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Abstract: This study is devoted to reaction–diffusion equations with spatially anisotropic time
delay. Reaction–diffusion PDEs with either constant or variable transfer coefficients are considered.
Nonlinear equations of a fairly general form containing one, two, or more arbitrary functions and
free parameters are analyzed. For the first time, reductions and exact solutions for such complex
delay PDEs are constructed. Additive, multiplicative, generalized, and functional separable solutions
and some other exact solutions are presented. In addition to reaction–diffusion equations, wave-type
PDEs with spatially anisotropic time delay are considered. Overall, more than twenty new exact
solutions to reaction–diffusion and wave-type equations with anisotropic time delay are found. The
described nonlinear delay PDEs and their solutions can be used to formulate test problems applicable
to the verification of approximate analytical and numerical methods for solving complex PDEs with
variable delay.
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1. Introduction
1.1. Differential Equations with Delay: Brief Overview

Hereditary systems are characterized by the dependence of the state of the system on
a period or a certain moment in the past. Such systems are often modeled by introducing
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functions with delayed arguments into partial differential equations (PDEs). Let u = u(x, t)
be the unknown function and w be the function with time delay. Then, we have several
different possibilities:

(i) PDEs with constant delay (or, usually, PDEs with delay) contain a function w of the
form w = u(x, t− τ), where τ > 0 is the constant delay time;

(ii) PDEs with proportional delay contain a function w of the form w = u(x, qt), where q
is the scaling parameter, 0 < q < 1;

(iii) PDEs with variable delay contain a function w of the form w = u(x, t− τ(t)), where
τ(t) > 0 is the variable delay.

Remark 1. Delays of types (i), (ii), or (iii) can also occur in the argument x.

Remark 2. If there is no dependence on x, one can easily have similar items for delay ordinary
differential equations (ODEs).

In more complex cases, the variable delay can depend either on the spatial coordinate,
i.e., be spatially anisotropic, τ = τ(x), or on both spatial and time arguments, τ = τ(x, t),
or even on both arguments and the desired solution, τ = τ(x, t, u). In this article, for the
first time, we study exact solutions and reductions of PDEs with spatially anisotropic time
delay τ = τ(x).

Table 1 presents some common and specific differential equations with delay found in
the literature. These equations arise in population theory, medicine, economics, epidemi-
ology, biology, chemistry, control theory, theory of artificial neural networks, and many
other fields. In the column “References/Comments”, there are publications devoted to
applications of differential equations with delay, exact solutions, numerical methods, etc.
Note that in Table 1, for brevity and uniformity, we use the term “proportional argument”
regardless of the values of the scaling parameters p > 0 or q > 0 (although if 0 < p < 1 or
0 < q < 1, the term “proportional delay” is usually used); and “with delay” means “with
constant delay”.

Table 1. Some functional differential equations (ODEs and PDEs) with delays of different types.

Type of Equation Form of Equation References/Comments

First-order ODE
with delay

u′t = f (u, w),
w = u(t− τ)

[1–20]

Second-order ODE
with delay

u′′tt + cu′t = f (u, w),
w = u(x, t− τ)

[21]

First-order ODE with
proportional argument

u′t = au + bw,
w = u(qt)

0 < q < 1 : [22]
q > 1 : [23,24]

First-order ODE
with variable delay

u′t = f (u, w),
w = u(x, t− τ(t)) [25]

First-order PDE
with delay

ut + ux = f (x, t, u, w),
w = u(x, t− τ)

[26]

First-order Hopf-type
PDE with delay

ut + uux = f (u, w),
w = u(x, t− τ)

[27]

First-order PDE with
proportional argument

ut + ux = au + bw,
w = u(px, t) p > 1: [28]

First-order PDE with delay
and proportional argument

ut + cux = f (x, t, u, w),
w = u(px, t− τ)

0 < p < 1: [29]

First-order PDE
with constant time delay
and variable space delay

ut + g(x)ux = f (t, u, w),
w = u(ξ(x), t− τ)

[30]
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Table 1. Cont.

Type of Equation Form of Equation References/Comments

Reaction–diffusion
PDE with delay

ut = auxx + f (u, w),
w = u(x, t− τ)

Exact solutions
construction: [31–34]
Traveling waves
analysis: [35–53]
Other topics: [17,54–77]

Reaction–diffusion
PDE with delay and
variable transfer coefficient

ut = [g(u)ux]x + f (u, w),
w = u(x, t− τ)

[78–81]

Reaction–diffusion PDE
with proportional argument

ut = auxx + f (u, w),
w = u(x, qt) [82,83]

Reaction–diffusion PDE
with proportional argument

ut = auxx + f (u, w),
w = u(px, t) [83]

Reaction–diffusion PDE
with proportional arguments

ut = auxx + f (u, w),
w = u(px, qt) [83,84]

Reaction–diffusion PDE
with variable delay

ut = auxx + f (u, w),
w = u(x, t− τ(t)) [31,33,84–89]

Fokker–Planck type PDE
with proportional argument

ut + cux = auxx + bu + kw,
w = u(px, t) p > 1: [90]

Wave-type PDE
with delay

utt = auxx + f (u, w),
w = u(x, t− τ)

[91–93]

Wave-type PDE
with variable delay

utt = auxx + f (u, w),
w = u(x, t− τ(t)) [94]

Telegraph type
PDE with delay

utt + ut = auxx + f (u, w),
w = u(x, t− τ)

[95]

Telegraph type PDE
with proportional argument

utt + cut = auxx + f (u, w),
w = u(x, qt) 0 < q < 1: [96]

Wave-type PDE with
proportional argument

utt = auxx + f (u, w),
w = u(x, qt) [97]

Wave-type PDE
with nonlinear speed
and proportional arguments

utt = [g(u)ux]x + f (u, w),
w = u(px, qt) [97]

Some specific mathematical models with delay can be found in [14,34,98,99]. Symme-
tries, linearizations, and some exact solutions of complex first- and second-order ODEs
with delay are studied in [100–102]. Exact solutions to nonlinear time-fractional PDEs with
delay are considered in [103,104].

The monograph [105] gathers the latest results on exact solutions, provides some
fundamental theory, and describes certain models and numerical methods for delay ODEs
and PDEs. Many of the equations listed in Table 1 are also considered in [105].

PDEs with two independent variables, x and t, and constant delay generally admit
traveling-wave solutions, u = u(z), where z = kx + λt [55,106–108], and do not have self-
similar solutions, u = tαU(y), where y = xtβ. Additive, multiplicative, and generalized
separable solutions and more complex solutions of PDEs with constant or varying delays
are obtained in [27,31–33,78,79,91–95,97,109–117] (for a brief overview of publications
on exact solutions, see [97,99]). In contrast, PDEs with one proportional delay do not
have traveling-wave solutions but can admit self-similar ones. These and more complex
solutions are constructed in [83,84,97,118].

Note that for finding exact solutions to nonlinear PDEs with constant or variable delay,
most of the analytical methods that are effective for nonlinear PDEs without delay are
either inapplicable or their applicability is very limited.
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1.2. PDEs with Spatially Anisotropic Time Delay. Reductions. Exact Solutions

In this article, by saying a PDE with spatially anisotropic time delay (briefly, a PDE
with anisotropic time delay) we mean a functional-differential equation that, in addition
to the desired function u(x, t), also contains a delayed function of the form u(x, t− τ(x)),
where τ(x) is a given positive function, and partial derivatives of u with respect to x
and t. PDEs with an anisotropic time delay can model delay systems in anisotropic and
inhomogeneous media, in which the signal propagation speed depends on the chosen
direction or varies at different points of the medium. For example, in medicine, this can be
differences in the rate of transmission of a nerve impulse in “healthy” and “sick” tissues of
the human body.

Approaches to constructing solutions to a mathematical equation based on solutions
to simpler equations are usually called reductions. One-dimensional reductions are the
most important for nonlinear PDEs; using them, one can obtain solutions for these PDEs in
terms of much simpler solutions to ODEs. Furthermore, reductions of various differential
and functional-differential equations play a key role in constructing their exact solutions.

By exact solutions of a nonlinear PDE with anisotropic time delay, we understand
solutions that can be expressed via elementary functions, functions included in the PDE
under consideration, indefinite integrals, or/and solutions of some ODEs without delay
(systems of such ODEs). It is important to note that the exact solutions to nonlinear
equations of mathematical physics and related PDEs (both with and without delay) play an
essential role in ’mathematical standards’, which are widely used to assess the accuracy,
verify, and develop various numerical, asymptotic, and approximate analytical methods.

Reductions and exact solutions for nonlinear PDEs with constant, proportional, or
variable time delay of the form τ = τ(t) are usually constructed using the method of sepa-
ration of variables [119–121], modifications of the method of functional constraints [31,79],
the principle of analogy of solutions [80,81,83,84,97,118], or combinations of these methods.
As a result, many reductions and exact solutions have been obtained.

2. Approaches to Constructing Exact Solutions
2.1. Constructing Solutions to Complex Equations Using Solutions of Simpler Equations

It should be noted that at present, there are no methods for constructing exact solutions
to nonlinear PDEs with spatially anisotropic time delay and related functional PDEs (the
methods mentioned at the end of Section 1.2 are not applicable to such equations).

In this article, to construct exact solutions to such equations, we use a simple but very
important proposition, namely, exact solutions of certain PDEs with constant delay can serve
as the basis for constructing solutions to more complex PDEs with variable anisotropic delay (a
somewhat similar approach was used in [80,81,83,84,118] to construct solutions to nonlinear
PDEs with constant or proportional delay using solutions of simpler nondelay PDEs
and was referred to as the principle of analogy of solutions). This approach to constructing
exact solutions, using the principle “from simple to complex”, is illustrated below with
specific examples.

Example 1. Consider a delay reaction–diffusion equation with power-law nonlinearity,

ut = auxx + b(u− w)k, w = u(x, t− τ), (1)

where the time delay τ > 0 is a constant.
It is easy to verify that Equation (1) admits an additive separable solution of the form

u = ct + ψ(x), (2)

where c is an arbitrary constant and the function ψ = ψ(x) satisfies the second-order linear ODE

aψ′′xx + b(cτ)k − c = 0.
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Its general solution is written as:

ψ =
1
2a

[c− b(cτ)k]x2 + C1x + C2,

where C1 and C2 are arbitrary constants.
A more complex reaction–diffusion equation with anisotropic delay obtained from (1) by

formally replacing the constant τ with an arbitrary function τ(x) (using the principle “from simple
to complex”), namely:

ut = auxx + b(u− w)k, w = u
(
x, t− τ(x)

)
, (3)

admits an exact solution of the same form (2) with the function ψ = ψ(x) satisfying the second-order
linear ODE:

aψ′′xx + b[cτ(x)]k − c = 0,

which is easily integrated.
Thus, in this case, we can say that a solution of the simpler PDE (1) generates a solution to the

more complex PDE (3).
A reaction–diffusion equation with spatially anisotropic time delay, more general than (3), is

considered below (see Equation (12)).

For clarity, the procedure for constructing exact solutions to PDEs with anisotropic
delay based on exact solutions of simpler PDEs with constant delay, which was used in
Example 1 and will be used further, is schematically shown in Figure 1.

Figure 1. A schematic of using exact solutions of PDEs with constant delay to construct exact solutions
to PDEs with anisotropic delay.

2.2. PDEs with Anisotropic Time Delay Allowing Solutions of a Special Form

Functional PDEs with anisotropic time delay and their exact solutions in some cases
can be found by analogy from simpler PDEs with a constant delay that allow solutions of
the form:

F(u) = kt + θ(x) or F(u) = ektθ(x), (4)

and satisfy the following two conditions:
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(i) The original simpler PDEs with constant delay (similar equations are called generating
equations later) are reduced to ODEs depending only on the spatial argument x;

(ii) Parameters and functional coefficients of original PDEs with constant delay do not
explicitly depend on τ.

In the simplest cases, in solutions (4), we have F(u) = u. Forms of exact solutions
other than (4) are also considered.

In the following section, we present new exact solutions and reductions to linear and
nonlinear PDEs with anisotropic time delay. We describe complex delay PDEs that admit
additive, multiplicative, functional, and generalized separable solutions [120,121]. Special
attention is paid to nonlinear PDEs of a rather general form involving arbitrary functions.
Exact solutions of such equations are of primary interest because they can be used as test
problems for the verification of various approximate analytical and numerical methods.

We give only the final results without intermediate calculations (the generating equa-
tions used will be given later in Section 5). The obtained solutions are easily verified by
direct substitutions into the considered equations.

Remark 3. This article does not consider both the simplest solutions of the form u = const and
degenerate solutions with only one of the two independent variables.

Remark 4. Notably, any PDEs with anisotropic time delay admit neither traveling-wave solutions
nor self-similar solutions.

Remark 5. In all the equations discussed in this article, it is assumed that the anisotropic time
delay τ(x) is an arbitrary positive function.

3. Exact Solutions of Reaction–Diffusion Type PDEs
3.1. Reaction–Diffusion Equations with Spatially Anisotropic Time Delay

Equation (1). Consider a linear reaction–diffusion equation with anisotropic time
delay of the form:

ut = auxx + bu + cw, w = u(x, t− τ(x)), (5)

where b and c are free parameters.
1◦. Equation (5) admits a multiplicative separable exact solution,

u = eλt ϕ(x), (6)

where λ is an arbitrary constant and the function ϕ = ϕ(x) satisfies the linear ODE:

aϕ′′xx + (b− λ + ce−λτ(x))ϕ = 0.

Solution (6) and other solutions below are obtained by analogy from a corresponding
simpler generating PDE. It has the form of (5) with a constant delay τ(x) ≡ τ = const.

2◦. Equation (5) also admits a generalized separable exact solution, periodic in t,

u = ϕ(x) cos(λt) + ψ(x) sin(λt), (7)

where the functions ϕ = ϕ(x) and ψ = ψ(x) are described by the linear system of ODEs:

aϕ′′xx + [b + c cos(λτ)]ϕ− [λ + c sin(λτ)]ψ = 0, τ = τ(x),

aψ′′xx + [b + c cos(λτ)]ψ + [λ + c sin(λτ)]ϕ = 0.

3◦. Another generalized separable solution, linear in t, has the form:

u = ϕ(x)t + ψ(x), (8)
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where the functions ϕ = ϕ(x) and ψ = ψ(x) are described by the linear system of ODEs:

aϕ′′xx + (b + c)ϕ = 0,

aψ′′xx + (b + c)ψ− [cτ(x) + 1]ϕ = 0,

which can be easily integrated sequentially (since the first ODE is homogeneous, and the
second is nonhomogeneous).

4◦. There are also solutions of the polynomial form in t,

u =
n

∑
k=0

ϕk(x)tk,

where n is an arbitrary positive integer and the functions ϕk(x) are described by a system
of ODEs.

Remark 6. For all the PDEs with anisotropic time delay, which are discussed below, the corre-
sponding simpler generating PDEs with constant delay are listed in Section 5.

Equation (2). Consider a reaction–diffusion equation with anisotropic time delay,

ut = auxx + u f (w/u), w = u(x, t− τ(x)), (9)

where f (z) is an arbitrary function that is nonlinear, in general.
Equation (9) has a multiplicative separable solution of the form (6), where the function

ϕ = ϕ(x) satisfies the second-order linear ODE:

aϕ′′xx − λϕ + ϕ f (e−λτ(x)) = 0. (10)

Equation (3). An equation more complex than (9),

ut = [a(x)ux]x + b(x)ux + u f (x, w/u), w = u(x, t− τ(x)), (11)

admits a solution of the form (6) with the function ϕ = ϕ(x) satisfying the second-order
linear ODE:

a(x)ϕ′′xx + [a′(x) + b(x)]ϕ′x − λϕ + ϕ f (x, e−λτ(x)) = 0.

Equation (4). Consider a reaction–diffusion equation with anisotropic time delay of
the form:

ut = auxx + f (u− w), w = u(x, t− τ(x)), (12)

where f (z) is an arbitrary function that is nonlinear, in general.
Equation (12) admits a generalized separable solution of the form (8),

u = (Ax + B)t + ψ(x),

where A and B are arbitrary constants and the function ψ = ψ(x) satisfies the second-order
linear ODE:

aψ′′xx + f
(
(Ax + B)τ(x)

)
− Ax− B = 0,

which can be easily integrated.
Equation (5). Consider a reaction–diffusion equation more complex than (12),

ut = auxx + u f (u− w) + wg(u− w) + h(u− w), w = u(x, t− τ(x)), (13)

where f (z), g(z), and h(z) are arbitrary functions that are nonlinear, in general.
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Equation (13) admits a generalized separable solution of the form (8), which is linear in t,
with the functions ϕ = ϕ(x) and ψ = ψ(x) being described by the nonlinear system of ODEs:

aϕ′′xx + ϕ[ f (ϕτ) + g(ϕτ)] = 0, τ = τ(x),

aψ′′xx + ψ[ f (ϕτ) + g(ϕτ)] + h(ϕτ)− ϕ[1 + τg(ϕτ)] = 0.

The first equation of this system is independent.
Equation (6). The reaction–diffusion equation with anisotropic time delay (13) is

further generalized by the equation:

ut = [a(x)ux]x + u f (x, u− w) + wg(x, u− w) + h(x, u− w), w = u(x, t− τ(x)).

This equation admits a generalized separable solution of the form (8) with the functions
ϕ = ϕ(x) and ψ = ψ(x) satisfying the nonlinear system of ODEs:

[a(x)ϕ′x]
′
x + ϕ[ f (x, ϕτ) + g(x, ϕτ)] = 0, τ = τ(x),

[a(x)ψ′x]
′
x + ψ[ f (x, ϕτ) + g(x, ϕτ)] + h(x, ϕτ)− ϕ[1 + τg(x, ϕτ)] = 0.

The first equation of this system is independent.
Equation (7). The reaction–diffusion equation with anisotropic time delay and nonlin-

ear transfer coefficient of power-law type:

ut = a(ukux)x + bu + uk+1 f (w/u), w = u(x, t− τ(x)), (14)

admits a multiplicative separable exact solution,

u = ebt ϕ(x),

where the function ϕ = ϕ(x) satisfies the nonlinear second-order ODE:

a(ϕk ϕ′x)
′
x + ϕk+1 f

(
e−bτ(x)) = 0.

This ODE allows linearization using the substitution θ = ϕk+1.

Remark 7. Arbitrary function f in Equation (14) can additionally depend on x.

Equation (8). The nonlinear reaction–diffusion equation with anisotropic time delay:

ut = a(u−1/2ux)x + u1/2 f (u1/2 − w1/2) + g(u1/2 − w1/2), w = u(x, t− τ(x)), (15)

where f (z) and g(z) are arbitrary functions, and it has a functional separable exact solution of
the form:

u = [ϕ(x)t + ψ(x)]2. (16)

To be specific, we assume that ϕ(x) > 0 and ψ(x) > 0. Then, the functions ϕ = ϕ(x)
and ψ = ψ(x) are described by the nonlinear ODE system:

2aϕ′′xx + ϕ f (ϕτ)− 2ϕ2 = 0, τ = τ(x),

2aψ′′ + ψ f (ϕτ) + g(ϕτ)− 2ϕψ = 0.

Remark 8. Arbitrary functions f and g in Equation (15) can additionally depend on x.
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Equation (9). The reaction–diffusion equation with anisotropic time delay and nonlin-
ear transfer coefficient of exponential type:

ut = a(eλuux)x + b + eλu f (u− w), w = u(x, t− τ(x)), (17)

has an additive separable solution,

u(x, t) = bt + ϕ(x),

where the function ϕ = ϕ(x) is described by the linear second-order ODE:

a(eλϕ ϕ′x)
′
x + eλϕ f

(
bτ(x)

)
= 0.

The substitution θ = eλϕ reduces this equation to a linear ODE.

Remark 9. Arbitrary function f in Equation (17) can additionally depend on x.

Equation (10). The reaction–diffusion equation with anisotropic time delay and non-
linear transfer coefficient:

ut = [a(x) f ′u(u)ux]x +
b

f ′u(u)
+ g
(

f (u)− f (w)
)
, w = u(x, t− τ(x)), (18)

where f (z) and g(z) are arbitrary functions, has an exact solution in implicit form,

f (u) = bt + θ(x),

where the function θ = θ(x) satisfies the linear second-order ODE:

[a(x)θ′x]
′
x + g

(
bτ(x)

)
= 0.

The general solution of this ODE is:

θ = −
∫ 1

a(x)

(∫
g
(
bτ(x)

)
dx
)

dx + C1

∫ dx
a(x)

+ C2,

where C1 and C2 are arbitrary constants.
Equation (11). The reaction–diffusion equation with anisotropic time delay and non-

linear transfer coefficient:

ut = a[ f ′u(u)ux]x + b
f (u)
f ′u(u)

+ f (u)g
(

f (w)

f (u)

)
, w = u(x, t− τ(x)), (19)

where f (z) and g(z) are arbitrary functions, has an exact solution in implicit form,

f (u) = ebt ϕ(x),

where the function ϕ = ϕ(x) satisfies the linear second-order ODE:

aϕ′′xx + g
(
e−bτ(x))ϕ = 0.

Remark 10. Arbitrary function g in Equations (18) and (19) can additionally depend on x.

3.2. Reaction–Diffusion Equations with Proportional Anisotropic Time Delay

Equation (12). Consider a linear reaction–diffusion equation with proportional anisotropic
time delay,

ut = auxx + bu + cw, w = u(x, p(x)t), (20)
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where p(x) is any function satisfying the condition 0 < p(x) ≤ 1; b and c are free parameters.
Equation (20) admits a generalized separable solution, linear in t,

u = ϕ(x)t + ψ(x), (21)

where the functions ϕ = ϕ(x) and ψ = ψ(x) are described by the linear system of ODEs:

aϕ′′xx + (b + cp(x))ϕ = 0,

aψ′′xx + (b + c)ψ− ϕ = 0,

which can be easily integrated.
There are also solutions of the polynomial form in t,

u =
n

∑
k=0

ϕk(x)tk, (22)

where n is an arbitrary positive integer, and the functions ϕk(x) are described by a system
of ODEs.

Solutions (21) and (22) were obtained by analogy from a corresponding simpler gener-
ating PDE. It has the form of (20) with a constant scaling parameter p(x) ≡ p = const.

Remark 11. For all the PDEs with proportional anisotropic time delay, which are discussed below,
the corresponding simpler generating PDEs with constant scaling parameters are listed in Section 5.

Equation (13). The reaction–diffusion equation with proportional anisotropic time
delay and nonlinear transfer coefficient of power-law type:

ut = a(ukux)x + uk+1 f (w/u), w = u(x, p(x)t), (23)

where 0 < p(x) ≤ 1 and f (z) is an arbitrary function, admits a multiplicative separable
exact solution,

u = t−1/k ϕ(x),

where the function ϕ = ϕ(x) satisfies the nonlinear second-order ODE:

a(ϕk ϕ′x)
′
x + ϕk+1 f (p−1/k(x)) +

1
k

ϕ = 0.

Equation (14). The reaction–diffusion equation with proportional anisotropic time
delay and nonlinear transfer coefficient of exponential type:

ut = a(eλuux)x + eλu f (u− w), w = u(x, p(x)t), (24)

where 0 < p(x) ≤ 1 and f (z) is an arbitrary function, admits an additive separable solution,

u = − 1
λ

ln t + ϕ(x),

where the function ϕ = ϕ(x) is described by the second-order ODE:

a(eλϕ ϕ′x)
′
x +

1
λ
+ eλϕ f

( 1
λ

ln p(x)
)
= 0.

The substitution θ = eλϕ reduces this equation to a linear ODE.

Remark 12. Arbitrary function f in Equations (23) and (24) can additionally depend on x.
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4. Exact Solutions of Wave-Type PDEs
4.1. Wave-Type Equations with Spatially Anisotropic Time Delay

Equation (15). Consider a linear wave-type equation with anisotropic time delay of
the form:

utt = auxx + bu + cw, w = u(x, t− τ(x)), (25)

where b and c are free parameters.
1◦. Equation (25) has a multiplicative separable exact solution,

u = eλt ϕ(x), (26)

where λ is an arbitrary constant and the function ϕ = ϕ(x) is described by the linear
second-order ODE:

aϕ′′xx + (b− λ2 + ce−λτ(x))ϕ = 0.

2◦. Equation (25) also has a generalized separable exact solution, periodic in t,

u = ϕ(x) cos(λt) + ψ(x) sin(λt),

where the functions ϕ = ϕ(x) and ψ = ψ(x) satisfy the linear system of ODEs:

aϕ′′xx + [b + λ2 + c cos(λτ)]ϕ− c sin(λτ)ψ = 0, τ = τ(x),

aψ′′xx + [b + λ2 + c cos(λτ)]ψ + c sin(λτ)ϕ = 0.

3◦. There are also solutions of the polynomial form in t,

u =
n

∑
k=0

ϕk(x)tk,

where n is an arbitrary positive integer and the functions ϕk(x) are described by a system
of ODEs.

Equation (16). The nonlinear wave-type equation with anisotropic time delay:

utt = auxx + u f (w/u), w = u(x, t− τ(x)), (27)

where τ(x) > 0 and f (z) is an arbitrary function, admits the multiplicative separable exact
solution (26) with the function ϕ = ϕ(x) satisfiying the linear second-order ODE:

aϕ′′xx − λ2 ϕ + ϕ f (e−λτ(x)) = 0.

Equation (17). A wave-type equation more complex than (27),

utt = [a(x)ux]x + b(x)ux + u f (x, w/u), w = u(x, t− τ(x)), (28)

where f (x, z) is an arbitrary function, admits solution (26) with the function ϕ = ϕ(x)
satisfying the linear second-order ODE:

a(x)ϕ′′xx + [a′(x) + b(x)]ϕ′x − λ2 ϕ + ϕ f (x, e−λτ(x)) = 0.

Equation (18). The wave-type equation with anisotropic time delay and nonlinear speed:

utt = a(ukux)x + bu + uk+1 f (w/u), w = u(x, t− τ(x)), (29)
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where f (z) is an arbitrary function, admits a multiplicative separable exact solution of the form:

u = e±
√

bt ϕ(x),

where the function ϕ = ϕ(x) satisfies the ODE:

a(ϕk ϕ′x)
′
x + ϕk+1 f

(
e∓
√

bτ(x)) = 0.

Remark 13. Arbitrary function f in Equation (29) can additionally depend on x.

Equation (19). The wave-type equation with anisotropic time delay and nonlinear speed:

utt = a(u−1/2ux)x + u1/2 f (u1/2 − w1/2) + g(u1/2 − w1/2), w = u(x, t− τ(x)), (30)

where f (z) and g(z) are arbitrary functions, admits a functional separable exact solution,

u = [ϕ(x)t + ψ(x)]2. (31)

To be specific, we assume that ϕ(x) > 0 and ψ(x) > 0. Then, the functions ϕ = ϕ(x)
and ψ = ψ(x) are described by the nonlinear system of ODEs:

2aϕ′′xx + ϕ f (ϕτ) = 0, τ = τ(x),

2aψ′′ + ψ f (ϕτ) + g(ϕτ)− 2ϕ2 = 0.

The first equation is independent.

Remark 14. Arbitrary functions f and g in Equation (30) can additionally depend on x.

Equation (20). The wave-type equation with anisotropic time delay and nonlinear speed:

utt = [a(x) f ′u(u)ux]x − b2 f ′′uu
( f ′u)3 + g

(
f (u)− f (w)

)
, w = u(x, t− τ(x)),

where f (z) and g(z) are arbitrary functions, has an exact solution in implicit form,

f (u) = bt + θ(x),

with the function θ = θ(x) satisfying the linear second-order ODE:

[a(x)θ′x]
′
x + g

(
bτ(x)

)
= 0.

The general solution of this ODE is:

θ = −
∫ 1

a(x)

(∫
g
(
bτ(x)

)
dx
)

dx + C1

∫ dx
a(x)

+ C2,

where C1 and C2 are arbitrary constants.
Equation (21). The wave-type equation with anisotropic time delay and nonlinear speed:

utt = [a(x) f ′uux]x + b2 f
f ′u

(
1− f f ′′uu

( f ′u)2

)
+ f g

(
f̄
f

)
, f̄ = f (w), w = u(x, t− τ(x)),

where f (z) and g(z) are arbitrary functions, has an exact solution in implicit form,

f (u) = ebt ϕ(x),



Mathematics 2023, 11, 3111 13 of 19

with the function ϕ = ϕ(x) satisfying the linear second-order ODE:

[a(x)ϕ′x]
′
x + g

(
e−bτ(x))ϕ = 0.

4.2. Wave-Type Equations with Proportional Anisotropic Time Delay

Equation (22). Consider a linear wave-type PDE with proportional anisotropic time delay,

utt = auxx + bu + cw, w = u(x, p(x)t), (32)

where p(x) is a function satisfying the condition 0 < p(x) ≤ 1; b and c are free parameters.
Equation (32) admits a generalized separable solution,

u = ϕ(x)t2 + ψ(x),

where the functions ϕ = ϕ(x) and ψ = ψ(x) are described by the linear system of ODEs:

aϕ′′xx + (b + cp2(x))ϕ = 0,

aψ′′xx + (b + c)ψ− 2ϕ = 0,

which can be easily integrated sequentially.
There are also solutions of the polynomial form in t,

u =
n

∑
k=0

ϕk(x)tk,

where n is an arbitrary positive integer and the ϕk(x) are described by a system of ODEs.
Equation (23). The wave PDE with proportional anisotropic time delay and nonlinear

speed of power-law type:

utt = a(ukux)x + uk+1 f (w/u), w = u(x, p(x)t), (33)

where 0 < p(x) ≤ 1 and f (z) is an arbitrary function, admits a multiplicative separable
exact solution,

u = t−2/k ϕ(x), (34)

where the function ϕ = ϕ(x) satisfies the nonlinear second-order ODE:

a(ϕk ϕ′x)
′
x + ϕk+1 f (p−2/k)− 2(2 + k)

k2 ϕ = 0, p = p(x). (35)

Equation (24). The wave PDE with proportional anisotropic time delay and nonlinear
speed of exponential type:

utt = a(eλuux)x + eλu f (u− w), w = u(x, p(x)t), (36)

where 0 < p(x) ≤ 1 and f (z) is an arbitrary function, admits an additive separable solution,

u = − 2
λ

ln t + ϕ(x),

where the function ϕ = ϕ(x) is described by the nonlinear second-order ODE:

a(eλϕ ϕ′x)
′
x −

2
λ
+ eλϕ f

( 2
λ

ln p
)
= 0, p = p(x).

The substitution θ = eλϕ reduces this equation to a linear ODE.
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5. Table of Generating PDEs with Constant or Proportional Delay

Table 2 presents generating PDEs with constant or proportional delay and references
to publications that include these equations and their exact solutions. In the absence of
such publications, reference is made to the equation from this article.

These equations were used to construct the more complex PDEs with anisotropic time
delay described in Sections 3 and 4.

Table 2. Generating PDEs with constant or proportional delay.

No. Form of Equation References/Comments

1 ut = auxx + bu + cw, w = u(x, t− τ) Equation (5) with τ = const

2 ut = auxx + u f (w/u), w = u(x, t− τ) [31,33]

3 ut = [a(x)ux]x + b(x)ux + u f (x, w/u), w = u(x, t− τ) [31]

4 ut = auxx + f (u− w), w = u(x, t− τ) [31,33]

5 ut = auxx + u f (u− w) + wg(u− w) + h(u− w), w = u(x, t− τ) [33]

6 ut = [a(x)ux]x + u f (x, u− w) + wg(x, u− w) + h(x, u− w), w = u(x, t− τ) [31]

7 ut = a(ukux)x + bu + uk+1 f (w/u), w = u(x, t− τ) [79]

8 ut = a(u−1/2ux)x + u1/2 f (u1/2 − w1/2) + g(u1/2 − w1/2), w = u(x, t− τ) [79]

9 ut = a(eλuux)x + b + eλu f (u− w), w = u(x, t− τ) [79]

10 ut = [a(x) f ′u(u)ux]x +
b

f ′u(u)
+ g
(

f (u)− f (w)
)
, w = u(x, t− τ) [79–81]

11 ut = a[ f ′u(u)ux]x + f (u)g
(

f (w)
f (u)

)
+ b f (u)

f ′u(u)
, w = u(x, t− τ) [79,81]

12 ut = auxx + bu + cw, w = u(x, pt) Equation (20) with p = const

13 ut = a(ukux)x + uk+1 f (w/u), w = u(x, pt) [83]

14 ut = a(eλuux)x + eλu f (u− w), w = u(x, pt) [83]

15 utt = auxx + bu + cw, w = u(x, t− τ) Equation (25) with τ = const

16 utt = auxx + u f (w/u), w = u(x, t− τ) [91]

17 utt = [a(x)ux]x + b(x)ux + u f (x, w/u), w = u(x, t− τ) Equation (28) with τ = const

18 utt = a(ukux)x + bu + uk+1 f (w/u), w = u(x, t− τ) [81]

19 utt = a(u−1/2ux)x + u1/2 f (u1/2 − w1/2) + g(u1/2 − w1/2), w = u(x, t− τ) [114]

20 utt = [a(x) f ′u(u)ux]x − b2 f ′′uu
( f ′u)3 + g

(
f (u)− f (w)

)
, w = u(x, t− τ) [80,81,114]

21 utt = [a(x) f ′uux]x + b2 f
f ′u

(
1− f f ′′uu

( f ′u)2

)
+ f g

(
f̄
f

)
, f̄ = f (w), w = u(x, t− τ) [81]

22 utt = auxx + bu + cw, w = u(x, pt) Equation (32) with p = const

23 utt = a(ukux)x + uk+1 f (w/u), w = u(x, pt) [97]

24 utt = a(eλuux)x + eλu f (u− w), w = u(x, pt) [97]

Remark 15. Some generating equations in Table 2 are less general than those considered in the
corresponding references. For example, in [79], we have the delay PDE:

ut = a(ukux)x + u f (w/u) + uk+1g(w/u), w = u(x, t− τ),

which is the generating equation in row 7 with f (z) ≡ b.

6. Brief Conclusions

We have considered linear and nonlinear reaction–diffusion and wave-type PDEs with
anisotropic (spatially variable) time delay that involve, in addition to the unknown function
u(x, t), functions of the form u(x, t− τ(x)), where τ(x) > 0 is the anisotropic time delay.
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Equations of a fairly general form containing one, two, or more arbitrary functions have
been analyzed. Reaction–diffusion and wave-type PDEs with proportional anisotropic time
delays that involve u(x, p(x)t), where 0 < p(x) < 1, have also been presented. Additive,
multiplicative, functional, and generalized separable solutions of such equations with
complicated delays have been described. The results of the article can be used for testing
numerical and approximate analytical methods of solving complex PDEs with variable
delay and related functional PDEs.
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68. Piotrowska, M.J.; Foryś, U.; Bodnar, M.; Poleszczuk, J. A simple model of carcinogenic mutations with time delay and diffusion.

Math. Biosci. Eng. 2013, 10, 861–872. [CrossRef]
69. Hattaf, K.; Yousfi, N. Global dynamics of a delay reaction–diffusion model for viral infection with specific functional response.

Comput. Appl. Math. 2015, 34, 807–818. [CrossRef]
70. Li, J.; Sun, G.-Q.; Jin, Z. Pattern formation of an epidemic model with time delay. Phys. A Stat. Mech. Appl. 2014, 403, 100–109.

[CrossRef]
71. Hattaf, K.; Yousfi, N. A generalized HBV model with diffusion and two delays. Comput. Math. Appl. 2015, 69, 31–40. [CrossRef]
72. Liu, P.-P. Periodic solutions in an epidemic model with diffusion and delay. Appl. Math. Comput. 2015, 265, 275–291. [CrossRef]
73. Cai, Y.; Yan, S.; Wang, H.; Lian, X.; Wang, W. Spatiotemporal dynamics in a reaction-diffusion epidemic model with a time-delay

in transmission. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2015, 25, 1550099. [CrossRef]
74. Pan, X.; Shu, H.; Wang, L.; Wang, X.-S. Dirichlet problem for a delayed diffusive hematopoiesis model. Nonlinear Anal. Real World

Appl. 2019, 48, 493–516. [CrossRef]
75. Jia, Y. Bifurcation and pattern formation of a tumor–immune model with time-delay and diffusion. Math. Comput. Simul. 2020,

178, 92–108. [CrossRef]
76. Al Noufaey, K.S. Stability analysis of a diffusive three-species ecological system with time delays. Symmetry 2021, 13, 2217.

[CrossRef]
77. Zhu, C.-C.; Zhu, J. Dynamic analysis of a delayed COVID-19 epidemic with home quarantine in temporal-spatial heterogeneous

via global exponential attractor method. Chaos Solitons Fractals 2021, 143, 110546. [CrossRef]
78. Polyanin, A.D.; Zhurov, A.I. Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and

new solutions. Appl. Math. Lett. 2014, 37, 43–48. [CrossRef]
79. Polyanin, A.D.; Zhurov, A.I. The functional constraints method: Application to non-linear delay reaction-diffusion equations

with varying transfer coefficients. Int. J. Non-Linear Mech. 2014, 67, 267–277. [CrossRef]
80. Polyanin, A.D.; Sorokin, V.G. A method for constructing exact solutions of nonlinear delay PDEs. J. Math. Anal. Appl. 2021,

494, 124619. [CrossRef]
81. Polyanin, A.D.; Sorokin, V.G. Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler PDEs

without delay. Commun. Nonlinear Sci. Numer. Simul. 2021, 95, 105634. [CrossRef]
82. Yang, X.; Song, Q.; Cao, J.; Lu, J. Synchronization of coupled Markovian reaction-diffusion neural networks with proportional

delays via quantized control. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 951–958. [CrossRef]
83. Polyanin, A.D.; Sorokin, V.G. Nonlinear pantograph-type diffusion PDEs: Exact solutions and the principle of analogy. Mathematics

2021, 9, 511. [CrossRef]

https://ajmaa.org/searchroot/files/pdf/v18n1/v18i1p2.pdf
http://dx.doi.org/10.1115/1.3636609
http://dx.doi.org/10.1006/jdeq.1998.3489
http://dx.doi.org/10.1006/jmaa.2001.7563
http://dx.doi.org/10.1006/jmaa.2000.7182
http://dx.doi.org/10.1016/S1468-1218(03)00018-X
http://dx.doi.org/10.1007/3-540-26825-1_28
http://dx.doi.org/10.1016/j.amc.2004.06.083
http://dx.doi.org/10.1016/j.na.2006.09.034
http://dx.doi.org/10.1016/j.chaos.2007.05.002
http://dx.doi.org/10.1016/j.jde.2008.03.007
http://dx.doi.org/10.1016/j.chaos.2006.11.015
http://dx.doi.org/10.1016/j.jde.2009.04.017
http://dx.doi.org/10.1007/s10114-012-0100-9
http://dx.doi.org/10.3934/mbe.2013.10.861
http://dx.doi.org/10.1007/s40314-014-0143-x
http://dx.doi.org/10.1016/j.physa.2014.02.025
http://dx.doi.org/10.1016/j.camwa.2014.11.010
http://dx.doi.org/10.1016/j.amc.2015.05.028
http://dx.doi.org/10.1142/S0218127415500996
http://dx.doi.org/10.1016/j.nonrwa.2019.01.008
http://dx.doi.org/10.1016/j.matcom.2020.06.011
http://dx.doi.org/10.3390/sym13112217
http://dx.doi.org/10.1016/j.chaos.2020.110546
http://dx.doi.org/10.1016/j.aml.2014.05.010
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.09.008
http://dx.doi.org/10.1016/j.jmaa.2020.124619
http://dx.doi.org/10.1016/j.cnsns.2020.105634
http://dx.doi.org/10.1109/TNNLS.2018.2853650
http://dx.doi.org/10.3390/math9050511


Mathematics 2023, 11, 3111 18 of 19

84. Aksenov, A.V.; Polyanin, A.D. Methods for constructing complex solutions of nonlinear PDEs using simpler solutions. Mathematics
2021, 9, 345. [CrossRef]

85. Liang, J.; Cao, J. Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays. Phys.
Lett. A 2003, 314, 434–442. [CrossRef]

86. Lou, X.-Y.; Cui, B.-T. Asymptotic synchronization of a class of neural networks with reaction-diffusion terms and time-varying
delays. Comput. Math. Appl. 2006, 52, 897–904. [CrossRef]

87. Wang, L.; Gao, Y. Global exponential robust stability of reaction–diffusion interval neural networks with time-varying delays.
Phys. Lett. A 2006, 350, 342–348. [CrossRef]

88. Yang, Z.; Xu, D. Global dynamics for non-autonomous reaction-diffusion neural networks with time-varying delays. Theor.
Comput. Sci. 2008, 403, 3–10. [CrossRef]

89. Wang, K.; Teng, Z.; Jiang, H. Global exponential synchronization in delayed reaction-diffusion cellular neural networks with the
Dirichlet boundary conditions. Math. Comput. Model. 2010, 52, 12–24. [CrossRef]

90. Efendiev, M.; van Brunt, B.; Wake, G.C.; Zaidi, A.A. A functional partial differential equation arising in a cell growth model with
dispersion. Math. Meth. Appl. Sci. 2018, 41, 1541–1553. [CrossRef]

91. Polyanin, A.D.; Zhurov, A.I. Generalized and functional separable solutions to nonlinear delay Klein–Gordon equations. Commun.
Nonlinear Sci. Numer. Simul. 2014, 19, 2676–2689. [CrossRef]

92. Long, F.-S.; Meleshko, S.V. On the complete group classification of the one-dimensional nonlinear Klein–Gordon equation with a
delay. Math. Methods Appl. Sci. 2016, 39, 3255–3270. [CrossRef]

93. Lobo, J.Z.; Valaulikar, Y.S. Group analysis of the one dimensional wave equation with delay. Appl. Math. Comput. 2020, 378, 125193.
[CrossRef]

94. Long, F.-S.; Meleshko, S.V. Symmetry analysis of the nonlinear two-dimensional Klein–Gordon equation with a time-varying
delay. Math. Methods Appl. Sci. 2017, 40, 4658–4673. [CrossRef]

95. Polyanin, A.D.; Sorokin, V.G.; Vyazmin, A.V. Exact solutions and qualitative features of nonlinear hyperbolic reaction-diffusion
equations with delay. Theor. Found. Chem. Eng. 2015, 49, 622–635. [CrossRef]

96. Wan, P.; Sun, D.; Chen, D.; Zhao, M.; Zheng, L. Exponential synchronization of inertial reaction-diffusion coupled neural networks
with proportional delay via periodically intermittent control. Neurocomputing 2019, 356, 195–205. [CrossRef]

97. Polyanin, A.D.; Sorokin, V.G. Reductions and exact solutions of nonlinear wave-type PDEs with proportional and more complex
delays. Mathematics 2023, 11, 516. [CrossRef]

98. Zubik-Kowal, B. Delay partial differential equations. Scholarpedia 2008, 3, 2851. [CrossRef]
99. Sorokin, V.G.; Vyazmin, A.V. Nonlinear reaction-diffusion equations with delay: Partial survey, exact solutions, test problems,

and numerical integration. Mathematics 2022, 10, 1886. [CrossRef]
100. Dorodnitsyn, V.A.; Kozlov, R.; Meleshko, S.V.; Winternitz, P. Linear or linearizable first-order delay ordinary differential equations

and their Lie point symmetries. J. Phys. A Math. Theor. 2018, 51, 205203. [CrossRef]
101. Dorodnitsyn, V.A.; Kozlov, R.; Meleshko, S.V.; Winternitz, P. Lie group classification of first-order delay ordinary differential

equations. J. Phys. A Math. Theor. 2018, 51, 205202. [CrossRef]
102. Dorodnitsyn, V.A.; Kozlov, R.; Meleshko, S.V.; Winternitz, P. Second-order delay ordinary differential equations, their symmetries

and application to a traffic problem. J. Phys. A Math. Theor. 2021, 54, 105204. [CrossRef]
103. Prakash, P.; Choudhary, S.; Daftardar-Gejji, V. Exact solutions of generalized nonlinear time-fractional reaction-diffusion equations

with time delay. Eur. Phys. J. Plus 2020, 135, 490. [CrossRef]
104. Prakash, P.; Priyendhu, K.S.; Anjitha, K.M. Initial value problem for the (2+1)-dimensional time-fractional generalized convection-

reaction-diffusion wave equation: Invariant subspaces and exact solutions. Comp. Appl. Math. 2022, 41, 30. [CrossRef]
105. Polyanin, A.D.; Sorokin, V.G.; Zhurov, A.I. Delay Ordinary and Partial Differential Equations; CRC Press: Boca Raton, FL, USA;

London, UK, 2023.
106. Mei, M.; Lin, C.-K.; Lin, C.-T.; So, J.W.-H. Traveling wavefronts for time-delayed reaction-diffusion equation: (I) Local nonlinearity.

J. Differ. Equ. 2009, 247, 495–510. [CrossRef]
107. Polyanin, A.D.; Sorokin, V.G. Nonlinear delay reaction-diffusion equations: Traveling-wave solutions in elementary functions.

Appl. Math. Lett. 2015, 46, 38–43. [CrossRef]
108. Lv, G.; Wang, Z. Stability of traveling wave solutions to delayed evolution equation. J. Dyn. Control Syst. 2015, 21, 173–187.

[CrossRef]
109. Meleshko, S.V.; Moyo, S. On the complete group classification of the reaction-diffusion equation with a delay. J. Math. Anal. Appl.

2008, 338, 448–466. [CrossRef]
110. Polyanin, A.D.; Zhurov, A.I. Exact solutions of linear and nonlinear differential-difference heat and diffusion equations with finite

relaxation time. Int. J. Non-Linear Mech. 2013, 54, 115–126. [CrossRef]
111. Polyanin, A.D.; Zhurov, A.I. Non-linear instability and exact solutions to some delay reaction-diffusion systems. Int. J. Non-Linear

Mech. 2014, 62, 33–40. [CrossRef]
112. Polyanin, A.D.; Zhurov, A.I. The generating equations method: Constructing exact solutions to delay reaction-diffusion systems

and other non-linear coupled delay PDEs. Int. J. Non-Linear Mech. 2015, 71, 104–115. [CrossRef]
113. Polyanin, A.D. Generalized traveling-wave solutions of nonlinear reaction-diffusion equations with delay and variable coefficients.

Appl. Math. Lett. 2019, 90, 49–53. [CrossRef]

http://dx.doi.org/10.3390/math9040345
http://dx.doi.org/10.1016/S0375-9601(03)00945-9
http://dx.doi.org/10.1016/j.camwa.2006.05.013
http://dx.doi.org/10.1016/j.physleta.2005.10.031
http://dx.doi.org/10.1016/j.tcs.2008.04.044
http://dx.doi.org/10.1016/j.mcm.2009.05.038
http://dx.doi.org/10.1002/mma.4684
http://dx.doi.org/10.1016/j.cnsns.2013.12.021
http://dx.doi.org/10.1002/mma.3769
http://dx.doi.org/10.1016/j.amc.2020.125193
http://dx.doi.org/10.1002/mma.4332
http://dx.doi.org/10.1134/S0040579515050243
http://dx.doi.org/10.1016/j.neucom.2019.05.028
http://dx.doi.org/10.3390/math11030516
http://dx.doi.org/10.4249/scholarpedia.2851
http://dx.doi.org/10.3390/math10111886
http://dx.doi.org/10.1088/1751-8121/aab3e9
http://dx.doi.org/10.1088/1751-8121/aaba91
http://dx.doi.org/10.1088/1751-8121/abdc81
http://dx.doi.org/10.1140/epjp/s13360-020-00445-1
http://dx.doi.org/10.1007/s40314-021-01721-1
http://dx.doi.org/10.1016/j.jde.2008.12.026
http://dx.doi.org/10.1016/j.aml.2015.01.023
http://dx.doi.org/10.1007/s10883-014-9234-7
http://dx.doi.org/10.1016/j.jmaa.2007.04.016
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.03.011
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.02.003
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.01.002
http://dx.doi.org/10.1016/j.aml.2018.10.012


Mathematics 2023, 11, 3111 19 of 19

114. Polyanin, A.D.; Sorokin, V.G. New exact solutions of nonlinear wave type PDEs with delay. Appl. Math. Lett. 2020, 108, 106512.
[CrossRef]

115. Aibinu, M.O.; Thakur, S.C.; Moyo, S. Exact solutions of nonlinear delay reaction-diffusion equations with variable coefficients.
Partial Differ. Equ. Appl. Math. 2021, 4, 100170. [CrossRef]

116. Polyanin, A.D.; Zhurov, A.I. Multi-parameter reaction-diffusion systems with quadratic nonlinearity and delays: New exact
solutions in elementary functions. Mathematics 2022, 10, 1529. [CrossRef]

117. Polyanin, A.D.; Sorokin, V.G. Reductions and exact solutions of Lotka—Volterra and more complex reaction-diffusion systems
with delays. Appl. Math. Lett. 2022, 125, 107731. [CrossRef]

118. Aksenov, A.V.; Polyanin, A.D. Review of methods for constructing exact solutions of equations of mathematical physics based on
simpler solutions. Theor. Math. Phys. 2022, 211, 567–594. [CrossRef]

119. Galaktionov, V.A.; Svirshchevskii, S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics
and Physics; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2007.

120. Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012.
121. Polyanin, A.D.; Zhurov, A.I. Separation of Variables and Exact Solutions of Nonlinear PDEs; CRC Press: Boca Raton, FL, USA, 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.aml.2020.106512
http://dx.doi.org/10.1016/j.padiff.2021.100170
http://dx.doi.org/10.3390/math10091529
http://dx.doi.org/10.1016/j.aml.2021.107731
http://dx.doi.org/10.1134/S0040577922050014

	Introduction
	Differential Equations with Delay: Brief Overview
	PDEs with Spatially Anisotropic Time Delay. Reductions. Exact Solutions 

	Approaches to Constructing Exact Solutions 
	Constructing Solutions to Complex Equations Using Solutions of Simpler Equations 
	PDEs with Anisotropic Time Delay Allowing Solutions of a Special Form 

	Exact Solutions of Reaction–Diffusion Type PDEs
	Reaction–Diffusion Equations with Spatially Anisotropic Time Delay
	Reaction–Diffusion Equations with Proportional Anisotropic Time Delay

	Exact Solutions of Wave-Type PDEs
	Wave-Type Equations with Spatially Anisotropic Time Delay
	Wave-Type Equations with Proportional Anisotropic Time Delay

	Table of Generating PDEs with Constant or Proportional Delay
	Brief Conclusions
	References

