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Abstract

This paper studies a mixed PDE containing the second time derivative and a quadratic
nonlinearity of the Monge–Ampère type in two spatial variables, which is encountered in
geophysical fluid dynamics. The Lie group symmetry analysis of this highly nonlinear PDE
is performed for the first time. An invariant point transformation is found that depends on
fourteen arbitrary constants and preserves the form of the equation under consideration.
One-dimensional symmetry reductions leading to self-similar and some other invariant
solutions that described by single ODEs are considered. Using the methods of generalized
and functional separation of variables, as well as the principle of structural analogy of
solutions, a large number of new non-invariant closed-form solutions are obtained. In
general, the extensive list of all exact solutions found includes more than thirty solutions
that are expressed in terms of elementary functions. Most of the obtained solutions contain
a number of arbitrary constants, and several solutions additionally include two arbitrary
functions. Two-dimensional reductions are considered that reduce the original PDE in three
independent variables to a single simpler PDE in two independent variables (including
linear wave equations, the Laplace equation, the Tricomi equation, and the Guderley
equation) or to a system of such PDEs. A number of specific examples demonstrate that the
type of the mixed, highly nonlinear PDE under consideration, depending on the choice of its
specific solutions, can be either hyperbolic or elliptic. To analyze the equation and construct
exact solutions and reductions, in addition to Cartesian coordinates, polar, generalized
polar, and special Lorentz coordinates are also used. In conclusion, possible promising
directions for further research of the highly nonlinear PDE under consideration and related
PDEs are formulated. It should be noted that the described symmetries, transformations,
reductions, and solutions can be utilized to determine the error and estimate the limits
of applicability of numerical and approximate analytical methods for solving complex
problems of mathematical physics with highly nonlinear PDEs.
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1. Introduction
1◦. Highly nonlinear partial differential equations of the Monge–Ampère type, con-

taining a quadratic combination in the second derivatives of the form uxxuyy − u2
xy, are

encountered in differential geometry [1–4], gas dynamics [5–7], elasticity and plasticity
theory [8–10], magnetohydrodynamics [11–13], two-phase mechanics [14], meteorology
and geophysics [15], optimization problems [3], and some other applications [4,16].

The equations of gas dynamics for plane one-dimensional flows with variable en-
tropy are reduced to a special class of Monge–Ampère equations with two independent
variables [5,6]:

uxxuyy − u2
xy = f (x, y), (1)

where u = u(x, y) is the desired function, and f (x, y) is the given function.
General solutions of the homogeneous Monge–Ampère Equation (1) with f (x, y) ≡ 0

and the nonhomogeneous Monge–Ampère Equation (1) with f (x, y) = −A, where A > 0
is a free constant, and admit parametric representations [17] (see also [16]).

Symmetries, equivalence transformations, and invariant solutions of Equation (1) were
considered in [7,18,19]. In [20,21], some polynomial exact solutions of Equation (1) with
quadratic and more complicated polynomial right-hand sides were obtained. In [16,22],
many non-invariant solutions with generalized and functional separation of variables of
Equation (1) are described (special attention was paid to PDEs of a fairly general form,
depending on one or two arbitrary functions of one argument).

In [7,23], it was shown that the nonlinear Equation (1) admits an exact linearization for
f (x, y) = f1(x) and f (x, y) = x−4 f2(y/x), where f1(x) and f2(z) are arbitrary functions.
In [24], it was proved that the Monge–Ampère-type equation

uxxuyy − u2
xy = f (x, uy)

can be linearized using the contact Euler transform for any function of two arguments f (x, z).
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Note that in the general case, the strongly nonlinear Equation (1) is a mixed-type PDE,
since for f (x, y) > 0, it is an elliptic equation, and for f (x, y) < 0, it is a hyperbolic equation
(see, for example, [16]).

In [16,22,25,26], exact solutions of more complicated than (1) highly nonlinear coupled
PDEs with two independent variables were considered.

Some invariant and non-invariant exact solutions of multidimensional Monge–
Ampère-type equations, depending on n spatial variables and containing strong non-
linearity in the second derivatives of the form

det[uxixj ], (2)

where uxixj = ∂2u
∂xi∂xj

(i, j = 1, . . . , n), were obtained in [27–29]. The matrix of second

derivatives [uxixj ] included in (2) describes the local curvature of a function of many
variables u = u(x1, . . . , xn) and is called the Hessian matrix. In the two-dimensional
case with n = 2 and x1 = x, x2 = y, expression (2) coincides with the left-hand side of
Equation (1). Reductions and exact solutions of the three-dimensional and four-dimensional
homogeneous Monge–Ampère equation det[uxixj ] = 0 for n = 3 and n = 4 were considered
in [30,31] (see also [32], where a related nonhomogeneous PDE with a special right-hand
side for n = 4 was studied).

In [33,34], reductions and exact solutions of some two-dimensional and multidi-
mensional systems consisting of two equations with Monge–Ampère-type nonlinearity
are described.

2◦. In electron magnetohydrodynamics, a nonstationary Monge–Ampère-type equa-
tion with three independent variables is encountered [11–13]:

ut = uxxuyy − u2
xy. (3)

Characteristic qualitative features, symmetries, reductions, and exact solutions of
the highly nonlinear Equation (3) were considered in [35,36]. In [36], a large number of
solutions of this PDE were found, which are expressed in terms of elementary functions.
Some invariant and non-invariant exact solutions of more complicated related equations of
Monge–Ampère type were obtained in [24,37,38].

Equation (3), as well as related highly nonlinear PDEs containing the first deriva-
tive with respect to time ut and a quadratic combination of second derivatives with re-
spect to spatial variables of the form uxxuyy − u2

xy or det[uxixj ], are called the parabolic
Monge–Ampère equations. Geometric applications and questions of existence and unique-
ness of various classes of solutions of the corresponding initial-boundary value problems
with such PDEs were considered, for example, in [39–56].

In [57], solutions with additive and multiplicative separation of variables of multidi-
mensional parabolic equations of the Monge–Ampère type of the form f ut = det[uxixj ] are
described, in which the functional coefficient f depends in a special way on x1, . . . , xn, t, u
(see also [58], where exact solutions of a more complex related PDE were obtained).

3◦. In this paper, we will consider a more complex, than (3), highly nonlinear PDE
containing the second derivative with respect to time:

utt = uxxuyy − u2
xy, (4)

which we will further call the geophysical Monge–Ampère-type equation (a clarification of
this name will be given below).
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In addition to Equation (4), to a lesser extent, a nonlinear equation of the form

f (x)utt = uxxuyy − u2
xy, (5)

where f (x) is an arbitrary function, will also be studied.
It is important to note that the highly nonlinear PDE (4), by renaming the desired

function u by −u, is reduced to an equation that was derived in [59] in relation to problems
of geophysical fluid dynamics. In the cited article, the simple polynomial solution of
Equation (4) was obtained as follows:

u = 1
2 x2t − 1

6 t3 − 1
2 y2. (6)

Apparently, the nonlinear Equation (4) was first formally introduced in [60], where it was
noted that it can have blow-up solutions.

In this paper, it will be shown, using a number of specific examples, that the type of
the highly nonlinear Equation (4), depending on the choice of its specific solutions, can be
either hyperbolic or elliptic. In other words, this equation is a PDE of mixed type.

Further, by exact closed-form solutions of nonlinear PDEs, as in [36,38,61], we mean
solutions that are expressed in terms of (i) elementary functions, (ii) elementary functions
and indefinite integrals, and (iii) solutions of ODE or ODE systems.

To analyze symmetries and find exact solutions to nonlinear PDEs, the classical method
of symmetry reductions [18,62–67], the direct method of symmetry reductions [16,61,68–73],
the nonclassical symmetries methods [69,71,74–83], methods of generalized separation of
variables [16,60,73,84–89], methods of functional separation of variables [16,73,78,87,90–98],
and the method of differential constraints [16,70,73,99–102] are most often used (see also some
other exact analytical methods [16,61,103–110]). On methods for constructing exact solutions
of nonlinear PDEs with constant and variable delay as well as some other nonlinear functional
PDEs, see, for example, [110–118].

4◦. In this paper, to find exact solutions to the nonlinear PDE (4) encountered in
geophysical fluid dynamics, we mainly used the classical classical method of symme-
try reductions [18,62–64] and methods of generalized or functional separation of vari-
ables [16,60,73]. In a number of cases, exact solutions were obtained by applying various
combinations of the above methods.

Remark 1. To construct exact solutions of mixed nonlinear PDE (4), we will also partially use the
principle of structural analogy of solutions (see, for example, [61,107,108]). Namely, the structure
of exact solutions of Equation (4) in some cases was determined by the structure of exact solutions of
the related simpler Equation (3), which are found, for example, in [36,38].

2. Symmetries of the Monge–Ampère Mixed-Type PDE.
Reproduction Formula

Applying the technique of Lie group analysis [62–64], we look for the symmetry
operators of the nonlinear PDE (4) in the form

X = ζ1(x, y, t, u)
∂

∂x
+ ζ2(x, y, t, u)

∂

∂y
+ ζ3(x, y, t, u)

∂

∂t
+ ζ4(x, y, t, u)

∂

∂u
.

Using the invariance criterion [62], for the four desired functions ζ1, ζ2, ζ3, and ζ4, one can
derive the following overdetermined linear homogeneous system consisting of nineteen
defining PDEs:

ζ1
t = 0 , ζ1

u = 0 , ζ2
t = 0 , ζ2

u = 0 ,
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ζ3
x = 0 , ζ3

y = 0 , ζ3
u = 0 ,

ζ1
xx = 0 , ζ1

xy = 0 , ζ1
yy = 0 ,

ζ2
xx = 0 , ζ2

xy = 0 , ζ2
yy = 0 ,

(7)

ζ3
tt = 0 , ζ4

u − 2(ζ1
x + ζ2

y − ζ3
t ) = 0 ,

ζ4
xx = 0 , ζ4

xy = 0 , ζ4
yy = 0 , ζ4

tt = 0 .

It is not difficult to prove that the general solution of the overdetermined PDE
system (7) is given by the formulas

ζ1 = c1x + c2y + c3 ,

ζ2 = c4x + c5y + c6 ,

ζ3 = c7t + c8 ,

ζ4 = (c9x + c11y + c12)t + 2(c1 + c5 − c7)u + c10x + c13y + c14,

where cj (j = 1, . . . , 14) are arbitrary constants. This leads to two propositions,
formulated below.

Proposition 1. The basis of the Lie algebra of symmetry operators for the Monge–Ampère-type
PDE (4) can be written in the form

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂t
, X4 =

∂

∂u
,

X5 = y
∂

∂x
, X6 = x

∂

∂y
, X7 = x

∂

∂u
, X8 = y

∂

∂u
,

X9 = x
∂

∂x
+ t

∂

∂t
, X10 = y

∂

∂y
+ t

∂

∂t
, X11 = t

∂

∂t
− 2u

∂

∂u
,

X12 = t
∂

∂u
, X13 = xt

∂

∂u
, X14 = yt

∂

∂u
.

Proposition 2. The transformation

x̄ = A1x + B1y + C1 , ȳ = A2x + B2y + C2 , t̄ = D1t + D2 ,

ū =
(A1B2 − A2B1)

2

D2
1

u + t(A3x + B3y + C3) + A4x + B4y + C4,
(8)

where A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4, D1, and D2 are free parameters satisfying
two conditions, A1B2 − A2B1 ̸= 0 and D1 ̸= 0, leaves the form of Equation (4) invariant.

Below are simple consequences for two one-parameter transformations that follow
from Proposition 2.

Corollary 1. The rotation transformation of spatial variables:

x̄ = x cos β − y sin β, ȳ = y cos β + x sin β, ū = u, (9)

where β is a free parameter, leaves the highly nonlinear PDE (4) invariant.

Note that the rotation transformation (9) also leaves invariant the simpler Laplace
equation uxx + uyy = 0, which is a linear elliptic PDE.
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Corollary 2. The Lorentz transformation of spatial variables:

x̄ = x cosh β − y sinh β, ȳ = y cosh β − x sinh β, ū = u, (10)

where β is a free parameter, leaves the highly nonlinear PDE (4) invariant.

Note that the Lorentz transformation (10) also leaves invariant the simpler wave
equation uxx − uyy = 0, which is a linear hyperbolic PDE.

Proposition 3. Transformation (8) transforms an arbitrary solution u = Φ(x, y, t) of the nonlinear
PDE (4) into a fourteen-parameter family of solutions

u =
D2

1
(A1B2 − A2B1)2

[
Φ(A1x + B1y + C1, A2x + B2y + C2, D1t + D2)

− t(A3x + B3y + C3)− A4x − B4y − C4
]
.

(11)

The reproduction formula (11) makes it possible to obtain complex multiparameter
solutions using the more simple solutions. Note that in Formula (11), the free parameters
can take complex values, provided that the solutions obtained are real (see details [108]).
Section 4 provides examples of using this approach.

3. Two-Dimensional Similarity Reductions
The classical procedure for finding symmetry reductions in PDEs is presented

in [62,64]. In this section, we will limit ourselves to a brief description of the most im-
portant cases of constructing two-dimensional reductions for the Monge–Ampère-type
PDE with three independent variables (4) using the symmetries found in Section 2.

1◦. Equation (4) admits a symmetry solution of the form

u = U(ϱ, ϑ), ϱ = x − αt, ϑ = y − βt, (12)

where α and β are free parameters, ϱ and ϑ are traveling wave-type variables, and the new
desired function U = U(ϱ, ϑ) satisfies the two-dimensional Monge–Ampère PDE

UϱϱUϑϑ − U2
ϱϑ − α2Uϱϱ − 2αβUϱϑ − β2Uϑϑ = 0. (13)

The symmetry solution (12) is invariant under the transformation group, which is
specified by the operator

Y = αX1 + βX2 + X3 = α
∂

∂x
+ β

∂

∂y
+

∂

∂t
.

The PDE (13) admits exact solutions, quadratic in one independent variable, of the form

U1 = f1(ϱ)ϑ
2 + g1(ϱ)ϑ + h1(ϱ),

U2 = f2(ϑ)ϱ
2 + g2(ϑ)ϱ + h2(ϑ),

(14)

where the functions fi, gi, hi (i = 1, 2) are described by ODE systems that are not pre-
sented here.

Remark 2. The successive use of Formulas (12) and (14) leads to non-invariant solutions of
Equation (4), obtained by combining the classical method of group analysis and the method of
generalized separation of variables.



Mathematics 2025, 13, 3522 7 of 39

Remark 3. Generalized separable solutions that are quadratic in one or more independent variables,
like solutions (14), are often used to construct exact solutions of reaction–diffusion equations, wave-
type equations, and some other nonlinear partial differential equations (see, e.g., [16,60,61,73]).

2◦. Equation (4) admits a symmetry solution of the form

u = t−2(α+β+1)U(ϱ, ϑ), ϱ = xtα, ϑ = ytβ, (15)

where α and β are free parameters, ϱ and ϑ are self-similar variables, and the new desired
function U = U(ϱ, ϑ) satisfies the two-dimensional Monge–Ampère PDE

U2
ϱϑ − UϱϱUϑϑ + α2ϱ2Uϱϱ + β2ϑ2Uϑϑ + 2αβϱϑUϱϑ − αϱ(3α + 4β + 5)Uϱ

− βϑ(4α + 3β + 5)Uϑ + 2(2α + 2β + 3)(α + β + 1)U = 0 .
(16)

The values of α = β = 0 in (15) correspond to a multiplicative separable solution.
The symmetry solution (15) is invariant under the transformation group, which is

specified by the operator

Y = αX9 + βX10 − (α + β + 1)X11 = αx
∂

∂x
+ βy

∂

∂y
− t

∂

∂t
+ 2(α + β + 1)u

∂

∂u
.

The PDE (16) admits non-invariant solutions of the form (14), quadratic in one inde-
pendent variable.

3◦. Equation (4) admits a symmetry solution of the form

u = e−2(α+β)tU(ϱ, ϑ), ϱ = xeαt, ϑ = yeβt, (17)

where α and β are free parameters, ϱ and ϑ are limit self-similar variables, and the new
desired function U = U(ϱ, ϑ) satisfies the two-dimensional Monge–Ampère PDE

U2
ϱϑ − UϱϱUϑϑ + α2ϱ2Uϱϱ + β2ϑ2Uϑϑ + 2αβϱϑUϱϑ

− αϱ(3α + 4β)Uϱ − βϑ(4α + 3β)Uϑ + 4(α + β)2U = 0 .
(18)

The symmetry solution (17) is invariant under the transformation group, which is
specified by the operator

Y = −X3 + αX9 + βX10 = αx
∂

∂x
+ βy

∂

∂y
− ∂

∂t
+ 2(α + β)u

∂

∂u
.

The PDE (18) admits non-invariant solutions of the form (14), quadratic in one inde-
pendent variable.

4◦. Equation (4) admits a symmetry solution of the form

u = t−2U(ϱ, ϑ), ϱ = x + α ln t, ϑ = y + β ln t, (19)

where α and β are free parameters, and the new desired function U = U(ϱ, ϑ) satisfies the
two-dimensional Monge–Ampère PDE

UϱϱUϑϑ − U2
ϱϑ − α2Uϱϱ − β2Uϑϑ − 2αβUϱϑ + 5αUϱ + 5βUϑ − 6U = 0. (20)

The values of α = β = 0 in (19) correspond to a multiplicative separable solution.
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The symmetry solution (19) is invariant under the transformation group, which is
specified by the operator

Y = αX1 + βX2 − X11 = α
∂

∂x
+ β

∂

∂y
− t

∂

∂t
+ 2u

∂

∂u
.

The PDE (20) has a traveling wave solution, as well as non-invariant solutions of the
form (14), quadratic in one independent variable.

5◦. Equation (4) admits a symmetry solution of the form

u = x2U(ϱ, ϑ), ϱ = t + α ln x, ϑ = y + β ln x, (21)

where α and β are free parameters, and the new desired function U = U(ϱ, ϑ) satisfies the
two-dimensional Monge–Ampère PDE

α2(UϱϱUϑϑ − U2
ϱϑ)− Uϱϱ + (3αUϱ − βUϑ + 2U)Uϑϑ − 4αUϑUϱϑ − 4U2

ϑ = 0. (22)

The values of α = β = 0 in (21) correspond to a multiplicative separable solution.
The symmetry solution (21) is invariant under the transformation group, which is

specified by the operator

Y = −βX2 − αX3 + X9 − X11 = x
∂

∂x
− β

∂

∂y
− α

∂

∂t
+ 2u

∂

∂u
.

The PDE (22) has a traveling wave solution.
6◦. Equation (4) admits a symmetry solution of the form

u = e2(α−β)xU(ϱ, ϑ), ϱ = teαx, ϑ = yeβx, (23)

where α and β are free parameters, and the new desired function U = U(ϱ, ϑ) satisfies the
two-dimensional Monge–Ampère PDE

α2ϱ2(UϱϱUϑϑ − U2
ϱϑ)− Uϱϱ +

[
α(5α − 4β)ϱUϱ − β2ϑUϑ + 4(α − β)2U

]
Uϑϑ

− 2α(2α − β)ϱUϑUϱϑ − (2α − β)2U2
ϑ = 0.

(24)

The symmetry solution (23) is invariant under the transformation group, which is
specified by the operator

Y = X1 − βX10 − (α − β)X11 =
∂

∂x
− βy

∂

∂y
− αt

∂

∂t
+ 2(α − β)u

∂

∂u
.

7◦. Equation (4) admits a symmetry solution of the form

u = e−2αxU(ϱ, ϑ), ϱ = x + βt, ϑ = yeαx, (25)

where α and β are free parameters, and the new desired function U = U(ϱ, ϑ) satisfies the
two-dimensional Monge–Ampère PDE

UϱϱUϑϑ − U2
ϱϑ − β2Uϱϱ − α(4Uϱ + αϑUϑ − 4αU)Uϑϑ + 2αUϑUϱϑ − α2U2

ϑ = 0. (26)

The symmetry solution (25) is invariant under the transformation group, which is
specified by the operator

Y = βX1 − X3 − αβX10 + αβX11 = β
∂

∂x
− αβy

∂

∂y
− ∂

∂t
− 2αβu

∂

∂u
.
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8◦. Equation (4) admits a symmetry solution of the form

u = U(z, t), z = y + ax2, (27)

where a is a free parameter, and the new desired function U = U(z, t) satisfies the
two-dimensional Monge–Ampère PDE

Utt − 2aUzUzz = 0.

Exact solutions of this equation are discussed further in Section 10.
The symmetry solution (27) is invariant under the transformation group, which is

specified by the operator

Y = X1 + X3 − 2aX6 =
∂

∂t
+

∂

∂x
− 2ax

∂

∂y
.

9◦. Equation (4) admits a symmetry solution of the form

u = U(r, t), r =
√

x2 + y2, (28)

where r is the polar radius, and the new desired function U = U(r, t) satisfies the two-
dimensional Monge–Ampère PDE

Utt − r−1UrUrr = 0.

Exact solutions of this equation are discussed further in Items 3◦–7◦ of Section 11.
The physical meaning of solution (28) is that it is invariant with respect to the rotation

transformation of spatial variables (9) (i.e., this solution is spatially isotropic). Solutions
with the same property are typical for many elliptic PDEs, in particular for the Laplace
equation (see also Corollary 1).

The symmetry solution (28) is invariant under the transformation group, which is
specified by the operator

Y = X3 + X5 − X6 =
∂

∂t
+ y

∂

∂x
− x

∂

∂y
.

10◦. Equation (4) admits a symmetry solution of the form

u = U(ζ, t), ζ =
√

x2 − y2, (29)

where the new desired function U = U(ζ, t) satisfies the two-dimensional Monge–
Ampère PDE

Utt + ζ−1UζUζζ = 0.

Renaming, here, U to −U and ζ to r, we obtain the equation from Item 8◦.
The physical meaning of solution (29) is that it is invariant with respect to the Lorentz

transformation of spatial variables (10). Solutions with the same wave property are typical
for many hyperbolic PDEs (see also Corollary 2).

The symmetry solution (29) is invariant under the transformation group, which is
specified by the operator

Y = X3 + X5 + X6 =
∂

∂t
+ y

∂

∂x
+ x

∂

∂y
.
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11◦. Equation (4) admits a symmetry solution of the form

u = U(η, t), η = xy, (30)

where the new desired function U = U(η, t) satisfies the two-dimensional Monge–
Ampère PDE

Utt + 2ηUηUηη + U2
η = 0.

Solution (30) is self-similar and symmetric with respect to the spatial variables x and y.
It also is invariant under the transformation group, which is specified by the operator

Y = X3 + X9 − X10 =
∂

∂t
+ x

∂

∂x
− y

∂

∂y
.

Remark 4. More complicated solutions of the highly nonlinear PDE (4) can be obtained by applying
the reproduction formula (11) to the solutions (12), (15), (17), (19), (21), (23), (25), (27), (28), (29),
and (30).

Remark 5. From the solution forms described above in Items 9◦ and 10◦, it follows that that
the considered highly nonlinear PDE (4) simultaneously has properties characteristic of both
elliptic and hyperbolic equations. This is a very extraordinary property, not shared by second-
order linear and quasilinear PDEs (see, for example, handbooks [16,18,22,119]). Another un-
usual property of Equation (4), which is invariant under arbitrary constant shifts with respect to
all independent variables, is that it has no non-degenerate traveling wave solutions of the form
u = F(k1x + k2y − λt), where k1, k2, and λ are free parameters.

4. One-Dimensional Similarity Reductions and Invariant Solutions
The regular technique for obtaining one-dimensional similarity reductions in PDEs is

described in [62–64]. In this section, we restrict ourselves to several illustrative examples
of constructing invariant solutions of the Monge–Ampère-type PDE (4) using the symme-
tries described above. We will also give a few simple solutions of this PDE in terms of
elementary functions.

1◦. The simplest invariant solution of the nonlinear PDE (4), which admits a scaling
transformation, is a multiplicative separable solution of the form

u = − x2y2

2t2 . (31)

Below, we consider some other invariant solutions that can be obtained from
solution (31), applying simple methods outlined in [61,107,108].

Solution (31) is a special case of a broader family of invariant solutions of the
following form:

u =
x2

t2 f (z), z = y + β ln t, (32)

where β is a free parameter, and the function f = f (z) satisfies the second-order ODE

(2 f − β2) f ′′zz − 4( f ′z)
2 + 5β f ′z − 6 f = 0.

Solution (32) is invariant under the two-dimensional Lie algebra of symmetry operators

Y1 = βX2 − X11 = β
∂

∂y
− t

∂

∂t
+ 2u

∂

∂u
, Y2 = X9 − X11 = x

∂

∂x
+ 2u

∂

∂u
.
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Solution (31) is a special case of another broader family of invariant solutions of
the form

u =
x2

t2 g(ξ), ξ = y + λ ln x, (33)

where λ is a free parameter, and the function g = g(ξ) satisfies the second-order ODE

(λg′ξ − 2g)g′′ξξ + 4(g′ξ)
2 + 6g = 0.

Solution (33) is invariant under the two-dimensional Lie algebra of symmetry operators

Y1 = λX2 − X9 = λ
∂

∂y
− x

∂

∂x
− t

∂

∂t
, Y2 = X11 = t

∂

∂t
− 2u

∂

∂u
.

Solution (31) is also a special case of another broader family of invariant solutions of
the form

u = x2y2h(η), η = t + γ ln y, (34)

where γ is a free parameter, and the function h = h(η) satisfies the second-order ODE

(2γ2h − 1)h′′ηη − 4γ2(h′η)
2 − 10γhh′η − 12h2 = 0.

Solution (34) is invariant under the two-dimensional Lie algebra of symmetry operators

Y1 = γX3 − X10 = γ
∂

∂t
− y

∂

∂y
+ 2u

∂

∂u
, Y2 = X9 − X11 = x

∂

∂x
+ 2u

∂

∂u
.

Applying Formula (11) with A1 = A2 = B2 = D1 = 1, B1 = −1, A3 = A4 = B3 =

B4 = C1 = C2 = D2 = C3 = C4 = 0 to solution (31), we obtain a solution of the more
complex form

u = − (x2 − y2)2

8t2 . (35)

Following [107,108], we construct, using a complex parameter, another solution based
on solution (35). The PDE (4) is invariant under the transformation

x̄ = ix, ȳ = y, t̄ = t, ū = −u,

where i2 = −1 (this corresponds to the use of a purely imaginary parameter A1 = i
in the reproduction Formula (11)). Using this complex transformation, we obtain from
solution (35) another solution to the PDE (4):

u =
(x2 + y2)2

8t2 . (36)

2◦. Using the invariant variables

u = x2−2βt−2α−2V(ζ) , ζ = xβtαy, (37)

where α and β are free parameters, we obtain from the PDE (4) the second-order
nonlinear ODE[

β(β + 1)ζV′
ζ − 2(β − 1)(2β − 1)V + α2ζ2]V′′

ζζ

+ (β − 2)2(V′
ζ)

2 − α(3α + 5)ζV′
ζ + 2(α + 1)(2α + 3)V = 0.
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Solution (37) is invariant under the two-dimensional Lie algebra of symmetry operators

Y1 = αX9 − (α + β)X11 = αx
∂

∂x
− βt

∂

∂t
+ 2(α + β)u

∂

∂u
,

Y2 = αX10 − (α + 1)X11 = αy
∂

∂y
− t

∂

∂t
+ 2(α + 1)u

∂

∂u
.

3◦. Using the invariant variables

u = e−2αtx2−2βV(ζ), ζ = eαtxβy, (38)

where α and β are free parameters, and we obtain from the PDE (38) the second-order
nonlinear ODE[

β(β + 1)ζV′
ζ − 2(β − 1)(2β − 1)V + α2ζ2]V′′

ζζ + (β − 2)2(V′
ζ)

2 − 3α2ζV′
ζ + 4α2V = 0.

Solution (38) is invariant under the two-dimensional Lie algebra of symmetry operators

Y1 = X9 − βX10 + (β − 1)X11 = x
∂

∂x
− βy

∂

∂y
− 2(β − 1)u

∂

∂u
,

Y2 = −X3 + αX10 − αX11 = αy
∂

∂y
− ∂

∂t
+ 2αu

∂

∂u
.

4◦. Using the invariant variables

u = t−2α−2e−2βxV(ζ), ζ = tαeβxy, (39)

where α and β are free parameters, we obtain from the PDE (39) the second-order
nonlinear ODE

(β2ζV′
ζ − 4β2V + α2ζ2)V′′

ζζ + β2(V′
ζ)

2 − α(3α + 5)ζV′
ζ + 2(α + 1)(2α + 3)V = 0.

Solution (39) is invariant under the two-dimensional Lie algebra of symmetry operators

Y1 = X1 − βX10 + βX11 =
∂

∂x
− βy

∂

∂y
− 2βu

∂

∂u
,

Y2 = αX10 − (α + 1)X11 = αy
∂

∂y
− t

∂

∂t
+ 2(α + 1)u

∂

∂u
.

5◦. Using the invariant variables

u = e−2αt−2βxV(ζ), ζ = eαt+βxy, (40)

where α and β are free parameters, we obtain from the PDE (40) the second-order
nonlinear ODE

(β2ζV′
ζ − 4β2V + α2ζ2)V′′

ζζ + β2(V′
ζ)

2 − 3α2ζV′
ζ + 4α2V = 0.

Solution (39) is invariant under the two-dimensional Lie algebra of symmetry operators

Y1 = X1 − βX10 + βX11 =
∂

∂x
− βy

∂

∂y
− 2βu

∂

∂u
,

Y2 = X3 − αX10 + αX11 =
∂

∂t
− αy

∂

∂y
− 2αu

∂

∂u
.
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Remark 6. More complicated solutions of the highly nonlinear PDE (4) can be obtained by applying
the reproduction Formula (11) to the solutions (33), (34), (37), (38), (39), and (40).

5. Multiplicative Separable Solutions
1◦. The Monge–Ampère-type PDE (4) has the multiplicative separable solution

u = t−2U(x, y),

which is a particular case of solution (15) for α = β = 0. Here, the new desired function
U = U(x, y) satisfies the stationary Monge–Ampère equation

UxxUyy − U2
xy − 6U = 0. (41)

Proposition 4. Let U = F(x, y) be a solution of Equation (41). Then, the function

U =
1

(a1b2 − a2b1)2 F(a1x + b1y + c1, a2x + b2y + c2),

where aj, bj, cj (j = 1, 2) are arbitrary constants, is also a solution of this PDE.

2◦. The PDE (41), in turn, admits the multiplicative separable solution

U = x2 φ(y), (42)

where the function φ = φ(y) satisfies the autonomous second-order ODE

φφ′′
yy − 2(φ′

y)
2 − 3φ = 0. (43)

Remark 7. Solution (42) is invariant under a one-parameter group of transformations which is
specified by the operator

Y = x
∂

∂x
+ 2U

∂

∂U
,

admitted by Equation (41).

Substituting Z(φ) = (φ′
y)

2 reduces Equation (43) to the first-order linear ODE

φZ′
φ − 4Z − 6φ = 0,

the general solution of which is
Z = C1 φ4 − 2φ, (44)

where C1 is an arbitrary constant. Replacing Z in (44) by (φ′
y)

2, we obtain a first-order
separable ODE whose general solution can be written in implicit form.

Remark 8. The ODE (43) has a one-parameter particular solution φ = − 1
2 (y + C2)

2, which
corresponds to the case C1 = 0 in (44).

3◦. The PDE (41) has the solution

U = x2 φ(ξ), ξ = y + γ ln x, (45)

where γ is a free parameter, and the function φ = φ(ξ) satisfies the autonomous second-
order ODE

(γφ′
ξ − 2φ)φ′′

ξξ + 4(φ′
ξ)

2 + 6φ = 0.
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Remark 9. Solution (45) is invariant under a one-parameter group of transformations which is
specified by the operator

Y = x
∂

∂x
− γ

∂

∂y
+ 2U

∂

∂U
,

admitted by Equation (41).

4◦. Equation (41) has a generalized separable solution that is quadratic with respect
to any independent variable, e.g.,

U = x2ϕ(y) + xψ(y) + χ(y), (46)

where the functions ϕ = ϕ(y), ψ = ψ(y), and χ = χ(y) are described by the following system
of ODEs:

ϕϕ′′
yy − 2(ϕ′

y)
2 − 3ϕ = 0,

ϕψ′′
yy − 2ϕ′

yψ′
y − 3ψ = 0,

2ϕχ′′
yy − (ψ′

y)
2 − 6χ = 0.

(47)

The non-invariant solution (46) is a generalization of solution (42). It can be seen that
the first equation of system (47) coincides with the nonlinear ODE (43), and the second and
third equations are linear with respect to the sought functions.

It is not difficult to prove the following proposition.

Proposition 5. Let ϕ = ϕ(y) be a solution of the first Equation (47). Then, the corresponding
general solution of the second Equation (47) is given by the formula

ψ = C1ϕ + C2yϕ, (48)

where C1 and C2 are arbitrary constants.

Note that system (47) admits a particular solution:

ϕ = − 1
2 y2, ψ = 0,

χ =
√

y
[
A1 cos(

√
23
2 ln y) + A2 sin

(√23
2 ln y)

]
,

(49)

where A1 and A2 are arbitrary constants.

Remark 10. Using Formula (48), it is possible to obtain a more complex solution of system (46)
than (49) with the same function ϕ = − 1

2 y2, namely the following:

ϕ = − 1
2 y2,

ψ = C1y2 + C3y3,

χ =
√

y
[
C3 cos(

√
23
2 ln y) + C4 sin

(√23
2 ln y)

]
− 1

2 y2(C2y + C1),

where C1, . . ., C4 are arbitrary constants.

5◦. Equation (4) admits the degenerate multiplicative separable solution

u = (At + B)W(x, y),

where A and B are arbitrary constants, and the function W = W(x, y) is any solution of the
homogeneous Monge–Ampère Equation (1) with f (x, y) ≡ 0.
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6. Reductions with Additive and Generalized Separation of Variables
Leading to Two-Dimensional Monge–Ampère Equations. Exact Solutions

1◦. The Monge–Ampère-type PDE (4) has additive separable solutions

u = − 1
2 At2 + Bt + w(x, y), (50)

where A and B are arbitrary constants, and the function w satisfies the stationary nonho-
mogeneous Monge–Ampère equation with a constant right-hand side:

wxxwyy − w2
xy = −A. (51)

The qualitative features of the PDE (51) depend on the sign of the constant A, since for
A > 0, this PDE is a hyperbolic equation, and for A < 0, it is an elliptic equation [1,2,16].

2◦. It is easy to verify that Equation (4) admits an additive separable solution of the
form (50), which is expressed in elementary functions

u = C1x2 + C2xy + C3y2 + C4x + C5y + 1
2 (4C1C3 − C2

2)t
2 + C6t + C7,

where C1, . . ., C7 are arbitrary constants.
3◦. Using the results of [16], one can obtain, for example, the following exact non-

invariant solutions of the form (50) of Equation (4):

u = −1
2

A2t2 + Bt ± A
C2

x(C1x + C2y) + Φ(C1x + C2y + C3) + C4x + C5y + C6,

u = −1
2

At2 + Bt +
1

x + C1

(
C2y2 + C3y +

C2
3

4C2

)
− A

12C2
(x3 + 3C1x2) + C4x + C5y + C6,

u = −1
2

A2t2 + Bt ± 2A
3C1C2

(C1x − C2
2y2 + C3)

3/2 + C4x + C5y + C6,

where A, B, C1, . . ., C6 are arbitrary constants, and Φ = Φ(ζ) is an arbitrary function.

Remark 11. For A > 0, the general solution of the nonhomogeneous Monge–Ampère PDE (51)
can be represented in parametric form [16,17]:

x =
α − β

2
√

A
, y =

Ψ′(β)− Φ′(α)

2
√

A
,

w =
(α + β)[Ψ′(β)− Φ′(α)] + 2Φ(α)− 2Ψ(β)

4
√

A
,

where α and β are arbitrary constants, and Φ = Φ(α) and Ψ = Ψ(β) are arbitrary functions.
For A < 0, the nonlinear PDE (51) is reduced by the Euler contact transformation to a second-

order linear PDE with constant coefficients [24], which is reduced to the Laplace equation by scaling
new independent variables.

4◦. Equation (4) admits a more complex, than (50), generalized separable solution:

u = − 1
2 (a1x + b1y + c1)t2 + (a2x + b2y + c2)t + w(x, y),

where a1, a2, b1, b2, c1, c2 are arbitrary constants, and the function w satisfies the stationary
Monge–Ampère PDE with a nonhomogeneous right-hand side,

wxxwyy − w2
xy = −a1x − b1y − c1. (52)
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For b1 = c1 = 0, the PDE (52) has generalized separable solutions:

w = ± 2
3a1

y(a1x)3/2 + C1y + Φ(x),

w = C1y2 + C2xy + C3y − a1

12C1
x3 +

C2
2

4C1
x2 + C4x + C5,

w = C1
y2

x
+ C2y − a1

24C1
x4 + C3x + C4,

where Φ(x) is an arbitrary function, and C1, . . . , C5 are arbitrary constants.

7. Reductions with Generalized Separation of Variables Leading to
Linear PDEs

1◦. The Monge–Ampère-type PDE (4) admits the generalized separable solution

u = 1
2 ay2 + bxy + 1

2 cx2 + dy + 1
2 (ac − b2)t2 + kyt + U(x, t), (53)

where a, b, c, d, and k are arbitrary constants, and the new desired function U = U(x, t)
satisfies a constant-coefficient linear PDE:

Utt = aUxx. (54)

For a > 0, the PDE (54) is the classical linear wave equation, the general solution of
which has the form

U = Φ
(
x −

√
a t
)
+ Ψ

(
x +

√
a t
)
, (55)

where Φ(z1) and Ψ(z2) are arbitrary functions.
For a < 0, the PDE (54) is an elliptic equation that reduces to the Laplace equation by

substituting z =
√
−a t (for solutions to this linear PDE, see, for example, [119,120]).

Below are several simple solutions to Equation (54) for a = −1, which are expressed
in elementary functions:

U = A(x3 − 3xt2) + B(3x2t − t3),

U =
Ax + Bt
x2 + t2 + C,

U = (Aeµx + Be−µx)(C cos µt + D sin µt),

U = (A cos µx + B sin µx)(Ceµt + De−µt),

U = A ln
[
(x − x0)

2 + (t − t0)
2]+ B,

where A, B, C, D, x0, y0, and µ are arbitrary constants.

Remark 12. Setting A = 0, B = 1/6 in the first solution for U, we obtain solution (6).

2◦. Equation (4) also admits another generalized separable solution

u = 1
2 (at + b)y2 + (ct + d)y + U(x, t), (56)

where a, b, c, and d are arbitrary constants, and the function U = U(x, t) satisfies a linear
PDE with a variable coefficient:

Utt = (at + b)Uxx. (57)
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The PDE (57) is an equation of mixed type, which is hyperbolic for at + b > 0, and elliptic
for at + b < 0 (i.e., when passing t through the point t0 = −b/a, the type of the reduced
PDE changes).

Below are some exact solutions of the Tricomi equation [119]:

Utt + tUxx = 0,

which describes near-sonic flows of gas and is a special case of the PDE (57) for a = −1 and
b = 0.

1. Simple exact solutions:

U = A(3x2 − t3),

U = B(x3 − xt3),

U = C(6tx2 − t4),

where A, B, and C are arbitrary constants.

2. Generalized separable solutions with even powers of x [119]:

U =
n

∑
k=0

fk(t)x2k,

where the functions fk = fk(t) are defined by the recurrence relations

fn(t) = Ant + Bn, fk−1(t) = Akt + Bk − 2k(2k − 1)
∫ t

0
(t − s)s fk(s) ds,

where Ak, Bk are arbitrary constants (k = n, . . . , 1).

3. Generalized separable solutions with odd powers of x [119]:

U =
n

∑
k=0

gk(t)x2k+1,

where the functions gk = gk(t) are defined by the recurrence relations

gn(t) = Ant + Bn, gk−1(t) = Akt + Bk − 2k(2k + 1)
∫ t

0
(t − s)sgk(s) ds,

where Ak, Bk are arbitrary constants (k = n, . . . , 1).

4. Multiplicative separable solutions:

U =
√

t
[
C1 J1/3(2λt3/2) + C2Y1/3(2λt3/2)

][
C3 sinh(3λx) + C4 cosh(3λx)

]
,

U =
√

t
[
C1 I1/3(2λt3/2) + C2K1/3(2λt3/2)

][
C3 sin(3λx) + C4 cos(3λx)

]
,

where C1, C2, C3, C4, and λ are arbitrary constants, J1/3(z) and Y1/3(z) are Bessel functions,
and I1/3(z) and K1/3(z) are modified Bessel functions.

8. Polynomial Solutions in One Spatial Variable
1◦. The Monge–Ampère-type PDE (4) has generalized separable solutions that are

quadratic in any spatial variable (x and y can be interchanged):

u = y2 f (x, t) + yg(x, t) + h(x, t), (58)
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where the functions f = f (x, t), g = g(x, t), and h = h(x, t) are described by the following
PDE system:

ftt − 2 f fxx + 4 f 2
x = 0,

gtt − 2 f gxx + 4 fxgx = 0,

htt − 2 f hxx + g2
x = 0.

(59)

Remark 13. Solution (53), leading to the linear PDE (54), is a special case of solution (58) with

f (x, t) = 1
2 a, g(x, t) = bx + d + kt, h(x, t) = 1

2 cx2 + 1
2 (ac − b2)t2 + U(x, t).

2◦. The last two PDEs of the system (59) have a simple solution g = C2t + C3,
h = C4t + C5, where C2, C3, C4, and C5 are arbitrary constants. It is not difficult to
prove a more general proposition.

Proposition 6. Let f = f (x, t) be any solution to the first PDE (59). Then, the last two PDEs of
system (59) admit a particular solution:

g = C1 f + C2t + C3, h = 1
4 C2

1 f + C4t + C5, (60)

where C1, . . ., C5 are arbitrary constants.

3◦. The simplest solution to the first PDE of system (59) is

f = 1
2 a, (61)

where a is an arbitrary constant. In this case, for a > 0, the last two PDEs of system (59) are
linear wave equations

gtt − agxx = 0,

htt − ahxx + g2
x = 0.

(62)

The first is homogeneous, and the second is nonhomogeneous. To obtain a solution to
system (62), we move on to new characteristic variables

ξ = x −
√

a t, η = x +
√

a t.

As a result, we receive
gξη = 0,

4ahξη − (gξ + gη)
2 = 0.

Sequentially integrating these PDEs, we find the general solution of system (62):

g = φ1(ξ) + ψ1(η), ξ = x −
√

a t, η = x +
√

a t,

h = φ2(ξ) + ψ2(η) +
1
2a

φ1(ξ)ψ1(η) +
1
4a

η
∫ (

dφ1

dξ

)2

dξ +
1
4a

ξ
∫ (

dψ1

dη

)2

dη,
(63)

where φ1 = φ1(ξ), ψ1 = ψ1(η), φ2 = φ2(ξ), ψ2 = ψ2(η) are arbitrary functions.
4◦. The first PDE (59) has a simple stationary solution:

f =
1

C1x + C2
,
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as well as a more complex nonstationary four-parameter solution with generalized separa-
tion of variables

f = − (x + C1)
2

2(t + C2)2 + (t + C2)
1/2[C3 cos

(√7
2 ln(t + C2)

)
+ C4 sin

(√7
2 ln(t + C2)

)]
,

where C1, C2, C3, C4 are arbitrary constants.
5◦. Using the substitution f = 1/θ, we transform the first equation of system (59) to

the form
θθtt − 2θxx − 2θ2

t = 0.

This nonlinear PDE admits a generalized separable solution, linear in t, of the form
θ = φ(x)t + ψ(x). Therefore, the first PDE (59) has a solution

f =
1

φ(x)t + ψ(x)
, (64)

where the functions φ = φ(x) and ψ = ψ(x) are described by a simple ODE system,

φ′′
xx = 0, ψ′′

xx = −φ2. (65)

The general solution of this system is expressed in elementary functions:

φ = C1x + C2, ψ = − 1
12C2

1
(C1x + C2)

4 + C3x + C4,

where C1, C2, C3, C4 are arbitrary constants.
7◦. The PDE system (59) admits a traveling wave solution of the form

f = f (ξ), g = g(ξ), h = h(ξ), ξ = αx − βt,

where α and β are arbitrary constants.
8◦. The PDE (4) has generalized separable solutions which are fourth-degree polyno-

mials in any spatial variable (x and y can be interchanged):

u = y4F(x, t) + y2G(x, t) + H(x, t), (66)

where the functions F = F(x, t), G = G(x, t), and H = H(x, t) satisfy the following
overdetermined system of PDEs:

3FFxx − 4F2
x = 0,

Ftt − 2GFxx − 12FGxx + 16FxGx = 0,

Gtt − 2GGxx − 12FHxx + 4G2
x = 0,

Htt − 2GHxx = 0.

(67)

Remark 14. The previously obtained simple solutions (31), (35), and (36) are special cases of a
solution of the form (66).

The first PDE of system (67) can be satisfied if we take F = f0(t). Then, from the other
three PDEs of this system, we sequentially obtain

G = g2x2 + g1x + g0,

H = h4x4 + h3x3 + h2x2 + h1x + h0,
(68)
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where the functions f0 = f0(t), g0 = g0(t), g1 = g1(t), and hj = hj(t) are described by the
ODE system

24 f0g2 − f ′′0 = 0,

g′′2 + 12g2
2 − 144 f0h4 = 0,

g′′1 + 12g2g1 − 72 f0h3 = 0,

g′′2 − 4g2
2 + 4g2

1 − 24 f0h2 = 0,

h′′4 − 24g2h4 = 0,

h′′3 − 12g2h3 − 24g1h4 = 0,

h′′2 − 4g2h2 − 12g1h3 − 24g2h4 = 0,

h′′1 − 4g1h2 − 12g2h3 = 0,

h′′0 − 4g2h2 = 0.

9◦. If in Formulas (66) and (68), we remove the odd components in the variable x,
setting g1 = h3 = h1 = 0, then, we arrive at the solution of the form

u = f0y4 + h4x4 + g2x2y2 + g0y2 + h2x2 + h0, (69)

whose time-dependent functional coefficients satisfy the second-order ODE system

f ′′0 − 24 f0g2 = 0,

h′′4 − 24g2h4 = 0,

g′′2 + 12g2
2 − 144 f0h4 = 0,

g′′0 − 4g0g2 − 24 f0h2 = 0,

h′′2 − 4g2h2 − 24g0h4 = 0,

h′′0 − 4g0h2 = 0.

(70)

The first three ODEs of system (70) form an independent subsystem. The last
three ODEs of this system have the trivial particular solution g0 = h2 = h0 = 0.

The ODE system (70) admits the exact solution

f0(t) = C1t + C2, h4 = g2 = 0, h2(t) = C3t + C4,

g0(t) = 2C1C3t4 + 4(C1C4 + C2C3)t3 + 12C2C4t2 + C5t + C6,

h0(t) = 4
21 C1C2

3t7 + 4
5 C3(C1C4 +

2
3 C2C3)t6 + 4

5 C4(C1C4 + 4C2C3)t5

+ (4C2C2
4 +

1
3 C3C5)t4 + 2

3 (C3C6 + C4C5)t3 + 2C4C6t2 + C7t + C8,

where C1, . . ., C8 are arbitrary constants.
It can be shown that the ODE system (70) also has solutions proportional to (t + C)−2,

f0(t) =
A1

(t + C)2 , g0(t) =
A2

(t + C)2 , g2(t) =
A3

(t + C)2 ,

h0(t) =
A4

(t + C)2 , h2(t) =
A5

(t + C)2 , h4(t) =
A6

(t + C)2 ,



Mathematics 2025, 13, 3522 21 of 39

where C is an arbitrary constant, and the factors Aj (j = 1, . . . , 6) satisfy the system of
algebraic equations

A1(4A3 − 1) = 0,

A6(4A3 − 1) = 0,

24A1 A6 − A3(2A3 + 1) = 0,

A2(2A3 − 3) + 12A1 A5 = 0,

A5(2A3 − 3) + 12A2 A6 = 0,

2A2 A5 − 3A4 = 0.

In particular, system (70) admits the following solution:

f0 =
A

8(t + C)2 , h4 =
1

8A(t + C)2 , g2 =
1

4(t + C)2 ,

g0 = h2 = h0 = 0,

where A and C are arbitrary constants (A ̸= 0).
10◦. One can also look for more complex polynomial solutions in a spatial variable of

the form

u =
4

∑
n=0

Fn(x, t)yn, (71)

which generalize (66). In particular, Equation (4) has exact solutions of the form (71) with

Fn(x, t) =
n

∑
k=0

Ank fnk(t)xk,

where the functions fnk(t) are described by a corresponding autonomous system of second-
order ODEs.

9. Reductions in Traveling Wave Variables to Two-Dimensional
Mixed-Type Equations. Linearizable PDEs

1◦. The Monge–Ampère-type PDE (4) admits complex generalized separable solutions
of the combined type

u = C1x2 + C2xy + C3y2 + C4t2 + C5xt + C6yt + C7x + C8y + C9t + U(ξ, η),

ξ = a1x + b1y + λ1t, η = a2x + b2y + λ2t,
(72)

where Ci, aj, bj, λj (i = 1, . . . , 9; j = 1, 2) are arbitrary constants, and ξ and η are new
traveling wave-type variables, and the new desired function U = U(ξ, η) satisfies a two-
dimensional Monge–Ampère-type equation:

(a1b2 − a2b1)
2(UξξUηη − U2

ξη) + [2(a2
1C3 + b2

1C1 − a1b1C2)− λ2
1]Uξξ

+ 2[2a1a2C3 + 2b1b2C1 − (a1b2 + a2b1)C2 − λ1λ2]Uξη +

+ [2(a2
2C3 + b2

2C1 − a2b2C2)− λ2
2]Uηη + 4C1C3 − C2

2 − 2C4 = 0.

(73)

2◦. The PDE (73) has exact solutions that are quadratic in any new independent
variable of the form

U1 = f1(ξ)η
2 + g1(ξ)η + h1(ξ),

U2 = f2(η)ξ
2 + g2(η)ξ + h2(η),

where the functions fi, gi, hi (i = 1, 2) are described by the corresponding ODE systems,
which are omitted here.
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3◦. Equation (73) becomes a second-order linear PDE with constant coefficients if the
condition connecting the free parameters is satisfied as follows: a1b2 − b1a2 = 0.

Let us consider, in more detail, the special case (72) and (73), putting

a1 = a, b1 = b, λ1 = λ, a2 = b2 = 0, λ2 = 1, η = t,

which leads to a solution of the form

u = C1x2 + C2xy + C3y2 + C4t2 + C5xt + C6yt + C7x + C8y + C9t + U(ξ, t),

ξ = ax + by + λt,
(74)

where Ci (i = 1, . . . , 6), a, b, and λ are arbitrary constants. In this case, the function
U = U(ξ, t) satisfies the following second-order linear PDE:

Utt + 2λUξt + [λ2 − 2(a2C3 + b2C1 − abC2)]Uξξ = 4C1C3 − C2
2 − 2C4. (75)

The type of this equation may vary depending on the values of the free parameters. Namely,
the PDE (75) is (see, for example, [119,120]) as follows:

parabolic if ∆ = a2C3 + b2C1 − abC2 = 0,

hyperbolic if ∆ = a2C3 + b2C1 − abC2 > 0,

elliptic if ∆ = a2C3 + b2C1 − abC2 < 0.

Remark 15. The general solution of the hyperbolic Equation (75) (for ∆ > 0) is given by the
formula

U = F1(ξ − σ1t) + F2(ξ − σ2t) +
4C1C3 − C2

2 − 2C4

2λ
ξt,

σ1,2 = λ ±
√

2(a2C3 + b2C1 − abC2),

where F1(z1) and F2(z2) are arbitrary functions.

Remark 16. The highly nonlinear PDE (4) under consideration belongs to the class of partially
linearizable PDEs [36] (or, according to [121], to the class of conditionally integrable PDEs), since
it admits solutions that are described by linear PDEs (54) and (75).

4◦. Let us equate to zero the constant factors at the second derivatives Uξξ , Uξη ,
and Uηη , which enter linearly into the PDE (73):

2(a2
1C3 + b2

1C1 − a1b1C2)− λ2
1 = 0,

2(a2
2C3 + b2

2C1 − a2b2C2)− λ2
2 = 0,

(2a1a2C3 + 2b1b2C1 − (a1b2 + b1a2)C2 − λ1λ2 = 0,

(76)

and then divide the remaining terms of the equation by (a1b2 − b1a2)
2. As a result, we

obtain an nonhomogeneous stationary Monge–Ampère equation of the form (51), which,
as was indicated earlier in Remark 11, can be linearized.

Relations (76) can be considered as a linear nonhomogeneous system of three algebraic
equations with respect to the coefficients C1, C2, and C3.
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10. Reductions and Exact Solutions Based on a New Variable, Parabolic in
Spatial Coordinates

1◦. In variables, one of which is time, and the other is specified by a parabolic function
in spatial variables, we can observe the following:

u = U(z, t), z = y + ax2, (77)

where a ̸= 0 is a free parameter, and the Monge–Ampère-type PDE (4) is reduced to the
Guderley type equation

Utt = 2aUzUzz, (78)

which is used to describe transonic gas flows [16].
Some exact solutions of the reduced nonlinear PDE (78) are described below.
2◦. The two-dimensional PDE (78) has additive separable solutions

U = ±C1(z + C2)
3/2 + 9

8 aC2
1t2 + C3t + C4,

where C1, C2, C3, and C4 are arbitrary constants. In this case, we receive

u = ±C1(y + ax2 + C2)
3/2 + 9

8 aC2
1t2 + C3t + C4.

3◦. The PDE (78) admits the simple multiplicative separable solution

U =
(z + C2)

3

6a(t + C1)2 ,

where C1 and C2 are arbitrary constants. In this case, we have

u =
(y + ax2 + C2)

3

6a(t + C1)2 .

4◦. The PDE (78) has an exact solution of the form

U = C1t2 + C2t + W(ξ), ξ = z + λt ≡ y + ax2 + λt,

where C1 (C1 ̸= 0)), C2, and λ are arbitrary constants, and the function W = W(ξ) satisfies
the integrable ODE

(2aW ′
ξ − λ2)W ′′

ξξ − 2C1 = 0,

the general solution of which can be written as follows:

W = ± [8aC1(ξ + C3) + λ4]3/2

24a2C1
+

λ2ξ

2a
+ C4,

where C3, C4 are arbitrary constants.
5◦. The PDE (78) has the self-similar solution

U = t−3β−2V(ζ), ζ = ztβ, (79)

where β is an arbitrary constant, and the function V = V(ξ) satisfies the ODE

(2aV′
ζ − β2ζ2)V′′

ζζ + 5β(β + 1)ζV′
ζ − 3(β + 1)(3β + 2)V = 0. (80)
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Solution (79) is invariant under a one-parameter group of transformations which is
specified by the operator

Y = βz
∂

∂z
− t

∂

∂t
+ (3β + 2)U

∂

∂U
,

admitted by the PDE (78).
For β = −1, ODE (80) has a simple one-parameter particular solution

V =
1
6a

ζ3 + C.

6◦. The PDE (78) admits the invariant solution

U = t−2 f (η), η = z + λ ln t, (81)

where λ is an arbitrary constant, and the function f = f (η) satisfies the ODE

(2a f ′η − λ2) f ′′ηη + 5λ f ′η − 6 f = 0.

Solution (81) is invariant under a one-parameter group of transformations which is
specified by the operator

Y = λ
∂

∂z
− t

∂

∂t
+ 2U

∂

∂U
,

admitted by the PDE (78).
7◦. The PDE (78) also admits another invariant solution

U = e−3βtg(τ), τ = eβtz, (82)

where β is an arbitrary constant, and the function g = g(τ) satisfies the ODE

(2ag′τ − β2τ2)g′′ττ + 5β2τg′τ − 9β2g = 0.

Solution (82) is invariant under a one-parameter group of transformations which is
specified by the operator

Y = βz
∂

∂z
− ∂

∂t
+ 3βU

∂

∂U
,

admitted by the PDE (78).
8◦. The PDE (78) has a generalized separable solution in the form of a cubic polynomial

in z:
U = ψ1(t) + ψ2(t)z + ψ3(t)z2 + ψ4(t)z3, (83)

where the functions ψn(t) (n = 1, . . . , 4) are described by the second-order nonlinear
ODE system

ψ′′
1 − 4aψ2ψ3 = 0,

ψ′′
2 − 4a(3ψ2ψ4 + 2ψ2

3) = 0,

ψ′′
3 − 36aψ3ψ4 = 0,

ψ′′
4 − 36aψ2

4 = 0.

(84)

This system is integrated backwards, starting with the last equation, the general solution of
which can be expressed in an implicit form.

Using a simple solution of the last ODE (84):

ψ4 =
1
6a

(t + C1)
−2,
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we obtain the following seven-parameter exact solution of the resulting system (84):

ψ1 = 4
3 a2C3

2(t + C1)
−2 + 2aC2C4(t + C1)

−1 + 4
1053 a2C3

3(t + C1)
13 +

+ 8
27 a2C2C2

3(t + C1)
8 + 2

21 aC3C5(t + C1)
7 + 1

3 aC3C4(t + C1)
4 +

+ 4a2C2
2C3(t + C1)

3 + 2aC2C5(t + C1)
2 + C6(t + C1) + C7,

ψ2 = 2aC2
2(t + C1)

−2 + C4(t + C1)
−1 + 4

27 aC2
3(t + C1)

8 + 4aC2C3(t + C1)
3 + C5(t + C1)

2,

ψ3 = C2(t + C1)
−2 + C3(t + C1)

3,

ψ4 =
1
6a

(t + C1)
−2,

where C1, . . ., C7 are arbitrary constants.
9◦. The PDE (78) has a generalized separable solution of a more exotic form

U = ϑ1(t) + ϑ2(t)z3/2 + ϑ3(t)z3, (85)

where the functions ϑn(t) (n = 1, 2, 3) are described by the second-order nonlinear
ODE system

ϑ′′
1 − 9

4 aϑ2
2 = 0,

ϑ′′
2 − 45

2 aϑ2ϑ3 = 0,

ϑ′′
3 − 36aϑ2

3 = 0.

(86)

This system is integrated backwards, starting with the last equation, which coincides with
the last ODE of system (84).

Using a simple solution of the last ODE of system (86),

ϑ3 =
1
6a

(t + C1)
−2,

we obtain the following five-parameter exact solution of this system:

ϑ1 = 9
8 aC2

3(t + C1)
−1 + 3

56 aC2
3(t + C1)

7 + 3
4 C2C3(t + C1)

3 + C4t + C5,

ϑ2 = C2(t + C1)
−3/2 + C3(t + C1)

5/2,

ϑ3 =
1
6a

(t + C1)
−2,

where C1, . . ., C5 are arbitrary constants.
10◦. The nonlinear PDE (78) can be linearized using the Legendre transformation,

which is defined by the formulas:

t = WT , z = WZ, U = TWT + ZWZ − W (direct transformation);

T = Ut, Z = Uz, W = tUt + zUz − U (inverse transformation),
(87)

where U = U(t, z) and W = W(T, Z), and the second derivatives are calculated using
the formulas

Utt = JWZZ, Utz = Uzt = −JWTZ, Uzz = JWTT ,

J = UttUzz − U2
tz, 1/J = WTTWZZ − W2

TZ.

As a result of the Legendre transformation, the nonlinear PDE (78) is reduced to the
second-order linear PDE:

WZZ = 2aZWTT . (88)



Mathematics 2025, 13, 3522 26 of 39

If W = W(T, Z) is a solution of Equation (88), then Formula (87) determines the
corresponding solution in parametric form of Equation (78).

Note that when using the Legendre transform, some solutions may be lost if J ≡ 0.

11. Reductions and Exact Solutions Based on a New Variable, Quadratic
in Two Spatial Coordinates

1◦. In variables, one of which is time and the other is quadratic with respect to both
spatial variables, we can observe the following:

u = U(z, t), z = ax2 + bxy + cy2 + kx + sy, (89)

where a, b, c, k, and s are free parameters, and the Monge–Ampère-type PDE (4) is reduced
to the two-dimensional PDE

Utt − 2(Az + B)UzUzz − AU2
z = 0, (90)

where A = 4ac − b2, B = as2 + ck2 − bks.
For A = 0 (this corresponds to the degenerate case), we obtain Equation (78), which is

discussed in detail in Section 10. Further, we will assume that A = 4ac − b2 ̸= 0.
2◦. The transformaation

t = t, z =

√
|A|
2

ρ2 − B
A

, U = sign(A)W(ρ, t),

leads to the PDE (90) to the simpler equation

Wtt − ρ−1WρWρρ = 0. (91)

Some exact solutions of the nonlinear PDE (91) are described below.
3◦. The PDE (91) admits an additive separable solution of the form

W = 1
2 C1t2 + C2t ±

∫ √
C1ρ2 + C3 dρ + C4,

where C1, . . ., C4 are arbitrary constants, and∫ √
C1ρ2 + C3 dρ =

=



1
2

ρ
√

C1ρ2 + C3 +
C3

2
√

C1
ln

(√
C1 ρ +

√
C1ρ2 + C3

)
, if C1 > 0;

1
2

ρ
√

C1ρ2 + C3 +
C3

2
√
−C1

arctan
√
−C1 ρ√

C1ρ2 + C3
, if C1 < 0;

√
C3ρ, if C1 = 0, C3 ⩾ 0.

4◦. The PDE (91) admits solutions in the form of a product of functions of different
arguments

W = t−2 f (ρ), (92)

where the function f = f (ρ) satisfies the ODE

f ′ρ f ′′ρρ − 6ρ f = 0,

which admits the particular solution

f = 1
8 ρ4.
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Returning to the original variables, we arrive at a multiparameter solution in elementary
functions of the PDE (4):

u =
1

2(4ac − b2)t2

(
ax2 + bxy + cy2 + kx + sy +

as2 + ck2 − bks
4ac − b2

)2

.

Solution (92) is invariant under a one-parameter group of transformations which is
specified by the operator

Y = t
∂

∂t
− 2W

∂

∂W
,

admitted by the PDE (91).
5◦. The PDE (91) admits the self-similar solution

W = t−4β−2F(z), z = tβρ, (93)

where β is an arbitrary constant, and the function F = F(z) satisfies the generalized
homogeneous ODE

(F′
z − β2z3)F′′

zz + β(7β + 5)z2F′
z − 2(2β + 1)(4β + 3)zF = 0,

whose order can be lowered by one [122].
Solution (93) is invariant under a one-parameter group of transformations which is

specified by the operator

Y = β
∂

∂ρ
− t

∂

∂t
+ 2(2β + 1)W

∂

∂W
,

admitted by the PDE (91).
6◦. The PDE (91) admits the invariant solution

W = e−4λtΦ(ζ), ζ = ρeλt, (94)

where λ is an arbitrary constant, and the function Φ = Φ(ζ) satisfies the ODE

ζ−1Φ′
ζ Φ′′

ζζ = λ2(16Φ − 7ζΦ′
ζ + ζ2Φ′′

ζζ),

whose order can be lowered by one [122].
Solution (94) is invariant under a one-parameter group of transformations which is

specified by the operator

Y = λρ
∂

∂ρ
− ∂

∂t
+ 4λW

∂

∂W
,

admitted by the PDE (91).
7◦. The PDE (91) also admits an exact polynomial solution of the form

W = θ1(t) + θ2(t)ρ2 + θ3(t)ρ4,

where the functions θn(t) (n = 1, 2, 3) satisfy the second-order nonlinear system of PDEs

θ′′1 − 4θ2
2 = 0,

θ′′2 − 32θ2θ3 = 0,

θ′′3 − 48θ2
3 = 0.

(95)
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The ODE system (95) is integrated in reverse order, starting with the last equation, which
coincides with the last equations of systems (84) and (86) for a = 4/3.

Using a simple solution of the last ODE of system (95),

θ3 = 1
8 (t + C1)

−2,

we obtain the following five-parameter exact solution of this system:

θ1 = 1
26 (t + C1)

3[−(5
√

17 − 23)C2
2(t + C1)

√
17 + (5

√
17 + 23)C2

3(t + C1)
−
√

17
]
+

+ 4
3 C2C3(t + C1)

3 + C4t + C5,

θ2 =
√

t + C1

[
C2(t + C1)

√
17/2 + C3(t + C1)

−
√

17/2
]
,

θ3 = 1
8 (t + C1)

−2,

where C1, . . ., C5 are arbitrary constants.

12. Reductions and Exact Solutions in Polar and Generalized
Polar Coordinates

1◦. At the point (x0, y0), where x0 and y0 are arbitrary constants, we introduce polar
coordinates r, φ using the formulas

x = x0 + r cos φ, y = y0 + r sin φ.

As a result, the original PDE (4) is transformed to the form

utt = r−2urr(uφφ + rur) + [(r−1uφ)r]
2. (96)

2◦. The Lie group symmetry analysis of the resulting PDE (96) (see also Section 2)
shows that the transformation

r̄ = ar, φ̄ = φ + b, t̄ = pt + q,

ū =
a4

p2 u + t(c1r cos φ + c2r sin φ + c3) + c4r cos φ + c5r sin φ + c6,
(97)

where a, b, c1, c2, c3, c4, c5, c6, p, and q are arbitrary constants, leads the PDE (96) to an
equation of exactly the same form.

The invariant ten-parameter transformation (97) allows, starting from simpler solu-
tions of the PDE (96), us to obtain its more complex exact solutions. Namely, if u = F(r, φ, t)
is a solution to the PDE (96), then the function

u =
p2

a4

[
F(ar, φ + b, pt + q)− t(c1r cos φ + c2r sin φ + c3)− c4r cos φ − c5r sin φ − c6

]
is also a solution of this PDE.

3◦. The PDE (96) has two-dimensional radially symmetric solutions, which are de-
scribed by the PDE

utt − r−1ururr = 0,

which, up to obvious renotations, coincides with Equation (91). Therefore, it allows five
exact solutions, described earlier in Items 3◦–7◦ from Section 11.

4◦. The PDE (96), using new mixed-type variables

u = t−4α−2U(ξ, η), ξ = rtα, η = φ + β ln t, (98)
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where α and β are arbitrary constants, is reduced to a two-dimensional Monge–Ampère-
type PDE, which is not presented here.

Solution (98) is invariant under a one-parameter group of transformations which is
specified by the operator

Y = αr
∂

∂r
− t

∂

∂t
+ β

∂

∂φ
+ (4α + 2)u

∂

∂u
,

admitted by the PDE (96).
The values of α = β = 0 in (98) correspond to a multiplicative separable solution of

the form u = t−2U(r, φ).
For U = U(ξ) in (98), we have a self-similar solution.
5◦. The PDE (96), using other mixed-type variables

u = e−4γtU(ξ, η), ξ = eγtr, η = φ − λt, (99)

where γ and λ are arbitrary constants, also reduces to a two-dimensional Monge–Ampère-
type PDE, which is not written here.

Solution (99) is invariant under a one-parameter group of transformations which is
specified by the operator

Y = γr
∂

∂r
− ∂

∂t
+ λ

∂

∂φ
+ 4γu

∂

∂u
,

admitted by the PDE (96).
6◦. The PDE (96) also has multiplicative separable solutions of the form

u = r4U(φ, t), (100)

where the new desired function U = U(φ, t) satisfies the two-dimensional PDE

Utt − 12UUφφ + 9U2
φ − 48U2 = 0. (101)

Solution (100) is invariant under a one-parameter group of transformations which is
specified by the operator

Y = r
∂

∂r
+ 4u

∂

∂u
,

admitted by the PDE (96).
7◦. The PDE (101) has a traveling wave solution of the form

U = V(η), η = φ − λt,

where λ is an arbitrary constant, and the function V = V(η) satisfies the autonomous ODE

(12V − λ2)V′′
ηη − 9(V′

η)
2 + 48V2 = 0.

The substitution Θ(V) = (V′
η)

2 reduces this equation to a first-order linear ODE.
8◦. The PDE (101) also has a multiplicative separable solution of the form

U = (t + C1)
−2V(φ),

where C1 is an arbitrary constant, and the function V = V(φ) satisfies the autonomous ODE

4VV′′
φφ − 3(V′

φ)
2 + 16V2 − 2V = 0. (102)
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The substitution Z(V) = (V′
φ)

2 reduces (102) to the linear first-order ODE

2VZ′
V − 3Z + 16V2 − 2V = 0,

the general solution of which is written as follows:

Z = C2V3/2 − 16V2 − 2V,

where C2 is an arbitrary constant. Integrating further, we obtain the general solution to the
ODE (102) in implicit form∫ (

C2V3/2 − 16V2 − 2V
)−1/2dV = ±φ + C3,

where C3 is an arbitrary constant.
9◦. The PDE (101) admits the generalized separable solutions of the form

U = F(t) + H(t)[C1 cos(4φ) + C2 sin(4φ)], (103)

where C1 and C2 are arbitrary constants, and the functions F = F(t) and H = H(t) are
described by the ODE system

F′′
tt = 48F2 − 144(C2

1 + C2
2)H2,

H′′
tt = −96FH.

(104)

System (104) allows for particular solutions:

F = − 1
16(t + C3)2 , H = ± 1

16
√

C2
1 + C2

2 (t + C3)2
.

Remark 17. To construct exact solutions (103), we used invariant subspaces of the nonlinear
differential operator F[v] = 12vvφφ − 9v2

φ + 48v2, included in the right side of the PDE (101) (for
details see [60,73]).

10◦. At the point (x0, y0), we introduce the generalized polar coordinates r, φ accord-
ing to the formulas

x = x0 + ar cos φ, y = y0 + br sin φ, (105)

where x0, y0 are arbitrary constants, and a and b are free positive parameters. As a result,
the original PDE (4) takes the form

utt = (ab)−2{r−2urr(uφφ + rur)− [(r−1uφ)r]
2}. (106)

Using a simple substitution u = (ab)2ū (or t = ab t̄), this equation is reduced to
Equation (96), the exact solutions of which are described in Section 12.

13. Reductions and Exact Solutions in Special Lorentz Coordinates
1◦. In special Lorentz coordinates ζ, ψ, which are introduced by the formulas

x = x0 + aζ cosh ψ, y = y0 + bζ sinh ψ, (107)

where x0 and y0 are arbitrary constants, a and b are any non-zero constants, the PDE (4)
takes the form

utt = (ab)−2{ζ−2uζζ(uψψ − ζuζ)− [(ζ−1uψ)ζ ]
2}. (108)



Mathematics 2025, 13, 3522 31 of 39

Remark 18. Special Lorentz coordinates (107) and Equation (108) can be obtained from generalized
polar coordinates (105) and Equation (106) if we set in them as r = ζ, φ = iψ and rename b ⇒ −ib,
where i2 = −1.

Remark 19. For x0 = y0 = 0 and a = b = 1, the quantity ζ2 = x2 − y2 in (107) is an invariant
of the Lorentz transformation

x̄ =
x − σy√
1 − σ2

, ȳ =
y − σx√

1 − σ2
, (109)

where the free parameter σ satisfies the condition 0 ≤ |σ| < 1. Note that the one-parameter
transformation (109), which is a special case of transformation (8), preserves the form the original
Monge–Ampère-type PDE (4) (this follows from Corollary 2 with σ = tanh β from Section 2) as
well as the form of the linear wave equation uxx = uyy.

Equation (108) differs from Equation (106) only in the sign of the second term on
the right-hand side. Therefore, its exact solutions can be sought in the same form as in
Section 12.

2◦. Equation (108) admits solutions independent of the pseudo-angular variable ψ,
which are described by the two-dimensional PDE

utt = −(ab)−2ζ−1uζ uζζ ,

which, after substituting u = −(ab)2W and renaming ζ to ρ, reduces to Equation (91). This
circumstance allows us to obtain five exact solutions, described earlier in Items 3◦–7◦ from
Section 11.

3◦. Equation (108), using new mixed-type variables

u = t−4α−2U(ξ, η), ξ = ζtα, η = ψ + β ln t, (110)

where α and β are arbitrary constants, is reduced to a two-dimensional Monge–Ampère-
type PDE for the function U, which is omitted here.

The values of α = β = 0 in the PDE (110) correspond to a multiplicative separable
solution of the form u = t−2U(ζ, ψ).

For U = U(ξ) in (110), we have a self-similar solution.
4◦. The PDE (108), using other mixed-type variables

u = e−4γtU(ξ, η), ξ = eγtζ, η = ψ − λt,

where γ and λ are arbitrary constants, also reduces to a two-dimensional Monge–Ampère-
type PDE, which is not written here.

5◦. The PDE (108) also admits multiplicative separable solutions of the form

u = ζ4U(ψ, t), (111)

where the new desired function U = U(ψ, t) satisfies the two-dimensional PDE

Utt = (ab)−2(12UUψψ − 9U2
ψ − 48U2). (112)

6◦. The PDE (112) has a traveling wave solution of the form

U = V(η), η = ψ − λt,
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where λ is an arbitrary constant, and the function V = V(η) satisfies the autonomous ODE

V′′
ηη = (abλ)−2(12VV′′

ηη − 9V2
η − 48V2).

The substitution Θ(V) = (V′
η)

2 reduces this equation to a first-order linear ODE.
7◦. The PDE (112) also admits a multiplicative separable solution of the form

U = (t + C1)
−2V(ψ),

where C1 is an arbitrary constant, and the function V = V(ψ) satisfies the autonomous ODE

4VV′′
ψψ − 3(V′

ψ)
2 − 16V2 − 2(ab)2V = 0. (113)

The substitution Z(V) = (V′
ψ)

2 leads (113) to a first-order linear ODE

2VZ′
V − 3Z − 16V2 − 2(ab)2V = 0,

the general solution of which is written as follows:

Z = C2V3/2 + 16V2 − 2(ab)2V,

where C2 is an arbitrary constant. Integrating further, we obtain the general solution to the
ODE (113) in implicit form∫ [

C2V3/2 + 16V2 − 2(ab)2V
]−1/2dV = ±ψ + C3,

where C3 is an arbitrary constant.
8◦. The PDE (112) admits generalized separable solutions of the form

U = F(t) + H(t)[C1 exp(−4ψ) + C2 exp(4ψ)], (114)

where C1 and C2 are arbitrary constants, and the functions F = F(t) and H = H(t) are
described by the ODE system

(ab)2F′′
tt = −48F2 + 576C1C2H2,

(ab)2H′′
tt = 96FH.

(115)

System (115) allows for particular solutions:

F =
(ab)2

16(t + C3)2 , H = ± (ab)2

32
√

C1C2 (t + C3)2 .

14. Reductions and Exact Solutions Based on
a Fractional-Rational Transformation

The special fractional-rational transformation

x =
ξ

αξ + βη + 1
, y =

η

αξ + βη + 1
, u =

w
αξ + βη + 1

, (116)

where α and β are arbitrary constants, brings the PDE (4) to the form

wξξwηη − w2
ξη = (αξ + βη + 1)−5wtt. (117)
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Note that the fractional-rational transformation (116) brings the stationary Monge–Ampère
equation uxxuyy − u2

xy = f (x, y) to a similar form with a different right-hand side [7,18].
Setting β = 0 in (116) and (117), we obtain the PDE

wξξ wηη − w2
ξη = (1 + αξ)−5wtt. (118)

Let us now describe some exact solutions of a more general PDE (118) as follows:

wξξwηη − w2
ξη = f (ξ)wtt, (119)

where f = f (ξ) is an arbitrary function.
1◦. The PDE (119) has generalized separable solutions of the form

w = 1
2 (aξ + b)t2 + (cξ + d)t + Z(ξ, η),

where a, b, c, and d are arbitrary constants, and the function Z = Z(ξ, η) satisfies the
stationary Monge–Ampère PDE

Zξξ Zηη − Z2
ξη = f (ξ)(aξ + b). (120)

Equations of this type were considered in [16]. The PDE (120) admits the following general-
ized separable solutions in closed form:

Z = ±η
∫ √

− f (ξ)(aξ + b) dξ + φ(ξ),

Z = C1η2 + C2ξη +
C2

2
4C1

ξ2 +
1

2C1

∫
dξ

∫
f (ξ)(aξ + b) dξ + C3ξ + C4η,

Z =
1

ξ + C1

(
C2η2 + C3η +

C2
3

4C2

)
+

1
2C2

∫
dξ

∫
f (ξ)(aξ + b) dξ + C4,

where φ(ξ) is an arbitrary function, C1, . . . , C4 are arbitrary constants.
2◦. Passing in the PDE (119) to new variables of self-similar type:

w = t−2k−2W(ξ, θ), θ = ηtk, (121)

where k is a free parameter, we arrive at the two-dimensional Monge–Ampère-type PDE:

WξξWθθ − W2
ξθ − f (ξ)[k2θ2Wθθ − k(3k + 5)θWθ + (2k + 2)(2k + 3)W] = 0.

Solution (121) is invariant under the transformation group which is specified by
the operator

Y = kη
∂

∂η
− t

∂

∂t
+ (2k + 2)w

∂

∂w
,

admitted by the PDE (119).
3◦. Passing in the PDE (119) to new variables of limit self-similar type:

w = exp(−2βt)W(ξ, θ), θ = exp(βt)η, (122)

where β is a free parameter, we arrive at the two-dimensional Monge–Ampère-type PDE

WξξWθθ − W2
ξθ − β2 f (ξ)(θ2Wθθ − 3θWθ + 4W) = 0.
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Solution (122) is invariant under the transformation group which is specified by
the operator

Y = βη
∂

∂η
− ∂

∂t
+ 2βw

∂

∂w
,

admitted by the PDE (119).
4◦. Equation (119) admits a one-dimensional invariant solution

w = t−2η2 φ(ξ), (123)

where the function φ = φ(ξ) satisfies the ODE

φφ′′
ξξ − 2(φ′

ξ)
2 − 3 f (ξ)φ = 0.

Solution (123) is invariant under the transformation group which is specified by
the operator

Y = η
∂

∂η
+ t

∂

∂t
,

admitted by the PDE (119).

15. Conclusions
We study a highly nonlinear partial differential equation with three independent

variables (4), namely the following:

utt = uxxuyy − u2
xy,

which is encountered in geophysical fluid dynamics. To find exact solutions to this nonlinear
PDE, classical method of symmetry reduction, methods of generalized and functional
separation of variables, the principle of structural analogy of solutions, and as well as
various combinations of all of the above methods were used. One-dimensional symmetry
reductions leading to invariant solutions that are described by single ODEs are considered.
A large number of new non-invariant solutions in closed form were obtained, including
more than thirty solutions that are expressed through elementary functions. More than
twenty two-dimensional reductions are discussed, when the three-variable PDE under
consideration is reduced to a single simpler two-variable PDE or a system of such PDEs.
Several classes of solutions have been discovered that can be expressed in terms of solutions
of linear wave and heat type PDEs. To construct exact solutions, in addition to Cartesian
coordinates, polar, generalized polar, and special Lorentz coordinates were also used.
A number of specific examples demonstrate that the type of the mixed, highly nonlinear
PDE under consideration, depending on the choice of its specific solutions, can be either
hyperbolic or elliptic. All obtained exact solutions were verified using the computer algebra
system Maple.

The applied aspect of this paper is that the solutions found in closed form, especially
in elementary functions, can be used for direct error estimation and testing of numerical
and approximate analytical methods for solving complex problems described by highly
nonlinear PDEs (the type of which can vary depending on the choice of solutions). Exact
solutions can also be utilized to improve the corresponding sections of computer programs
designed for symbolic calculations (in computer algebra systems such as Mathematica,
Maple, etc.). Furthermore, the described symmetries, reductions, and solutions can be used
to update and expand the reference literature on nonlinear PDEs.

Below, we formulate possible promising directions for further research on highly
nonlinear PDE (4) and related equations:
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1. To more fully describe the one-dimensional and two-dimensional symmetry reduc-
tions in PDE (4), find optimal systems of one-dimensional and two-dimensional
subalgebras.

2. Describe the symmetries and find exact solutions to the multidimensional generaliza-
tion of PDE (4) as well as other related, more complex, highly nonlinear PDEs.

3. Formulate well-posed statements of initial-boundary value (and boundary value)
problems and prove existence and uniqueness theorems for them.

4. Obtain and analyze numerical solutions to the initial-boundary value and boundary
value problems (taking into account that PDE (4) is of mixed type). Verify the numeri-
cal methods used by comparing them with test problems based on exact solutions.

The formulated research directions may be useful for interested readers in choosing
topics for further work.
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