τ ≤ t ≤ 0. (6.1.2.4)
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Following the recommendations of [198] based on an analysis of the experimental

data from [361], we set the equation parameters as follows: p = 10, κ = 0.1, and

τ = 15. We solve the problem by the Gear method using the Mathematica package

(see Subsection 5.1.7).

Figure 6.2 displays the graphs of solutions to problem (6.1.2.1), (6.1.2.4) at

different values of the per capita daily mortality rate δ. The graphs are qualita-

tively different, which agrees with the above stability conditions for the equilibrium

state u∗. Figure 6.2a illustrates asymptotic stability of u∗. Near the boundary of the

asymptotic stability region, the solution enters a simple oscillatory mode with one

local maximum and one local minimum per oscillation period (Figure 6.2b). As we

move deeper into the instability region, we first observe a doubling of local maxima

(Figure 6.2c) and then a chaotic mode (Figure 6.2d). Similar graphs at different

values of the problem parameters were obtained and analyzed in [198].
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Figure 6.2. Solution u(t) to problem (6.1.2.1), (6.1.2.4) at κ = 0.1, p = 10, τ = 15 and

different values of the parameter δ: (a) δ = 0.018, (b) δ = 0.05, (c) δ = 0.2, (d) δ = 0.5. The

dashed lines indicate the equilibrium state u∗ = 1
κ
ln p

δ
.

6.1.3. Mackey–Glass Hematopoiesis Model

The article [330] describes the dynamics of a homogeneous population of mature

circulating blood cells of density u = u(t) using a delay ODE of the form

ut = β0
θnw

θn + wn
− γu, w = u(t− τ), (6.1.3.1)

where β0, θ, n and γ are some positive parameters.
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The right-hand side of equation (6.1.3.1) with n > 1 and fixed u is a function

ofw with a single maximum. As τ increases, the initially stable equilibrium becomes

unstable, and stable periodic solutions arise. As τ increases further, the system

dynamics reveals a sequence of bifurcations. A chaotic mode is also observed.

Model (6.1.3.1) and related models were investigated in [52, 305, 462, 469].

The study [329] analyzed clinical and laboratory data on periodic hematopoiesis1

and found that the dynamics of periodic hematopoiesis arises in populations of pluri-

potent hematopoietic stem cells.2

Cells subdivide into those of the proliferative phase3 (population density v(t),
cells/kg) and resting phase G0 (population density u(t), cells/kg). The cells of these

phases differ as follows. In the proliferation stage, cells undergo mitosis4 after a fixed

time τ (days) from the start of the stage. In turn, the resting-phase cells can randomly

leave the resting phase to either return to proliferation, at a rate of β (days−1), or be

completely removed from the process due to differentiation5 into various hematopoi-

etic cells (such as erythrocytes, lymphocytes, platelets, etc.), at a rate of δ (days−1).

Although proliferating cells can also be irrevocably excluded from any phase of the

cell cycle at a rate of γ (days−1), a ‘normal’ stem cell population is, by definition,

characterized by the value γ = 0. The parameters γ, δ, and τ are constant in time

and independent of the population size. Determining the numerical values of these

parameters is difficult due to their number and insufficient data on the physiology

and pathophysiology of stem cells (some attempts to estimate the parameters were

made in [329]).

The rate of transition from the resting to proliferative phase depends on the

number of cells in the resting phase, meaning that β = β(u). When u is small, β
reaches a maximum; when u increases, β decreases. The transition rate is expressed

as follows:

β(u) =
β0θ

n

θn + un
, (6.1.3.2)

where β0 is the maximum rate of transition of cells from the resting phase G0 to

proliferation (days−1), θ is the cell population density in the G0 phase at which the

transition rate is maximum (cells/kg), and n is a dimensionless number responsible

for the sensitivity of the transition rate to the population size u in the resting phase.

This choice of the function β(u) is substantiated in [329].

The dynamics of the cell population in the resting phase G0 is described by the

delay ODE

ut = −δu− β(u)u + 2β(w)we−γτ , w = u(t− τ). (6.1.3.3)

1Hematopoiesis is the process of formation, development and maturation of blood cells.
2Pluripotent stem cells can self-renew by dividing and developing to form the early embryo’s three

main layers of germ cells. Therefore, these are all cells of the adult body but not extra-embryonic tissues

such as the placenta. Embryonic stem cells and induced pluripotent stem cells are pluripotent stem cells.
3Proliferation is the process of rapid increase of an organism’s tissue through cell division.
4Mitosis is the process by which a single parent cell divides to make two new daughter cells. Each

daughter cell receives a complete set of chromosomes from the parent cell.
5Differentiation is the process when young, immature (unspecialized) cells take on individual charac-

teristics and reach their mature (specialized) form and function.
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The rate of change of the population density in the resting phase equals the sum of

three terms. The first term is responsible for the irreversible loss of cells in the G0

phase due to differentiation. The second term corrects the loss because of the cells’

transition to proliferation. The third term takes into account the increment of the

cell population due to the transition of proliferative cells to the G0 phase from the

preceding generation. The factor ‘2’ indicates that cell proliferation occurs through

mitosis. The exponential factor adjusts the probability of loss of proliferative cells.

The dynamics of the cell population in the proliferative stage is described by a

similar delay ODE

vt = −γv + β(u)u − β(w)we−γτ , w = u(t− τ). (6.1.3.4)

The first term is responsible for the irreversible loss among the proliferative cells,

the second one simulates the inflow of cells from the resting phase, while the third

accounts for the outflow of cells from the proliferative to resting phase. Notably,

equation (6.1.3.4) involves two unknown functions, u and v, while equation (6.1.3.3)

involves only one, u.

Substituting (6.1.3.2) into (6.1.3.3) and (6.1.3.4) yields a system of two delay

ODEs describing the dynamics of the production of pluripotent stem cells:

ut = −δu− β0θ
nu

θn + un
+

2β0θ
nw

θn + wn
e−γτ ,

vt = −γv + β0θ
nu

θn + un
− β0θ

nw

θn + wn
e−γτ ,

(6.1.3.5)

where w = u(t− τ).
Consider system (6.1.3.5) with the initial conditions

u(t) = 6.25× 108, v(t) = 0.69× 108, −τ ≤ t ≤ 0. (6.1.3.6)

The initial conditions and the values of the parameters are in agreement with the

estimates from [329] (see Figure 3 of the article). The solutions are obtained with

the fourth-order Runge–Kutta method using Mathematica (see Subsections 5.1.4 and

5.1.7). Figure 6.3 displays qualitative changes of the cell number in the resting

phase u(t) (solid line) and proliferative phase v(t) (dashed line) depending on the

parameter γ responsible for irreversible cell removal from the population (e.g., due

to death). Figure 6.3a depicts the decrease in the number of resting phase cells and

a slight increase in the number of proliferative phase cells to some stable levels.

Figure 6.3d corresponds to a more substantial decrease in the number of resting phase

cells. In both cases, one can observe a decrease in the total number of stem cells

u(t) + v(t). Figures 6.3b and 6.3c correspond to periodic hematopoiesis.

The study [329] investigated the stability of steady-state solutions and provided

graphs of solutions to system (6.1.3.5) with other initial data and values of the

parameters. It was noted that the behavior of the system solutions is consistent with

quantitative and qualitative properties of aplastic anemia and periodic hematopoiesis

in humans. The coefficient of irreversible loss of stem cells was shown to influence

the dynamics of their population size.

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 335

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 335



336 6. MODELS AND DELAY DIFFERENTIAL EQUATIONS USED IN APPLICATIONS

10
8

10
8

u (a)

0 20 40 60 80 t

2

4

6

8
10
8

10
8

u (b)

0 20 40 60 80 t

2

4

6

8

10
8

10
8

u (c)

0 20 40 60 80 t

2

4

6

8
10
8

10
8

u (d)

0 20 40 60 80 t

2

4

6

8

Figure 6.3. Solutions u(t) (solid line) and v(t) (dashed line) to problem (6.1.3.5), (6.1.3.6) at

δ=0.04, β0 =1.9, θ=1.74×108 , n=3, and τ =2.6 and different values of γ: (a) γ=0.18,

(b) γ = 0.20, (c) γ = 0.23, and (d) γ = 0.28.

6.1.4. Other Nonlinear Models with Delay

The simplest epidemiological model. The article [111] developed a simple model

of the spread of infection from person to person using a vector (e.g., a malarial

mosquito):

u′t = βw(1 − u)− λu, w = u(t− τ), (6.1.4.1)

where u= u(t) is the relative number of infected individuals, β > 0 is the interaction

factor, λ> 0 is the recovery rate, and τ > 0 is the time it takes for the infectious agent

to develop in a vector and make the vector infectious to susceptible individuals. The

following assumptions were adopted to derive the delay ODE (6.1.4.1):

1◦. The disease is not lethal and does not cause the formation of immunity;

that is, the population consists of only infected, u(t), and susceptible, v = v(t),
individuals.

2◦. The population size is fixed, meaning that u+ v ≡ 1.

3◦. The infection rate is proportional to the number of contacts between suscep-

tible humans and infectious vectors, i.e., to the product vz=(1−u)z, where z= z(t)
is the number of infectious vectors.

4◦. The size of the vector population z is proportional to w = u(t − τ), i.e., to

the number of infected people at time t− τ .

Epidemic models for three groups of individuals (SIR models). The dynamics

of the development of an epidemic in a population of variable size is described by
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the following system of delay ODEs for three groups of individuals: susceptible

u1(t) (S), infected u2(t) (I), and non-susceptible (recovered with complete immunity

or died) u3(t) (R):

u′1 = b− µu1 − βu1w2 + γu3,

u′2 = βu1w2 − (µ+ α+ λ)u2,

u′3 = λu2 − (µ+ γ)u3,

(6.1.4.2)

where ui = ui(t) (i = 1, 2, 3), w2 = u2(t − τ), b is the population reproduction

rate (number of individuals born per day), µ is the natural mortality rate, β is the

transmission coefficient, γ is the reduction coefficient of immunity formed after

disease (with γ = 0 for permanent immunity), α is the disease death rate, λ is the

recovery rate, and τ > 0 is the time it takes for the infectious agent to develop inside

a vector and make the vector infectious to susceptible individuals.

Notably, model (6.1.4.2) is based on the simpler model without delay suggested

in [14]. System (6.1.4.2) and related systems were studied, for example, in [49, 50,

328, 338, 508].

Remark 6.3. Systems like (6.1.4.2) are also used to describe the spread of viruses, such as
HIV or hepatitis B, inside a human body. In this case, u1(t), u2(t) and u3(t) are, respectively,
the densities of uninfected cells, infected cells producing viruses, and active viruses. The
delay τ is the time between the moment when a cell becomes infected and the moment when
it starts producing viruses. These kinds of models are discussed, for example, in [119, 191,
213, 346, 357, 358].

A simple climate model. The ocean and atmosphere usually interact through

the following mechanism: a large-scale anomaly in the ocean surface temperature

causes diabatic heating or cooling of the atmosphere, which changes atmospheric

circulation and, consequently, the wind stress and heat fluxes at the ocean surface. In

turn, changes in the wind stress change the thermal structure and circulation of the

ocean, causing a series of positive feedbacks that amplify the initial anomaly in the

ocean surface temperature. Therefore, oceanic and atmospheric circulations should

generally be considered together, while the interaction of the two media is due to

temperature changes on the ocean surface.

El Niño–Southern Oscillation (ENSO) is an irregular, periodic fluctuation in

wind strength and sea surface temperatures across the eastern tropical Pacific Ocean,

affecting the climate of much of the tropics and subtropics. The study [503] sug-

gested a simple qualitative model to describe the Southern Oscillation based on

strong positive feedback in the coupled ocean-atmosphere system and on nonlinear

effects limiting the growth of unstable disturbances. A key element of the model is

the use of delay to account for the effects of ocean waves propagating in a closed

equatorial basin.

The climate model of ENSO [503] relies on an ODE with a cubic nonlinearity

and a constant delay:

u′t = u− u3 − αw, w = u(t− τ), (6.1.4.3)

where u=u(t) is the growing disturbance amplitude,α is a coefficient characterizing
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the relative importance of the local and delayed wave effects, and τ is a constant

delay time (wave transit time).

The nonlinear delay equation (6.1.4.3) has a few stationary states, each of which

can become unstable and give rise to self-oscillations with period equal to double

the delay time. The study [503] investigates the model stability and presents several

numerical solutions. Oscillating solutions were found to arise at significant delay

effects (α > 1
2 ) and sufficiently large delays (ατ > 1).

A model of regenerative machine tool vibration. The article [249] deals with a

regenerative machine tool vibration model in the case of orthogonal cutting. One of

the most essential effects causing poor surface quality during the cutting process is

the vibration that occurs due to delay. Because of external disturbances, the cutting

tool experiences a damped oscillation relative to the workpiece, thus making its sur-

face uneven. Furthermore, after one revolution of the workpiece, the chip thickness

changes. As a result, the cutting force depends not only on the tool edge current

position relative to the workpiece but also on the delayed value of the displacement.

The length of this delay is the time τ in which the workpiece makes one revolution.

This process is called the regenerative effect. To study the delay-related properties

of the system, the authors used a simple model with one degree of freedom. It was

assumed that the tool moves in the vertical direction and possesses elasticity and

viscosity, and all forces are directed vertically.

h

u t( )

m

s c
cu′ts l!D

F

Figure 6.4. Free body diagram (horizontal forces ignored) of the one-degree-of-freedom

mechanical model of the regenerative machine tool vibration. Notation: ∆l = l− l0 +u(t) is

the spring deformation, where l is the initial spring length and l0 is the spring length in steady-

state cutting.

Let u(t) denote the vertical tool edge position, m the tool mass, s the tool

coefficient of elasticity (more precisely, the stiffness of the spring modeling the tool

elasticity), c the damping coefficient characterizing the viscous properties of the tool,

h the current chip thickness, h0 the chip thickness in steady-state cutting, and F the

vertical component of the cutting force (see Figure 6.4). Then the motion of the tool

can be described by the one-dimensional equation [249]:

u′′tt + 2ζωnu
′
t + ω2

nu = − 1

m
∆F, (6.1.4.4)

where ωn =
√
s/m is the natural angular frequency of the undamped free oscil-

lations of the system, ζ = c/(2mωn) is the so-called relative damping factor, and
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6.1. Models Described by Nonlinear Delay ODEs 339

∆F = F (h) − F (h0) is the increment of the cutting force. The cutting force in

steady-state cutting equals F (h0) = −s(l − l0), where l is the initial spring length

and l0 is the spring length in steady-state cutting. The quantity ∆F is determined

by F as a function of the technological parameters, primarily as a function of the

chip thickness h, which depend on the tool edge position u. It was established

experimentally that

F (h) = Kdh3/4,

where d is the chip width and K is some coefficient. Expanding F in a power series

about h0 and retaining the four leading terms, we obtain

F (h)≈Kd

[
h
3/4
0 +

3

4
(h−h0)h−1/4

0 − 3

32
(h−h0)2h−5/4

0 +
5

128
(h−h0)3h−9/4

0

]
.

Introducing the cutting force coefficient k1=
3
4Kdh

−1/4
0 , we write ∆F as a function

of ∆h = h− h0 in the form

∆F (∆h) ≈ k1∆h− 1

8

k1
h0

(∆h)2 +
5

96

k1
h20

(∆h)3.

The chip thickness increment ∆h can be represented as the difference between the

current tool edge position u(t) and its delayed value w = u(t− τ), where the delay

time τ = 2π/Ω equals the time of one revolution of the workpiece, where Ω is

the constant angular frequency of rotation of the workpiece. As a result, equation

(6.1.4.4) becomes

u′′tt+2ζωnu
′
t+ω

2
nu= f(u−w), f(z)=− k1

m

(
z− 1

8h0
z2+

5

96h0
z3
)
. (6.1.4.5)

Using the dimensional quantities t̃ = ωnt, ũ = 5
12h0

u, τ̃ = ωnτ , and p = k1/(mω
2
n)

and omitting the tildes, we obtain

u′′tt + 2ζu′t + u = f(u− w), f(z) = −pz + 3

10
p(z2 − z3). (6.1.4.6)

The study [249] showed the occurrence of bifurcations∗ when the parameters of

the delay ODE (6.1.4.6) change.

Distribution of cells in an organism’s tissue (equation with proportional ar-

gument). Consider a steady size distribution of cells, u(x), of size x in an organism’s

tissue while assuming that the normalization condition

∫ ∞

0

u(x) dx = 1

holds. A steady size distribution of cells can arise in a growing population if the

rates of growth and division of cells are consistent, only depend on the cell size x,

∗Bifurcations are qualitative changes in the properties of a system occurring as the system parameters

change and characterized by the loss of stability of stationary solutions.
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340 6. MODELS AND DELAY DIFFERENTIAL EQUATIONS USED IN APPLICATIONS

and are independent of time t. In this case, u(x) is described by the following ODE

with proportional argument [206]:

d

dx
[g(x)u(x)]=−b(x)u(x)−(α−1)u(x)

∫ ∞

0

b(x)u(x)dx+α2b(αx)w, w=u(αx),

where g(x) is the rate of growth of cells in size (per second) and b(x) is the rate at

which cells of size x divide (cells per second) and form α new cells of size x/α.

A cell typically divides into two, meaning that α = 2. However, mathematically,

other values of α can also be used with α > 1 corresponding to cell division and

increasing population, while α < 1 corresponding to cell fusion and decreasing

population.

The study [206] describes the properties of a solution to the equation in the

simplest nontrivial case of b(x) = b = const and g(x) = c = const:

u′x = −au+ aαw, a = αb/c, w = u(αx).

The exact solution was obtained using the Laplace transform; it was shown that

u(x) tends to a normal distribution as α → 1 + 0.

6.2. Models of Economics and Finance

Described by ODEs

6.2.1. The Simplest Model of Macrodynamics of Business
Cycles

For the first time, a delay ODE in the field of economics was apparently used in [246]

to describe the macrodynamics of business cycles in an isolated economic system

(see also [168, 236]).

Assume that any investment process goes through three stages: (i) preparing

and placing investment orders (purchase orders), i.e., orders for capital goods that

ensure the reproduction or expansion of industrial equipment; the total volume of

such orders per unit of time is denoted v = v(t); (ii) producing capital goods; and

(iii) delivering finished industrial equipment. The invested funds thus turn into the

required industrial equipment after a certain time τ , which is responsible for the

duration of the investment process, the average value of which is assumed to be

0.6 years. The study [246] derived the following differential equation to describe the

associated process of changing the volume of investments over time:

v′t =
m

τ
(v − v̄)− n(v̄ − c), v̄ = v(t− τ),

where c is the constant demand for restoration of the industrial equipment, while

m and n are positive constants determined empirically (the values m = 0.95 and

n = 0.121 were used in [246]). With the new notations

u(t) = v(t)− c, a = m/τ, b = m/τ + n,
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6.2. Models of Economics and Finance Described by ODEs 341

we get the linear homogeneous delay ODE

u′t = au− bū, ū = u(t− τ),

which was treated in detail in Subsection 1.1.3.

6.2.2. Model of Interaction of Three Economical Parameters

Consider the following system of three ODEs without delay that describes the inter-

dependence of the interest rate, u = u(t), investment demand, v = v(t), and price

index, w = w(t) [327]:

u′t = (v − a)u+ w,

v′t = 1− bv − u2,

w′
t = −u− cw,

(6.2.2.1)

where a ≥ 0 is the savings amount, b ≥ 0 is the cost per investment, and c ≥ 0
is the elasticity of demand of commercial markets. The change in the interest rate

u is affected by the excess of investment demand over savings and the commodity

price index. The change in investment demand v decreases as the cost of investment

and the interest rate increase. The change in the price index w obeys the balance of

supply and demand in the commercial market and is influenced by inflation.

The study [605] investigated a more complex mathematical model than (6.2.2.1),

which considers the delay between price changes and interest rate changes:

u′t = (v − a)u+ w̄,

v′t = 1− bv − u2,

w′
t = −u− cw,

(6.2.2.2)

where w̄ = w(t− τ).
System (6.2.2.2) has an equilibrium P0 = (0, 1/b, 0). If abc − c + b < 0, then

system (6.2.2.2) also has two more equilibria [96, 605]:

P± =

(
±
√
1− ab− b

c
, a+

1

c
, ∓ 1

c

√
1− ab− b

c

)
,

where one should take either the upper or the lower signs.

The following two statements hold true [605].

Proposition 1. Suppose that 1 − ab − bc < 0 and abc − c − b > 0. Then the

equilibrium P0 of system (6.2.2.2) is locally asymptotically stable for all τ ≥ 0.

Proposition 2. Suppose 1− ab− bc < 0, abc− c+ b > 0, and abc− c− b < 0.

Then there exists a τ0 such that:

(i) for 0≤ τ < τ0, the equilibrium P0 of system (6.2.2.2) is asymptotically stable;

(ii) for τ = τ0, a Hopf bifurcation occurs. This means that system (6.2.2.2) has a

branch of periodic solutions bifurcating from P0 near τ = τ0.
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342 6. MODELS AND DELAY DIFFERENTIAL EQUATIONS USED IN APPLICATIONS

The study [96] treated another model described by the system of delay ODEs

u′t = (v̄ − a)u+ w,

v′t = 1− bv − ū2,

w′
t = −ū− cw,

(6.2.2.3)

where v̄ = v(t − τ) and ū = u(t − τ). System (6.2.2.3) has the same equilibria as

system (6.2.2.2).

See the articles [96, 605] for other results on the stability of equilibria and Hopf

bifurcations for systems (6.2.2.2) and (6.2.2.3).

6.2.3. Delay Model Describing Tax Collection in a Closed
Economy

Consider a fixed-price disequilibrium intermediate-run IS-LM model∗ augmented by

a government budget constraint. The model is represented by the following system

of equations [93] (see also [465–467]):

u′t = α[f1(u, v) + δ − f2(u − z)− z],

v′t = β[f3(u, v)− w],

w′
t = γ − z,

(6.2.3.1)

where α and β are positive constants, u = u(t) is the income, v = v(t) is the interest

rate, w = w(t) is the real money supply (prices are fixed at unity); f1(. . . ) is the

investment, δ is the constant government expenditure, f2(. . . ) is the savings, z= z(t)
is the tax collection, and f3(. . . ) is the liquidity preference function. The argument

u− z of the function f2 is known as the disposable income (income after taxes). The

first equation of system (6.2.3.1) represents the traditional disequilibrium adjustment

in the product market, the second equation represents the disequilibrium dynamic

adjustment in the money market, and the third equation defines the government’s

budget constraint.

In the simplest case, one should set

z = µu (6.2.3.2)

in system (6.2.3.1); µ is a common average tax rate.

The investment function f1, savings function f2, and liquidity preference func-

tion f3 are assumed to possess the properties

∂f1
∂u

> 0,
∂f1
∂v

< 0, 0 < f ′
2 < 1,

∂f3
∂u

> 0,
∂f3
∂v

< 0.

∗The IS-LM model (without delay), which stands for ‘investment–savings’ (IS) and ‘liquidity

preference–money supply’ (LM), is a Keynesian macroeconomic model that shows how the market for

economic goods (IS) interacts with the loanable funds market (LM) or money market. It is represented as

a graph in which the IS and LM curves [231] intersect to show the short-run equilibrium between interest

rates and output.
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These functions can be defined, for example, as follows:

f1(u, v)=A
ua

vb
, f2(u−z)=k(u−z), f3(u, v)=f31(u)+f32(v)=γu+

λ

v − v∗
,

where A > 0, a > 0, b > 0, 0 < k < 1, γ > 0, and λ > 0; v∗ > 0 is a fixed

very small rate of interest generating the liquidity trap as v falls to the level v∗ > 0
(i.e., f32(v) → +∞ as v → v∗).

The study [93] complicated model (6.2.3.1)–(6.2.3.2) by introducing a delay

between the calculation and payment of taxes.∗ It was assumed that at each time,

tax revenues z = z(t) consist of two complementary components: one based on the

current income and the other based on a past income, with the tax rate remaining the

same:

z = µ(1− ε)u+ µεū, (6.2.3.3)

where ū = u(t− τ), τ is a fixed mean time lag of the income the current tax revenue

is based on, ε is the income tax share of the delayed component, µ is a common

average tax rate, 0 < µ < 1, and µ > f ′
2.

The work [93] shows that system (6.2.3.1)–(6.2.3.3) has a unique equilibrium

point, which can be stable or unstable depending on the delay value. Moreover,

under certain conditions, a sequence of intervals arises in which the regions of stabil-

ity/instability alternate. Given a certain tax policy, it follows that the policy makers

may face severe difficulties in stabilizing the economic system if they use the usual

fiscal policy instruments.

6.3. Models and Delay PDEs in Population Theory

6.3.1. Preliminary Remarks

The physical meaning of diffusion. In population dynamics models, diffusion

arises due to the tendency of a species to migrate to regions of lower population

density [109]. In this case, for simplicity, one usually assumes that food is supplied

continuously and uniformly in time and space. As a result, food becomes scarce

in regions of high population density, and individuals will tend to migrate to areas

of lower density to have a higher chance of survival. As noted in [190], most of

the existing literature deals with the simplest situation where the movement of each

individual is assumed to occur due to Fickian diffusion. It suggests that the popula-

tion flow is proportional to the concentration gradient with a negative proportionality

constant. The studies [72, 83, 353] treat the diffusion process from an ecological

point of view.

Remark 6.4. When introducing diffusion in a model with delay, many authors simply add
the diffusion term in the delay ODE. However, it turned out that some difficulties may arise
with this approach. The point is that although diffusion and temporal delay are related to

∗The delay was first paid attention to in [513]. It was shown that delay leads to a decrease in real

(inflation-adjusted) government revenues.
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344 6. MODELS AND DELAY DIFFERENTIAL EQUATIONS USED IN APPLICATIONS

space and time, respectively, they are not independent since individuals are not located at the
same points in space at previous instants of time. Possible ways to overcome this problem by
introducing a distributed (non-local) delay are discussed in [190].

Initial and boundary conditions. Suppose the equation of interest holds true in

a domain x ∈ Ω for t > 0. The initial condition has the form

u(x, t) = ϕ(x, t) at −τ ≤ t ≤ 0. (6.3.1.1)

Since the unknown function means population density, it is nonnegative. To ensure

this, the initial conditions must also be nonnegative, that is, ϕ(x, t) ≥ 0. Suppose

the environment is hostile so that all individuals that reach the boundary leave the

population forever. In that case, one sets a homogeneous boundary condition of the

first kind on the boundary ∂Ω:

u(x, t)|∂Ω = 0. (6.3.1.2)

If the population is isolated in Ω, implying that the individuals reaching the boundary

‘rebound’ from it and return to the population, then one sets a homogeneous bound-

ary condition of the second kind:

∂u(x, t)

∂n

∣∣∣
∂Ω

= 0, (6.3.1.3)

where n is the outward normal to ∂Ω. If individuals can cross the boundary, one uses

a homogeneous boundary condition of the third kind:

[
∂u(x, t)

∂n
+ σu(x, t)

]

∂Ω

= 0, (6.3.1.4)

where the coefficient σ characterizes the boundary crossing speed. If σ > 0, the flow

of individuals goes outside the domain, and if σ < 0, it goes inside.

In what follows, for simplicity, we will often describe mathematical models

using equations in one space variable x.

6.3.2. Diffusive Logistic Equation with Delay

The diffusive logistic equation with delay generalizes Hutchinson’s equation (6.1.1.4)

and has the form

ut = auxx + bu(1− w/k), w = u(x, t− τ), (6.3.2.1)

where u = u(x, t) ≥ 0 is the population density, b > 0 is the growth rate coefficient,

and k is the carrying capacity of the habitat. The delay time τ represents the average

reproductive age of individuals, and 0 < a ≪ 1 is a parameter that characterizes

the effect of diffusion acting equally on all individuals. The growth rate of the

population is directly proportional to the population size at the current time, and the

factor (1− w/k) determines the self-regulation mechanism.
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Remark 6.5. In the literature, equation (6.3.2.1) is known by different names, such as the
diffusive logistic equation with delay, Fisher equation with delay, and diffusive Hutchinson
equation. Sometimes, the diffusive equation (6.3.2.1) is simply referred to as Hutchinson’s
equation (e.g., see [167, 323]). However, the term ‘Hutchinson’s equation’ is historically
assigned to the delay ODE (6.1.1.4). In our opinion, the term ‘diffusive logistic equation with
delay’ is the most suitable for equation (6.3.2.1). In addition, it is also known as the Fisher–

KPP equation (Fisher–Kolmogorov–Petrovsky–Piskunov equation) with delay, since it was
dealt with in the studies [162, 278] at τ = 0.

The change of variable u = kv reduces equation (6.3.2.1) to the simpler form

vt = avxx + bv(1 − v̄), v̄ = v(x, t− τ). (6.3.2.2)

It was established in the study [323] that nonnegative solutions of the Dirich-

let initial-boundary value problem for the delay PDE (6.3.2.1) on a finite interval

0 ≤ x ≤ L remain bounded at indefinitely large times. However, in related problems

with several space variables, this only takes place when the delay time is not too

large. It was shown in [167] that, in multi-dimensional problems in a finite domain

with boundary conditions of the first or second kind and with a large delay time τ
and small diffusion coefficient a, there are lots of solution trajectories such that the

total mass of the population increases exponentially as t→ ∞.

Consider the initial-boundary value problem for equation (6.3.2.2) on an interval

0 ≤ x ≤ L subjected to the initial and boundary conditions

v = ϕ(x, t) at −τ ≤ t ≤ 0, v(0, t) = v(L, t) = 0. (6.3.2.3)

Let b∗ = aπ2/L2. The following statements were proved in [502]:

1◦. If b < b∗, the trivial (zero) solution to problem (6.3.2.2)–(6.3.2.3) is a global

attractor of all nonnegative solutions to equation (6.3.2.2) for any τ ≥ 0.

2◦. For any b such that 0 < b − b∗ ≪ 1, equation (6.3.2.2) has a positive

stationary solution vb, and there exists a constant τ0 such that the solution vb is

locally asymptotically stable for 0≤ τ ≤ τ0 and unstable for τ > τ0. Moreover, there

exists a sequence of numbers {τn}∞n=0 such that a Hopf bifurcation of the stationary

solution arises at τ = τn.

Remark 6.6. Equation (6.3.2.2) admits a traveling wavefront solution; see Subsection
3.1.3 for details.

6.3.3. Delay Diffusion Equation Taking into Account
Nutrient Limitation

The reaction-diffusion equation with constant delay under nutrient limitation is writ-

ten as

ut = auxx + bu
1− w/k

1 + cw/k
, w = u(x, t− τ), (6.3.3.1)

where b > 0 is the population growth rate coefficient with unlimited food supply,

k > 0 is the carrying capacity of the habitat, and b/c> 0 is the mass replacement rate
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per unit mass in the population at saturation. This equation generalizes the diffusive

logistic equation (6.3.2.1) and coincides with it in the special case c = 0.

Equation (6.3.3.1) takes into account that a growing population consumes ‘food’

faster than the population at saturation. This is because, in the growth phase, food

is consumed both for maintenance and growth. While at the saturation level, food is

used for maintenance only. The delay τ characterizes the average reproductive age

of the species and allows one to consider the experimentally confirmed fluctuations

in the population density u(x, t) about the equilibrium value u = k.

The change of variable u = kv takes equation (6.3.3.1) to the simpler form

vt = avxx + bv
1− v̄

1 + cv̄
, v̄ = v(x, t− τ). (6.3.3.2)

The study [123] investigated the existence, uniqueness, and asymptotic stability

on nonnegative equilibria of equation (6.3.3.1) under zero Dirichlet boundary condi-

tions.

The article [502] investigated the existence and stability of positive stationary

solutions and the existence of Hopf bifurcations of a positive stationary solution to

equation (6.3.3.2) subjected to the initial and boundary conditions (6.3.2.3). The

authors proved similar assertions to those for the diffusive logistic equation above.

6.3.4. Lotka–Volterra Type Diffusive Logistic Model with
Several Delays

The Lotka–Volterra type reaction-diffusion model with several delays is described

by the system of equations:

ut = a1uxx + b1u(1− c1ū1 + d1v̄2),

vt = a2vxx + b2v(1 + d2ū3 − c2v̄4),
(6.3.4.1)

where u = u(x, t) and v = v(x, t) are the unknown functions; ūi = u(x, t − τi),
v̄j = v(x, t− τj) (i = 1, 3; j = 2, 4); τi ≥ 0 and τj ≥ 0 are delay times.

System (6.3.4.1) generalizes the Fisher equation without delay and Hutchinson’s

equation by taking into account the interaction between two species (if d1 = d2 = 0,

we get two independent diffusive logistic equations (6.3.2.1)). The unknown func-

tions u(x, t) and v(x, t) and coefficients ai, bi, ci (i = 1, 2) are all nonnegative and

similar in physical meaning to the functions and coefficients in equation (6.3.2.1). As

in the single equation, the delay times τ1 and τ4 characterize the average reproductive

age of individuals while the delays τ2 and τ3 represent the time required for changes

in the size of one population to bring about changes in the other population. All the

delays are nonnegative and can be zero in some models. The terms with nonzero d1
and d2 distinguish the present model from a single equation, while the coefficients

are responsible for the interaction between individuals of the two populations. In

the case of cooperative interaction, when one species persists in the absence of

the other and when the species mutually increase each other’s growth rate, both

coefficients d1 and d2 are positive. For competitive interaction, an increase in one
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population produces a decline in the other (for example, increasing the number of

predators leads to decreasing the population of prey), and the coefficients d1 and d2
are both negative. For cooperative Lotka–Volterra delay models, see [224, 295]; for

competitive models, see [151, 324, 377].

Remark 6.7. Equilibria and traveling wavefront solutions of the system of Lotka–Volterra
type delay PDEs (6.3.4.1) are discussed above in Subsection 3.1.3).

The study [295] investigated a simpler system than (6.3.4.1):

ut = uxx + bu(1− ū+ d1v̄), 0 < x < π, t > 0,

vt = vxx + bv(1 + d2ū− v̄), 0 < x < π, t > 0,
(6.3.4.2)

where ū = u(x, t− τ) and v̄ = v(x, t− τ). It was equipped with the boundary and

initial conditions

u(0, t) = u(π, t) = v(0, t) = v(π, t) = 0, t ≥ 0, (6.3.4.3)

u(x, t) = v(x, t) = 0.1 (1 + t/τ) sinx, −τ ≤ t ≤ 0, 0 ≤ x ≤ π. (6.3.4.4)

System (6.3.4.2) is obtained from (6.3.4.1) if one sets a1 = a2 = 1, b1 = b2 = b,
c1 = c2 = 1 and τ1 = · · · = τ4 = τ .

The following three statements were proved in [295]:

1◦. For all τ > 0, the trivial solution u = v = 0 of system (6.3.4.2) is stable for

b < 1 and unstable for b > 1.

2◦. If d1d2< 1 and b=1+εwith 0<ε≪ 1, there exists a positive stationary so-

lution of system (6.3.4.2) with the boundary conditions (6.3.4.3) such that u 6= const

and v 6= const.

3◦. Under the condition of 2◦, there exists a number τb such that the stationary

solution of system (6.3.4.2) is asymptotically stable for 0 ≤ τ < τb and unstable for

τ > τb.
The study [295] illustrates these assertions with graphs of solutions obtained

using MATLAB with a combination of the method of steps and an implicit numerical

method for integrating PDEs.

Figure 6.5 depicts the numerical solutions to problem (6.3.4.2)–(6.3.4.4) at the

point x=π/2 obtained with Mathematica using a combination of the method of lines

(with N = 200) and Gear method (see Subsections 5.1.7 and 5.2.2) with d1 = 0.4,

d2 = 0.7, and different values of b and τ . Figure 6.5a refers to the stable trivial

equilibrium, Figure 6.5b to a stable positive stationary solution, and Figure 6.5c to an

unstable positive stationary solution. The thin dashed lines in Figure 6.5b correspond

to a stationary solution with u ≈ 0.023 and v ≈ 0.028 at x = π/2 .

6.3.5. Nicholson’s Reaction-Diffusion Model with Delay

Nicholson’s reaction-diffusion model with delay is described by the nonlinear equa-

tion

ut = a∆u− δu+ pwe−κw, w = u(x, t− τ), (6.3.5.1)
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Figure 6.5. Numerical solutions u = u(t) (solid line) and v = v(t) (dashed line) to problem

(6.3.4.2)–(6.3.4.3) at x = π/2 with d1 = 0.4 and d2 = 0.7. Cases: (a) b = 0.98, τ = 20,

(b) b = 1.01, τ = 20, and (c) b= 1.01, τ = 30. The dashed lines indicate stationary solutions

at x = π/2.

where p > 0 is the maximum possible per capita egg production rate (corrected for

egg-to-adult survival), 1/κ > 0 is the size at which the population reproduces at its

maximum rate, δ > 0 is per capita daily adult mortality rate, time and density inde-

pendent, and τ > 0 is the generation time, or the time taken from birth to maturity.

Equation (6.3.5.1) generalizes the delay ODE (6.1.2.1). To analyze the popula-

tion dynamics of individuals in a non-laboratory environment, one has to consider

space inhomogeneity and employ space variables. In this context, a diffusion term

needs to be included in the equation to describe the chaotic motion of individuals.

When immature individuals are not subject to diffusion, while mature ones are,

model (6.1.2.1) can naturally be generalized to the reaction-diffusion equation with

delay (6.3.5.1).

Below we describe the stability conditions for solutions to Nicholson’s reaction-

diffusion equation with delay presented in the review part of the article [586]. Con-

sider equation (6.3.5.1) subjected to the boundary condition of the first kind (6.3.1.2)

and initial condition (6.3.1.1). Let λ1 be the least eigenvalue of the auxiliary linear

stationary problem

∆u + λu = 0, u|∂Ω = 0.

The study [487] showed that if p/δ−1< aλ1, the trivial stationary solution u= 0 to

the original nonstationary problem attracts all nonnegative solutions. If p/δ−1>aλ1,

the solution u = 0 becomes unstable, and then there is only one positive equilib-

rium, u+(x), which attracts all positive solutions, provided that e < p/δ ≤ e2.
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Consider equation (6.3.5.1) subjected to the boundary condition of the second

kind (6.3.1.3) and initial condition (6.3.1.1). An equilibrium of the correspond-

ing delay ODE (6.1.2.1) determines an equilibrium of problem (6.3.5.1), (6.3.1.3),

(6.3.1.1). The study [583] showed that if 0< p/δ≤ 1, all positive solutions converge

to u=0, and if 1<p/δ≤e, all nontrivial solutions converge to u∗=
1
κ ln p

δ regardless

of τ ≥ 0. The study [586] proved that the solution u∗ remains a global attractor for

e<p/δ≤ e2 regardless of the value of τ . Also, it was shown in [583] that if p/δ>e2,

the equilibrium u∗ can be unstable, and a Hopf bifurcation can arise as τ increases.

The study [463] found sufficient conditions for oscillations of all positive solu-

tions about the positive equilibrium and stated the following theorem.

Theorem. For p > eδ, any positive solution to equation (6.3.5.1) with the initial

condition (6.3.1.1) oscillates about u∗ if and only if

1) the inequality

δτ [ln(p/δ)− 1]e(λ1a+δ)τ > 1/e

holds when the homogeneous boundary conditions of the first kind (6.3.1.2) is used;

2) the inequality

δτ [ln(p/δ)− 1]eδτ > 1/e

holds when the homogeneous boundary condition of the second kind (6.3.1.3) or the

third kind (6.3.1.4) is used.

6.3.6. Model That Takes into Account the Effect of Plant
Defenses on a Herbivore Population

The study [504] investigated the effect of plant defenses on a herbivore population,

taking into account spatial heterogeneity and delay effects. In many plants, par-

ticularly trees, the damage inflicted by herbivores causes changes in the chemical,

physical and other properties of the leaves. These changes are known as the induced

defense. The delay is responsible for the time it takes for the plant to prepare its

induced defense. Herbivore-induced plant defense affects the stability and persis-

tence of herbivore populations. For example, many herbivorous insect populations

are characterized by outbreaks, when short periods of high population density and

numerous leaf defects alternate with long periods of low population density.

The mathematical model and system of delay equations described below are

based on the following four assumptions [504]:

1◦. The changes in the induced plant defense at time t depend on the herbivore

population density at time t− τ .

2◦. The level of induced defense depends on the herbivore population density

and the level of the already existing defense.

3◦. In the absence of induced changes in plants, the herbivore population obeys

the logistic law with growth rate γ and habitat carrying capacity k.

4◦. The seeds of some plants can travel in space due to various environmental

factors, such as wind. Therefore, it is assumed that the induced defense and the

herbivores travel randomly with diffusion coefficients a1 and a2, respectively.
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Under these assumptions, the authors derived the following reaction-diffusion

type system with delay [504]:

∂u1
∂t

= a1
∂2u1
∂x2

+ (α− βu1)
ūn2

bn + ūn2
− µu1,

∂u2
∂t

= a2
∂2u2
∂x2

+ γu2

(
1− u2

k

)
−mu1u2,

(6.3.6.1)

where u1 = u1(x, t) is the population density of plants with induced defense, u2 =
u2(x, t) is that of herbivores, ū2 = u2(x, t− τ), α is the maximum level of induced

defense per plant, β is the per-unit reduction in the elicitation rate due to plant self-

limitation, µ is the per-unit induction decay rate, m is the per-unit reduction in the

growth rate of herbivores caused by the induction of defense, b is the half-maximum

herbivore effectiveness of damage, and n is the herbivore damage effectiveness shape

tuning parameter. The study [504] also described other constants appearing in system

(6.3.6.1) as well as approximate numerical values of all constants with references to

publications where the data was found.

It was found in [504] that large delays can lead to a population density reduction

and an increased risk of extinction of herbivores, whereas moderate delays pre-

serve the herbivore population density in a particular range. The authors obtained

the minimum critical delay τ∗ at which the herbivore population exhibits periodic

outbreaks and showed that τ∗ depends on the herbivore diffusion coefficient a2
nonlinearly. The joint action of the delay and diffusion was found to increase the

average herbivore population density during the outbreaks and, hence, increase the

herbivores’ viability.

6.4. Models and Delay PDEs Describing the

Spread of Epidemics and Development of

Diseases

6.4.1. Classical SIR Model of Epidemic Spread

The classical Kermack–McKendrick spatial homogeneous epidemic model is de-

scribed by the system of three first-order ODEs [261]:

u′1(t) = −βu1u2,
u′2(t) = βu1u2 − λu2,

u′3(t) = λu2

(6.4.1.1)

with the initial conditions

u1(0) = u10 > 0, u2(0) = u20 > 0, u3(0) = 0,

where u1(t), u2(t), and u3(t) are the population densities of susceptible, infectious,

and removed (due to immunity or death) individuals, β is the contact rate (number

of contacts of an infectious individual per unit time), and λ is the recovery rate of
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infected individuals (without counting their death). In system (6.4.1.1), the nonlinear

term βu1u2 is responsible for the incidence rate, while the removal is proportional to

the share of infected individualsλu2. Model (6.4.1.1) is known as the SIR model, be-

cause individuals (humans) move from susceptible to infectious and then to removed.

System (6.4.1.1) admits the first integral u1 + u2 + u3 = C (conservation of the

total number of individuals), where C is the integration constant. On dividing all ui
by C, one can rewrite the conservation law in a dimensionless form.

The Kermack–McKendrick model (6.4.1.1) assumes that the population is well

mixed so that the infection is transmitted instantaneously. However, due to the high

mobility of people within one country or even worldwide, spatially homogeneous

models do not adequately describe the spread of diseases. For the model to be more

realistic, spatial effects must be included. If the environment is spatially continuous,

random diffusion is often used to describe population mobility, leading to models

based on reaction-diffusion equations (see [353]).

The introduction of a time delay in such models makes them more realistic. The

delay in epidemiological models may occur for several different reasons. The most

well-known ones include (i) the time it takes for the infectious agent to develop inside

a vector and make the vector infectious to susceptible individuals and (ii) the latent

period of disease, which is the time interval between when an individual is infected

and when they become infectious, i.e., capable of transmitting pathogens to other

susceptible individuals. Sometimes the latent period coincides with the incubation

period, which is the time from the moment of infection to the first signs of the dis-

ease. However, in general, the two periods do not match. The study [111] introduced

the effect of time delay into the epidemiological model under the assumption that

the infection rate at time t is determined by the expression βu1(t)u2(t − τ) with τ
considered as (i).

A Kermack–McKendrick type diffusive epidemic SIR model with delay can be

represented by the system of equations

∂u1
∂t

= a1
∂2u1
∂x2

− βu1w2,

∂u2
∂t

= a2
∂2u2
∂x2

+ βu1w2 − λu2,

∂u3
∂t

= a3
∂2u3
∂x2

+ λu2,

(6.4.1.2)

where u1 = u1(x, t), u2 = u2(x, t), u3 = u3(x, t), andw2 = u2(x, t−τ); a1, a2, and

a3 are the diffusion coefficients or susceptible, infectious, and removed individuals.

A more complicated SIR model that takes into account population growth, natu-

ral mortality, and mortality due to a disease can be represented as

∂u1
∂t

= a1
∂2u1
∂x2

+ b− µu1 − βu1w2,

∂u2
∂t

= a2
∂2u2
∂x2

+ βu1w2 − (µ+ α+ λ)u2,

∂u3
∂t

= a3
∂2u3
∂x2

+ λu2 − µu3,

(6.4.1.3)
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where b is the birth rate, µ is the natural mortality rate, and α is the disease death

rate. See [581] for a similar model.

The more general model known as the SIRS model [177], which generalizes

model (6.1.4.2), assumes that susceptible people develop their immunity for only a

limited time. This means that susceptible individuals become infected, then recover,

becoming immune to the disease, and are removed from infectious, and then after a

while, when immunity weakens, become susceptible again. To account for this, one

adds the term γu3 to the right-hand side of the first equation in (6.4.1.3) and subtracts

γu3 from the right-hand side of the third equation. As a result, we get

∂u1
∂t

= a1
∂2u1
∂x2

+ b− µu1 − βu1w2 + γu3,

∂u2
∂t

= a2
∂2u2
∂x2

+ βu1w2 − (µ+ α+ λ)u2,

∂u3
∂t

= a3
∂2u3
∂x2

+ λu2 − (µ+ γ)u3,

(6.4.1.4)

where γ is the rate at which recovered individuals lose their immunity and return to

the group of susceptible.

In the literature, there are models in which the bilinear incidence term βu1w2 is

replaced with a nonlinear term. This can be justified as explained below (in [87], it

was shown for a model without delay).

The case where the bilinear term is a linearly increasing function of the num-

ber of infectious individuals may be valid for a small number of such individuals.

However, this is hardly realistic for a large number of infectious individuals. In fact,

the number of contacts of a susceptible person per unit time may not always grow

linearly with an increase of w2.

It seems much more realistic to introduce, instead of the bilinear term βu1w2, a

more complex nonlinear term of the form g(w2)u1, where the number of infectious

individuals is determined by a nonlinear bounded function g, which eventually tends

to a saturation level. Using such a function also allows one to consider ‘psycholog-

ical’ effects: for a large number of infectious individuals, the infection force g(w2)
can decrease with w2, because the population may tend to reduce the number of

contacts per unit time. As an example, the study [87] considered (for a model without

delay) the function

g(w2) =
βw2

1 + θw2
.

Thus, the incidence rate βu1w2 is corrected by the factor 1/(1 + θw2) and allows

for the slowdown effect due to a change in the susceptibles’ behavior. For diffusive

equations with delay and a nonlinear infection rate, see, for example, [28, 97, 577,

581].
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6.4.2. Two-Component Epidemic SI Model

Relying on the classical Kermack–McKendrick model, the study [54] developed a

two-component epidemic model based on the following system of two nonlinear

ODEs:

u′1(t) = b(u1 + u2)
(
1− u1 + u2

k

)
− β

u1
u1 + u2

u2 − (µ+m)u1,

u′2(t) = β
u1

u1 + u2
u2 − (µ+ α)u2.

(6.4.2.1)

Unlike (6.4.1.1), this model accounts for variable population size, disease mortality,

and migration of individuals.

Equations (6.4.2.1) assume that the population consists of two groups: suscep-

tible and infectious individuals with the respective population densities u1 = u1(t)
and u2 = u2(t). The population reproduction obeys the logistic law with intrinsic

growth rate b and carrying capacity k; β is the transmission coefficient, µ is the

natural mortality rate, α is the disease death rate, and m is the migration rate of sus-

ceptible individuals. System (6.4.2.1) uses the nonlinear incidence term β u1

u1+u2
u2.

In this case, the infection rates are proportional to the ratio of susceptible-to-total

population size u1

u1+u2
, where u1 + u2 is the total population, rather than the sus-

ceptible population size u1. The term (µ +m)u1 characterizes the reduction in the

susceptible population due to natural mortality and migration. The term (µ + α)u2
is responsible for the decrease of the infectious population due to natural mortality

and disease mortality. The study [228] investigated model (6.4.2.1) with m = 0 and

called it a parasite–host model.

The studies [296, 306] dealt with a reaction-diffusion epidemic model of the type

of (6.4.2.1) (see also [81] for a similar model):

∂u1
∂t

= a1
∂2u1
∂x2

+ νrd(u1 + w2)(1 − u1 − w2)− νu1 − r0
u1w2

u1 + w2
,

∂u2
∂t

= a2
∂2u2
∂x2

+ r0
u1w2

u1 + w2
− w2,

where u1 = u1(x, t), u2 = u2(x, t), and w2 = u2(x, t − τ); a1 and a2 are the

diffusion coefficients, ν = µ+m
µ+α is the ratio of the average life spans of susceptible

and infectious individuals. The basic demographic reproductive number rd and basic

epidemiological reproductive number r0 are determined by

rd =
b

µ+m
, r0 =

β

µ+ α
.

The basic demographic reproductive number is the growth-to-death ratio in the ab-

sence of infection. The case rd > 1 indicates population growth, while rd < 1 indi-

cates its extinction. The basic epidemiological reproductive number r0 characterizes

the contagiousness of an infectious disease; it is defined as the average number of

susceptible individuals that one sick person can infect. The infection spreads widely

when r0 > 1 and does not spread when r0 < 1. The case r0 = 1 indicates a boundary

situation when the process can go either way.
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6.4.3. Epidemic Model of the New Coronavirus Infection

The study [610] developed a delay reaction-diffusion model close to the actual spread

of the COVID-19 epidemic. It includes relapse, time delay, home quarantine, and a

spatiotemporal heterogeneous environment that influences the spread of COVID-19.

The model includes six groups of people: susceptible (u1 = u1(x, t)), exposed

(u2 = u2(x, t)), quarantined at home (u3 = u3(x, t)), infected ( u4 = u4(x, t)),
quarantined in hospital (u5 = u5(x, t)), and temporarily recovered (u6 = u6(x, t)).
The model with multiple spatial variables is described by the following mixed system

of differential equations (PDEs and ODEs) with delay:

∂u1
∂t

= a1∆u1 + b− β1
u1u2
u1 + u2

− β2
u1w4

u1 + w4
− µu1,

∂u2
∂t

= a2∆u2 + β1
u1u2
u1 + u2

+ β2
u1w4

u1 + w4
+ ρ2u6 − (µ+ ω2 + p)u2,

∂u3
∂t

= pu2 − (µ+ α3 + ω3 + σ)u3,

∂u4
∂t

= a4∆u4 + ω2u2 + ω3u3 + ρ1u6 − (µ+ α4 + q)u4,

∂u5
∂t

= qu4 − (µ+ α5 + ν)u5,

∂u6
∂t

= a6∆u6 + σu3 + νu5 − (µ+ ρ1 + ρ2)u6,

(6.4.3.1)

where ui= ui(x, t) (i=1, . . . , 6),w2 = u2(x, t−τ); aj > 0 are diffusion coefficients

(j=1, 2, 4, 6), b is the population birth rate, β1,2 are contact rates, ω2,3 are morbidity

rates of the exposed and quarantined at home, p is the home quarantine rate, q is the

hospitalization rate, ρ1 is the relapse rate, ρ2 is the recontact rate of the recovered,

σ is the home quarantine leaving rate, ν is the hospital recovery rate, µ is the natural

mortality rate, and α3,4,5 are the disease death rate among the quarantined at home,

infected, and quarantined in hospital, respectively. The delay τ is responsible for

the incubation period, which is the time from the infection to the first signs of the

disease. During the incubation period, a person is unknown to have been infected or

not, so no restrictions can be placed on them, which means that such a person may

contact a susceptible one. It is noteworthy that the equations for u3 and u5 do not

include diffusion since people in home quarantine or in the hospital are assumed to

be immobile.

The work [610] gave approximate numerical values of the parameters of model

(6.4.3.1) for the epidemics in China and the USA and investigated the stability of

solutions.

Remark 6.8. The diffusion coefficients of model (6.4.3.1) can depend on x, so aj=aj(x),
where j = {1, 2, 4, 6}. In this case, the terms aj∆uj should be replaced with ∇ · (aj∇uj),
where ∇ is the gradient operator. The other model parameters can depend on both x and t; for
example, b = b(x, t).
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6.4.4. Hepatitis B Model

Models of disease development are related to models of the spread of epidemics.

Uninfected cells are treated as belonging to the susceptible component of the pop-

ulation, u1(x, t), infected cells are regarded as infectious individuals, u2(x, t), and

free viral particles, v(x, t), represent the third component of the population. In the

case of hepatitis B, liver cells are considered immobile, and viral particles can move

randomly. The study [540] used these assumptions to develop a model consisting of

two ODEs and one reaction-diffusion equation:

∂u1
∂t

= b− βu1v − µ1u1,

∂u2
∂t

= βu1v − µ2u2,

∂v

∂t
= a

∂2v

∂x2
+ γu2 − µ3v,

(6.4.4.1)

where b is the reproduction rate of uninfected cells, µ1 is the death rate of uninfected

cells, β is the coefficient responsible for the infection rate, γ is the virus reproduction

rate, µ2 is the death rate of infected cells, µ3 is the rate of disappearance of free

viruses, and a is the diffusion coefficient. The main difference between model

(6.4.4.1) and the above epidemic models lies in the explicit consideration of an

intermediate agent (virus) in the infection transmission process from an infected

to an uninfected cell. The infection does not occur from contact between infected

and susceptible individuals, as in epidemic models, but from contact between a

susceptible cell and a virus. However, similar models also exist among epidemic

models, for example, the model of the spread of malaria, when a malarial mosquito

is involved in transmitting infection.

The study [541] developed an enhanced model that considers the intracellular

delay between the moment a cell gets infected and when it starts producing new viral

particles. The model is described by the following mixed system of delay differential

equations (two ODEs and one PDE):

∂u1
∂t

= b− βu1v − µ1u1,

∂u2
∂t

= βū1v̄ − µ2u2,

∂v

∂t
= a

∂2v

∂x2
+ γu2 − µ3v,

(6.4.4.2)

where ū1 = u1(x, t − τ) and v̄ = v(x, t − τ). System (6.4.4.2) is treated on the

interval 0 ≤ x ≤ 1 and subjected to the standard initial conditions

ui(x, t)=u◦i (x)≥ 0 (i=1, 2), v(x, t)= v◦(x)≥ 0 at −τ ≤ t≤ 0 (6.4.4.3)

and homogeneous boundary conditions of the second kind

vx(0, t) = vx(1, t) = 0, t > 0. (6.4.4.4)
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The article [575] noted that using bilinear forms of the incidence term βu1v is

not always justified. The incidence rate is likely not a linear function over the entire

range of u1 and v. For example, a weaker-than-linear dependence on v may occur

due to saturation at high virus concentrations. In this case, it makes sense to use an

incidence term of the form βu1v
p

1+θvq , where p, q, θ > 0. The study dealt with the case

p = q = 1. It obtained the value of the basic reproductive number r0 = bγβ
µ1µ2µ3

,

which characterizes the average number of cells impaired by one infectious cell at the

beginning of the infection process. For r0 < 1, there is a unique equilibrium, which

is asymptotically stable and corresponds to the absence of infection: u1 = b/µ1,

u2 = 0, v = 0. For r0 > 1, there are two equilibria: an unstable point of the absence

of disease and a stable point with disease.

The study [210] suggested a model that generalizes the above two and the related

models of [103, 211, 606] with nonlinear incidence rates. The model is represented

by the following mixed system of differential equations (two ODEs and one PDE)

with two delays
∂u1
∂t

= b− f(u1, u2, v)v − µ1u1,

∂u2
∂t

= f(ū11, ū21, v̄)v̄e
−c1τ1 − µ2u2,

∂v

∂t
= a

∂2v

∂x2
+ γū22e

−c2τ2 − µ3v,

(6.4.4.5)

where ū11 = u1(x, t − τ1), ū21 = u2(x, t − τ1), ū22 = u2(x, t − τ2), and v̄ =
v(x, t − τ1). The delay τ1 is the time between the moment a cell is infected and

when it starts producing virions. The multiplier e−c1τ1 represents the probability

of cell survival during the time τ1, where c1 is the death rate of infected but not

yet virus-producing cells. The delay τ2 is the time between when a virion forms

and when it is capable of infecting; the immature virion’s survival probability is

determined by the factor e−c2τ2 , and its average lifetime is 1/c2. The incidence

function f(x, y, z) is continuously differentiable in its arguments and satisfies the

following three hypotheses:

1) f(0, y, z) = 0 for y, z ≥ 0,

2) fx(x, y, z) > 0 for x > 0, y, z ≥ 0,

3) fy(x, y, z) ≤ 0, fz(x, y, z) ≤ 0 for x, y, z ≥ 0.

System (6.4.4.5) is subjected to the initial conditions (6.4.4.3) and boundary condi-

tions of the second kind (6.4.4.4).

The study [210] proved the existence, positiveness, and boundedness of solu-

tions to the initial-boundary value problem (6.4.4.5), (6.4.4.3), (6.4.4.4). The basic

reproductive number is expressed as

r0 = γ(µ2µ3)
−1f(b/µ1, 0, 0)e

−c1τ1−c2τ2 .

For r0 ≤ 1, system (6.4.4.5) has a unique globally asymptotically stable equilibrium

representing the absence of disease. For r0 > 1, the equilibrium without disease is
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unstable; moreover, there is another point of equilibrium that corresponds to chronic

infection and, under certain conditions, is globally asymptotically stable. These

conditions are satisfied, in particular, for a linear incidence function, f = βu1, and

also for a more complicated Beddington–DeAngelis function, f = βu1

1+κ1u1+κ2v
, and

Crowley–Martin function f = βu1

1+κ1u1+κ2v+κ1κ2u1v
, where κ1 ≥ 0 and κ2 ≥ 0.

6.4.5. Model of Interaction between Immunity and Tumor
Cells

Following [31], we will consider a model of the interaction process between immune

T cells and malignant tumor cells. T cells divide into T killers (cytotoxic T lympho-

cytes) and T helpers. T killers attack malignant cells, while T helper cells release

various cytokines (small regulatory proteins), stimulating T killers. The growth of

T helper and tumor cells obeys the logistic law. The destruction of tumor cells and

T killers occurs in proportion to the product of the densities of their populations. A

T helper turns into a T killer either by direct contact with a T killer or by contact

with a cytokine released by a T helper. The transformation occurs with some delay τ ,

which appears in the terms describing the transformation of T helpers and the growth

of the T killer population. The model assumes that a T killer can never turn back into

a T helper and dies with some constant probability per unit time.

The suggested spatially homogeneous model of the interaction between immu-

nity and tumor cells is described by the following system of three delay ODEs [31]:

u′1 = b1u1(1− u1/k1)− c1u1u2,

u′2 = βu1w3 − µu2 − c2u1u2,

u′3 = b2u3(1− u3/k3)− βu2w3,

(6.4.5.1)

where u1 = u1(t), u2 = u2(t), and u3 = u3(t) are the population densities of tumor

cells, T killer cells, and T helper cells, respectively;w3 = u3(t−τ); b1 and b2 are the

natural growth rates of tumor and T helper cells; k1 and k3 are the maximum carrying

capacities for the tumor and T helper cells; µ is the T-killer death rate; c1 is the death

rate of tumor cells when in contact with T killers, c2 is the death rate of T killer

cells when in contact with tumor cells, and β is the coefficient of transformation of

T helpers into T killers.

The study [237] modified model (6.4.5.1) to consider only two cell groups: tumor

and immune. The third equation of (6.4.5.1) was excluded from the analysis, and

spatial heterogeneity was introduced by adding diffusion terms. As a result, the

following reaction-diffusion system of delay PDEs was obtained:

∂u1
∂t

= a1
∂2u1
∂x2

+ bu1(1 − u1/k)− c1u1u2,

∂u2
∂t

= a2
∂2u2
∂x2

+ βw1u2 − µu2 − c2u1u2,

(6.4.5.2)

where u1 = u1(x, t) and u2 = u2(x, t) are the population densities of tumor and

immune cells, respectively; w1 = u1(x, t − τ); a1 and a2 are diffusion coefficients,
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b is the natural growth rate of tumor cells, k is the maximum carrying capacity

for tumor cells, µ is the death rate of immune cells, c1 is the death rate of tumor

cells upon contact with immune cells, c2 is the death rate of immune cells upon

contact with tumor cells, and β is the coefficient of activation of immune cells. The

activity of tumor cells leads to an appropriate immune response, which depends on

the number of tumor cells, but occurs after some delay time τ . System (6.4.5.2) is

supplemented with standard initial conditions and uniform boundary conditions of

the second kind.

It is noteworthy that system (6.4.5.2) is a special case of the diffusive Lotka–

Volterra type system with several delays (6.3.4.1).

The equilibrium u◦1 = k, u◦2 = 0 of this system is globally asymptotically stable

for µ > kβ. If µ < k(β − c2), system (6.4.5.2) has a unique positive equilibrium

u◦1 =
µ

β − c2
, u◦2 =

b

c1

(
1− µ

k(β − c2)

)
. (6.4.5.3)

Without delay, the equilibrium (6.4.5.3) is locally asymptotically stable. However,

as shown in [237], the delay is essential in destabilizing this equilibrium state. The

study established that there exists a critical value τ∗ such that the equilibrium (6.4.5.3)

is locally asymptotically stable for τ < τ∗ and unstable for τ > τ∗. Furthermore, the

authors found that the delay also affects Hopf bifurcations’ direction, stability, and

frequency.

Remark 6.9. The work [388] dealt with a system of delay PDEs similar to (6.4.5.2) where
the term βw1u2 in the second equation was replaced with βw1w2, where wi = ui(x, t− τ ),
i = 1, 2.

6.5. Other Models Described by Nonlinear Delay

PDEs

6.5.1. Belousov–Zhabotinsky Oscillating Reaction Model

The Belousov–Zhabotinsky reaction is a class of oscillating chemical reactions that

serve as a classic example of non-equilibrium thermodynamics. Some reaction pa-

rameters (such as color, the concentration of components, temperature, and others)

change periodically, forming a complex spatiotemporal structure of the reaction

medium. For example, temporal fluctuations in the color of a homogeneous solution

caused by fluctuations in the concentrations of intermediates were first described

in [45]. The study investigated the process of catalytic oxidation of citric acid with

potassium bromate in the presence of cerium ions. The works [597, 598] described

various organic acids and metal ions that can be used in such reactions. The most

complex mechanism of such reactions was thoroughly studied in [157, 158].

Following [351], we will briefly outline the reaction. It can be roughly divided

into two processes: process I and process II. In the reaction, when the bromide

ion Br− is above some critical concentration, process I occurs. In it, the bromate

ion BrO−
3 is reduced to bromine Br2, with bromous acid HBrO2 as an intermediary,

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 358

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 358



6.5. Other Models Described by Nonlinear Delay PDEs 359

and the malonic acid CH2(COOH)2 is brominated. During this process there is

little oxidation of the cerium ion Ce(III) (or in the case of iron, of the ferrous

state). Process I thus uses up the bromide. When the concentration of bromide falls

sufficiently low, process II takes over. In this, the bromous acid and the bromate ion

produce a radical bromate species BrO•

2, which oxidizes the cerium ion Ce(III) to

the Ce(IV) form (or in the iron case the ferrous to the ferric state), with bromous acid

generated autocatalytically. When all of the Ce(III) has been oxidized to Ce(IV) and

the bromide ion concentration is low, the Ce(IV) then reacts with the bromomalonic

acid to produce the cerium ion Ce(III) and bromide again. When the bromide passes

the critical concentration, process I takes over again and the cycle is repeated.

The study [592] found, using ferroin as the catalyst and malonic acid, that if the

reacting mixture is placed in a thin flat layer, about 2 mm thick, then circular space-

time waves arise in it. A reaction-diffusion model for studying such waves was

proposed in [159], with its dimensionless and simplified form suggested in [351].

A more complicated model that takes into account the effects of delay in the forma-

tion of bromous acid and generalizes the dimensionless model [351] is described by

the following reaction-diffusion system of equations [301, 327, 520, 572, 600]:

ut = uxx + u(1− u− bv̄), v̄ = v(x, t− τ),

vt = vxx − cuv,
(6.5.1.1)

where u = u(x, t) and v = v(x, t) are the dimensionless concentrations of bromous

acid and bromide ions, respectively (0 ≤ u ≤ 1, 0 ≤ v ≤ 1); b > 0 and c > 0 are

some dimensionless parameters whose ranges are specified, for example, in [351]:

b ranges from 5 to 50, and c ranges from 2.5 to 12.5.

6.5.2. Mackey–Glass Model of Hematopoiesis

The dynamics of a homogeneous population of mature circulating blood cells can

be described using the following reaction-diffusion equation generalizing the delay

ODE (6.1.3.1):

ut = auxx − γu+ β0
θnw

θn + wn
, w = u(t− τ). (6.5.2.1)

Introducing a diffusion term allows one to consider the movement of cells from a

region of high concentration to a region of low concentration.

The study [545] obtained the following results for equation (6.5.2.1) with a = 1
and homogeneous boundary conditions of the second kind:

1◦. If 0 < β0/γ ≤ 1, then u→ 0 as t→ ∞ uniformly in x.

2◦. If 1 < β0/γ ≤ n
n−1 , then u∗ = θ[(β0 − γ)/γ]1/n is a unique positive

equilibrium, and any solution tends to u∗ as t→ ∞ uniformly in x.

3◦. If n
n−1 < β0/γ and β−1

0 γτ [β0(n − 1) − nγ] > e−γτ−1, then any solution

oscillates about the equilibrium u∗.

4◦. If β0/γ > 1, then any solution to equation (6.5.2.1) non-oscillating about

the equilibrium u = u∗ tends to u∗ as t → ∞ uniformly in x (see Definition 1 in

Item 10◦ of Subsection 6.1.2).
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The study [448] proved the following theorem.

Theorem. There exists a λ∗ > 0 such that for any λ≥ λ∗, equation (6.5.2.1) has

a positive monotonous front u = U(z), z = x+ λt, traveling from u = 0 to u = u∗,

provided that either pair of the following conditions hold:

1) 1 < β0/γ ≤ ∞ and 0 < n ≤ 1;

2) 1 < β0/γ ≤ n/(n− 1) and n > 1.

The following system of two delay reaction-diffusion equations describes the

dynamics of pluripotent stem cells production and generalizes the system of delay

ODEs (6.1.3.5):

ut = auxx − δu− β0θ
nu

θn + un
+

2β0θ
nw

θn + wn
e−γτ , (6.5.2.2)

vt = avxx − γv +
β0θ

nu

θn + un
− β0θ

nw

θn + wn
e−γτ ,

where u = u(x, t) is the population density of cells in the resting phase G0, w =
u(x, t−τ), and v=v(x, t) is the population density of cells in the proliferative phase.

Equations of the form (6.5.2.1) and (6.5.2.2) were studied, for example, in [302,

303, 376, 546].

6.5.3. Model of Heat Treatment of Metal Strips

The process of heat treatment of metal strips can be described using the equation

[527, 544, 569, 612]:

ut = auxx + g(w1)ux + c[f(w2)− u], t > 0, 0 < x < 1,

w1 = u(x, t− τ1), w2 = u(x, t− τ2),

subjected to the homogeneous boundary conditions of the first kind

u(0, t) = u(1, t) = 0 for t ≥ 0,

and the initial condition

u(x, t) = ϕ(x, t) at −τmax ≤ t ≤ 0 (0 < x < 1).

Here, u(x, t) is the temperature distribution in the metal strip; τ1 > 0 and τ2 > 0
are delay times, τmax = max{τ1, τ2}, g(w1) is the strip speed, and f(w2) is the

distributed source function.

The process proceeds as follows [612]. First, a metal strip enters the furnace and

undergoes heat treatment. Then, the heater controller provides the desired spatial

temperature distribution, and the speed controller controls the speed of the strip

passing through the furnace. Finally, temperature sensors along the strip transmit

information to a computer that generates appropriate signals for the heater and speed

controllers. Thus, a certain time passes between the moment of reading the temper-

ature values and the arrival of signals at the controllers, which is taken into account

using the delay times.
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6.5.4. Food Chain Model

The study [273] proposed a delay reaction-diffusion model to describe a simple food

chain consisting of n + 1 living species, n types of dissolved organic and inorganic

substances, and detritus. The living species include zooplankton, z, phytoplank-

ton, un, and microorganisms, ui, i = 1, . . . , n − 1. The substances (nutrients) are

denoted vj , j = 1, . . . , n, and detritus, the remains of all living organisms involved,

is denoted d.

It is assumed to that microorganism ui (i = 1, . . . , n− 1) feeds on substance vi,
phytoplankton un feeds on substance vn, and zooplankton z feeds on phytoplank-

ton un. Substance v1 consists of dissolved organic substances resulting from the

partial decay of dead organisms d, as well as the vital activity of phytoplankton un
and zooplankton z. Substance vj , j = 2, . . . , n, is a metabolic product of mi-

croorganism uj−1. The modeling of n + 1 levels of living organisms, detritus, and

n substances is carried out in terms of their nitrogen content. We assume that the flow

of substance from level to level changes according to the Lotka–Volterra hypothesis

as the product of interacting components, which leads to the nonlinearity of the

system of differential equations. The study [273] proposed the following system of

delay reaction-diffusion equations to describe the behavior of this simple food chain:

∂ui
∂t

= aui
∂2ui
∂x2

+ui(x, t−τui)Ui(vi(x, t−τui))

−ui(x, t−τei)Ei(vi(x, t−τei))−ui(x, t)Mi(vi(x, t)), i=1, . . . , n−1;

∂un
∂t

= aun
∂2un
∂x2

+un(x, t−τun)Un(vn(x, t−τun))

−un(x, t−τen)En(vn(x, t−τen))−un(x, t)Mn(vn(x, t))

−z(x, t−τuz)Uz(un(x, t−τuz));
∂v1
∂t

= av1
∂2v1
∂x2

+z(x, t−τez)Ez(un(x, t−τez))

+un(x, t−τen)En(vn(x, t−τen))+Kd(x, t−τk1)
−u1(x, t−τu1)U1(v1(x, t−τu1));

∂vj
∂t

= avj
∂2vj
∂x2

+uj−1(x, t−τej−1)Ej−1(vj−1(x, t−τej−1))

−uj(x, t−τuj)Uj(vj(x, t−τuj)), j=2, . . . , n;

∂z

∂t
= a1

∂2z

∂x2
+z(x, t−τuz)Uz(un(x, t−τuz))

−z(x, t−τez)Ez(un(x, t−τez))−z(x, t)Mz(un(x, t));

∂d

∂t
= a2

∂2d

∂x2
+

n∑

i=1

uiMi(vi)+zMz(un)−Kd(x, t−τk1);

0<x< 1, t > 0.
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The system is subjected to the homogeneous boundary conditions of the second kind

∂ui
∂x

∣∣∣
x=0, 1

=
∂vj
∂x

∣∣∣
x=0, 1

=
∂z

∂x

∣∣∣
x=0, 1

=
∂d

∂x

∣∣∣
x=0, 1

= 0

and the initial conditions at −τmax ≤ t ≤ 0:

ui = ϕi(x) ≥ 0, i = 1, . . . , n; vj = ϕn+j(x) ≥ 0, j = 1, . . . , n;

z = ϕ2n+1(x) ≥ 0; d = ϕ2n+2(x) ≥ 0 (0 ≤ x ≤ 1),

where ui=ui(x, t), vj = vj(x, t), z= z(x, t), and d=d(x, t) are the concentrations∗

of recyclable matter in microorganisms, available nutrients, zooplankton, and detri-

tus, respectively; τui and τuz are delay times in the consumption of substances by the

ith organism (i= 1, . . . , n) and zooplankton, τei and τez are time delays in excreting

substances by the ith organism (i = 1, . . . , n) and zooplankton, τk1 is a delay time

in the decay of detritus, τmax is the maximum delay coefficient of all components in

the food chain, andK is some constant. The functionsUi and Uz determine the rates

of consumption of substances by the ith organism (i = 1, . . . , n) and zooplankton,

functions Ei and Ez are the rates of excretion of substances by the ith organism

(i = 1, . . . , n) and zooplankton, and functions Mi and Mz are the death rates of

the ith organism (i = 1, . . . , n) and zooplankton. The work [273] investigates the

stability of solutions to this problem and gives examples of numerical modeling.

6.5.5. Models of Artificial Neural Networks

Delay reaction-diffusion equations and systems of such equations are widespread

in the mathematical theory of artificial neural networks. The results are applied

to signal and image processing, pattern recognition problems, work of associative

machine memory, and determining the speed of moving objects. Delays arise in

artificial neural networks due to the finite switching speed of amplifiers and the finite

speed of signal propagation between neurons.

Many artificial neural network models rely on ordinary differential equations

with delay (e.g., see [19, 85, 86, 319, 571, 607] and references therein). However, in

some instances, the introduction of a diffusion term is required, making it possible

to consider the motion of electrons in an asymmetric magnetic field. The studies

[297, 318, 320, 539, 542, 584] deal with a class of artificial neural network models

that combines the Hopfield neural network with cellular neural networks. This class

of models is described by the system of reaction-diffusion equations

∂ui
∂t

=
3∑

k=1

∂

∂xk

(
aik

∂ui
∂xk

)
− biui +

n∑

j=1

cijfj(uj) +
n∑

j=1

dijgj(ūji) + Ii(t),

ūji = uj(x, t− τij), x ∈ Ω, t > 0,
(6.5.5.1)

∗For clarity, we use the same symbols to denote the substances and their concentrations.
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where ui = ui(x, t) is the state of the ith neuron in the network (i = 1, . . . , n),

aik = aik(x, t, u) ≥ 0 are smooth functions modeling the transmission diffusion

operators along the ith neuron, bi > 0 is the speed at which the potential of the ith
neuron isolated from the network and external influence reaches the resting state, cij
and dij are constants characterizing communication between neurons, fj(uj) and

gj(ūji) are activation functions of the jth neuron, Ii(t) is the external input on the

ith neuron, τij = τij(t) are delay times, and Ω is a closed bounded domain in R3

with boundary ∂Ω. The initial conditions are as follows:

ui(x, t) = ϕi(x, t) at −max
i,j

τij ≤ t ≤ 0, x ∈ Ω.

The boundary conditions can be of the first kind

ui(x, t) = 0 for x ∈ ∂Ω, t ≥ 0,

or the second kind
∂ui
∂n

= 0 for x ∈ ∂Ω, t ≥ 0.

Remark 6.10. The article [580] deals with a related system of the form (6.5.5.1) involving
unknown functions with proportional delays: ūji = uj(x, pit) (0 < pi < 1).

The study [493] considers a class of bidirectional associative memory neural

networks described by the delay reaction-diffusion system

∂ui
∂t

=

3∑

k=1

∂

∂xk

(
aik

∂ui
∂xk

)
− biui +

m∑

j=1

cjifj(v̄ji) + Ii(t), i = 1, . . . , n;

∂vj
∂t

=

3∑

k=1

∂

∂xk

(
a∗jk

∂vj
∂xk

)
− b∗jvj +

n∑

i=1

dijgi(ūij) + Jj(t), j = 1, . . . ,m;

ūij = ui(x, t− τ∗ij), v̄ji = vj(x, t− τji), x ∈ Ω, t > 0.

The authors find global exponential stability conditions for the system as well as

conditions for the existence of periodic solutions.

Remark 6.11. A differential-difference diffusion (thermal conduction) model with a finite
relaxation time, which leads to a PDE with a delay in the diffusion term, was discussed in
Section 2.3.

Remark 6.12. The study [537] investigated a system of hyperbolic equations with propor-
tional delay.
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[29] Baker C.T.H., Paul C.A.H, Willé D.R. Issues in the numerical solution of evolutionary

delay differential equations. Adv. Comput. Math., 1995, Vol. 3, pp. 171–196.

[30] Baker G.A. (Jr.), Graves–Morris P. Padé Approximants, 2nd ed. Cambridge Univ.
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[239] Jimbo M., Kruskal M.D., Miwa T. Painlevé test for the self-dual Yang–Mills equation.

Phys. Lett., Ser. A, 1982, Vol. 92, No. 2, pp. 59–60.

[240] Johansson F. Computing the Lambert W function in arbitrary-precision complex

interval arithmetic. Numer. Algorithms, 2020, Vol. 83, No. 1, pp. 221–242.

[241] Jones G.S. Asymptotic behavior and periodic solutions of a nonlinear differential-

difference equation. Proc. Nat. Acad. Sci. USA, 1961, Vol. 47, pp. 879–882.

[242] Jones G. The existence of periodic solutions of f ′(x)=−αf(x−1)[1+f(x)]. J. Math.

Anal. Appl., 1962, Vol. 5, pp. 435–450.

[243] Jordan P.M., Dai W., Mickens R.E. A note on the delayed heat equation: Instability

with respect to initial data. Mech. Research Comm., 2008, Vol. 35, pp. 414–420.

[244] Jou D., Casas-Vázquez J., Lebon G. Extended Irreversible Thermodynamics, 4th ed.

Springer, 2010.

[245] Kakutati S., Marcus L. On the non-linear difference-differential equation y′(t) =
(A−By(t− τ ))y(t). Annals Math. Studies, 1958, Vol. 41, pp. 1–18.

[246] Kalecki M. A macrodynamic theory of business cycles. Econometrica, 1935, Vol. 3,

pp. 327–344.

[247] Kalitkin N.N. Numerical Methods. Nauka, Moscow, 1978 (in Russian).

[248] Kalitkin N.N., Koryakin P.V. Numerical Methods. 2. Methods of Mathematical

Physics. Akademiya, Moscow, 2013 (in Russian).

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 377

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 377



378 REFERENCES

[249] Kalmár-Nagy T., Stépán G., Moon F.C. Subcritical HOPF bifurcation in the delay

equation model for machine tool vibrations. Nonlinear Dyn., 2001, Vol. 26, pp. 121–

142.

[250] Kalospiros N.S., Edwards B.J., Beris A.N. Internal variables for relaxation phenomena

in heat and mass transfer. Int. J. Heat Mass Transfer, 1993, Vol. 36, pp. 1191–1200.

[251] Kantorovich L.V., Krylov V.I. Approximate Methods of Higher Analysis, Fizmatgiz,

Moscow, 1962 (in Russian).

[252] Kamenskii G.A. Boundary value problems for differential equations with deviating

arguments. Nauk. Dokl. Vyssh. Shkoly Fiz. Mat. Nauki, 1958, Vol. 2, pp. 60–66 (in

Russian).

[253] Kaminski W. Hyperbolic heat conduction equation for materials with a nonhomoge-

neous inner structure. J. Heat Transfer, 1990, Vol. 112, No. 3, pp. 555–560.

[254] Kamke E. Differentialgleichungen: Lösungsmethoden und Lösungen, II, Partielle
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[370] Ordóñez-Miranda J., Alvarado-Gil J.J. Thermal wave oscillations and thermal relax-

ation time determination in a hyperbolic heat transport model. Int. J. Thermal Sciences,

2009, Vol. 48, pp. 2053–2062.

[371] Oron A., Rosenau P. Some symmetries of the nonlinear heat and wave equations. Phys.

Lett. A, 1986, Vol. 118, pp. 172–176.

[372] Ovsiannikov L.V. Group Properties of Differential Equations. Izd-vo SO AN USSR,

Novosibirsk, 1962 (in Russian); English translation by G. Bluman, 1967.

[373] Owren B., Zennaro M. Derivation of efficient, continuous, explicit Runge–Kutta

methods. SIAM J. Sci. Stat. Comp., 1992, Vol. 13, pp. 1488–1501.

[374] Ozisik M.N., Tzou D.Y. On the wave theory in heat conduction, ASME J. Heat

Transfer, 1994, Vol. 116, No. 3, pp. 526–535.

[375] Patade J., Bhalekar S. Analytical solution of pantograph equation with incommensu-

rate delay. Phys. Sci. Rev., 2017, Vol. 2, No. 9, 20165103.

[376] Pan X., Shu H., Wang L., Wang X.-S. Dirichlet problem for a delayed diffusive

hematopoiesis model. Nonlinear Anal.: Real World Appl., 2019, Vol. 48, pp. 493–516.

[377] Pao C. Global asymptotic stability of Lotka–Volterra competition systems with diffu-

sion and time delays. Nonlinear Anal.: Real World Appl., 2004, Vol. 5, No. 1, pp. 91–

104.

[378] Pao C.V. Numerical methods for systems of nonlinear parabolic equations with time

delays. J. Math. Anal. Appl., 1999, Vol. 240, No. 1, pp. 249–279.

[379] Pao C.V. Finite difference reaction-diffusion systems with coupled boundary condi-

tions and time delays. J. Math. Anal. Appl., 2002, Vol. 272, pp. 407–434.

[380] Paul C.A.H. Developing a delay differential equation solver. Appl. Numer. Math., 1992,

Vol. 9, pp. 403–414.

[381] Paul C.A.H. Designing efficient software for solving delay differential equations.

J. Comput. Appl. Math., 2000, Vol. 125, No. 1–2, pp. 287–295.

[382] Peiraviminaei A., Ghoreishi F. Numerical solutions based on Chebyshev collocation

method for singularly perturbed delay parabolic PDEs. Math. Meth. Appl. Sci., 2014,

Vol. 37, pp. 2112–2119.

[383] Pike R., Sabatier P. (eds.). Scattering: Scattering and Inverse Scattering in Pure and

Applied Science, Vols. 1–2. San Diego: Academic Press, 2002.

[384] Pimenov V.G. Difference Methods for Solving Partial Differential Equations with

Heredity. Izd-vo Ural’skogo Universiteta, Ekaterinburg, 2014 (in Russian).

[385] Pimenov V.G., Numerical methods for solving the heat equation with delay. Vestn. Ud-

murtsk. Un-ta. Matem. Mekh. Kompyut. Nauki, 2008, No. 2, pp. 113–116 (in Russian).

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 384

9780367486914 Polyanian, Sorokin, Zhurov Delay Ordinary and Partial Differential Equations – July 5, 2023 Page 384



REFERENCES 385

[386] Pimenov V.G. Numerical Methods for Solving Equations with Heredity. Yurait,

Moscow, 2021 (in Russian).

[387] Pimenov V.G., Tashirova E.E. Numerical methods for solving a hereditary equation of

hyperbolic type. Proc. Steklov Inst. Math., 2013, Vol. 281, pp. s126–s136.
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A

abbreviations

KPP (Kolmogorov–Petrovsky–Piskunov)

equation, 345

ODE (ordinary differential equation), 16

ODEs (ordinary differential equations), 16

PDE (partial differential equation), 16

PDEs (partial differential equations), 16

SI (susceptible, infectious) epidemic

model, 353

SIR (susceptible, infectious, removed)

epidemic model, 350, 351

SIRS (susceptible, infectious, removed,

susceptible) epidemic model, 352

additive separable solution, 90, 130, 139–

154, 170, 180, 189, 199, 214, 221, 254,

265

Adomian decomposition method, xii, 76–78

advanced differential equations, 4, 29, 131,

251

analytical methods

approximate, see approximate analytical

methods

exact solutions to nonlinear delay PDEs,

127–272

integral transforms, xii, 55–64, 91

Laplace transform, 56

Laplace transform, solution example, 59

matched asymptotic expansions, see

method of matched asymptotic

expansions

Mellin transform, 60

Mellin transform, solution example, 61–63

solution of Cauchy problems, see Cauchy

problems

solution of initial value problems, see

Cauchy problems

solution of initial-boundary value

problems, see initial-boundary value

problems

standard, 129

difficulties in using, 129, 166

antiperiodic function, 164, 169, 196
approximate analytical methods, 80

Adomian decomposition, 76–78

asymptotic, 71, 127
Bubnov–Galerkin, 82

collocation, 82

delay ODEs, 55
expansion of nonlinear operator, 75

Galerkin, general scheme, 81

Galerkin-type projection, xii, 80
homotopy analysis, 78

iterative, 74

least squares, 82
matched asymptotic expansions, 71–74

minimization of root mean square error, 84

moments, 82
Padé approximants, 69

perturbation-iteration algorithms, 79

power series solution, 64–68
principles for selecting test problems, 309

projection, 80

regular expansion in small parameter, 69–

71

representation as linear combinations of

basis functions, 80
steps, see method of steps

successive approximations, 74

approximate solutions, see approximate

analytical methods

approximating function, 81, 83
asymptotic boundary conditions, 135, 138

asymptotic stability of solutions, 47, 333

local, criteria, 331
sufficient conditions, 110

attractor, global, 331, 345, 349

B

basis functions, 80–82, 285

Belousov–Zhabotinsky delay reaction-

diffusion model, 137

Belousov–Zhabotinsky oscillating reaction

model, 359
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biharmonic operator, 151

blow-up problems, 23, 24

suppression of singularities, 24, 25

boundary condition, see boundary conditions

boundary conditions, xii, 67, 71, 73, 92, 97,

101, 104

boundary value problems, 67

Dirichlet, 97, 102

first kind, 83, 91, 97, 99, 344, 349

homogeneous, 61, 80, 92, 95, 98, 344, 349

initial-boundary value problems, 91, 96,

102

mixed, 97, 99

most common, 97, 99

Neumann, 97

nonhomogeneous, 80, 92, 96

periodic, 116

Robin, 97

second kind, 97, 99, 344, 349

special, 124

third kind, 97, 99, 289, 344

boundary value problems, see also initial-

boundary value problems, 71, 104, 108,

120, 123, 135, 287, 288

first, 288

linear, 80, 99, 108, 120, 288, 289

mixed, 67

nonlinear, 80, 288

nonlinear boundary conditions, 288

second, 288

third, 288

two-point, 71, 80

Bubnov–Galerkin method, 82, 154

C

carrying capacity (of habitat), 327, 344, 349,

353

Cattaneo–Vernotte differential law (model),

113, 119

Cauchy problems, 2, 91, 329

auxiliary, 288, 289

for delay ODEs, 2, 13

numerical integration, 273, 278, 279, 283

test problems, 293–295

for first-order ODEs with constant delay,

13

for higher-order delay ODEs, 28

for linear delay ODEs

exact solutions, 13–16

for linear systems of delay ODEs, 38–41

for Nicholson equation, 330

for nonlinear delay ODEs, 16, 17, 69, 76

for nonlinear ODEs with proportional

delay

exact solutions, 20–22

for ODEs with proportional delay, 18

for ODEs with several delays, 3, 22, 23

existence and uniqueness of solutions, 23

for second-order delay ODEs

exact solutions, 29–34

characteristic equation, 4, 35, 42–49, 51–53,

109, 331

roots, 39, 43–45, 52, 53, 110

Chebyshev nodes, 82

classical diffusion equation, 113

classical heat equation, 113

classical SIR model of epidemic spread, 350

classical solution, 35, 86

collocation method, xii, 80, 82–84

spectral, 285

comparison of solutions

numerical vs approximate analytical, 84

numerical vs exact

nonlinear delay Klein–Gordon type

wave equations, 322

nonlinear delay reaction-diffusion

equations, 316

test problems, 293, 309, 316

composite asymptotic solution, 73

conservation law

energy, 113

total number of individuals, 351

construction of exact solutions, 155

delay ODEs, 1–41, 55–68

delay PDEs, 85–125, 127–199, 201–269

description and examples, 201

linear transformations, 162

methods for nonlinear delay PDEs, 201

nonlinear delay PDEs

examples, 130, 139–141, 156–159

using solutions to simpler non-delay

PDEs, 201

using particular solutions, 86

construction of functional separable solutions

linear transformations, 135

nonlinear delay equations, examples, 133

construction of generalized separable

solutions

linear transformations, 135

nonlinear delay equations, examples, 130
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construction of test problems, xii, 127, 293

delay PDEs, 293
examples, 293–296, 311–315

direct method, 315
Cooke–van den Driessche method, 49

D

D-partition, 46–49

D-partition method, 46
data storage optimization in RAM, 305

delay differential equations, 1, 85, 127, 201

analytical methods, 127–272
applications, 327–363

numerical methods, 273–308
ordinary, see delay ODEs

partial, see delay PDEs
delay diffusive logistic equation, 135, 136,

310, 344–346
limited food conditions, 136

with limited food, 136
delay equation

Fisher, 135, 310, 316, 345

Klein–Gordon type, see delay Klein–

Gordon type wave equations
delay equations

applications, 327
diffusive logistic, see delay diffusive

logistic equation
ordinary differential, see delay ODEs

partial differential, see delay PDEs
reaction-diffusion, see delay reaction-

diffusion equations
delay Fisher equation, 135, 310, 316, 345

delay Klein–Gordon type wave equations,

129, 148, 194
comparison of numerical and exact

solutions, 322
forms of exact solutions, 150–152

linear transformations, 163
nonlinear, 206

exact solutions, 163–165, 194–199,

263–269

test problems, 313
delay logistic equation, see Hutchinson

equation

diffusive, see delay diffusive logistic

equation

delay models, 18, 24, 62, 128, 327–363
artificial neural networks, 362

Belousov–Zhabotinsky oscillating

reaction, 358

Belousov–Zhabotinsky reaction-diffusion,

137

competitive, 347

cooperative, 347

differential-difference thermal conduction,

115, 118

diffusive logistic, 344

Eigen–Schuster, 247

epidemic, for three groups of individuals

(SIR), 336

epidemic, new coronavirus infection, 354

food chain, 361

food-limited logistic, 330

heat treatment of metal strips, 360

hepatitis B, 355

Hutchinson, 328

immunity–tumor interaction, 357

induced defense, 349

interaction of three economical parameters,

341

Kermack–McKendrick diffusive, 351

Lotka–Volterra type diffusive logistic, 346

Mackey–Glass hematopoiesis, 333, 359

macrodynamics of business cycles, 340

Nicholson blowflies, 137, 330

Nicholson reaction-diffusion, 347

regenerative machine tool vibration, 338

SI, 353

simple climate, 337

simple epidemiological, 336

SIR, 336, 351, 352

tax collection in closed economy, 342

thermal conduction with finite relaxation

time, 115

two-component epidemic (SI), 353

delay ODEs, xi, xii, 1–84

advanced, 3

approximate analytical solution methods,

55–64

Adomian decomposition, 75

Bubnov–Galerkin method, 82

collocation method, 82

combination of basis functions, 80

expansion of nonlinear operator, 75

Galerkin-type methods, 80–82

homotopy analysis, 78

least squares method, 82

matched asymptotic expansions, 71–74

method of moments, 82

minimization of root mean square error,

84
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delay ODEs (continued)

Padé approximant solutions, 69

perturbation-iteration algorithms, 79

power series solutions, 64–69

regular expansion in small parameter,

69–71

successive approximations, 74, 75

Cauchy problem, 2

exact solutions, 24–26, 29–34

existence and uniqueness of solutions, 23

qualitative features, 2

solution by method of steps, 13, 16, 23

comparison of numerical and exact

solutions, 293–296

first-order, 1–3

with several constant delays, 3

first-order, linear, 4

characteristic equation, 4

Lambert W function, 4–12

stability of solutions, 43–45, 50

first-order, nonlinear, 12

reduction to linear delay ODEs, 12, 13

linear systems, 38, 40

Cauchy problem, 39

exact solutions, 39, 41

neutral, 3

nonlinear

linear stability analysis, 52–55

nonlinear models

delay food-limited model, 330

Hutchinson equation, 328

nth-order, 28

nth-order, linear, 34–38

numerical integration, 273

first-order Euler method, 278

Heun method, 281

implicit Runge–Kutta method, 290

midpoint method, 280

modified method of steps, 278

modified shooting method, 289

qualitative features, 275

Runge–Kutta methods, 281–283, 285

shooting method, 287

spectral collocation methods, 285

stiff systems, 290

proportional delay, 17

exact solutions, 20, 26, 27

second-order, 28

second-order, linear, 29–34

stability of solutions, 45, 46, 51

several proportional delays, 21

several variable delays, 22

stability of solutions, 42, 50–52

Cooke–van den Driessche method, 49,

50

D-partition method, 46–49

test problems, 293

delay ordinary differential equations, see

delay ODEs

delay partial differential equations, see delay

PDEs

delay PDEs, xii, 85

applications, 327

Belousov–Zhabotinsky oscillating

reactions, 358

development of diseases, 350

food chain model, 361

heat treatment of metal strips, 360

hepatitis B model, 355

immunity–tumor iteration, 357

Mackey–Glass model of hematopoiesis,

359

models of artificial neural networks, 362

population theory, 343–349

spread of epidemics, 350

construction of test problems, 309, 310,

315

global instability of solutions, 270, 272

Hadamard ill-posedness of delay problems,

271, 272

linear, 85–126

boundary conditions, 96, 97

differential-difference heat equations,

115

dispersion equation, 90

formal solution, 86

hyperbolic heat equation, 113

initial-boundary value problems, see

initial-boundary value problems

principle of linear superposition, 86

properties, 85

properties of solutions, 86–89

separable solutions, 89, 90

stability and instability conditions, 109,

112

Stokes problem, 116–118

sufficient conditions for asymptotic

stability, 110

nonlinear, 127–272

additive separable solutions, 139–154

analytical solution methods, 127–272

Belousov–Zhabotinsky, 137
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delay PDEs (continued)

constructing exact solutions, 202–211

diffusive logistic, see delay diffusive

logistic equation

exact solutions, 127–272

functional separable solutions, 159–162

generalized separable solutions, 154–159

Klein–Gordon, see delay Klein–Gordon

type wave equations

linear transformations to construct

solutions, 162–165

Lotka–Volterra, 138

most common types of exact solutions,

130

multiplicative separable solutions, 139–

154

Nicholson blowflies, 137, 330

reaction-diffusion, see delay reaction-

diffusion equations

separable solutions, 139–153

separable solutions, examples of

equations, 139–154

solution via solutions to non-delay

PDEs, 201–211

solution with method of functional

constraints, 166–199

solution with method of invariant

subspaces, 154–159

states of equilibrium, 130

traveling wave front solutions, 134–139

traveling wave solutions, 131–134

nonlinear systems, 212–224

solution method, see generating

equations method

nonlinear systems homogeneous in

unknowns, 247

exact solutions, 248–250

nonlinear with proportional delay, 257

exact solutions, 257–263, 267–269

numerical integration, 296–308

finite difference methods, 302

finite difference scheme, 302

method of lines, 297–300

method of lines, using Mathematica,

300, 301

time-domain decomposition, 296, 297

proportional arguments, 250, 253

principle of analogy of solutions, 250–

252

quasilinear, 167, 253, 296

exact solutions, 167–176

quasilinear with proportional delay, 253

exact solutions, 253–257, 263–266

reaction-diffusion system with several

delays, see Lotka–Volterra system

selection of test problems, 309

test problems, see test problems

delay problems, 2

boundary value

see boundary value problems, 67

Cauchy

see Cauchy problems, 2

initial value

see Cauchy problems, 2

initial-boundary value

see initial-boundary value problems, xi

delay reaction-diffusion equation(s), 141

hyperbolic, 129, 199

linear

proportional argument, 119

Lotka–Volterra type systems, 225–250

exact solutions, 226, 239, 240, 246

reductions, 226, 239

Nicholson blowflies delay model, 137

nonlinear, 134, 137, 140, 151, 166

comparison of numerical and exact

solutions, 316

Mackey–Glass model of hematopoiesis,

359

numerical integration, 296–308

proportional arguments, 251–269

separable solutions, 141–148, 156–162,

167–194

test problems, 310

nonlinear systems, 213–215, 218–222

artificial neural network models, 362

food chain model, 361

generalizations, 222–224

proportional delay, 134

quasilinear, 167, 253

quasilinear systems, 215–218

traveling wave solutions, 131

with nutrient limitation, 345

delayed cosine, see delayed cosine function

delayed cosine function, xv, 30

matrix, 41

delayed exponential, see delayed exponential

function

delayed exponential function, xv, 15, 16, 95,

100, 105

matrix, 40

delayed sine, see delayed sine function
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delayed sine function, xv, 30
matrix, 41

difference scheme, see finite-difference

scheme

differential constraint, 167, 227, 236
differential equation

advanced, 4, 29, 131, 251
functional, see functional differential

equation

neutral, 3, 23, 29

ordinary, see delay ODEs
pantograph, see pantograph equation

partial, see delay PDEs
differential-difference heat equation, 113

exact solutions, 115, 116
finite relaxation time, 115

initial-boundary value problem, 118
Stokes problem, 116, 118

diffusion equation, see also delay reaction-

diffusion equations
classical, 113

hyperbolic, 113, 114
derivation, 113

relaxation time, 114
linear, 202, 208

nonlinear, 251, 252, 270

constant delay, 270, 345
proportional delay, 257

nonlinear with proportional delay, 257
quasilinear

proportional delay, 253
quasilinear with proportional delay, 253

diffusion, physical meaning, 343
direct method for constructing test problems,

315

direct method of symmetry reductions, 129
Dirichlet boundary conditions, see boundary

conditions of first kind
dispersion equation, 90, 153, 320

E

eigenvalue problem, 93

eigenfunctions, 82, 93–95, 99–101, 104–

109, 121–123, 125
eigenvalues, 41, 82, 94, 99, 104–109, 123

linear homogeneous, 98, 104, 108, 122
elliptic operator, 151

energy conservation law, 113
equation, see delay ODEs, delay PDEs

advanced, see advanced differential

equations

characteristic, see characteristic equation

delay, see delay differential equations

delay reaction-diffusion, see delay

reaction-diffusion equations

differential, see differential equation

diffusion, see diffusion equation

dispersion, see dispersion equation

heat, see also diffusion equation

classical, 113

delay, 90

differential-difference, see differential-

difference heat equation

hyperbolic, see hyperbolic heat equation

Helmholtz, see Helmholtz equation

Hutchinson, see Hutchinson equation

logistic, see delay logistic equation

Malthusian, 327

neutral, see neutral differential equations

Nicholson, 137, 295, 330, 332

ordinary differential, see delay ODEs

pantograph, see pantograph equation

partial differential, see delay PDEs

quasilinear, see delay PDEs, quasilinear

reaction-diffusion, see delay reaction-

diffusion equations

equilibrium, 46, 114, 130, 138, 331, 333,

341, 343, 349, 359

asymptotically stable, 328, 332, 356, 358

stable, 46, 329, 334, 347

unstable, 46, 328, 329

error function, 124

estimates of thermal and diffusion relaxation

times, 114

Euler method, xii

continuous, 280

explicit, 275, 280, 285

first-order, 279, 285

implicit, 280, 285, 292

exact solution

see exact solutions, xi

exact solution methods, see analytical

methods

delay ODEs, 55

delay PDEs, 127

exact solutions

additive separable, see additive separable

solution

closed form, 130

construction, see construction of exact

solutions

definition, 129
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exact solutions (continued)

delay Klein–Gordon type wave equations,

see also delay Klein–Gordon type wave

equations, 151, 152, 163–165, 194–199,

263–269

delay ODEs, see also delay ODEs

Cauchy problems, 24–26, 29–34

linear systems, 39, 41

proportional delay, 20, 26, 27

delay PDEs, see also delay PDEs

nonlinear systems, 248–250

delay reaction-diffusion equations, 131,

141–148, 156–162, 167–194

nonlinear systems, 212, 225

functional separable, see functional

separable solution

generalized separable, see generalized

separable solution

linear delay ODEs

Cauchy problems, 13–16

Lotka–Volterra system

in elementary functions, 226, 233–239,

241–246

multiplicative separable, see multiplicative

separable solution

nonlinear delay PDEs, 127–272

most common types, 130

multiplicative separable solutions, 139–

154

proportional delay, 257–263, 267–269

nonlinear ODEs with proportional delay

Cauchy problems, 20–22

nonlinear wave-type equations

proportional delay, 263

one-dimensional differential-difference

heat equation, 115

quasilinear delay PDEs, 167–176

proportional delay, 253–257, 263–266

second-order delay ODEs

Cauchy problems, 29–34

Stokes problems, 115–118

traveling wave, see traveling wave solution

existence and uniqueness of solutions, 23

explicit finite-difference scheme, 305

F

factors leading to need to consider delay, xi,

127

finite difference methods, 302

approximation order, 304

boundary nodes, 302

conditional approximation, 304

conditionally stable, 304

convergent with order p, 304

finite difference scheme, 302

explicit, 305

higher-order, 307

implicit, 306

special, 308

weighted, 307

well-defined, 305

finite-difference differentiation operator,

303

grid nodes, 302

initial layer, 302

inner nodes, 302

residual, 303

spatial layer, 302

spatio-temporal grid, 302

stable scheme, 304

stencil, 303

temporal layer, 302

theory, basic concepts and definitions, 302

unconditional approximation, 304

unconditionally stable, 304

uniform grid, 302

finite-difference differentiation operator, 274,

303

finite-difference scheme, 303

explicit, 305

higher-order, 307

implicit, 306

two special schemes for linear problem,

308

weighted, 307

first initial-boundary value problem, 91

differential-difference heat equation, 118

hyperbolic equation with proportional

delay, 124

parabolic equation with proportional delay,

120

solutions, 112

statement of problem, 91, 120, 124

first-order delay ODEs, see also delay ODEs,

274, 297

advanced equations, 4

characteristic equation, 4

constant delay, 1

Cauchy problem, 1, 13–17

delayed exponential function, 15

solution by method of steps, 14, 15
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first-order delay ODEs (continued)

exact solutions, 12–17, 20–22

existence and uniqueness of solutions, 23,

24

exponential solutions, 4

Lambert W function, see Lambert W
function

linear systems, 38

Cauchy problem, 39

exact solutions, 39, 40

neutral equations, 3

proportional delay, 18, 20–22

Cauchy problem, 18, 26–28

qualitative features, 2

several constant delays, 3

several delays, 22

stability of solutions, 42–45, 50, 52–55

suppression of singularities, 24–26

variable delay, 17

Cauchy problem, 18

stretched exponential function, 19, 20

first-order equations, see first-order delay

ODEs

Fisher equation, see delay Fisher equation

fixed point, see equilibrium

food chain model, 361

formal solution, 35, 86, 94

function

antiperiodic, 164, 169, 196

approximating, 81, 83

delayed cosine, xv, 30

matrix, 41

delayed exponential, xv, 15, 16, 95, 100,

105

matrix, 40

delayed sine, xv, 30

matrix, 41

error, 124

grid, 273–276, 280, 281, 303, 308

continuous approximation, 274, 303

discrete, 302

residual, 275

Lambert W , see Lambert W function

outer, 159, 160

stretched cosine, xv, 32

stretched exponential, xv, 19, 20, 31–33

stretched sine, xv, 32

functional constraints, see method of

functional constraints

degenerate, 167

first kind, 167, 212

second kind, 167, 212

functional differential equation, xiii, 3, 18, 22

functional separable solution, 130, 159, 179,

181–193, 207

employing linear transformations, 162, 163

examples of constructing, 160–162

inner functions, 159

nonlinear delay PDEs, 163–165, 259, 261,

262

outer function, 159

quasilinear diffusion equations, 253

systems of nonlinear delay PDEs, 220

transformation of unknown function, 160

functions

basis, 80–82, 285

inner, 159

G

Galerkin method, see Galerkin-type

projection methods

Galerkin-type projection methods, xii, 80

approximating function, 81

basis functions, 81

Bubnov–Galerkin method, 82, 154

Chebyshev nodes, 82

collocation method, xii, 82–84

spectral, 285

general scheme of application, 81

least squares method, 82

method of moments, 82

residual, 81

Gear method, 290, 293–295, 301, 316–326,

333, 347

description, 292

fourth-order, 292

implicit, 290

multi-step, 290, 292

second-order, 292

third-order, 292

generalized Hutchinson equation, 53, 329

generalized separable solution, 130, 154, 159,

162–164, 166, 171–174, 184, 189, 191

method of functional constraints, 166, 167

method of invariant subspaces, 155–159

nonlinear delay Klein–Gordon type wave

equation, 198

nonlinear Lotka–Volterra system, 225,

227, 229, 232, 236

systems of delay PDEs, 212, 213, 215–218

transformation of unknown function, 160
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generating equations method, see generating

equations method

application examples, 213–215

general description, 212

generalizations, 222

systems with higher-order equations, 224

systems with many equations, 224

systems with many space variables, 224

systems with two constant delays, 223

systems with variable delays, 223

principle of constructing delay systems,

212

solution of nonlinear systems, 218–222

solution of quasilinear systems, 215–218

global attractor, 331, 345, 349

gradient operator, 113, 354

grid function, 273–276, 280, 281, 303, 308

continuous approximation, 274, 303

discrete, 302

residual, 275

H

Hadamard ill-posedness, 271

delay initial value problem, 271

delay initial-boundary value problem, 91,

96, 109, 271, 272

Hayes theorem, 12, 44, 54, 110

heat equation

classical, 113, 117

constant delay, 90

linear problem, 168–172

differential-difference, see differential-

difference heat equation

hyperbolic, 113, 115, 117, 119

derivation, 113, 114

linear, 225, 242, 245–247, 250, 271

parabolic, 117

Helmholtz equation, 102, 107, 188

hepatitis B model, 355

Heun method, 68, 84, 281

homotopy analysis method, xii, 78, 79

Hutchinson equation, 53, 54, 295, 328, 345

diffusive, 345

generalization, 344, 346

generalized, 53, 329

properties, 298

hyperbolic diffusion equation, 113

hyperbolic heat equation, 113, 117, 119

derivation, 113, 114

I

implicit finite-difference scheme, see also

finite-difference scheme

implicit Runge–Kutta method, see also

Runge–Kutta methods

induced defense, 349, 350

initial conditions, 15, 69, 92, 296, 330

Cauchy problem for delay ODE, 2

Cauchy problem for linear delay ODE, 3

Cauchy problem for nth-order delay ODE,

29

delay reaction-diffusion equations, 296

general, 16, 17, 92, 97

homogeneous, 16, 21

linear delay parabolic PDEs in n variables,

102

linear initial-boundary value problems, 92,

97, 102, 120, 122, 296

linear ODE with proportional delay, 18

linear parabolic PDEs with proportional

delays, 120, 122

linear system of delay ODEs, 39

nonhomogeneous, 92, 98

nonlinear ODE with proportional delay,

20, 21, 70, 75

ODEs with several constant delays, 22

ODEs with several proportional delays, 21

ODEs with several variable delays, 22

population theory models, 344

series expansion in eigenfunctions, 99

special, 14

test problems, 312–315

various models, 360, 362

initial data, see initial conditions

initial layer, see also finite difference

methods, 304

initial value problems, see Cauchy problems

initial-boundary value problems, xi, 91

boundary conditions, see also boundary

conditions, 97

first kind, 97, 99

homogeneous, 92

mixed, 97, 99

nonhomogeneous, 92, 97

second kind, 97, 99

third kind, 97, 99

delay diffusive logistic equation, 345

delay, general properties and qualitative

features, 91

differential-difference heat equations, 118,

119
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initial-boundary value problems (continued)

eigenvalue problem, 93

first

linear, statement of problem, 91, 120

linear, with constant delay, 91

linear, with proportional delay, 120

first (Dirichlet), 97

five main types, 97, 99, 100

Hadamard ill-posedness, 271

hepatitis B model, 356

linear

delay hyperbolic equations, 107–109

delay parabolic equations, 91–96

hyperbolic equations with proportional

delay, 124–126

instability conditions for solutions, 111

necessary and sufficient stability

conditions, 109

nonhomogeneous, instability, 110

parabolic equations with proportional

delay, 120, 121

stability conditions for solutions, 107–

113

sufficient conditions for asymptotic

stability, 110

with constant delay, 91–112

with proportional delay, 119–126

with two proportional arguments, 124

Lotka–Volterra type system, 322

numerical integration, 296

second (Neumann), 97

series solutions, 94, 99, 105, 108, 121

solution as sum of three functions, 92

solution by separation of variables, 96

solutions, 101, 118, 123

Sturm–Liouville problem, 93

third (Robin), 97

inner functions, see also functional separable

solutions

inner nodes, see also finite difference

methods

inner region, see method of matched

asymptotic expansions

instability conditions, 46, 54, 96, 109, 111,

112, 329

global, 271

instability of solutions, xi

delay ODEs, 42, 45, 51, 53

delay PDEs, 96, 109, 111, 112, 270

global, 270–272

linear, 320, 326

integral transform, xii, 55–64, 91

Laplace, 56

solution example, 59

Mellin, 60

solution example, 61–63

solution of linear problems, 55

inverse Laplace transform, 56

definition, 56

finitely many singular points, 58

infinitely many singular points, 58

rational functions, 57

iterative methods, 74

L

Lambert W function, 4

complex-valued branches, 6, 8, 9

asymptotic formula, 6

in complex plane, 6

contour lines, 10

negative branch, 5

asymptotic formula, 6

on real axis, 5

positive branch, 5

approximate formulas, 6

asymptotic formula, 6

Taylor series expansion, 5

principal branch, 5

properties, 6

real-valued branches, 5

Laplace equation, 102, 188

Laplace operator, xvi, 102, 107, 113, 188,

225, 302

Laplace transform, 56, 109, 340

basic properties, 57

definition, 56

inverse, 56

table, 58

least squares method, 82

linear boundary value problems, see also

boundary value problems, 99, 108, 120,

288, 289

linear delay ODEs, see also delay ODEs, see

also Cauchy problem, 4, 15, 59

nth-order, 34, 46

properties of solutions, 35

second-order

stability of solutions, 45

stability of solutions, 42, 43

general remarks, 42

Hayes theorem, 44
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linear delay ODEs (continued)

small delays, 43

stability and instability conditions, 45, 46

linear delay PDEs, see also delay PDEs, 85

additive separable solutions, 90

differential-difference heat equation, 115

initial-boundary value problem, 118, 119

Stokes problem, 115–118

homogeneous, 85

hyperbolic heat equation, 113, 114

hyperbolic with proportional delay

initial-boundary value problems, 124–

126

initial-boundary value problems, see also

initial-boundary value problems

multi-dimensional parabolic

initial-boundary value problem, 102–107

multiplicative separable solutions, 89, 90

one-dimensional hyperbolic

initial-boundary value problem, 107–109

one-dimensional parabolic

initial-boundary value problem, 91–101

parabolic with proportional delay

initial-boundary value problems, 120–

124

properties, 85

properties of delay problems, 91

proportional delay

initial-boundary value problems, see

also initial-boundary value problems

solving using particular solutions, 86–89

linear initial-boundary value problems, see

initial-boundary value problems

linear systems of delay ODEs, 38, 60

first-order, 38

Cauchy problem, 39

exact solution, 40

second-order, 40

Cauchy problem, 40

exact solution, 41

linear transformations, 162, 230

constructing functional separable solutions,

162

constructing generalized separable

solutions, 162

exact solutions to nonlinear delay PDEs,

163–165

for nonlinear delay Klein–Gordon type

wave equations, 163

logistic differential equation, see delay

diffusive logistic equation

logistic equation, see delay diffusive logistic

equation

Lotka–Volterra diffusive model with several

delays, 138, 346

Lotka–Volterra system, 225

reduction to Helmholtz equation, 226–229

reduction to nonstationary system, 236–

238

solutions in elementary functions, 238,

239

reduction to nonstationary system and heat

equation, 246

reduction to stationary system, 229, 230

solutions in elementary functions, 233–

237

reduction to stationary system and

Shrödinger equation, 239, 240

solutions in elementary functions, 241–

246

simplest solutions, 226

M

Mackey–Glass hematopoiesis model, 333,

359

Malthusian coefficient of linear growth, 327

Malthusian equation, 327

Malthusian exponential model, 327

Malthusian parameter of population growth,

327

Mathematica (software), 127

comparison of numerical and exact

solutions, 293, 316, 322

integration of stiff systems of delay ODEs,

290

numerical solutions, 329, 333, 335, 347

solution procedure for delay problems,

300, 301

Mellin transform, 60

basic properties, 61

definition, 60

inverse, 60

relation to Laplace transform, 61

table, 62

method, see also methods

Adomian decomposition, xii, 76–78

analytical, see analytical methods

approximate analytical, see approximate

analytical methods

backward differentiation formula, see Gear

method
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method (continued)

Bubnov–Galerkin, 82, 154

collocation, see collocation method

Cooke–van den Driessche, 49

D-partition, 46–49

direct, 315

constructing test problems, 315

symmetry reductions, 129

Euler, see Euler method

functional constraints, see method of

functional constraints

Gear, see Gear method

generating equations, see generating

equations method

Heun, see Heun method

homotopy analysis, 78

invariant subspaces, 155–159

matched asymptotic expansions, 71–74

minimization of root mean square error, 84

moments, 82

numerical, see numerical method, see

numerical method

Padé approximant solutions, 69

power series solutions, 64–69

regular expansion in small parameter, 69–

71

shooting, xii, 68, 84, 287–289

modified, 289

steps, see method of steps

successive approximations, 74, 75

method of functional constraints, xii, 146,

159, 166–199, 212

general description, 166, 167

method of invariant subspaces, 155

generalized separable solutions, 155–159

method of lines, xii, 290, 299, 301, 302,

316–326, 347

numerical solution of delay problems with

Mathematica, 300, 301

reduction of delay PDE to system of delay

ODEs, 297

method of matched asymptotic expansions,

71

application to boundary value problem,

71–72

composite asymptotic solution, 73

inner region, 72

matching condition, 72

outer region, 72

solution example, 73

method of minimization of root mean square

error, 84

method of moments, 82

method of regular expansion in small

parameter, 69

method of steps, xii, 13–17, 23, 140, 239, 277

for equations of neutral type, 23

for first-order ODEs with constant delay,

13

for linear problems with constant delay, 14

for nonlinear problems with constant delay,

16

for ODEs with several constant delays, 17

for ODEs with variable delay, 23

generalization, 297

inapplicable for solution, 23, 277

modified, 278

proof of existence and uniqueness of

solutions, 23

method of successive approximations, 74

method of time-domain decomposition, 296

methods

construction of exact solutions, see

construction of exact solutions

exact solution, see exact solution methods

finite difference, see finite difference

methods

Galerkin, see Galerkin-type projection

methods

Galerkin-type projection, see Galerkin-

type projection methods

perturbation-iteration algorithms, 79

Runge–Kutta, see Runge–Kutta methods

solution, see solution methods

mixed-type solutions, 216, 218

model, see delay models

model of immunity–tumor interaction, 357

model of heat treatment of metal strips, 360

model of interaction of three economical

parameters, 341

model of regenerative machine tool vibration,

338

modified method of steps, 278, 279

modified shooting method, 289

multiplicative separable solution, 89, 90, 115,

130, 139–154, 162, 176, 178, 188, 195,

199, 213, 218–221, 248, 255–258, 266

N

necessary and sufficient stability conditions,

109
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Neumann boundary conditions, see boundary

conditions of second kind

neutral differential equations, 3, 23, 29

Nicholson blowflies delay model, 137

Nicholson delay reaction-diffusion model,

347

Nicholson equation, 137, 295, 330, 332

nonlinear delay models, see delay models

nonlinear delay ODEs, see also delay ODEs,

12

general form

stability conditions, 54

linearization, 12, 13

solution by method of steps, 16, 17

stability analysis, 52

stability conditions, 53, 54

nonlinear delay PDEs, see also delay PDEs,

127

constructing exact solutions, 203–207,

209–211

functional separable solutions, 159

construction with linear transformations,

162, 164, 165

examples of construction, 160–162

inner functions, 159

outer function, 159

transfromation of unknown, 160

generalized separable solutions, 154

construction with linear transformations,

162–165

method of invariant subspaces, 155–159

preset coordinate functions, 154

generating equations method, 212–215

generalizations, 222, 224

Hadamard ill-posedness of delay problems,

271, 272

Klein–Gordon type wave equations, see

delay Klein–Gordon type wave equations

Lotka–Volterra type systems, see Lotka–

Volterra system

most common types of exact solutions, 130

nonlinear systems

exact solutions, 218–222

parameter replacement with functions,

201, 202, 207–209

principle of analogy of solutions, see

principle of analogy of solutions

quasilinear systems

exact solutions, 216–218

reaction-diffusion equations, see delay

reaction-diffusion equations

separable solutions, 139

equations with constant delay, 139–145,

147–152

equations with many delays, 146, 147

equations with variable delay, 146, 149

generalizations, 149, 151–153

solution instability, 270

solution methods, 201

generating equations method, 212–215

parameter replacement with functions,

201, 207

solution using method of functional

constraints, 166

description, 166

exact solutions, 167–199

systems homogeneous in unknowns, 247

exact solutions, 248–250

traveling wave front solutions, 134–139

traveling wave solutions, 131–139

nonlinear problems, 16

boundary value, see boundary value

problems

Cauchy, see Cauchy problems

initial-boundary value, see initial-boundary

value problems

nonlinear systems of delay ODEs, 222, 225,

238, 247, 298

proportional delay, 253

nonlinear systems of delay PDEs, 212–214

any number of equations, 224

any number of space variables, 224

exact solutions, 218–222

homogeneous in unknowns, 247

exact solutions, 247–250

Lotka–Volterra, see Lotka–Volterra system

nth-order equations, 224

two constant delays, 223

variable delay, 223

numerical integration, see also numerical

method

Cauchy problems

delay ODEs, 273, 278, 279, 283

delay ODEs, 273

first-order Euler method, 278

Heun method, 281

implicit Runge–Kutta method, 290

midpoint method, 280

modified method of steps, 278

modified shooting method, 289

qualitative features, 275

Runge–Kutta methods, 281–283, 285
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numerical integration (continued)

shooting method, 287

spectral collocation methods, 285

stiff systems, 290

delay PDEs, 296–308

finite difference methods, 302

finite difference scheme, 302

method of lines, 297–300

method of lines, using Mathematica,

300, 301

time-domain decomposition, 296, 297

delay reaction-diffusion equations, 296–

308

initial-boundary value problems, 296

numerical method, 154

backward differentiation formula, see Gear

method

BDF, see Gear method

collocation, xii, 80, 82

spectral, 285

delay differential equations, 273–308

delay ODEs, 273

Euler, xii

continuous, 280

explicit, 275, 280, 285

first-order, 279, 285

implicit, 280, 285, 292

Gear, 290, 293–295, 301, 316–326, 333,

347

description, 292

fourth-order, 292

implicit, 290

multi-step, 290, 292

second-order, 292

third-order, 292

Heun, 68, 84, 281

interpolant of, 280

midpoint, 280, 281

qualitative features, 275

Runge–Kutta, see also Runge–Kutta

method, 281–283, 285, 290

continuous, 283

explicit, 283

family, 282

fourth-order, 283, 285, 293–296, 301,

322–326, 335

general scheme, 282

implicit, 283, 290, 298, 329

second-order, 283, 293–296, 301, 316–

326, 329

stability, 285

shooting, xii, 68, 84, 287–289

modified, 289

steps, see method of steps

numerical methods, see numerical method

numerical solution, 25, 27, 68, 84, 277, 279,

288

methods, see numerical method

numerical solution methods, see numerical

method

O

ODE, see delay ODEs

ODEs, see delay ODEs

operator

biharmonic, 151

continuous, 303

delay linear differential, 34, 78, 85, 86

elliptic, 151

finite-difference, 274, 300, 308

gradient, 113, 354

Laplace, see Laplace operator

linear differential, 89, 97, 102, 149, 152,

158

nonlinear, 74, 75, 155, 157, 158

transmission diffusion operator, 363

oscillating reaction model, Belousov–

Zhabotinsky, 358

outer function, 159, 160

outer region, see method of matched

asymptotic expansions

P

Padé approximant, 69

pantograph equation, see also pantograph-

type equation, 18, 23

pantograph-type equation, xi, 77

PDE, see delay PDEs

PDEs, see delay PDEs

physical meaning of diffusion, 343

principle of analogy of solutions, 250–253

nonlinear PDEs with proportional delay

exact solutions, 257–263

quasilinear PDEs with proportional delay

exact solutions, 250–257

wave-type equations with proportional

delay

exact solutions, 263–269

principle of linear superposition, 34, 36, 86

principles for selecting test problems, 309
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problem

eigenvalue, see eigenvalue problem

seealso problems, 93

singular perturbation, 71

Stokes, 116, 117

Sturm–Liouville, 93

problems

boundary value, see boundary value

problems

Cauchy, see Cauchy problems

for delay differential-difference heat

equations, 118

for delay reaction-diffusion equations, 245

for linear hyperbolic equations with

constant delay, 107

for linear hyperbolic equations with

proportional delay, 124

for linear parabolic equations with constant

delay, 91

for linear parabolic equations with

proportional delay, 120

initial-boundary value, see initial-boundary

value problems

properties of delay problems, 91

properties of Lambert W function, 4, 6

properties of Laplace transform, 57

properties of linear operators, 152

properties of Mellin transform, 61

properties of numerical methods, 274, 303

properties of solutions to linear delay

equations, 35, 43, 85, 91, 340

properties of solutions to nonlinear delay

equations, 129, 330, 332

properties of zeros of stretched exponential

function, 19

Q

qualitative features of delay differential

equations, xi, xii

qualitative features of delay ODEs, 1, 2

qualitative features of delay PDEs, 130, 309,

311

qualitative features of delay problems, 91

qualitative features of numerical integration

of delay ODEs, 275

qualitative features of solutions to delay

ODEs, 19

qualitative features of traveling wave front

solutions, 135

quasi-geometric grid, 284

quasi-polynomial, 35, 37, 46, 49, 50, 60

quasilinear delay equations, 167, 263
quasilinear systems of delay ODEs, 137

quasilinear systems of delay PDEs, 215

exact solutions, 216–218

R

rational functions, inverse Laplace transform,

57

reaction-diffusion equations, see delay

reaction-diffusion equations

reaction-diffusion logistic equation, 135, 136
reaction-diffusion model, 128

delay
Belousov–Zhabotinsky, 137

Lotka–Volterra type, 137, 346

Nicholson, 347
reaction-diffusion system, 139

delay PDEs, 357, 359, 363

Lotka–Volterra type
several delays, 139, 225, 228

two delays, 247, 249

reductions of Lotka–Volterra system, 225,

226
different diffusion coefficients, 226

equal diffusion coefficients, 239

single delay, to nonstationary system of

delay ODEs, 236

three delays, to Helmholtz equation, 226
three delays, to stationary system, 229

region of instability, 44, 49, 54, 320
region of stability, 44, 49, 54

relaxation time, 114–116, 119, 363

residual grid function, 275
residue, 55

rest point, 130

Robin boundary conditions, see boundary

conditions of third kind

Runge–Kutta methods, xii, 281, 285
continuous, 283

explicit, M -staged, 283
fourth-order, 281, 293, 294, 301, 323–326

general scheme, 282

implicit, 290, 298, 329
for stiff systems, 290

second-order, 293, 294, 301, 316–326

stability, 285

S

self-similar problem, 124
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self-similar problem for linear PDE with two

proportional arguments, 124

separable solution

additive, see additive separable solution

multiplicative, see multiplicative separable

solution

shooting method, xii, 68, 84, 287–289

modified, 289

SI model, 353

simple climate model, 337

simplest epidemiological model, 336

simplest model of macrodynamics of

business cycles, 340

singular perturbation problems, 71

SIR model, 336, 351, 352

solution, xi

additive separable, see additive separable

solution, 130, 139–154, 170, 180, 189,

199, 214, 221, 254, 265

Cauchy problem

by method of steps, 14, 23

first-order delay ODE, 14, 16, 17, 25

first-order ODE with proportional delay,

18, 26

first-order ODE with several proportional

delays, 21

first-order ODE with several variable

delays, 22, 23

nth-order delay ODE, 34

second-order delay ODE, 28–30

second-order ODE with proportional

delay, 31–33

second-order ODE with two proportional

delays, 33

stability of solutions, 42

systems of delay ODEs, 38, 41

composite asymptotic, 73

delay initial-boundary value problems

instability conditions, 112, 113

stability conditions, 109, 113

delay parabolic equations

asymptotic stability conditions, 110

instability conditions, 96, 111

stability conditions, 96

exact, see exact solutions

existence and uniqueness, 23

formal, 35, 86, 94

functional separable, see functional

separable solution

generalized separable, see generalized

separable solution

global instability, 270–272

Hutchinson type equations

instability condition, 54, 329

stability conditions, 53, 54, 329

instability, see instability of solutions

instability conditions, see instability

conditions

linear delay ODEs

asymptotic stability, 51

multiplicative separable, 89, see

multiplicative separable solution, 115,

130, 139–154, 162, 176, 178, 188, 195,

199, 213, 218–221, 248, 255–258, 266

nonlinear delay ODEs

asymptotic stability, 53

instability, 53, 295

stability conditions, 55

nonlinear delay PDEs

global instability, 271, 272

instability, 270

numerical, see numerical solution

traveling wave, see traveling wave solution

traveling wave front, 134–139

solution instability, see instability of solutions

solution methods, xii

analytical, see analytical methods

approximate analytical, see approximate

analytical methods

solution smoothing, 2

solutions, see also solution

approximate

linear combinations of basis functions,

80

power series, 64

delay initial-boundary value problems

special form, 109

sum of solutions to simpler problems,

92, 96

linear problems

delayed exponential function, 15

systems of nonlinear delay PDEs

mixed-type, 216, 218

spectral collocation methods, 285, 286

stability analysis, 42

linear delay ODEs, 43, 47

nonlinear delay ODEs, 52–55

stability conditions, 46, 53–55, 96, 109, 329,

333, 348

global, 363
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stability of solutions, see also instability of

solutions, 1, 335, 339, 354, 362

asymptotic, 47, 333

local, criteria, 331

sufficient conditions, 110

delay ODEs, 1, 42, 43

with respect to initial data, 275

with respect to right-hand side, 275

linear, 320

linear delay ODEs

Cooke–van den Driessche method, 49

D-partition method, 46

general remarks, 42

region of stability, 47, 49

linear initial-boundary value problems,

109, 112

necessary and sufficient conditions, 109

linear ODEs with several constant delays,

50

linear ODEs with single constant delay,

43–46

nonlinear delay ODEs, 52

stability and instability theorems, 53

stability conditions, see stability conditions

state of equilibrium, see equilibrium

stationary point, see equilibrium

stencil, 303

step size, 273, 293, 298

constant, 273, 276, 280, 283

spatial, 302, 305, 307, 322

temporal, 298, 301, 302, 307

variable, 273, 274, 281, 302, 322

stiff problems, see stiff systems

stiff systems, 290, 298

delay ODEs

implicit Runge–Kutta schemes, 290

solution using Mathematica, 290

Stokes problem, 116, 117

stretched cosine function, xv, 32

stretched exponential function, xv, 19, 20,

31–33

stretched sine function, xv, 32

Sturm–Liouville problem, 93

sufficient conditions for asymptotic stability

of solutions, 110

suppression of singularities, 24

blow-up problems, 24, 25

first-order delay ODEs, 24–26

T

temporal layer, 300, 302, 305, 308, 316

test problems

construction, 293

construction with direct method, 315

delay Klein–Gordon type wave equations,

322

delay PDEs, 316

comparison of numerical and exact

solutions, 316, 322–326

construction, 293

delay reaction-diffusion equations, 316

examples, 311–315

exact solutions for delay PDEs

examples, 293–296, 311–315

main principles for selection, 309

transform

integral, xii, 55

inverse Laplace, 56–58

inverse Mellin, 60, 61

Laplace, see Laplace transform

Mellin, see Mellin transform

traveling wave front solution, 134–139

traveling wave solution, xii, 90, 130, 131, 134

two-component epidemic SI model, 353

U

uniqueness of solutions, 1, 23

W

wave equation, 119, 315

delay Klein–Gordon type, see delay Klein–

Gordon type wave equations

wave equations

nonlinear, Klein–Gordon type, delay, 107

wave-type delay PDEs, 299

weighted finite-difference scheme, 307
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