
ar
X

iv
:2

41
1.

19
34

9v
2 

 [
nl

in
.S

I]
  7

 J
an

 2
02

5

Exact solutions and reductions of

nonlinear Schrödinger equations with delay ∗

Andrei D. Polyanin∗, Nikolay A. Kudryashov∗∗

∗ Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences,

pr. Vernadskogo 101, bldg. 1, Moscow, 119526 Russia

∗∗ Department of Applied Mathematics, National Research Nuclear

University MEPhI, 31 Kashirskoe Shosse, 115409 Moscow, Russia

e-mails: polyanin@ipmnet.ru, nakudryashov@mephi.ru

For the first time, Schrödinger equations with cubic and more complex

nonlinearities containing the unknown function with constant delay are analyzed.

The physical considerations that can lead to the appearance of a delay in such

nonlinear equations and mathematical models are expressed. One-dimensional non-

symmetry reductions are described, which lead the studied partial differential

equations with delay to simpler ordinary differential equations and ordinary

differential equations with delay. New exact solutions of the nonlinear Schrödinger

equation of the general form with delay, which are expressed in quadratures, are

found. To construct exact solutions, a combination of methods of generalized

separation of variables and the method of functional constraints are used. Special

attention is paid to three equations with cubic nonlinearity, which allow simple

solutions in elementary functions, as well as more complex exact solutions with

generalized separation of variables. Solutions representing a nonlinear superposition

of two traveling waves, the amplitude of which varies periodically in time and space,

are constructed. Some more complex nonlinear Schrödinger equations of a general

form with variable delay are also studied. The results of this work can be useful for

the development and improvement of mathematical models described by nonlinear

Schrödinger equations with delay and related functional PDEs, and the obtained
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exact solutions can be used as test problems intended to assess the accuracy of

numerical methods for integrating nonlinear equations of mathematical physics

with delay.

Keywords: nonlinear Schrödinger equations, PDEs with delay, exact solutions,

solutions in quadratures, solutions in elementary functions, generalized separable

solutions

1 Introduction

1.1 Nonlinear Schrödinger equations and related PDEs

It is well known that the nonlinear Schrödinger equation is one of popular

nonlinear partial equation which is used in the many areas of theoretical physics

including nonlinear optics, superconductivity and plasma physics. It takes the form

[1–8]:

i ut + k uxx + f(|u|)u = 0, (1)

where u = u(x, t) is the desired complex-valued function of real variables, the

quadrate of the module of which corresponds to the intensity of light, t is the

time, x is the spatial variable, f(|u|) is the potential, k is a parameter of equation,

i2 = −1.

The classical nonlinear Schrödinger equation with cubic nonlinearity, which

is determined by the function

f(|u|) = b|u|2, (2)

is well known in science. Eq. (1) describes mathematical models for wave

propagation in essentially all sections of physics where wave processes are

considered. However, this equation became especially popular after the theoretical

and experimental substantiation of the application of the nonlinear Schrödinger

equation in nonlinear optics [9–12]. When describing the propagation of pulses in

an optical fiber, the expression with the second derivative is responsible for the

dispersion of the pulse, the function f(|u|) characterizes the interaction of the

light pulse with the fiber material and determines the nonlinear dependence of the

refractive index of light. For the classical nonlinear Schrödinger equation, function
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(2) corresponds to the quadratic dependence of the refractive index and is called

Kerr nonlinearity. The uniqueness of equation (1)–(2) is explained not only by

the fact that this equation is the basic equation for describing the processes of

information transmission in optical medium, but also by the fact that it belongs to

the class of integrable partial differential equations. The equation has an infinite

number of conservation laws, Bäcklund transformations, and passes the Painlevé

test [13–17]. Exact solutions of the classical nonlinear Schrödinger equation and

related equations of mathematical physics can be found, for example, in reference

books [18–20]. The Cauchy problem for equation (1)–(2) with an initial condition

of a general form is solved by the method of the inverse scattering problem [4, 5].

Note that some exact solutions of nonlinear Schrödinger equation (1)

for arbitrary functions f(|u|) are given in [18, 20]. The main directions of

generalizations of the nonlinear Schrödinger equation in describing the propagation

of optical pulses in a nonlinear medium are aimed at expanding mathematical

models taking into account high-order derivatives and additional nonlinear expres-

sions. The introduction of high-order derivatives for generalizations of the nonlinear

Schrödinger equation is dictated by the need to take into account the high-order

dispersion during pulse propagation. At the same time, taking into account the

non-Kerr nonlinearity in the propagation of optical pulses makes it possible to

take into account more complex processes in the propagation of optical solitons,

which lead to more complex mathematical models, the analytical study of which

leads to additional difficulties. Solutions to related modified and more complex

nonlinear Schrödinger-type equations one also can find in [18–43].

1.2 Differential equations with delay

For mathematical modeling of many phenomena and processes exhibiting

the properties of heredity (or aftereffect), when the rate of change of the desired

value depends not only on its current value, but also on some value (or several

values) in the past, differential equations with a delay are used. In biology and

biomechanics, lag is associated with a limited rate of transmission of nerve and

muscle reactions in living tissues. In medicine, in tasks on the spread of infectious

diseases, the time delay is determined by the incubation period (the interval from
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the moment of infection to the appearance of the first signs of the disease). In

the dynamics of populations, the delay is due to the fact that individuals do not

participate in reproduction immediately, but only after reaching reproductive age.

In the dynamics of populations, the delay is due to the fact that individuals do not

participate in reproduction immediately, but only after reaching reproductive age.

In control theory, delays occur due to limited signal propagation speeds and limited

speeds of technological processes. The most common partial differential equations

with a delay, methods for solving them and some applications are described, for

example, in books [45, 46].

To formulate the simplest problems with aftereffect, ordinary differential

equations (ODEs) are used, depending on the time t, which, in addition to the

desired function u(t), also contain the function ū = u(t − τ), where τ > 0 is the

constant time delay. Partial differential equations of the reaction-diffusion type are

often used to describe related, more complex, spatially inhomogeneous problems

with delay [45, 46]:

ut = kuxx + F (u, ū), ū = u(x, t− τ), (3)

where k > 0 is the diffusion coefficient, t is the time, x is the spatial variable,

F (u, ū) is the kinetic function, and τ > 0 is the time delay (further, τ is considered

a constant unless otherwise specified). The equation with delay (3) is a natural

generalization of the usual nonlinear reaction-diffusion equation without delay with

the function F (u, ū) = f(u). A special case of Eq. (3) with F (u, ū) = f(ū) admits

simple physical interpretation: the transfer of matter in a locally nonequilibrium

medium exhibits inertial properties, i.e. the system does not react to the impact

instantly, as in the classical locally equilibrium case, but with a time delay τ .

Many exact solutions of reaction-diffusion equations of the form (3) with

constant delay and related nonlinear parabolic equations with delay can be found

in [20,46–51]. In [20,46,52,53] some exact solutions of more complicated reaction-

diffusion equations with variable delay of various types are described. Exact

solutions of nonlinear wave equations with constant and variable delay, which are

formally obtained from (3) by replacing the first time derivative ut with the second

derivative utt, are presented in [20, 46, 54, 55].
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Similar reasoning can be extended to mathematical models described by

nonlinear Schrödinger equations. Although the speed of propagation of an electro-

magnetic wave through an optical fiber has a huge speed, the reaction of the optical

fiber material has some inertia, which can lead to a delay. This inertia is especially

evident in the propagation of ultrashort optical solitons for femtosecond pulses

of less than 1ps. In addition, as noted in [1], taking into account forced Raman

scattering when describing ultrashort pulses in an optical fiber led to the discovery

of a new phenomenon called soliton frequency self-shift, which is directly related

to the inertia of scattering and was explained by its occurrence. It is established

that this phenomenon generates a continuous shift in the carrier frequency of the

optical soliton, in which its spectrum becomes so wide that the high-frequency

components begin to transfer their energy to the low-frequency components. The

above leads to the expediency of taking into account the delay in the expressions for

the potential in various generalizations and further modifications of the nonlinear

Schrödinger equations.

1.3 Terminology: what we mean when we say about exact solutions of

nonlinear PDEs with delay

In this paper, exact solutions of nonlinear partial differential equations with

delay are understood as the following solutions [46]:

(a) Solutions that are expressed in terms of elementary functions.

(b) Solutions that are expressed in quadratures, i.e. through elementary

functions, functions included in the equation (this is necessary if the equation

contains arbitrary or special functions) and indefinite integrals.

(c) Solutions that are expressed through solutions of ordinary differential

equations or systems of such equations.

(d) Solutions that are expressed in terms of solutions of ordinary differential

equations with delay or systems of such equations.

Various combinations of solutions described in (a)–(d) are also allowed. In

cases (a) and (b), the exact solution can be presented in explicit, implicit, or

parametric form. It is important to note that the presence of a delay in the

equations of mathematical physics significantly complicates the analysis of such
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equations and corresponding initial boundary value problems [45,46]. In particular,

PDEs with constant delay do not allow self-similar solutions [46], which often have

simpler PDEs without delay.

Note that exact solutions are mathematical standards that are often used as

test problems to check the adequacy and assess the accuracy of numerical methods

for integrating nonlinear PDEs and PDEs with delay. The most preferable for these

purposes are simple solutions from Items (a) and (b). It is these exact solutions

that are described further in this article.

Remark 1. Of great interest are also solutions of nonlinear PDEs with delay,

which are expressed through solutions of linear PDEs without delay (examples

of such nonlinear PDEs with delay can be found in [20, 46, 56]). According to

the terminology introduced in [57], such equations can be called conditionally

integrable nonlinear PDEs (perhaps more accurately, they can be called partially

linearizable PDEs).

It is important to note that for complex nonlinear PDEs depending on one or

more arbitrary functions (and it is precisely such nonlinear PDE that is considered

in this article), the vast majority of existing analytical methods for constructing

exact solutions are either not applicable at all or are weakly effective. Statistical

processing of reference data [18, 20] showed that at present the majority of exact

solutions of such PDEs without delay were obtained by methods of generalized

and functional separation of variables. Significantly fewer exact solutions of such

equations were obtained by nonclassical methods of symmetry reductions and

the method of differential constraints, which are much more difficult to use in

practice. In general, very few nonlinear PDEs without delay depending on arbitrary

functions that admit exact closed-form solutions are known today. For nonlinear

PDEs with delay that depend on arbitrary functions, the most effective method

for constructing exact solutions is the method of functional constraints [46, 48].

In this article, we will consider a nonlinear Schrödinger equation with delay

that is much more complex than the nonlinear Schrödinger equation without delay

(1). In this equation, instead of the potential f(u), we include a potential of the

general form F (|u|, |ū|), where F is an arbitrary function of two arguments and
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ū = u(x, t− τ) is an unknown function with delay. The presence of an arbitrary

function of two arguments in the equation under consideration, as well as the

delay, are highly complicating factors, since for such equations the vast majority

of existing analytical methods for constructing exact solutions either do not work

at all or do not work effectively enough.

2 Nonlinear Schrödinger equation with delay. Special cases

and transformations

2.1 Nonlinear Schrödinger equation of general form with delay

Let us consider the one-dimensional nonlinear Schrödinger equation of the

general form with delay

iut + kuxx + F (|u|, |ū|)u = 0, ū = u(x, t− τ), (4)

where u = u(x, t) is the desired complex-valued function of real variables, k > 0

is a parameter, F (z1, z2) is an arbitrary real continuous function of two variables,

τ > 0 is the time delay, and i2 = −1. The nonlinear Schrödinger equation with

delay (4) is generalization of the usual nonlinear Schrödinger equation without

delay (1), which is determined by formula F (|u|, |ū|) = f(|u|).
We will specifically highlight three functions

F (|u|, |ū|) = b|ū|2, F (|u|, |ū|) = b|u||ū|, F (|u|, |ū|) = b1|u|2 + b2|ū|2, (5)

that determine the potentials of equations of the form (4) with cubic nonlinearity,

which in the absence of delay (i.e., at τ = 0) lead to the classical nonlinear

Schrödinger equation (1)–(2). The nonlinear Schrödinger equations with delay with

quadratic potentials F (|u|, |ū|) = b1|u|2 + b2|u||ū| + b3|ū|2 will also be considered

in Section 5.

2.2 Transformations of the nonlinear Schrödinger equation with delay

Let us consider the transformations that will be used further to analyze the

nonlinear Schrödinger equation with delay.

1◦. The transformation

x = C1X + C2, t = C3T + C4, u = U(X, T ) exp[i(C5T + C6)], (6)
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where C1, . . . , C6 are arbitrary real constants (C1, C3 6= 0), leads Eq. (4) to an

equation of the similar form

iUT + kC3C
−2
1 UXX + [C3F (|U |, |Ū |)− C5]U = 0,

Ū = U(X, T − τ∗), τ∗ = τ/C3.
(7)

2◦. Let us represent the desired complex-valued function in exponential form

u = reiϕ, r = |u|, (8)

where r = r(x, t) > 0 and ϕ = ϕ(x, t) are real functions.

Differentiating (8), we find the derivatives:

ut = (rt + irϕt)e
iϕ,

ux = (rx + irϕx)e
iϕ,

uxx = [rxx − rϕ2
x + i(2rxϕx + rϕxx)]e

iϕ.

(9)

Substitute (9) into (4), and then divide all terms by eiϕ. Having further equated

the real and imaginary parts of the obtained relation to zero, we arrive at the

following system of two real PDEs with delay:

−rϕt + krxx − krϕ2
x + F (r, r̄)r = 0, r̄ = r(x, t− τ),

rt + 2krxϕx + krϕxx = 0.
(10)

The system of functional PDEs (10) together with expression (8) will be

used further to construct exact solutions of the nonlinear Schrödinger equation

with delay (4).

3 Exact solutions of the general nonlinear Schrödinger

equation with delay

Below we describe exact solutions of the nonlinear Schrödinger equation with

delay (4) with a potential of the general form, which is given by an arbitrary

function of two variables F (|u|, |ū|). In order to construct exact solutions we use a

combination of the methods of generalized separation of variables (see, for example,

[18,58,59]) and the method of functional constraints [46,48]. Note that this paper

uses exactly the same functional constraints as in work [44].
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Remark 2. To construct exact solutions of the nonlinear PDE with delay (4),

one can also use the principle of structural analogy of solutions, which is formulated

as follows: exact solutions of simpler equations can serve as a basis for constructing

solutions of more complex related equations (see, for example, [46, 52]). Namely,

to construct exact solutions of equation with delay (4) one can use the structure

of known exact solutions of the simpler related equation without delay (1) (these

auxiliary exact solutions are given, for example, in [18, 20]).

Below we will first indicate the general structure of the solutions of the PDE

system with delay (10), and then present the main intermediate ODEs or delay

ODEs and final formulas. All results are easily verified by direct substitution of

the obtained exact solutions into the delay PDE (4) or system (10).

3.1 Traveling wave solutions with constant amplitude

The system of equations (10) has the following simple exact solutions of the

form

r = C1, ϕ = C2x+ C3 +Bt, B = F (C1, C1)− kC2
2 , (11)

where C1, C2, C3 are arbitrary real constants. Substituting (11) into (8), we obtain

a traveling wave solution of the considered nonlinear PDE (4):

u = C1e
i(C2x+C3+Bt), B = F (C1, C1)− kC2

2 .

This solution is periodic in space and time with a constant amplitude; it does not

depend on the time delay τ .

3.2 Time-periodic solutions with amplitude depending on spatial

variable

The system of equations (10) admits more complex periodic in time t, but

independent of the time delay τ , exact solutions of the form

r = r(x), ϕ = C1t+ θ(x), (12)

where C1 is an arbitrary constant, and the functions r = r(x) and θ = θ(x) are

described by an ODE system of the form

kr′′xx − kr(θ′x)
2 − C1r + F (r, r)r = 0,

2r′xθ
′
x + rθ′′xx = 0.

(13)

9



Integrating the second equation (13) twice, we consistently find

θ′x = C2r
−2, θ = C2

∫

r−2dx+ C3, (14)

where C2 and C3 are arbitrary constants. Substituting (14) into the first equation

(13), we obtain a second-order nonlinear ODE of the autonomous form

kr′′xx − kC2
2r

−3 − C1r + F (r, r)r = 0. (15)

The general solution of Eq. (15) can be represented in implicit form

∫
[

C1

k
r2 − C2

2r
−2 − 2

k

∫

rF (r, r) dr+ C4

]−1/2

dr = C5 ± x, (16)

where C4 and C5 are arbitrary constants.

Thus, it is shown that the system of PDEs with delay (10) admits the exact

solution (12), which can be expressed in quadratures.

Note that for Schrödinger equations with cubic potentials, which are

determined by the functions (5), the left part (16) can be expressed in terms of

elliptic integrals.

Remark 3. A more complex nonlinear Schrödinger equation with variable

delay (4), in which τ = τ(x, t) > 0 is an arbitrary continuous function, also admits

a solution of the form (8), (12), where the function r = r(x) is described by ODE

(15), and the function θ = θ(x) is found using the second relation (14). Note that

exact solutions of nonlinear reaction-diffusion equations with variable delay have

been considered in [20, 46, 52, 53].

3.3 Generalized separable solutions with amplitude depending on time

Let us show that the system of PDEs (10) admits exact generalized separable

solutions of the form

r = r(t), ϕ = a(t)x2 + b(t)x+ c(t). (17)

To do this we substitute (17) into (10). As a result the first equation of the system

of equations is reduced to quadratic equation with respect to x, the coefficients

of which depend on time. By equating the functional coefficients of this quadratic

10



equation to zero and adding the second equation of the system, which in this case

depends only on t, we obtain the following system of ODEs:

a′t = −4ka2,

b′t = −4kab,

c′t = −kb2 + F (r, r̄),

r′t = −2kar.

(18)

Here, the first three equations were divided by r and the notation was introduced

r̄ = r(t− τ).

First we integrate the first equation of system (18), then the second and

fourth, and finally the third. As a result we have

r =
C3√
t+ C1

, a =
1

4k(t+ C1)
, b =

C2

2k(t+ C1)
,

c =
C2

2

4k(t+ C1)
+

∫

F

(

C3√
t+ C1

,
C3√

t− τ + C1

)

dt+ C4,

(19)

where C1, C2, C3, and C4 are arbitrary constants. Substituting the expressions

(19) into (17), we obtain

r =
C3√
t+ C1

, ϕ =
(x+ C2)

2

4k(t+ C1)
+

∫

F

(

C3√
t+ C1

,
C3√

t− τ + C1

)

dt+ C4. (20)

Note that for the nonlinear Schrödinger equations with cubic potentials,

which are defined by functions (5), the integral on the right-hand side of the second

expression (20) is expressed in term of elementary functions. In particular, for the

first function (5) the solutions (20) take the form

r =
C3√
t+ C1

, ϕ =
(x+ C2)

2

4k(t+ C1)
+ bC2

3 ln(t− τ + C1) + C4.

Remark 4. A more complex nonlinear Schrödinger equation (4) with variable

delay, where τ = τ(t) > 0 is an arbitrary continuous function, also admits a

solution of the form (8), (12), in which the functions r = r(t) and θ = θ(x, t)

are found by formulas (20) with τ = τ(t). For comparison, it is important to note

that exact solutions (other than traveling wave solutions) of the general nonlinear

reaction-diffusion equation with constant delay (3) are currently unknown. Even

more so are the solutions of this nonlinear reaction-diffusion equation with variable

delay.
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3.4 Solutions that are nonlinear superpositions of traveling waves

1◦. The system of equations (10) admits exact solutions of the form

r = r(z), ϕ = C1t+ C2x+ θ(z), z = x+ λt, (21)

where C1, C2, and λ are arbitrary constants, which generalizes solution (12). The

special case C1 = C2 = 0 in (21) defines the traveling wave solution.

Substituting (21) into (10), we obtain a mixed nonlinear system consisting

of an ODE with delay and an ODE without delay:

−r(C1 + λθ′z) + kr′′zz − kr(C2 + θ′z)
2 + F (r, r̄)r = 0, r̄ = r(z − λτ),

λr′z + 2kr′z(C2 + θ′z) + krθ′′zz = 0.
(22)

The substitution ξ = θ′z allows us to lower the order of this system by one.

Special case. In the particular case θ(z) = C3, λ = −2kC2 for C2 < 0 system

(22) is reduced to the single second-order ODE with constant delay

kr′′zz − (C1 + C2
2k)r + F (r, r̄)r = 0, r̄ = r(z − τ1), τ1 = −2kC2τ. (23)

Note that solution (21) with θ(z) = C3 can be interpreted as a nonlinear

superposition of two traveling waves (with different velocities in the variables r

and ϕ).

2◦. For the nonlinear Schrödinger equation with delay (4) with a potential of

the special form

F (|u|, |ū|) = f(|u|2 + |ū|2),

where f(z) is an arbitrary function, in the ODE with delay (23) one should set

F (r, r̄) = f(r2 + r̄2). In this case, Eq. (23) admits exact periodic solutions

r(z) = βn| sin(σnz + C4)|, n = 0, 1, 2, . . . (24)

Here C4 is an arbitrary constant, the parameters βn are found from the algebraic

(transcendental) equation

f(β2
n) = kσ2

n + C1 + C2
2k,

and the constants σn are determined by the formulas

σn =
π

2τ1
(1 + 2n) =

π

2λτ
(1 + 2n), n = 0, 1, 2, . . . (25)
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3◦. The nonlinear Schrödinger equation with delay (4) with a cubic nonlinearity

of the form

F (|u|, |ū|) = b(|u|2 + |ū|2), b = const,

has an exact solution of the form (21), where θ(z) = C3, λ = −2kC2 (for C2 < 0),

the function r(z) is given in (24), and the constants βn and σn are determined by

the formulas

βn =

√

kσ2
n + C1 + C2

2k

b
, σn =

π

2τ1
(1 + 2n) =

π

2λτ
(1 + 2n), n = 0, 1, 2, . . .

4 Generalized separable solutions of the Schrödinger equations

with cubic nonlinearities and delay

4.1 Structure of exact solutions for the equations under consideration

The nonlinear Schrödinger equations with delay (4) and cubic nonlinearities,

which are defined by the functions (5), admit exact generalized separable solutions

of the form

u(x, t) = (ax+ c) exp[i(αx2 + βx+ γ)], (26)

where the five defining functions a = a(t), c = c(t), α = α(t), β = β(t), and

γ = γ(t) are described by mixed systems of equations containing ODEs without

delay and ODEs with delay.

Solution (26) in variables (8) is reduced to system (10), in which one should

put

r = ax+ c, ϕ = αx2 + βx+ γ. (27)

Substitute functions (27) into system (10). Using the dependencies (5) and

separating the variables in the resulting equations, we arrive at systems for defining

functions. These systems for all three dependencies (5) are listed below.
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4.2 Mixed systems of equations for the defining functions

1◦. In the case F (|u|, |ū|) = b|ū|2 the system of equations for the defining

functions is written as follows:

a′t = −6kaα,

c′t = −2kaβ − 2kcα,

α′
t = −4kα2 + bā2,

β ′
t = −4kαβ + 2bāc̄,

γ ′
t = −kβ2 + bc̄2,

(28)

where ā = a(t− τ) and c̄ = c(t− τ).

2◦. For F (|u|, |ū|) = bu|ū| the system of equations for the defining functions

has the form
a′t = −6kaα,

c′t = −2kaβ − 2kcα,

α′
t = −4kα2 + baā,

β ′
t = −4kαβ + b(ac̄+ āc),

γ ′
t = −kβ2 + bcc̄.

(29)

3◦. For F (|u|, |ū|) = b1|u|2 + b2|ū|2 the system of equations for the defining

functions is written as follows:

a′t = −6kaα,

c′t = −2kaβ − 2kcα,

α′
t = −4kα2 + b1a

2 + b2ā
2,

β ′
t = −4kαβ + 2b1ac+ 2b2āc̄,

γ ′
t = −kβ2 + b1c

2 + b2c̄
2.

(30)

The mixed systems (28)–(30) consisting of ordinary differential equations

and ordinary differential equations with delay are significantly simpler than the

considered nonlinear Schrödinger equations with delay (4)–(5). These systems can,

for example, be integrated by the numerical methods described in [46].

In the special case a = 0, the mixed systems (28)–(30) are completely

integrated, since in this case solution (26) coincides, up to obvious re-notations,

14



with solution (17) of the more general nonlinear Schrödinger equation with delay

(4).

Note that the solutions of nonlinear Schrödinger equations with delay (4) and

cubic nonlinearities described in this section, which are determined by dependencies

(5), are generalized to the case of variable delay of the general form (in these

equations and solutions, τ = const should be replaced by τ = τ(t)).

5 Solutions of Schrödinger equations with other nonlinearities

and delay

5.1 Weakly nonlinear Schrödinger equations with delay

Let us first consider the weakly nonlinear Schrödinger equations with a delay

and two potentials of a special but rather general form that satisfy the condition

F (|u|, |u|) = const. (31)

This condition means that at τ → 0, the nonlinear Schrödinger equation with

delay (4) degenerates into a linear Schrödinger equation without delay.

1◦. Using the system of equations (10) it is easy to verify that the nonlinear

Schrödinger equation with delay (4) and a potential of the form

F (|u|, |ū|) = f(|u| − |ū|), (32)

where f(z) is an arbitrary function, has solution (8) with defining functions linear

in both independent variables

r = C1x+ 2kC1C2t+ C3, ϕ = −C2x+ [f(2kC1C2τ)− kC2
2 ]t+ C4, (33)

which include four arbitrary real constants C1, C2, C3, and C4. Note that potential

(32) satisfies condition (31).

Setting f(z) = bz2 in (32), we obtain the nonlinear Schrödinger equation

with delay (4) and cubic nonlinearity determined by the potential

F (|u|, |ū|) = b(|u| − |ū|)2.
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2◦. The nonlinear Schrödinger equation with delay (4) and potential (32) has

also other exact solutions of the form (8) with functions

r = C1 sin(C2x+ βnt+ C3), ϕ = Anx +Bnt+ C4, (34)

where C1, C2, C3, and C4 are arbitrary real constants (C2 6= 0), and other

parameters are defined as follows

βn =
2πn

τ
, An = − βn

2kC2
, Bn = −kC2

2 −
β2
n

4kC2
2

+ f(0), n = 0, ±1, ±2, . . .

(35)

The solutions which are described by formulas (8), (34), and (35) represent a

nonlinear superposition of two traveling waves with periodically varying amplitude.

3◦. The nonlinear Schrödinger equation with delay (4) with a more general

than (32) potential of the form

F (|u|, |ū|) = f(z), z = g(|u|)− g(|ū|), (36)

where f(z) and g(w) are arbitrary functions, also admits exact solutions which are

determined by formulas (8), (33) and (8), (34), (35).

Setting in (36) f(z) = bz and g(w) = w2, we obtain the nonlinear

Schrödinger equation with delay (4) with cubic nonlinearity given by the potential

F (|u|, |ū|) = b(|u|2 − |ū|2).

4◦. Let us now consider the nonlinear Schrödinger equation with delay (4)

and another potential satisfying the condition (31) and having the form

F (|u|, |ū|) = f(|ū|/|u|). (37)

We look for an exact solution of equation (4), (37) of the form (8), assuming

r = a(x)b(t), (38)

where the functions of different arguments a = a(x) and b = b(t) must be found in

the course of further analysis. Substituting (38) into system (10), and then divide
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the resulting equations by r = ab. Taking into account the type of potential (37),

as a result we obtain the functional differential equations with delay

− ϕt + k
a′′xx
a

− kϕ2
x + f

( b̄

b

)

= 0, b̄ = b(t− τ),

b′t
b
+ 2k

a′x
a
ϕx + kϕxx = 0,

(39)

containing functions of different arguments.

The function ϕ is looked for as the sum of two functions

ϕ = c(x) + d(t). (40)

Substituting (40) into the system of equations (39) and separating the variables,

we come to a mixed system consisting of one ODE with delay and three ODEs

without delay:

k
a′′xx
a

− k(c′x)
2 = C1,

d′t − f
( b̄

b

)

− C1 = 0,

2k
a′x
a
c′x + kc′′xx = C2,

b′t
b
+ C2 = 0,

(41)

where C1 and C2 are arbitrary constants.

Integrating the fourth ODE (41), and then the second equation, we find

functions depending on time

b = C3e
−C2t, d = [C1 + f(eC2τ )]t+ C4, (42)

where C3 and C4 are arbitrary constants. Functions depending on the spatial

coordinate are described by the nonlinear system of second-order ODEs

k
a′′xx
a

− k(c′x)
2 = C1,

2k
a′x
a
c′x + kc′′xx = C2.

(43)

Note that ODEs (43) admit the simple exact solution

a = C5e
βx, c = γx+ C6,
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where C5 and C6 are arbitrary constants, and β and γ are the real roots of the

algebraic system of equations

kβ2 − kγ2 = C1, 2kβγ = C2,

which is reduced to the biquadratic equation.

In the general case, the system (43) using the transformation

ξ = a′x/a, η = c′x

is reduced to an autonomous system of first-order ODEs, which, after eliminating

x, is reduced to a single first-order ODE (to the Abel equation of the second kind).

5◦. The nonlinear Schrödinger equation with delay (4) with potential (37)

has also other exact solutions of the form (8) with functions

r = C1 sin(C2x+ βnt+ C3), ϕ = Anx +Bnt+ C4, (44)

where C1, C2, C3, and C4 are arbitrary real constants (C2 6= 0), and other

parameters are determined by the formulas

βn =
2πn

τ
, An = − βn

2kC2
, Bn = −kC2

2 −
β2
n

4kC2
2

+ f(1), n = 0, ±1, ±2, . . .

(45)

The solutions described by the formulas (8), (44), (45) represent a nonlinear

superposition of two traveling waves, periodic in time and space.

6◦. The nonlinear Schrödinger equation with delay (4) with a more general

than (37) potential of the form

F (|u|, |ū|) = f(z), z = g(|ū|)/g(|u|),

where f(z) and g(w) are arbitrary constants, also admits exact solutions, which

are determined by the formulas given above in 3◦ and 4◦ of this section.

5.2 Other nonlinear Schrödinger equations with delay. Some remarks

1◦. Using the system of equations (10) it can be shown that the nonlinear

Schrödinger equation with delay (4) and the potential

F (|u|, |ū|) = f(|u|p − c|ū|p), c > 0, (46)
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has solution (8) with functions

r = C1 exp(C2x + λt), ϕ = Ax+ Bt+ C3, (47)

where C1, C2, and C3 are arbitrary real constants (C2 6= 0), and other parameters

are expressed by the formulas

λ =
ln c

pτ
, A = − λ

2kC2
, B = kC2

2 −
λ2

4kC2
2

+ f(0). (48)

Substituting f(z) = bz2 and p = 1 into (46), we arrive at the Schrödinger

equation with delay (4) and cubic nonlinearity determined by a potential of the

form

F (|u|, |ū|) = b(|u| − c|ū|)2, c > 0.

Setting f(z) = bz and p = 2 in (46), we obtain the Schrödinger equation

with delay (4) and cubic nonlinearity with the potential

F (|u|, |ū|) = b(|u|2 − c|ū|2), c > 0.

2◦. The nonlinear Schrödinger equation with delay (4) with a more general

than (46) potential of the form

F (|u|, |ū|) = f(z), z = (|u|p − c1|ū|p)g(|u|, |ū|), c1 > 0, (49)

where f(z) and g(v, w) are arbitrary functions, admits exact solutions, which for

c1 6= 1 are determined by the formulas (8), (47)–(48), and for c1 = 1 by the

formulas (8), (34)–(35).

Setting in (49) f(z) = bz, g(v, w) = v − c2w, and p = 1, we obtain the

nonlinear Schrödinger equation with delay (4) and cubic nonlinearity, given by the

potential

F (|u|, |ū|) = b(|u| − c1|ū|)(|u| − c2|ū|). (50)

For c1 > 0, c2 > 0, and c1 6= c2 (c1, c2 6= 1), the nonlinear Schrödinger equation

with delay (4), (50) admits two exact solutions, which are described by the formulas

(8), (47)–(48) for c = c1 and c = c2.

Note that any quadratic potential of the general form F (|u|, |ū|) = b1|u|2 +
b2|u||ū|+ b3|ū|2, subject to the condition b21 − 4b1b2 > 0, is reduced to a potential

of the form (50).
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Remark 5. A linear Schrödinger equation of the special form was studied

in [60], where delay was taken into account in space derivatives.

Remark 6. Nonlinear Schrödinger equations with distributed delay containing

integral terms were considered in [45, 61–63].

Brief conclusion

In this paper, for the first time, the general nonlinear Schrödinger equation

is investigated, the potential of which is set using an arbitrary function of two

arguments, depending on the unknown function and on the unknown function with

delay. One-dimensional reductions have been described, which lead the equations

under consideration to ordinary differential equations and ordinary differential

equations with delay. A number of exact solutions of nonlinear Schrödinger

equations with delay, which have been expressed in quadratures or elementary

functions, are given. Solutions have been constructed, the amplitude of which varies

periodically in time and space. All obtained results are new. The exact solutions

presented in the article can be used to test numerical methods for integrating

nonlinear equations of mathematical physics with delay. It is important to note

that the exact solutions obtained are valid for an arbitrary function f(|u|, |ū|)
included in the general nonlinear Schrödinger equation with delay (4), so they can

be used for a wide variety of problems by specifying a specific form of this function.
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