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Abstract

This paper studies a mixed PDE containing the second time derivative and a quadratic
nonlinearity of the Monge-Ampere type in two spatial variables, which is encountered in
geophysical fluid dynamics. The Lie group symmetry analysis of this highly nonlinear PDE
is performed for the first time. An invariant point transformation is found that depends on
fourteen arbitrary constants and preserves the form of the equation under consideration.
One-dimensional symmetry reductions leading to self-similar and some other invariant
solutions that described by single ODEs are considered. Using the methods of generalized
and functional separation of variables, as well as the principle of structural analogy of
solutions, a large number of new non-invariant closed-form solutions are obtained. In
general, the extensive list of all exact solutions found includes more than thirty solutions
that are expressed in terms of elementary functions. Most of the obtained solutions contain
a number of arbitrary constants, and several solutions additionally include two arbitrary
functions. Two-dimensional reductions are considered that reduce the original PDE in three
independent variables to a single simpler PDE in two independent variables (including
linear wave equations, the Laplace equation, the Tricomi equation, and the Guderley
equation) or to a system of such PDEs. A number of specific examples demonstrate that the
type of the mixed, highly nonlinear PDE under consideration, depending on the choice of its
specific solutions, can be either hyperbolic or elliptic. To analyze the equation and construct
exact solutions and reductions, in addition to Cartesian coordinates, polar, generalized
polar, and special Lorentz coordinates are also used. In conclusion, possible promising
directions for further research of the highly nonlinear PDE under consideration and related
PDEs are formulated. It should be noted that the described symmetries, transformations,
reductions, and solutions can be utilized to determine the error and estimate the limits
of applicability of numerical and approximate analytical methods for solving complex
problems of mathematical physics with highly nonlinear PDEs.
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1. Introduction

1°. Highly nonlinear partial differential equations of the Monge—Ampere type, con-
taining a quadratic combination in the second derivatives of the form uyyu,, — uiy, are
encountered in differential geometry [1-4], gas dynamics [5-7], elasticity and plasticity
theory [8-10], magnetohydrodynamics [11-13], two-phase mechanics [14], meteorology
and geophysics [15], optimization problems [3], and some other applications [4,16].

The equations of gas dynamics for plane one-dimensional flows with variable en-
tropy are reduced to a special class of Monge-Ampeére equations with two independent
variables [5,6]:

UyxUyy — uazcy = f(xy), 1)

where 1 = u(x,y) is the desired function, and f(x,y) is the given function.

General solutions of the homogeneous Monge—Ampere Equation (1) with f(x,y) =0
and the nonhomogeneous Monge-Ampere Equation (1) with f(x,y) = —A, where A > 0
is a free constant, and admit parametric representations [17] (see also [16]).

Symmetries, equivalence transformations, and invariant solutions of Equation (1) were
considered in [7,18,19]. In [20,21], some polynomial exact solutions of Equation (1) with
quadratic and more complicated polynomial right-hand sides were obtained. In [16,22],
many non-invariant solutions with generalized and functional separation of variables of
Equation (1) are described (special attention was paid to PDEs of a fairly general form,
depending on one or two arbitrary functions of one argument).

In [7,23], it was shown that the nonlinear Equation (1) admits an exact linearization for
f(x,y) = fi(x) and f(x,y) = x*f2(y/x), where f;(x) and f,(z) are arbitrary functions.
In [24], it was proved that the Monge-Ampere-type equation

2
uxxuyy - Mxy - f(x, uy)

can be linearized using the contact Euler transform for any function of two arguments f(x, z).
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Note that in the general case, the strongly nonlinear Equation (1) is a mixed-type PDE,
since for f(x,y) > 0, it is an elliptic equation, and for f(x,y) < 0, itis a hyperbolic equation
(see, for example, [16]).

In [16,22,25,26], exact solutions of more complicated than (1) highly nonlinear coupled
PDEs with two independent variables were considered.

Some invariant and non-invariant exact solutions of multidimensional Monge—
Ampere-type equations, depending on n spatial variables and containing strong non-
linearity in the second derivatives of the form

det[uxixj]’ (2)
where Urpx; = %a”xj (i,j = 1,...,n), were obtained in [27-29]. The matrix of second
derivatives [uyy;] included in (2) describes the local curvature of a function of many
variables u = u(x1,...,x,) and is called the Hessian matrix. In the two-dimensional
case with n = 2 and x; = x, xp = y, expression (2) coincides with the left-hand side of
Equation (1). Reductions and exact solutions of the three-dimensional and four-dimensional
homogeneous Monge-Ampere equation det[ux,,] = 0 forn = 3 and n = 4 were considered
in [30,31] (see also [32], where a related nonhomogeneous PDE with a special right-hand
side for n = 4 was studied).

In [33,34], reductions and exact solutions of some two-dimensional and multidi-
mensional systems consisting of two equations with Monge—-Ampeére-type nonlinearity
are described.

2°. In electron magnetohydrodynamics, a nonstationary Monge—-Ampere-type equa-
tion with three independent variables is encountered [11-13]:

Ut = Uyxllyy — ufcy. 3)

Characteristic qualitative features, symmetries, reductions, and exact solutions of
the highly nonlinear Equation (3) were considered in [35,36]. In [36], a large number of
solutions of this PDE were found, which are expressed in terms of elementary functions.
Some invariant and non-invariant exact solutions of more complicated related equations of
Monge-Ampere type were obtained in [24,37,38].

Equation (3), as well as related highly nonlinear PDEs containing the first deriva-
tive with respect to time u; and a quadratic combination of second derivatives with re-
spect to spatial variables of the form uyyu,y — u,zcy or det[uxix],], are called the parabolic
Monge-Ampere equations. Geometric applications and questions of existence and unique-
ness of various classes of solutions of the corresponding initial-boundary value problems
with such PDEs were considered, for example, in [39-56].

In [57], solutions with additive and multiplicative separation of variables of multidi-
mensional parabolic equations of the Monge—Ampere type of the form fu; = det[uy, xj] are
described, in which the functional coefficient f depends in a special way on xy,...,x,, f, u
(see also [58], where exact solutions of a more complex related PDE were obtained).

3°. In this paper, we will consider a more complex, than (3), highly nonlinear PDE
containing the second derivative with respect to time:

2
Ut = Uxllyy — Uyy, 4)

which we will further call the geophysical Monge—Ampére-type equation (a clarification of
this name will be given below).
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In addition to Equation (4), to a lesser extent, a nonlinear equation of the form

FO)un = uxxttyy — %, (5)

where f(x) is an arbitrary function, will also be studied.

It is important to note that the highly nonlinear PDE (4), by renaming the desired
function u by —u, is reduced to an equation that was derived in [59] in relation to problems
of geophysical fluid dynamics. In the cited article, the simple polynomial solution of
Equation (4) was obtained as follows:

-3~ 6)

Apparently, the nonlinear Equation (4) was first formally introduced in [60], where it was
noted that it can have blow-up solutions.

In this paper, it will be shown, using a number of specific examples, that the type of
the highly nonlinear Equation (4), depending on the choice of its specific solutions, can be
either hyperbolic or elliptic. In other words, this equation is a PDE of mixed type.

Further, by exact closed-form solutions of nonlinear PDEs, as in [36,38,61], we mean
solutions that are expressed in terms of (i) elementary functions, (ii) elementary functions
and indefinite integrals, and (iii) solutions of ODE or ODE systems.

To analyze symmetries and find exact solutions to nonlinear PDEs, the classical method
of symmetry reductions [18,62—67], the direct method of symmetry reductions [16,61,68-73],
the nonclassical symmetries methods [69,71,74-83], methods of generalized separation of
variables [16,60,73,84-89], methods of functional separation of variables [16,73,78,87,90-98],
and the method of differential constraints [16,70,73,99-102] are most often used (see also some
other exact analytical methods [16,61,103-110]). On methods for constructing exact solutions
of nonlinear PDEs with constant and variable delay as well as some other nonlinear functional
PDEs, see, for example, [110-118].

4°. In this paper, to find exact solutions to the nonlinear PDE (4) encountered in
geophysical fluid dynamics, we mainly used the classical classical method of symme-
try reductions [18,62-64] and methods of generalized or functional separation of vari-
ables [16,60,73]. In a number of cases, exact solutions were obtained by applying various
combinations of the above methods.

Remark 1. To construct exact solutions of mixed nonlinear PDE (4), we will also partially use the
principle of structural analogy of solutions (see, for example, [61,107,108]). Namely, the structure
of exact solutions of Equation (4) in some cases was determined by the structure of exact solutions of
the related simpler Equation (3), which are found, for example, in [36,38].

2. Symmetries of the Monge-Ampere Mixed-Type PDE.
Reproduction Formula

Applying the technique of Lie group analysis [62-64], we look for the symmetry
operators of the nonlinear PDE (4) in the form

0 d d 0
_ 7 9 2 9 3 g . -
ng (x’y’t’u)ax+€ (x/y't'u)ay+C (x’y’t’u)at+€ (x/y’t/u)au'
Using the invariance criterion [62], for the four desired functions ¢ L C2, C3, and §4, one can
derive the following overdetermined linear homogeneous system consisting of nineteen

defining PDEs:

{t=0, (.=0, =0, (5=0,
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;i=0, =0, =0,

Gw=0, Gy=0, {j,=0,

=0, % =0, (=0,

Gn=0, Cu—20+3 -3 =0,
05=0, {y=0, =0, ;=0

It is not difficult to prove that the general solution of the overdetermined PDE
system (7) is given by the formulas

@1 =cx+cy+ecs,

@2 =c4X + 5y +Ce,

53 =cyt+cg,

7 = (cox + c11y +ci)t +2(c1 + ¢5 — ¢7)u + c1ox + €13y + C14,

where ¢; (j = 1,...,14) are arbitrary constants. This leads to two propositions,
formulated below.

Proposition 1. The basis of the Lie algebra of symmetry operators for the Monge—Ampere-type
PDE (4) can be written in the form

Xl—(%, 2 Eé))y X3=%, X4—%,
X5:yaa—x, X6x§y, X7—xa—, Xg—yg—u,
Xg—xg—+t%, Xlozy;;y—l—tgt, Xllztg——Zuaa—u,
X1 = taa—u, X3 = xtaa—u, X4 = ytg—u.

Proposition 2. The transformation
X =A1x+Biy+Cq, 7= Axx+ By + Gy, t=Dit+ Dy,

A1By — AB1)? 8)
— %u+t(A3x+B3y+Cg)+A4x+B4y+C4,
1

=i

where A1, Ay, A3, Ay, B1, Ba, B3, By, C1, Cy, C3, Cy, Dy, and D, are free parameters satisfying
two conditions, A1By — ApB1 # 0and Dy # 0, leaves the form of Equation (4) invariant.

Below are simple consequences for two one-parameter transformations that follow
from Proposition 2.

Corollary 1. The rotation transformation of spatial variables:
¥=xcosp—ysinf, §F=ycosf+xsinf, @d=u, )
where B is a free parameter, leaves the highly nonlinear PDE (4) invariant.

Note that the rotation transformation (9) also leaves invariant the simpler Laplace
equation uyy + uyy = 0, which is a linear elliptic PDE.
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Corollary 2. The Lorentz transformation of spatial variables:
¥=xcoshf —ysinhf, ¥ =ycoshp—xsinhf, @=u, (10)
where B is a free parameter, leaves the highly nonlinear PDE (4) invariant.

Note that the Lorentz transformation (10) also leaves invariant the simpler wave
equation uyy — uyy = 0, which is a linear hyperbolic PDE.

Proposition 3. Transformation (8) transforms an arbitrary solution u = ®(x,y,t) of the nonlinear
PDE (4) into a fourteen-parameter family of solutions

D2
= B B [P+ B+ Cy A2+ Bay 4Gy Dit D)

— t(Agx + B3y + C3) — Agx — By — C4] .

(11)

The reproduction formula (11) makes it possible to obtain complex multiparameter
solutions using the more simple solutions. Note that in Formula (11), the free parameters
can take complex values, provided that the solutions obtained are real (see details [108]).
Section 4 provides examples of using this approach.

3. Two-Dimensional Similarity Reductions

The classical procedure for finding symmetry reductions in PDEs is presented
in [62,64]. In this section, we will limit ourselves to a brief description of the most im-
portant cases of constructing two-dimensional reductions for the Monge-Ampere-type
PDE with three independent variables (4) using the symmetries found in Section 2.

1°. Equation (4) admits a symmetry solution of the form

u="U(0,9), o=x—at, Y=y—pt, (12)

where « and f§ are free parameters, ¢ and ¢ are traveling wave-type variables, and the new
desired function U = U(p, ?) satisfies the two-dimensional Monge-Ampere PDE
UgoUss — ugl9 — a?Ugg — 2apU,9 — P*Usg = 0. (13)

The symmetry solution (12) is invariant under the transformation group, which is
specified by the operator

ad

d d
Y:"‘X1+,3X2+X3=0€$+ﬁ@+

ot

The PDE (13) admits exact solutions, quadratic in one independent variable, of the form

Uy = f1(0)8* + g1(e)® + h1 (0),

(14)
Uy = f2(8)0” + g2(9)0 + ha(8),

where the functions f;, g;, h; (i = 1, 2) are described by ODE systems that are not pre-
sented here.

Remark 2. The successive use of Formulas (12) and (14) leads to non-invariant solutions of
Equation (4), obtained by combining the classical method of group analysis and the method of
generalized separation of variables.
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Remark 3. Generalized separable solutions that are quadratic in one or more independent variables,
like solutions (14), are often used to construct exact solutions of reaction—diffusion equations, wave-
type equations, and some other nonlinear partial differential equations (see, e.g., [16,60,61,73]).

2°. Equation (4) admits a symmetry solution of the form
u=t20F 01U, 8), o=xt*, 0=ytf (15)

where « and B are free parameters, ¢ and @ are self-similar variables, and the new desired
function U = U(o, ?) satisfies the two-dimensional Monge-Ampere PDE

Uzg — UgoUsgp + a”0*Ugq + B*9°Upg + 2apoBU,p — a0(3a + 4B + 5)U,

(16)
— BO(4a +3B+5)Uy +2(2x + 2B +3)(a + B+ 1)U =0.

The values of « = § = 0in (15) correspond to a multiplicative separable solution.
The symmetry solution (15) is invariant under the transformation group, which is
specified by the operator

d d d d
YIDCX9+IBX10—(C¥+‘B+1)XH:(XX£+IB}/@—t*+2(0C+‘B+1)M£.

ot

The PDE (16) admits non-invariant solutions of the form (14), quadratic in one inde-
pendent variable.
3°. Equation (4) admits a symmetry solution of the form

u=1e 20PN, 9), o=uxe, 9=yef (17)

where « and B are free parameters, ¢ and ¢ are limit self-similar variables, and the new
desired function U = U(p, ®) satisfies the two-dimensional Monge—Ampere PDE

Uzy — UgoUpg + a?0*Ugg + B8 Ugg + 20BadUye )
— ao(3n +4B)U, — BO(4a + 38)Uy + 4(a + B)?U = 0.

The symmetry solution (17) is invariant under the transformation group, which is
specified by the operator

+2(a+ ﬁ)uaa—u .

0 0 0
Y——X3—|—DCX9+,BX10—IXXE+,B:V@—&

The PDE (18) admits non-invariant solutions of the form (14), quadratic in one inde-
pendent variable.
4°. Equation (4) admits a symmetry solution of the form

u=t2U(g,®), o=x+alnt, ¢=y+pInt, (19)

where « and f are free parameters, and the new desired function U = U(p, #) satisfies the
two-dimensional Monge-Ampere PDE

UgoUgg — Upy — aUgg — BUgg — 20U, + 5ally + 5pUg — 6U = 0. (20)

The values of « = = 0in (19) correspond to a multiplicative separable solution.
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The symmetry solution (19) is invariant under the transformation group, which is
specified by the operator

d ) d ]
Y—txX1+ﬁX2—X11—a£+ﬁ@—ta+2u£.

The PDE (20) has a traveling wave solution, as well as non-invariant solutions of the
form (14), quadratic in one independent variable.
5°. Equation (4) admits a symmetry solution of the form

u=xU(e,9), o=t+alnx, O=y+BInx (21)

where a and f are free parameters, and the new desired function U = U (g, ?) satisfies the
two-dimensional Monge-Ampére PDE

o (UgoUygs — Uzg) — Upg + (3ally — BUy + 2U)Upy — 4allpl,y — 4U5 = 0. (22)

The values of « = = 0in (21) correspond to a multiplicative separable solution.
The symmetry solution (21) is invariant under the transformation group, which is
specified by the operator

d d d d
Y—*ﬂXz*O&X3+X97X11—Xg*ﬁfy*ﬂ(*ﬁ‘ZMfu.

The PDE (22) has a traveling wave solution.
6°. Equation (4) admits a symmetry solution of the form

u=e P, 9), o=te, O =yel?, (23)

where a and f are free parameters, and the new desired function U = U(p, ®) satisfies the
two-dimensional Monge-Ampere PDE

o (UggUss — Ugy) — Ugg + [a(5a — 4B)oU, — p28Uy + 4(a — B)*U] Ugs

(24)
— 2 (20 — B)oUglys — (22 — B)*Ug = 0.

The symmetry solution (23) is invariant under the transformation group, which is
specified by the operator

] d d 0
Y = X] —ﬁXlO — (ac—ﬁ)Xll = a —‘By@ —ata +2(IX—‘B)M£
7°. Equation (4) admits a symmetry solution of the form
u=e2U(g,9), o=x+pt =y, (25)

where « and f are free parameters, and the new desired function U = U(p, #) satisfies the
two-dimensional Monge-Ampere PDE

UgoUgg — Upy — B*Ugg — a(4U, + adUy — 4all)Upg + 2algUyy — a”Us = 0. (26)
The symmetry solution (25) is invariant under the transformation group, which is
specified by the operator

0 0

0 0
Y =BX1— X5 —apXio +apXy = po- — “ﬁy@ — 5~ 20pus
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8°. Equation (4) admits a symmetry solution of the form

u=1U(zt), z=y+ax’ (27)

where 4 is a free parameter, and the new desired function U = U(z,t) satisfies the

two-dimensional Monge-Ampére PDE
Uﬁ — ZaUzUZZ =0.

Exact solutions of this equation are discussed further in Section 10.
The symmetry solution (27) is invariant under the transformation group, which is
specified by the operator
d 9 0

Y:X1+X3—2aX6:$+£—2ux@.

9°. Equation (4) admits a symmetry solution of the form

u=U(rt), r=+/x2+y3 (28)

where 7 is the polar radius, and the new desired function U = U(r, t) satisfies the two-
dimensional Monge-Ampeére PDE

Uy —r-tu,U,, = 0.

Exact solutions of this equation are discussed further in Items 3°-7° of Section 11.

The physical meaning of solution (28) is that it is invariant with respect to the rotation
transformation of spatial variables (9) (i.e., this solution is spatially isotropic). Solutions
with the same property are typical for many elliptic PDEs, in particular for the Laplace
equation (see also Corollary 1).

The symmetry solution (28) is invariant under the transformation group, which is
specified by the operator

d 0 d

Y:X3+X5—X6:§+ya—x@.

10°. Equation (4) admits a symmetry solution of the form

u=Uu(gt), = /x2—1vy? (29)

where the new desired function U = U((,t) satisfies the two-dimensional Monge—
Ampere PDE
Uy + €71U€U§§ =0.

Renaming, here, U to —U and ¢ to r, we obtain the equation from Item 8°.

The physical meaning of solution (29) is that it is invariant with respect to the Lorentz
transformation of spatial variables (10). Solutions with the same wave property are typical
for many hyperbolic PDEs (see also Corollary 2).

The symmetry solution (29) is invariant under the transformation group, which is
specified by the operator

d d d
Y:X3+X5+X6:E+yg+x@.
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11°. Equation (4) admits a symmetry solution of the form

w=U(t), n=xy, (30)

where the new desired function U = U(y,t) satisfies the two-dimensional Monge—

Ampeére PDE
Ut + 27Uy Uy + Uy = 0.

Solution (30) is self-similar and symmetric with respect to the spatial variables x and y.
It also is invariant under the transformation group, which is specified by the operator

d ) d
Y =X+ X9g— Xi9= g+x£—y@.
Remark 4. More complicated solutions of the highly nonlinear PDE (4) can be obtained by applying
the reproduction formula (11) to the solutions (12), (15), (17), (19), (21), (23), (25), (27), (28), (29),
and (30).

Remark 5. From the solution forms described above in Items 9° and 10°, it follows that that
the considered highly nonlinear PDE (4) simultaneously has properties characteristic of both
elliptic and hyperbolic equations. This is a very extraordinary property, not shared by second-
order linear and quasilinear PDEs (see, for example, handbooks [16,18,22,119]). Amnother un-
usual property of Equation (4), which is invariant under arbitrary constant shifts with respect to
all independent variables, is that it has no non-degenerate traveling wave solutions of the form
u = F(kyx + koy — At), where ky, ko, and A are free parameters.

4. One-Dimensional Similarity Reductions and Invariant Solutions

The regular technique for obtaining one-dimensional similarity reductions in PDEs is
described in [62-64]. In this section, we restrict ourselves to several illustrative examples
of constructing invariant solutions of the Monge—Ampere-type PDE (4) using the symme-
tries described above. We will also give a few simple solutions of this PDE in terms of
elementary functions.

1°. The simplest invariant solution of the nonlinear PDE (4), which admits a scaling
transformation, is a multiplicative separable solution of the form

X2y
U= YR (31)

Below, we consider some other invariant solutions that can be obtained from
solution (31), applying simple methods outlined in [61,107,108].

Solution (31) is a special case of a broader family of invariant solutions of the
following form:

2
u:t—zf(z), z=y+ BInt, (32)

where f is a free parameter, and the function f = f(z) satisfies the second-order ODE

(2f = B*)fiz — 4(f2)* + 5Bf; — 6f =0.
Solution (32) is invariant under the two-dimensional Lie algebra of symmetry operators

0 d 0 0 0
lelBXZ—Xn:‘B@—tg-FZM@, Y2:X9—X11:x£+2u$.
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Solution (31) is a special case of another broader family of invariant solutions of

the form )

u:’tizg(g), E=y+Alnx, (33)

where A is a free parameter, and the function ¢ = g(&) satisfies the second-order ODE

(Ags — 28)3¢ +4(8¢)* +63 = 0.
Solution (33) is invariant under the two-dimensional Lie algebra of symmetry operators

] d d d ]
Y =AXp —Xg=A— —x— —t— Y =X =t —2u—.
L e P i T ¥
Solution (31) is also a special case of another broader family of invariant solutions of
the form

u=x*7h(n), n=t+vylny, (34)

where 1 is a free parameter, and the function & = h(#) satisfies the second-order ODE
2 " 201,/ \2 ! 2 _
(29°h — 1)y, — 47" (hy )™ — 10vhh;, — 12k = 0.
Solution (34) is invariant under the two-dimensional Lie algebra of symmetry operators

0 0 0 0 0
Y =9X3 — X0 = 7= —y=— +2u— Yy = Xo— Xq1 = X— 4+ 2 —.
1= 7% = X100 = 75 y8y+ U 2 9 = X1 = Xom 42U
Applying Formula (11) with Ay = Ap =By =Dy =1,B1 = -1, A3 = Ay = B3 =
By = Cy = C, = Dy = C3 = C4 = 0 to solution (31), we obtain a solution of the more
complex form
(x> — y?)?
=27 35
u ¥ (35)
Following [107,108], we construct, using a complex parameter, another solution based
on solution (35). The PDE (4) is invariant under the transformation

X =ix, 7=y, f=t, 0= —u,
where i> = —1 (this corresponds to the use of a purely imaginary parameter A; = i
in the reproduction Formula (11)). Using this complex transformation, we obtain from
solution (35) another solution to the PDE (4):

(22 + y?)?
2°. Using the invariant variables
u=x*2P22y(7), 7 =xPrYy, (37)

where &« and B are free parameters, we obtain from the PDE (4) the second-order
nonlinear ODE

[B(B+1)0V, —2(B—1)(26 — )V +aG?| VL
+(B—2)*(V})* —a(3a+5)0V; +2(x +1)(2a +3)V = 0.
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Solution (37) is invariant under the two-dimensional Lie algebra of symmetry operators
Y] =aXg— (a+ B)X *ocxa—— ta—+2(zx+ )ua—
1= 04 p)Xin = ox P ot P ou’

d d d
Y2 =aXjo— (v +1)Xy = Way ~ to, +2(a+us .

ot

3°. Using the invariant variables
u=e 222y (), {=eMxPy, (38)

where « and B are free parameters, and we obtain from the PDE (38) the second-order
nonlinear ODE

[B(B+1)0V;—2(B—1)(2B — )V +a*C?| V{; + (B — 2)*(V})* — 3a’C V] + 4a®V = 0.

Solution (38) is invariant under the two-dimensional Lie algebra of symmetry operators

J d 0
Y1 = Xo— BX1o+ (B—1)X11 = X ﬁ]/@ -2(B— 1)14@,

0 0 0
Y, = —X3+aXyg—aXy = DC]/@ 5 +2au£.

4°. Using the invariant variables
u=t"2"272y(7), ¢ =t%Pry, (39)

where & and p are free parameters, we obtain from the PDE (39) the second-order
nonlinear ODE

(B*QV; — 4BV + a* )V + BA(V)* — a(Ba+5)0 V) +2(a + 1) (26 +3)V = 0.
Solution (39) is invariant under the two-dimensional Lie algebra of symmetry operators

d d d
Y1 =Xy — BXio+ BX11 = e —ﬂ}/@ —Zﬁug,

d 9 d
Yo =aXig— (x+1)X11 = W3y~ top H2(a+uz-.
5°. Using the invariant variables
U= 6_2M_2ﬂxV(€), 7= etxt-‘rﬁxy, (40)

where a and 8 are free parameters, we obtain from the PDE (40) the second-order
nonlinear ODE

(B2CV — 4BV + 02TV + BA(V))? — 302V + 4a2V = 0.

Solution (39) is invariant under the two-dimensional Lie algebra of symmetry operators

0 d 0
Y1 = X1 — BXpo + X1 = 5 —[3]/@ —7-/3“@/
0 d

d
Y, = X3 —aXjg+aXp = 5 —ays— —20U=—.
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Remark 6. More complicated solutions of the highly nonlinear PDE (4) can be obtained by applying
the reproduction Formula (11) to the solutions (33), (34), (37), (38), (39), and (40).

5. Multiplicative Separable Solutions
1°. The Monge—-Ampere-type PDE (4) has the multiplicative separable solution

U= t*ZU(x,y),

which is a particular case of solution (15) for « = B = 0. Here, the new desired function
U = U(x,y) satisfies the stationary Monge-Ampeére equation

Uy Uyy — U3, — 6U = 0. (41)

Proposition 4. Let U = F(x,y) be a solution of Equation (41). Then, the function

1
U= —————SF(aix+ by +cy,ax + by +cy),
(ot — by (O v bt e)

where aj, b]-, ¢ (j =1, 2) are arbitrary constants, is also a solution of this PDE.

2°. The PDE (41), in turn, admits the multiplicative separable solution

U =x%¢(y), (42)

where the function ¢ = ¢(y) satisfies the autonomous second-order ODE

P9y, —2(9y)* —3¢ = 0. (43)

Remark 7. Solution (42) is invariant under a one-parameter group of transformations which is

specified by the operator

d 0
Y = x$ +2U@,

admitted by Equation (41).
Substituting Z(¢) = ((p’y)2 reduces Equation (43) to the first-order linear ODE
9Zy —4Z — 69 =0,

the general solution of which is
Z = Ci¢* —2¢, (44)

where C; is an arbitrary constant. Replacing Z in (44) by ((p’y)z, we obtain a first-order
separable ODE whose general solution can be written in implicit form.

Remark 8. The ODE (43) has a one-parameter particular solution ¢ = —%(y + Co)?, which
corresponds to the case C1 = 0 in (44).

3°. The PDE (41) has the solution
U=x*¢g), ¢=y+vhnyx (45)

where 7 is a free parameter, and the function ¢ = ¢(¢) satisfies the autonomous second-
order ODE

(Y9 —29) 9z + 4(9%)* + 69 = 0.
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Remark 9. Solution (45) is invariant under a one-parameter group of transformations which is

specified by the operator

d d d

admitted by Equation (41).

4°. Equation (41) has a generalized separable solution that is quadratic with respect
to any independent variable, e.g.,

U =x*¢p(y) +x9(y) + x(v), (46)

where the functions ¢ = ¢(y), ¥ = ¢(y), and x = x(y) are described by the following system
of ODEs: ,
PPy —2(9y)" =3¢ =0,
PPy — 204, — 3P =0, (47)
20y, — (¥y)* —6x = 0.
The non-invariant solution (46) is a generalization of solution (42). It can be seen that
the first equation of system (47) coincides with the nonlinear ODE (43), and the second and

third equations are linear with respect to the sought functions.
It is not difficult to prove the following proposition.

Proposition 5. Let ¢ = ¢(y) be a solution of the first Equation (47). Then, the corresponding
general solution of the second Equation (47) is given by the formula

P =Ci1¢ + Coyg, (48)
where C1 and Cy are arbitrary constants.

Note that system (47) admits a particular solution:

9=—2" ¢=0,

(49)
X =Y[A cos(‘/Tf’ Iny) + Ay sin(@ Iny)|,
where Aj and Aj; are arbitrary constants.

Remark 10. Using Formula (48), it is possible to obtain a more complex solution of system (46)
than (49) with the same function ¢ = —%y2, namely the following:

¢=—3y"
Y= C1y2 + C3y3,
X =Y[Cs cos(@ Iny) + Cy sin(@ Iny)| — %yZ(Czy +Cy),

where Cq, ..., Cq are arbitrary constants.
5°. Equation (4) admits the degenerate multiplicative separable solution
u= (At +B)W(x,y),

where A and B are arbitrary constants, and the function W = W(x, y) is any solution of the
homogeneous Monge-Ampere Equation (1) with f(x,y) = 0.



Mathematics 2025, 13, 3522

15 of 39

6. Reductions with Additive and Generalized Separation of Variables
Leading to Two-Dimensional Monge-Ampeére Equations. Exact Solutions

1°. The Monge—Ampere-type PDE (4) has additive separable solutions
u=—31At* + Bt +w(x,y), (50)

where A and B are arbitrary constants, and the function w satisfies the stationary nonho-
mogeneous Monge-Ampere equation with a constant right-hand side:

WxxWyy — w,zcy = —A. (51)

The qualitative features of the PDE (51) depend on the sign of the constant A, since for
A > 0, this PDE is a hyperbolic equation, and for A < 0, it is an elliptic equation [1,2,16].

2°. Itis easy to verify that Equation (4) admits an additive separable solution of the
form (50), which is expressed in elementary functions

u = Cyx® + Coxy + Cay? + Cyx + Csy + 3 (4C1C5 — C)E2 + Cet + C7,

where Cy, ..., Cy are arbitrary constants.
3°. Using the results of [16], one can obtain, for example, the following exact non-
invariant solutions of the form (50) of Equation (4):

1 A
u= —§A2t2 +Bt+ C—x(Clx + Coy) + @(C1x + Coy + C3) + Cax + Csy + Cs,
2

1
u= fEAt2+Bt+

1 2 & A 3 2
pwe (Czy +C3,y+E 712C2(x +3C1x%) + Cqx + Csy + Cg,

1 2A
u=—=A? 4 Bt + —=—(C1x — C3y? + C3)*? + Cyx + Csy + Ce,
2 3C;C,

where A, B, Cy, ..., Cg are arbitrary constants, and & = ®({)isan arbitrary function.

Remark 11. For A > 0, the general solution of the nonhomogeneous Monge—Ampere PDE (51)
can be represented in parametric form [16,17]:

cth Y- Y@
2VA’ 2VA
_ (a+p)[¥'(B) — ' (a)] +20(a) — 2% (f)
4vA ’

where « and B are arbitrary constants, and ® = ®(«) and ¥ = ¥ (B) are arbitrary functions.

For A < 0, the nonlinear PDE (51) is reduced by the Euler contact transformation to a second-
order linear PDE with constant coefficients [24], which is reduced to the Laplace equation by scaling
new independent variables.

4°. Equation (4) admits a more complex, than (50), generalized separable solution:
u=—%(a;x + by +c1)t* + (a2x + by + )t + w(x,y),

where a1, a3, by, by, c1, ¢y are arbitrary constants, and the function w satisfies the stationary
Monge-Ampere PDE with a nonhomogeneous right-hand side,

WxxWyy — wiy = —mx —biy—cy. (52)
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For by = ¢; = 0, the PDE (52) has generalized separable solutions:

w = i%y(alx)yz + C1y + ®(x),
1

C2
w = C1y2 + Coxy + C3y — 1;1C1 X3+ ﬁxz + Cyx + Cs,
2
a
]/? + Czy —

w=C ! x* 4 Cax 4+ Cy,
1

24C

where ®(x) is an arbitrary function, and Cy, ..., Cs are arbitrary constants.

7. Reductions with Generalized Separation of Variables Leading to
Linear PDEs

1°. The Monge—-Ampere-type PDE (4) admits the generalized separable solution
u=tay* +bxy + tcx® +dy + L(ac — )P + kyt + U(x, t), (53)

where a, b, ¢, d, and k are arbitrary constants, and the new desired function U = U(x, t)
satisfies a constant-coefficient linear PDE:

Up = allyy. (54)

For a > 0, the PDE (54) is the classical linear wave equation, the general solution of
which has the form

U=®(x—+at)+Y¥(x+at), (55)

where ®(z1) and ¥(z,) are arbitrary functions.
For a < 0, the PDE (54) is an elliptic equation that reduces to the Laplace equation by
substituting z = \/—a t (for solutions to this linear PDE, see, for example, [119,120]).
Below are several simple solutions to Equation (54) for 4 = —1, which are expressed
in elementary functions:

= A(x® — 3xt?) + B(3x*t — %),

Ax + Bt
= — CI
x2 + 12 *

u

u

U = (Aet* 4+ Be #*)(Ccos ut + Dsin ut),
U = (Acos px + Bsin ux)(Ce! 4+ De "),
U= Aln[(x —x0)*+ (t—tp)*] +B,

where A, B, C, D, xq, yo, and y are arbitrary constants.
Remark 12. Setting A = 0, B = 1/6 in the first solution for U, we obtain solution (6).
2°. Equation (4) also admits another generalized separable solution
u=%(at+b)y*+ (ct +d)y+ U(x, 1), (56)

where 4, b, ¢, and d are arbitrary constants, and the function U = U(x, t) satisfies a linear
PDE with a variable coefficient:

Uy = (at + b)Uyy. (57)
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The PDE (57) is an equation of mixed type, which is hyperbolic for at + b > 0, and elliptic
for at +b < 0 (i.e., when passing t through the point ty) = —b/a, the type of the reduced
PDE changes).

Below are some exact solutions of the Tricomi equation [119]:

utt + tuxx - 0/

which describes near-sonic flows of gas and is a special case of the PDE (57) for a = —1 and
b=0.

1.  Simple exact solutions:
U=A@Bx>-1),
U = B(x® — xt3),
U = C(6tx? — ),

where A, B, and C are arbitrary constants.

2. Generalized separable solutions with even powers of x [119]:
n
U=y filt)x™,
k=0

where the functions f; = fi(t) are defined by the recurrence relations

fa(t) = Apt+ By,  fr1(t) = Agt + By — 2k(2k — 1) /Ot(t —s)sfx(s) ds,

where Ay, By are arbitrary constants (k =n,...,1).

3. Generalized separable solutions with odd powers of x [119]:
n
U=y gt
k=0

where the functions gx = g (t) are defined by the recurrence relations

ot
gn(t) = Aut + By,  gk-1(t) = Axt + By — 2k(2k + 1) /0 (t —s)sgx(s)ds,

where Ay, By are arbitrary constants (k =n,...,1).

4. Multiplicative separable solutions:

U = V't [C1]13(2A8372) + oYy /3(2A13/2)] [C3 sinh(3Ax) + Cy cosh(3Ax)],
U = V't [C111/3(2A8372) + CaKy /3(2A13/2)] [Ca sin(3Ax) + Cy cos(3Ax)],

where Cy, Cy, C3, C4, and A are arbitrary constants, J;,3(z) and Y7 ,3(z) are Bessel functions,
and I /3(z) and Kj /3(z) are modified Bessel functions.

8. Polynomial Solutions in One Spatial Variable

1°. The Monge-Ampere-type PDE (4) has generalized separable solutions that are
quadratic in any spatial variable (x and y can be interchanged):

u=yf(xt) +yg(x ) +h(x 1), (58)
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where the functions f = f(x,t), ¢ = g(x,t), and h = h(x, t) are described by the following
PDE system:

fit = 2f fex +4f7 =0,
St — 2fgxx +4fx8x =0, (59)
htt —thxx ‘I’g)z( =0.

Remark 13. Solution (53), leading to the linear PDE (54), is a special case of solution (58) with
flo,t)=13%a, g(x,t) =bx+d+kt, h(xt)=lcx®+L(ac— )+ U(x,t).

2°. The last two PDEs of the system (59) have a simple solution § = Cat + Cg,
h = Cyt + Cs, where Cy, C3, C4, and Cs are arbitrary constants. It is not difficult to
prove a more general proposition.

Proposition 6. Let f = f(x,t) be any solution to the first PDE (59). Then, the last two PDEs of
system (59) admit a particular solution:

§=Cif +Cot +C3, h=1C2f+Cst+Cs, (60)
where Cy, ..., Cs are arbitrary constants.
3°. The simplest solution to the first PDE of system (59) is

f=13a (61)

where g is an arbitrary constant. In this case, for a > 0, the last two PDEs of system (59) are
linear wave equations
—a =0,
it Ixx . ( 62)
htt - ahxx + gx - 0.

The first is homogeneous, and the second is nonhomogeneous. To obtain a solution to
system (62), we move on to new characteristic variables

EF=x—+at, n=x+at.

As a result, we receive
8en =0,
4ahg, — (g2 +8y)* = 0.
Sequentially integrating these PDEs, we find the general solution of system (62):

&= ¢1(&) +1(n), szﬂ/ﬁt, n=x+at
2 (63)
= 92(8) + w2 () + 5 (pl( U/(dfpl) §+4151§/<‘Zf71) in,

where @1 = ¢1(8), Y1 = P1(n), 2 = 92(), P2 = Po(n) are arbitrary functions.
4°. The first PDE (59) has a simple stationary solution:

1

f: C1X+C21
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as well as a more complex nonstationary four-parameter solution with generalized separa-
tion of variables

(x + C1)2

f= T2 G + (t+C)2[Cs Cos(g In(t+Cy)) 4+ C4 sin(?ln(t +C2))l,

where Cq, Cy, C3, C4 are arbitrary constants.
5°. Using the substitution f = 1/6, we transform the first equation of system (59) to
the form
00 — 260 — 267 = 0.

This nonlinear PDE admits a generalized separable solution, linear in ¢, of the form
6 = ¢(x)t + ¢(x). Therefore, the first PDE (59) has a solution

1
aGETak o

where the functions ¢ = ¢(x) and i = (x) are described by a simple ODE system,
(P;c/x =0, ll";c,x = _(PZ' (65)

The general solution of this system is expressed in elementary functions:

1
p=Cix+C, ¢= b (C1X+C2)4+C3X+C4,
12C

where Cq, Cy, C3, Cy4 are arbitrary constants.
7°. The PDE system (59) admits a traveling wave solution of the form

f=f@), §=g&), h=h(G), ¢=ax—pt

where & and B are arbitrary constants.
8°. The PDE (4) has generalized separable solutions which are fourth-degree polyno-
mials in any spatial variable (x and y can be interchanged):

u=y*F(x,t) + y*G(x,t) + H(x,t), (66)

where the functions F = F(x,t), G = G(x,t), and H = H(x,t) satisfy the following
overdetermined system of PDEs:

3FFy, —4F2 =0,

Fit — 2GFyy — 12FGyy + 16F,G, = 0,
Git —2GGyy — 12FH, +4G2 =0,
Hy —2GHyy = 0.

(67)

Remark 14. The previously obtained simple solutions (31), (35), and (36) are special cases of a
solution of the form (66).

The first PDE of system (67) can be satisfied if we take F = f(t). Then, from the other
three PDEs of this system, we sequentially obtain

G = g2x2 + g1x + go,

68
H = hyx* + h3x® + hox? 4+ hix + hy, (68)
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where the functions fo = fo(t), g0 = go(t), g1 = g1(t), and h; = h;(t) are described by the
ODE system

24fogr — fi =0,

gy + 1293 — 144 fohy = 0,

g7 + 129291 — 72fohs = 0,

g — 4¢3 + 4% — 24fohy = 0,

K —24¢2hy =0,

Wy —12goh3 — 24g1hy = 0,

hY — 4gohy — 12g1hs — 24¢,hy = 0,
Wy — 4g1hy — 12g7h3 = 0,

hy — 4¢ohy = 0.

9°. If in Formulas (66) and (68), we remove the odd components in the variable x,
setting g1 = h3 = hy = 0, then, we arrive at the solution of the form

u = foy* + hax* + g2y + goy* + hax® + ho, (69)
whose time-dependent functional coefficients satisfy the second-order ODE system

fo —24fog2 =0,

hy —24g2hs =0,

gy + 1293 — 144 fohy = 0,
80 — 48082 — 24fohy =0,
hY — 4gohy — 24g0hy = 0,
h — 4gohy = 0.

(70)

The first three ODEs of system (70) form an independent subsystem. The last
three ODEs of this system have the trivial particular solution gy = hy = hy = 0.
The ODE system (70) admits the exact solution

fo(t) =Cit+Cp, hy =g =0, hat) =Cst+Cy,
g0(t) = 2C1Cat* + 4(C1Cy + CrC3) 3 + 12CoCyt? + Cst + G,
ho(t) :%C1C§t7 + %Cg,(C1C4 + %C2C3)t6 + %C4(C1C4 + 4C2C3)t5
+ (4C2C3 + 1C3Cs)t* + 2(C3C6 + CaCs) > + 2C4Cot? + Crt + Cg,

where Cy, ..., Cg are arbitrary constants.
It can be shown that the ODE system (70) also has solutions proportional to (f + C)~2,

A A A
) =grer o =grep &= e
(1) Ay As Ag
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where C is an arbitrary constant, and the factors A; (j = 1,...,6) satisty the system of
algebraic equations

A1(443-1) =0,

Ap(4A3—-1) =0,

24A1A6 — A3(2A3+1) =0,

Ay(2A3 —3) +12A1A5 =0,

A5(2A3 —3) +12AA6 =0,

2A7A5 —3A4 =0.

In particular, system (70) admits the following solution:

P b1 o
0T 8(t+rC2 M T BA(+CR ST Attt
go=hy=ho=0,

where A and C are arbitrary constants (A # 0).
10°. One can also look for more complex polynomial solutions in a spatial variable of
the form

4
=Y Fa(x,t)y", 71)
n=0

which generalize (66). In particular, Equation (4) has exact solutions of the form (71) with
g k
F}’l(x/ t) = 2 Ankfi’lk(t)x ’
k=0

where the functions f,;(t) are described by a corresponding autonomous system of second-
order ODEs.

9. Reductions in Traveling Wave Variables to Two-Dimensional
Mixed-Type Equations. Linearizable PDEs

1°. The Monge-Ampere-type PDE (4) admits complex generalized separable solutions
of the combined type

u = C1x% 4+ Coxy + Cay? + Cyt? + Csxt + Coyt + Crx + Cgy + Cot + U(E, 1),

72
C=mx+by+ Mt  n=ax+by+ A, ( )

where C;, aj, b]-, Aj (i=1,...,9;j =1, 2) are arbitrary constants, and ¢ and 7 are new

traveling wave-type variables, and the new desired function U = U({, ) satisfies a two-
dimensional Monge-Ampere-type equation:
(a1by — azby)* (UgeUyy — UZ,) + [2(a7C3 + BiC1 — a1b1Cy) — Af]Ugz
+ 2[26!1(12C3 + 2b1b,Cq — (albz + azb1>C2 — A1A2]U¢,7 + (73)
+ [2(a3C3 + b3Cy — a2b,Cy) — A3]Uyy + 4C1C5 — C3 — 2C4 = 0.

2°. The PDE (73) has exact solutions that are quadratic in any new independent
variable of the form

Uy = f1(&)n* + g1(&)n + i (€),
Uy = ()8 + g2(7)& + ha(n),

where the functions f;, g;, h; (i = 1, 2) are described by the corresponding ODE systems,
which are omitted here.
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3°. Equation (73) becomes a second-order linear PDE with constant coefficients if the
condition connecting the free parameters is satisfied as follows: a;by — bjap = 0.
Let us consider, in more detail, the special case (72) and (73), putting

ap=a, bi=b AM=A a=b=0 A=1 n=t,
which leads to a solution of the form

u = C1x% + Coxy + Cay? + Cyt? + Csxt + Ceyt + Crx + Cgy + Cot + U (G, 1),

74
¢ =ax+by+ At, )

where C; (i = 1,...,6), a, b, and A are arbitrary constants. In this case, the function
U = U(E, t) satisfies the following second-order linear PDE:

Uy + 2AUg; + [A? — 2(a*C3 + b*Cy — abCy)|Ugz = 4C1C3 — C3 — 2Cy. (75)

The type of this equation may vary depending on the values of the free parameters. Namely,
the PDE (75) is (see, for example, [119,120]) as follows:

parabolic if A= a’Cs + b*Cy — abCy = 0,
hyperbolic if A = a*Cz 4+ b*Cy —abCy > 0,
ellipic if A =a’Cs +b*Cy —abC, < 0.

Remark 15. The general solution of the hyperbolic Equation (75) (for A > 0) is given by the
formula

L AGG - C3 —2Cy
21

U=F(;—ot)+ k(G —ot) gt,

012 = A £1/2(a2C; + B2C; - abCy),
where F1(z1) and F,(zy) are arbitrary functions.

Remark 16. The highly nonlinear PDE (4) under consideration belongs to the class of partially
linearizable PDEs [36] (or, according to [121], to the class of conditionally integrable PDEs), since
it admits solutions that are described by linear PDEs (54) and (75).

4°. Let us equate to zero the constant factors at the second derivatives U@@, Ué,],
and Uy;,, which enter linearly into the PDE (73):

2(a3C3 + b3C) — a1b1Cy) — A3 =0,
2(a3C3 + b3C) — apbhpyCy) — A3 =0, (76)
(2111112C3 + 2b1b,Cy — (a1by + b1az)Cy — AMAp =0,

and then divide the remaining terms of the equation by (a1b; — biaz)?. As a result, we
obtain an nonhomogeneous stationary Monge—Ampere equation of the form (51), which,
as was indicated earlier in Remark 11, can be linearized.

Relations (76) can be considered as a linear nonhomogeneous system of three algebraic
equations with respect to the coefficients Cy, Cy, and Cs.



Mathematics 2025, 13, 3522

23 of 39

10. Reductions and Exact Solutions Based on a New Variable, Parabolic in
Spatial Coordinates

1°. In variables, one of which is time, and the other is specified by a parabolic function
in spatial variables, we can observe the following:

u=1Ul(zt), z=y+ ax?, (77)

where a # 0 is a free parameter, and the Monge—Ampere-type PDE (4) is reduced to the
Guderley type equation
Uy = 2aUl; Uz, (78)

which is used to describe transonic gas flows [16].
Some exact solutions of the reduced nonlinear PDE (78) are described below.
2°. The two-dimensional PDE (78) has additive separable solutions

U= £C(z+ C2)%? + gaCit* + Cat + Cy,
where Cy, Cy, C3, and Cy are arbitrary constants. In this case, we receive
u=£Cy(y+ax® + Cy)*? + aC}t* + Cst + Cy.
3°. The PDE (78) admits the simple multiplicative separable solution

. (Z + C2)3
~ 6a(t+Cp)?’

where C; and C; are arbitrary constants. In this case, we have

(]/ + ax2 + C2)3

T Tt G )2

4°. The PDE (78) has an exact solution of the form
U=Ct?+Cot+W(E), E=z+A=y+ax>+At,

where C; (C1 # 0)), C, and A are arbitrary constants, and the function W = W(¢) satisfies
the integrable ODE
/ 2 11 _

the general solution of which can be written as follows:

8aC C A43/2 )2
8aC1 (¢ + C3) + A% +—§+C4,

W=+
24a2C; 24

where C3, C4 are arbitrary constants.
5°. The PDE (78) has the self-similar solution

U=t3F2v(), 7=zt (79)
where f is an arbitrary constant, and the function V = V(¢) satisfies the ODE

(2aV; — B*T*)Vi +5B(B+ 1)V, —3(B+1)(3+2)V = 0. (80)
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Solution (79) is invariant under a one-parameter group of transformations which is
specified by the operator

3 .9
Y=o —to +(3p+ U,

admitted by the PDE (78).
For B = —1, ODE (80) has a simple one-parameter particular solution

V= 6171@3 +C.
6°. The PDE (78) admits the invariant solution
U=t"2%f(y), n=z+Alnt, (81)
where A is an arbitrary constant, and the function f = f(#) satisfies the ODE
(2afy = A?) fyy +5Af; — 6f = 0.

Solution (81) is invariant under a one-parameter group of transformations which is

specified by the operator

d d d
Yf/\g—ta +2Uﬁ,

admitted by the PDE (78).
7°. The PDE (78) also admits another invariant solution

u= 673/%3'(1'), T =ePlz, (82)
where f is an arbitrary constant, and the function § = g(7) satisfies the ODE
(2087 — B*7%)g7, + 5p°T87 — 9p*8 = 0.

Solution (82) is invariant under a one-parameter group of transformations which is

specified by the operator
0 0 0

admitted by the PDE (78).
8°. The PDE (78) has a generalized separable solution in the form of a cubic polynomial
in z:

U =1 (8) + 92(D)z + ¢a(t)2" + (1) 2, (83)
where the functions ¢, (t) (n = 1,...,4) are described by the second-order nonlinear
ODE system

1 — daays =0,

y7 —4a(Gyaps +2¢3) =0,
Py — 36apsps =0,

Wy — 36ayp; = 0.

(84)

This system is integrated backwards, starting with the last equation, the general solution of
which can be expressed in an implicit form.
Using a simple solution of the last ODE (84):

1 -2
= — (¢t
Py 6 (t+C1)7 7%,
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we obtain the following seven-parameter exact solution of the resulting system (84):

P1 = 22C3(t+ C1) 2+ 2aCoCa(t+ Cr) L+ k3 a®CE(t+Cp) B +

+ a2 C3(t+ C1)B + 2aCsCs(t+ Cr)7 + 2aCsCa(t + Cp)* +

+ 4a2C3C3(t + C1)® +2aCoCs(t + C1)? + Co(t+ C1) + Cy,
o =2aC3(t+C1) % + Ca(t + C1) ' + 5aC3(t + C1)® + 4aCoCa(t + C1)® + Cs(t + C1)?,
3 = Co(t +C1) 2+ C3(t+ C1)°,

_ 1 -2
l[J4—6a(t—|—C1) ,

where Cy, ..., Cy are arbitrary constants.
9°. The PDE (78) has a generalized separable solution of a more exotic form

U = 01(t) + 02()2%% + 85(£)2°, (85)

where the functions 9,(t) (n = 1, 2, 3) are described by the second-order nonlinear
ODE system
o — Jat3 =0,
85 — Lady0; =0, (86)
8% — 36a9% = 0.
This system is integrated backwards, starting with the last equation, which coincides with

the last ODE of system (84).
Using a simple solution of the last ODE of system (86),

1
03 = —(t+Cp) 2
3 6a( 1)

we obtain the following five-parameter exact solution of this system:

01 = 2aC3(t+C1) ™' + 2aC3(t + C1)7 + 2CoCa(t + C1)® + Cat + Cs,
9 =Ca(t+C) 2+ Gt + Gy )%,
1

03 = —(t -2
3 6a( +C1)7 %,

where Cy, ..., Cs are arbitrary constants.
10°. The nonlinear PDE (78) can be linearized using the Legendre transformation,
which is defined by the formulas:

t=Wr, z=Wy, U=TWr+ZW; — W (direct transformation); 87)
T=U, z=U,, W=tUi+zU,—U (inverse transformation),

where U = U(t,z) and W = W(T, Z), and the second derivatives are calculated using
the formulas

U = JWzz, U =Ux =—]Wrz, Uz =]Wrr,
J = Ul —Ug, 1/] =WrrWzz — Wiy,
As a result of the Legendre transformation, the nonlinear PDE (78) is reduced to the

second-order linear PDE:
WZZ = ZLIZWTT. (88)
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If W = W(T,Z) is a solution of Equation (88), then Formula (87) determines the
corresponding solution in parametric form of Equation (78).
Note that when using the Legendre transform, some solutions may be lost if | = 0.

11. Reductions and Exact Solutions Based on a New Variable, Quadratic
in Two Spatial Coordinates

1°. In variables, one of which is time and the other is quadratic with respect to both
spatial variables, we can observe the following:

u=1U(zt), z= ax? + bxy + cy2 + kx + sy, (89)

where 4, b, ¢, k, and s are free parameters, and the Monge-Ampere-type PDE (4) is reduced
to the two-dimensional PDE

Uy — 2(Az + B)U,U,, — AU> =0, (90)

where A = 4ac — b2, B = as% + ck? — bks.

For A = 0 (this corresponds to the degenerate case), we obtain Equation (78), which is
discussed in detail in Section 10. Further, we will assume that A = 4ac — b? #0.

2°. The transformaation

b=t 2= %pz _ % U = sign(A)W(p, 1),

leads to the PDE (90) to the simpler equation
Wit — p~ "W, W = 0. (91)

Some exact solutions of the nonlinear PDE (91) are described below.
3°. The PDE (91) admits an additive separable solution of the form

W= lC1t2+C2t:|:/\/C1p2+C3dp+C4,

where Cy, ..., C4 are arbitrary constants, and

/\/C1PZ+C3EIP:

1 Cs .
— 2 2 .
2‘01/C1p +C3+2\/C711n(y/C1p+\/C1p +C3), if C1 >0;
_ )1 G v—Cip .
=9 2p1/C1p2+C3+ arctan ——————, if C; <0;
KV &P 3t 5 = i+ Gy 1
\/C3p, if C1 =0, C3 > 0.

4°. The PDE (91) admits solutions in the form of a product of functions of different
arguments

W =t"%f(p), (92)
where the function f = f(p) satisfies the ODE
fofop —60f =0,

which admits the particular solution

-
|
ool
i}
N
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Returning to the original variables, we arrive at a multiparameter solution in elementary
functions of the PDE (4):

1
U= t2<ax2+bxy—0—cy2+kx+sy+

as? + ck? — bks 2
2(4ac — b?) '

4ac — b?

Solution (92) is invariant under a one-parameter group of transformations which is

specified by the operator

) )
Y=to - 2Wo,

admitted by the PDE (91).
5°. The PDE (91) admits the self-similar solution

W =t"4%"2F(z), z=1tPp, (93)

where B is an arbitrary constant, and the function F = F(z) satisfies the generalized
homogeneous ODE

(F, — B?2°)ElL + B(7B +5)2%F, — 2(2B + 1) (4B + 3)zF = 0,

whose order can be lowered by one [122].
Solution (93) is invariant under a one-parameter group of transformations which is
specified by the operator

3 .0 d
Y =By, ~ty +22p+ D)W,

admitted by the PDE (91).
6°. The PDE (91) admits the invariant solution

W=e M), =pe, (94)
where A is an arbitrary constant, and the function ® = ®({) satisfies the ODE
{1 0pY, = A2 (16D — 70D) + I2DY;),

whose order can be lowered by one [122].
Solution (94) is invariant under a one-parameter group of transformations which is

specified by the operator

3 0 d
Y =Apgs =5+ WS,

admitted by the PDE (91).
7°. The PDE (91) also admits an exact polynomial solution of the form

W =61 (t) + 62(£)0” + 05 (),
where the functions 6, (t) (n = 1, 2, 3) satisfy the second-order nonlinear system of PDEs

67 — 463 =0,
0y — 320,05 = 0, (95)
0y — 4863 = 0.
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The ODE system (95) is integrated in reverse order, starting with the last equation, which
coincides with the last equations of systems (84) and (86) for a = 4/3.
Using a simple solution of the last ODE of system (95),

03 =3(t+C) 2,
we obtain the following five-parameter exact solution of this system:
(t+C1 )P [~ (5v17 = 23)C3 (¢ + C1 )YV + (5V/17 + 23) C3(t + cl)*ﬁ] +
+3CC5(t +Cp)® + Cyt + Cs,

02 = VE+C [Cot+C)VIT2 4 Gt 4+ Cr) V2,
03=§(t+C) 2,

1
91:%

where Cy, ..., Cs are arbitrary constants.

12. Reductions and Exact Solutions in Polar and Generalized
Polar Coordinates

1°. At the point (xg, yo), where x¢ and y are arbitrary constants, we introduce polar
coordinates 7, ¢ using the formulas

X=xp+rcosg, y=1yo+rsing.
As a result, the original PDE (4) is transformed to the form
_ 2 -1 2
U =1 Uy (Upep +1uy) + [(r 1), (96)

2°. The Lie group symmetry analysis of the resulting PDE (96) (see also Section 2)
shows that the transformation

F=ar, ¢=¢+b t=pt+g,

4 97)
il = %u + t(c17 €os @ + cpr sin @ + c3) + c47 €OS @ + ¢t sin @ + cg,

where g, b, ¢1, ¢2, c3, c4, Cs5, ¢4, p, and g are arbitrary constants, leads the PDE (96) to an
equation of exactly the same form.

The invariant ten-parameter transformation (97) allows, starting from simpler solu-
tions of the PDE (96), us to obtain its more complex exact solutions. Namely, if u = F(r, ¢, t)
is a solution to the PDE (96), then the function

p? . .
u= g [Far, 9 +b, pt +q) — t(c17 cos ¢ + corsin @ + c3) — c47 COS @ — C57'sin @ — Cg|
is also a solution of this PDE.

3°. The PDE (96) has two-dimensional radially symmetric solutions, which are de-
scribed by the PDE

Ut — 1ttty = 0,

which, up to obvious renotations, coincides with Equation (91). Therefore, it allows five
exact solutions, described earlier in Items 3°-7° from Section 11.
4°. The PDE (96), using new mixed-type variables

u=t*2UEGy), §=r", n=9+pnt, (98)



Mathematics 2025, 13, 3522

29 of 39

where & and B are arbitrary constants, is reduced to a two-dimensional Monge-Ampeére-
type PDE, which is not presented here.

Solution (98) is invariant under a one-parameter group of transformations which is
specified by the operator

) 0

Y:ary—tg—l—ﬁ + (4o + 2)

d d
9 You’
admitted by the PDE (96).
The values of « = B = 0 in (98) correspond to a multiplicative separable solution of
the form u = t~2U(r, @).
For U = U(&) in (98), we have a self-similar solution.
5°. The PDE (96), using other mixed-type variables

U= 674’Ytll((:,17), E=er, n=¢—At (99)

where 7y and A are arbitrary constants, also reduces to a two-dimensional Monge-Ampére-
type PDE, which is not written here.

Solution (99) is invariant under a one-parameter group of transformations which is
specified by the operator

admitted by the PDE (96).
6°. The PDE (96) also has multiplicative separable solutions of the form

u=r*U(p,t), (100)

where the new desired function U = U(¢, t) satisfies the two-dimensional PDE
Uy — 12U U, + U7, — 48U7% = 0. (101)
Solution (100) is invariant under a one-parameter group of transformations which is

specified by the operator

d 0
Y = rg +4u£,

admitted by the PDE (96).
7°. The PDE (101) has a traveling wave solution of the form

U=Vv(y), n=¢—A»A,
where A is an arbitrary constant, and the function V = V() satisfies the autonomous ODE

(12V =A%)V, —9(Vy)* + 48V = 0.

The substitution (V) = (V,;)2 reduces this equation to a first-order linear ODE.
8°. The PDE (101) also has a multiplicative separable solution of the form

U= (t+C1) *V(p),
where C; is an arbitrary constant, and the function V = V(¢) satisfies the autonomous ODE

4V Vg, —3(Vy)? +16V> -2V = 0. (102)
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The substitution Z(V) = (V(;)2 reduces (102) to the linear first-order ODE
2VZi, —3Z +16V? -2V =0,
the general solution of which is written as follows:
Z =GV —16V* -2V,

where C; is an arbitrary constant. Integrating further, we obtain the general solution to the
ODE (102) in implicit form

-1/2

/((:21/3/2 —16V2—2V) V24V = 29+ G5,

where Cj is an arbitrary constant.
9°. The PDE (101) admits the generalized separable solutions of the form

U = F(t) + H(t)[Cy cos(4¢) + Cpsin(4¢)], (103)

where C; and C; are arbitrary constants, and the functions F = F(t) and H = H(t) are
described by the ODE system

Flj = 48F% — 144(C? + C3)H?,

104
HJi = —96FH. (109

System (104) allows for particular solutions:

S S S !

16(t + C5)*’ 16,/C2 + C2 (t + C3)2

Remark 17. To construct exact solutions (103), we used invariant subspaces of the nonlinear
differential operator F[v] = 1200, — 905 + 4802, included in the right side of the PDE (101) (for
details see [60,73]).

10°. At the point (xg, o), we introduce the generalized polar coordinates r, ¢ accord-
ing to the formulas
X =xg+arcos@, Yy =yo+brsing, (105)

where x, ¢ are arbitrary constants, and a and b are free positive parameters. As a result,
the original PDE (4) takes the form

ug = (ab) "2 {r 2up (ugg + ruy) — [(rug),)? ). (106)

Using a simple substitution u = (ab)?a (or t = abf), this equation is reduced to
Equation (96), the exact solutions of which are described in Section 12.

13. Reductions and Exact Solutions in Special Lorentz Coordinates

1°. In special Lorentz coordinates , i, which are introduced by the formulas
x =x9+afcoshyp, y=yg+ blsinhy, (107)

where x( and y are arbitrary constants, 2 and b are any non-zero constants, the PDE (4)
takes the form

uge = (ab) 2{Z 2ugg (upy — Cug) — (T uy))*} (108)
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Remark 18. Special Lorentz coordinates (107) and Equation (108) can be obtained from generalized
polar coordinates (105) and Equation (106) if we set in themasr = {, ¢ = iy and rename b = —ib,
where i = —1.

Remark 19. For xg = yo = 0 and a = b = 1, the quantity {* = x> — y? in (107) is an invariant
of the Lorentz transformation

. x—oy _ y—ox

¥ = —, ==, 109

V1—0? Y V1—0? (109

where the free parameter o satisfies the condition 0 < |o| < 1. Note that the one-parameter
transformation (109), which is a special case of transformation (8), preserves the form the original
Monge—Ampere-type PDE (4) (this follows from Corollary 2 with o = tanh B from Section 2) as
well as the form of the linear wave equation iyy = uyy.

Equation (108) differs from Equation (106) only in the sign of the second term on
the right-hand side. Therefore, its exact solutions can be sought in the same form as in
Section 12.

2°. Equation (108) admits solutions independent of the pseudo-angular variable 1,
which are described by the two-dimensional PDE

Ut = — (ﬂb)izgilugugg,

which, after substituting u = —(ab)>W and renaming { to p, reduces to Equation (91). This
circumstance allows us to obtain five exact solutions, described earlier in Items 3°-7° from
Section 11.

3°. Equation (108), using new mixed-type variables

u=t""2U@gy), =3t n=9+pnt, (110)

where « and f are arbitrary constants, is reduced to a two-dimensional Monge—-Ampere-
type PDE for the function U, which is omitted here.

The values of « = B = 0 in the PDE (110) correspond to a multiplicative separable
solution of the form u = t~2U(Z, ).

For U = U(&) in (110), we have a self-similar solution.

4°. The PDE (108), using other mixed-type variables

U= e*MtU(g/’?)/ g=e"g, n=1v-At

where 7y and A are arbitrary constants, also reduces to a two-dimensional Monge-Ampére-
type PDE, which is not written here.
5°. The PDE (108) also admits multiplicative separable solutions of the form

u= Uy, (111)
where the new desired function U = U(4, t) satisfies the two-dimensional PDE
Uy = (ab) 2(12UUyy — U5 — 48U72). (112)
6°. The PDE (112) has a traveling wave solution of the form

U=vin), n=¢-A,
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where A is an arbitrary constant, and the function V = V/(#) satisfies the autonomous ODE
Vi = (abA)"2(12VVy) — 9V} — 48V?).

The substitution ©(V) = (V,; )2 reduces this equation to a first-order linear ODE.
7°. The PDE (112) also admits a multiplicative separable solution of the form

U= (t+C1)?V(y),
where Cy is an arbitrary constant, and the function V = V() satisfies the autonomous ODE
4V Vyy —3(Vy)* =16V —2(ab)*V = 0. (113)
The substitution Z(V) = (Vl/’,)2 leads (113) to a first-order linear ODE
2VZi, —3Z —16V* —2(ab)?V =0,
the general solution of which is written as follows:
Z = CV3¥? £ 16V2 — 2(ab)?V,

where C; is an arbitrary constant. Integrating further, we obtain the general solution to the
ODE (113) in implicit form

-1/2

/[C2V3/2 +16V2 —2(ab)2V] 24V = £y + G5,

where Cj3 is an arbitrary constant.
8°. The PDE (112) admits generalized separable solutions of the form

U = F(t) + H()[Cy exp(—49) + Crexp(4p)], (114)

where C; and C; are arbitrary constants, and the functions F = F(t) and H = H(t) are
described by the ODE system

(ab)?F}{ = —48F? 4-576C,C, H?,

115
(ab)?H}} = 96FH. (113)
System (115) allows for particular solutions:
@R (b
C16(t+C3)?’ - T32VCG ()Y
14. Reductions and Exact Solutions Based on
a Fractional-Rational Transformation
The special fractional-rational transformation
¢ y=—T ) =0 (116)

YT a1 W+ pr+1 o+ B+ 1

where & and  are arbitrary constants, brings the PDE (4) to the form

WeeWnyy — wéq = (al + B + 1) wi. (117)
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Note that the fractional-rational transformation (116) brings the stationary Monge-Ampeére
equation uyytyy — uiy = f(x,y) to a similar form with a different right-hand side [7,18].
Setting B = 0in (116) and (117), we obtain the PDE

WerWyy — w%n = (1 + sz)_Swtt. (118)
Let us now describe some exact solutions of a more general PDE (118) as follows:

Wegtoyy — W, = f(&)we, (119)

where f = f({) is an arbitrary function.
1°. The PDE (119) has generalized separable solutions of the form

w = 3(af +b)P + (c&+d)t+ Z(E,n),

where 4, b, ¢, and d are arbitrary constants, and the function Z = Z(g,#) satisfies the
stationary Monge-Ampere PDE

ZgeZyy — 73, = f(E)(ag + ). (120)

Equations of this type were considered in [16]. The PDE (120) admits the following general-
ized separable solutions in closed form:

Z =2y [ \=£@)z +b)dg + 0(2),

CZ
Z=Cof + Cod + 3280+ —zél [z [ r@) @z +b)dz + o+ Can,
1 ) C3 1
2=t rems 2 )+ g [ [ @ nagic

where ¢({) is an arbitrary function, Cy, ..., C4 are arbitrary constants.
2°. Passing in the PDE (119) to new variables of self-similar type:

w=t"2*2W(0), 0=nt, (121)
where k is a free parameter, we arrive at the two-dimensional Monge-Ampeére-type PDE:
WezWag — Wig — (&) [K26°Woo — k(3k + 5)0Wp + (2k +2) (2k + 3)W] = 0.

Solution (121) is invariant under the transformation group which is specified by
the operator

d 0 d
Y = kq% ETRE (2k—|—2)w%,

admitted by the PDE (119).
3°. Passing in the PDE (119) to new variables of limit self-similar type:

w = exp(—2pt)W(E,0), 6 =-exp(Bpt)y, (122)
where f is a free parameter, we arrive at the two-dimensional Monge—Ampere-type PDE

Wiz Wag — Wiy — B2£ () (6*Wag — 30Wp + 4W) = 0.
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Solution (122) is invariant under the transformation group which is specified by
the operator

d d d

admitted by the PDE (119).
4°. Equation (119) admits a one-dimensional invariant solution

w=t"79(Z), (123)
where the function ¢ = ¢(¢&) satisfies the ODE

P9z —2(9F)* —3f(§)¢ = 0.

Solution (123) is invariant under the transformation group which is specified by

the operator

d d

admitted by the PDE (119).

15. Conclusions

We study a highly nonlinear partial differential equation with three independent
variables (4), namely the following;:

2
Ut = UxxUyy — Uyy,

which is encountered in geophysical fluid dynamics. To find exact solutions to this nonlinear
PDE, classical method of symmetry reduction, methods of generalized and functional
separation of variables, the principle of structural analogy of solutions, and as well as
various combinations of all of the above methods were used. One-dimensional symmetry
reductions leading to invariant solutions that are described by single ODEs are considered.
A large number of new non-invariant solutions in closed form were obtained, including
more than thirty solutions that are expressed through elementary functions. More than
twenty two-dimensional reductions are discussed, when the three-variable PDE under
consideration is reduced to a single simpler two-variable PDE or a system of such PDEs.
Several classes of solutions have been discovered that can be expressed in terms of solutions
of linear wave and heat type PDEs. To construct exact solutions, in addition to Cartesian
coordinates, polar, generalized polar, and special Lorentz coordinates were also used.
A number of specific examples demonstrate that the type of the mixed, highly nonlinear
PDE under consideration, depending on the choice of its specific solutions, can be either
hyperbolic or elliptic. All obtained exact solutions were verified using the computer algebra
system Maple.

The applied aspect of this paper is that the solutions found in closed form, especially
in elementary functions, can be used for direct error estimation and testing of numerical
and approximate analytical methods for solving complex problems described by highly
nonlinear PDEs (the type of which can vary depending on the choice of solutions). Exact
solutions can also be utilized to improve the corresponding sections of computer programs
designed for symbolic calculations (in computer algebra systems such as Mathematica,
Maple, etc.). Furthermore, the described symmetries, reductions, and solutions can be used
to update and expand the reference literature on nonlinear PDEs.

Below, we formulate possible promising directions for further research on highly
nonlinear PDE (4) and related equations:
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1.  To more fully describe the one-dimensional and two-dimensional symmetry reduc-
tions in PDE (4), find optimal systems of one-dimensional and two-dimensional
subalgebras.

2. Describe the symmetries and find exact solutions to the multidimensional generaliza-
tion of PDE (4) as well as other related, more complex, highly nonlinear PDEs.

3. Formulate well-posed statements of initial-boundary value (and boundary value)
problems and prove existence and uniqueness theorems for them.

4.  Obtain and analyze numerical solutions to the initial-boundary value and boundary
value problems (taking into account that PDE (4) is of mixed type). Verify the numeri-
cal methods used by comparing them with test problems based on exact solutions.

The formulated research directions may be useful for interested readers in choosing
topics for further work.
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