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Foreword to the 2nd Edition

The background behind this book is as follows. In 1991 we initiated a
study to find out what kinds of particles may theoretically inhabit the
space-time of the General Theory of Relativity. As the instrument, we
equipped ourselves with the mathematical apparatus of chronometric
invariants (physically observable quantities) developed in the 1940’s by
Abraham Zelmanov.

The study was completed to reveal that aside for mass-bearing and
massless (light-like) particles, those of the third kind may also exist.
Their trajectories lie beyond the regular region in space-time. For a reg-
ular observer the trajectories are of zero four-dimensional length and
zero three-dimensional observable length. Besides, along the trajecto-
ries the interval of observable time is also zero. Mathematically, this
means that such particles inhabit a space-time with fully degenerate
metric (fully degenerate space-time). We have therefore called such
a space “zero-space” and such particles — “zero-particles”.

For a regular observer their motion in zero-space is instantaneous, so
zero-particles do realize long-range action. Through possible interaction
with our-world’s mass-bearing or massless particles, zero-particles may
instantaneously transmit signals to any point in our three-dimensional
space (a phenomenon we may call “non-quantum teleportation”).

Considering zero-particles in the frames of the wave-particle duality,
we have obtained that for a regular observer they are standing waves and
the whole zero-space is filled with a system of standing light-like waves
(zero-particles), i.e. standing light-holograms. This result corresponds
to the known “stopped light experiment” (Harvard, USA, 2001).

Using the mathematical method of physically observable quantities,
we have also showed that two separate regions in inhomogeneous space-
time may exist, where the physically observable (proper) time flows
into the future and into the past, while such a duality is not found in
a homogeneous space-time. These regions are referred to as our world
and the mirror world respectively; they are separated by a space-time
membrane wherein observable time stops.

All the above results are derived exclusively from the application
of Zelmanov’s mathematical apparatus of physically observable quanti-
ties. Of course, these are not the final results which we could extract
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from the theme, using Zelmanov’s mathematical method. It is possi-
ble that further studies in this direction will give more theoretical and
experimental results.

Now we present these results into your consideration. The second
edition of this book is amended by new theoretical results and also two
new chapters: a chapter on the theory of gravitational wave detectors
and a chapter concerning virtual particles and non-quantum teleporta-
tion in the framework of the General Theory of Relativity.

In conclusion we would like to express belated thanks and sincere
gratitude to Dr. Abraham Zelmanov (1913–1987) and Prof. Kyril Sta-
nyukovich (1916–1989), teachers of ours, for countless hours of friendly
conversations. We are also grateful to Kyril Dombrovski whose talks
and friendly discussions greatly influenced our outlooks. Also we highly
appreciate assistance from the side of our colleague Indranu Suhendro,
whose editing has made this book much more accessible to a reader.

May 15, 2008 Dmitri Rabounski and Larissa Borissova



Chapter 1 Three Kinds of Particles

According to

Pseudo-Riemannian Space

§1.1 Problem statement

The main goal of the theory of motion of particles is to define the three-
dimensional (spatial) coordinates of a particle at any given moment of
time. In order to do this, one should be aware of three things. First, one
should know in what sort of space-time the events take a place. That is,
one should know the geometric structure of space and time, just as one
should know the conditions of a road to be able to drive on it. Second,
one should know the physical properties of the moving particle. Third,
knowledge of the equations of motion of particles of a certain kind is
necessary.

The first problem actually leads to the choice of a space from among
the spaces known in mathematics, in order to represent just the right
geometry for space and time which best fits the geometric representation
of the observed world.

The view of the world as a space-time continuum takes its origin from
the historical speech Raum und Zeit by Hermann Minkowski, which he
gave on September 21, 1908, in Köln, Germany, at the 80th Assembly
of the Society of German Natural Scientists and Physicians (Die Gesell-
schaft Deutscher Naturforscher und Ärzte). There he introduced the
notion “space-time” into physics, and presented a geometric interpreta-
tion of the principle of invariance of the velocity of light and of Lorentz’
transformations.

A few years later, in 1912, Marcel Grossmann, in his private conver-
sation with Albert Einstein, a close friend of him, proposed Riemannian
geometry as the geometry of the observed world. Later Einstein came
to the idea that became the corner-stone of his General Theory of Rel-
ativity: that was the “geometric concept of the world”, according to
which the geometric structure of space-time determines all properties of
the Universe. Thus Einstein’s General Theory of Relativity, finalized by
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him in 1915, is the first geometric theory of space-time and of motion
of particles since the dawn of the contemporary science.

Consideration of the problem in detail led Einstein to the fact that
the only way to represent space-time in the way that fits the existing
experimental data is given by a four-dimensional pseudo-Riemannian
space with the sign-alternating Minkowski signature (+−−−) or (−+++)

(one time axis and three spatial axes). This is a particular case of the
family of Riemannian spaces, i.e. spaces where geometry is Rieman-
nian (the square of distance ds2 between infinitely close points is set up
by metric ds2 = gαβ dx

αdxβ = inv). In a Riemannian space coordinate
axes can be of any kind. Four-dimensional pseudo-Riemannian space
is different on the account of the fact that there is a principal differ-
ence between the three-dimensional space, perceived as space, from the
fourth axis — time. From the mathematical viewpoint this looks as
follows: three spatial axes are real, while the time axis is imaginary
(or vice versa), and choice of such conditions is arbitrary.

A particular case of a flat, uniform, and isotropic four-dimensional
pseudo-Riemannian space is referred to as Minkowski’s space. This is
the basic space-time of the Special Theory of Relativity — the ab-
stracted case, which is free of gravitational fields, rotation, deformation,
and curvature. In the general case the real pseudo-Riemannian space
is curved, non-uniform and anisotropic. This is the basic space-time
of the General Theory of Relativity, where we meet both gravitational
field, rotation, deformation, and curvature.

So, the General Theory of Relativity is built on view of the world as
a four-dimensional space-time, where any and all objects possess not a
three-dimensional volume alone, but their “longitude” in time. That is,
any physical body, including ours, is a really existing four-dimensional
instance with the shape of a cylinder elongated in time (cylinder of
events of this body), created by perplexion of other cylinders at the
moment of its “birth” and split into many other ones at the moment of
its “death”. For example, for a human the “time length” is the duration
of their life from conception till death.

Very soon after Eddington in 1919 gave the first proof that Sun
rays are curved by its gravitational field, many researchers faced strong
obstacles in fitting together calculations made in the framework of the
General Theory of Relativity with existing results of observations and
experiments. Successful experiments verifying the General Theory of
Relativity during the last 80 years have explicitly shown that the four-
dimensional pseudo-Riemannian space is the basic space-time of the
observed world (as far as the up-to-date measurement precision al-
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lows us to judge). And if the inevitable evolution of human civiliza-
tion and thought, and of experimental technology, shows that the four-
dimensional pseudo-Riemannian space can no longer explain the results
of new experiments, this will mean nothing other than the need to
assume a more general space, which will include the four-dimensional
pseudo-Riemannian space as a particular case.

This book will focus on the motion of particles based on the geomet-
ric concept of the world-structure: we will assume that the geometry of
our space-time determined all properties of the observed world. There-
fore, contrary to other researchers, we are not going to constrain the
geometry of the space-time by any limitations and we will solve our
problems the way the space-time geometry requires them to be solved.

Hence, any particle in the space-time corresponds to its own world-
line, which sets up the three-dimensional (spatial) coordinates of this
particle at any given moment of time. Subsequently, our goal to de-
termine possible kinds of particles evolves into considering all allowable
types of trajectories of motion in the four-dimensional space-time.

Generally speaking, referring to the equations of motion of free par-
ticles in a metric space (space-time) one actually refers to the equations
of geodesic lines, which are the four-dimensional equations of the world-
trajectory of a free particle∗

d2xα

dρ2
+ Γαµν

dxµ

dρ

dxν

dρ
= 0 , (1.1)

where Γαµν are Christoffel’s symbols of the 2nd kind and ρ is a parameter
of derivation along to the geodesic line.

From the geometric viewpoint the equations of geodesic lines are
equations of parallel transfer in the sense of Levi-Civita [1] of the four-
dimensional kinematic vector

Qα =
dxα

dρ
, (1.2)

namely — the following equations

DQα

dρ
=
dQα

dρ
+ ΓαµνQ

µ dx
ν

dρ
= 0 , (1.3)

where DQα = dQα +ΓαµνQµdxν is the absolute differential of the kine-
matic vector Qα transferred in parallel to itself and tangential to the
trajectory of transfer (a geodesic line).

∗Here and so forth space-time indices are Greek, for instance α, β, =0, 1, 2, 3,
while spatial indices — Roman, for instance i, k =1, 2, 3.
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Levi-Civita parallel transfer means that the length of the transferred
vector remains unchanged

QαQ
α = gαβ Q

αQβ = const , (1.4)

along the entire world-trajectory, where gαβ is the fundamental metric
tensor of the space.

At this point, we note that the equations of geodesic lines are purely
kinematic, as they do not contain the physical properties of the moving
objects. Therefore to obtain the full picture of motion of particles we
have to build dynamic equations of motion, solving which will give us
not only the trajectories of the particles, but their properties (such as
energy, frequency etc.) as well.

To do this we have to define: a) the possible types of trajectories in
the four-dimensional space-time (pseudo-Riemannian space); b) the dy-
namical vector for each type of trajectory; c) the derivation parameter
of each type of trajectory.

First we consider what types of trajectories are allowable in the four-
dimensional pseudo-Riemannian space. Along a geodesic line the con-
dition gαβ Q

αQβ = const is true. If along geodesic lines gαβ QαQβ 6=0,
such lines are referred to as non-isotropic geodesics.

Along non-isotropic geodesics the square of the four-dimensional in-
terval is not zero

ds2 = gαβ dx
αdxβ 6= 0 (1.5)

and the interval ds takes the form

ds =
√
gαβ dxαdxβ if ds2 > 0 , (1.5)

ds =
√
− gαβ dxαdxβ if ds2 < 0 . (1.6)

If along geodesic lines gαβ QαQβ =0, such lines are referred to as
isotropic geodesics. Along isotropic geodesics the square of the four-
dimensional interval is zero

ds2 = gαβ dx
αdxβ = c2dτ2 − dσ2 = 0 , (1.7)

while the observable three-dimensional (spatial) interval dσ and the
interval of the physically observable time dτ are not zero (therefore
isotropic trajectories are particularly degenerate).

This ends the list of types of trajectories in the four-dimensional
pseudo-Riemannian space (the basic space-time of the General Theory
of Relativity), known to scientists until the recent time.
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We show in this book that other trajectories are theoretically al-
lowable in the space, along which the four-dimensional interval, the
interval of observable time and the observable three-dimensional inter-
val are zero. Such trajectories lie beyond the four-dimensional pseudo-
Riemannian space. These are trajectories in a fully degenerate space-
time region. We call it “degenerate” because from the viewpoint of
a regular observer, all distances and intervals of time in such a region
degenerate into zero. Nevertheless, transition into such a degenerate
space-time region from the regular space-time region is quite possible
(provided certain physical conditions are achieved). And perhaps for
the observer, who moves into such a degenerate space-time region, the
terms “time” and “space” will not become void, but will be measured
in different units.

Therefore we may consider the four-dimensional pseudo-Riemannian
space (space-time) and the fully degenerate space-time region (hence-
forth referred to simply as space-time) in common as an extended space-
time, in which both non-degenerate (isotropic and non-isotropic) and
degenerate trajectories exist.

Hence in such an extended four-dimensional space-time, which is
an actual “extension” of the basic space-time of the General Theory of
Relativity to include the fully degenerate space-time region, three types
of trajectories are allowable:

1) Non-isotropic trajectories (pseudo-Riemannian space). Motion
along them is possible at subluminal and superluminal velocity;

2) Isotropic trajectories (pseudo-Riemannian space). Along such tra-
jectories motion is possible at the velocity of light only;

3) Fully degenerate trajectories (zero-trajectories), which lie in the
fully degenerate space-time.

According to these types of trajectories, three kinds of particles can
be distinguished, which can exist in the four-dimensional space-time:

1) Mass-bearing particles (the rest-mass m0 6=0) move along non-
isotropic trajectories (ds 6=0) at subluminal velocities (real mass-
bearing particles) and at superluminal velocities (imaginary mass-
bearing particles — tachyons);

2) Massless particles (the rest-mass m0 =0) move along isotropic tra-
jectories (ds=0) at the velocity of light. These are light-like par-
ticles, e.g. photons;

3) Particles of the 3rd kind move along trajectories in the fully de-
generate space-time.
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Besides, from the purely mathematical viewpoint, the equations of
geodesic lines contain the same vector Qα and the same parameter ρ
irrespective of whether the considered trajectories are isotropic or non-
isotropic. This shows that there must exist such equations of motion,
which have a common form for mass-bearing and massless particles. We
will proceed to search for such generalized equations of motion.

In the next paragraph, we will set forth the basics of the mathemat-
ical apparatus of physically observable quantities (chronometric invari-
ants), which will serve as our main tool in this book. In §1.3 we will
prove the existence of a generalized dynamical vector and derivation
parameter, which are the same for mass-bearing and massless particles.
§1.4 will focus on the physical conditions of the full degeneration of a
pseudo-Riemannian space. §1.5 will consider the properties of particles
in an extended four-dimensional space-time, which allows the full de-
generation of the metric. In §1.6–§1.8 the chronometrically invariant
dynamical equations of motion valid for all kinds of particles allowed in
the extended four-dimensional space-time will be obtained. In §1.9 and
§1.10 we will show that the equations of geodesic lines and Newton’s
laws of Classical Mechanics are particular cases of these dynamical equa-
tions. §1.11 and §1.12 will be devoted to two aspects of the obtained
equations: 1) the conditions transforming the extended space-time into
the regular space-time, and 2) the asymmetry of motion into the future
(the direct flow of time) and into the past (the reverse flow of time).
§1.13 and §1.14 will focus on the physical conditions of the direct flow of
time and the reverse flow of time. §1.15 and §1.16 discuss certain specific
cases such as a superluminal observer and gravitational collapse.

§1.2 Chronometrically invariant (observable) quantities

In order to build a descriptive picture of any physical theory, we need
to express the results through real physical quantities, which can be
measured in experiments (physically observable quantities). In the Gen-
eral Theory of Relativity, this problem is not a trivial one, because we
are looking at objects in a four-dimensional space-time and we have to
determine which components of the four-dimensional tensor quantities
are physically observable.

Here is the problem in a nutshell. All equations in the General The-
ory of Relativity are put down in the general covariant form, which does
not depend on our choice of the frame of reference. The equations, as
well as the variables they contain, are four-dimensional. Which of those
four-dimensional variables are observable in real physical experiments,
i.e. which components are physically observable quantities?
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Intuitively we may assume that the three-dimensional components
of a four-dimensional tensor constitute a physically observable quantity.
At the same time we cannot be absolutely sure that what we observe
are the three-dimensional components per se, not more complicated
variables which depend on other factors, e.g. on the properties of the
physical standards of the space of reference.

Further, a four-dimensional vector (1st rank tensor) has as few as
4 components (1 time component and 3 spatial components). A 2nd
rank tensor, e.g. a rotation or deformation tensor, has 16 components:
1 time component, 9 spatial components and 6 mixed (time-space) com-
ponents. Are the mixed components physically observable quantities?
This is another question that had no definite answer. Tensors of higher
ranks have even more components; for instance the Riemann-Christoffel
curvature tensor has 256 components, so the problem of the heuristic
recognition of physically observable components becomes far more com-
plicate. Besides there is an obstacle related to the recognition of ob-
servable components of covariant tensors (in which indices occupy the
lower position) and of mixed type tensors, which have both lower and
upper indices.

We see that the recognition of physically observable quantities in the
General Theory of Relativity is not a trivial problem. Ideally we would
like to have a mathematical technique to calculate physically observable
quantities for tensors of any given ranks unambiguously.

Numerous attempts to develop such a mathematical method were
made in the 1930’s by outstanding researchers of that time. The goal
was nearly attained by Landau and Lifshitz in their famous The Clas-
sical Theory of Fields, first published in Russian in 1939. Aside for
discussing the problem of physically observable quantities itself, in §84
of their book, they introduced the interval of physically observable time
and the observable three-dimensional interval, which depend on the
physical properties (physical standards) of the space of reference of an
observer. But all the attempts made in the 1930’s were limited to solv-
ing certain particular problems. None of them led to development of
a versatile mathematical apparatus.

A complete mathematical apparatus for calculating physically ob-
servable quantities in a four-dimensional pseudo-Riemannian space was
first introduced by Abraham Zelmanov and is known as the theory of
chronometric invariants. Zelmanov’s mathematical apparatus was first
presented in 1944 in his PhD thesis [2], where it is given in all details,
then — in his short papers of 1956–1957 [3, 4].

A similar result was obtained by Carlo Cattaneo [5–8], an Italian
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mathematician who worked independently of Zelmanov. Cattaneo pub-
lished his first paper on this subject in 1958 [5]. He highly appreciated
Zelmanov’s theory of chronometric invariants, and referred to it in his
last publication of 1968 [8].

The essence of Zelmanov’s mathematical apparatus of physically ob-
servable quantities (chronometric invariants), designed especially for
the four-dimensional, curved, non-uniform pseudo-Riemannian space
(space-time), is as follows.

In any point of the space-time we can place a three-dimensional
spatial section x0 = ct= const (three-dimensional space) orthogonal to a
given time line xi = const. If a spatial section is everywhere orthogonal
to time lines, which pierce it at each point, such a space is referred
to as holonomic. Otherwise, if the spatial section is non-orthogonal
everywhere to the time lines, the space is referred to as non-holonomic.

Possible frames of reference of a real observer include a coordinate
net spanned over a real physical body (the body of reference of the ob-
server, which is located near him) and a real clock located at each point
of the coordinate net. Both coordinate net and clocks represent a set of
real references to which the observer refers his observations. Therefore,
physically observable quantities, really registered by an observer, should
be the result of projection of four-dimensional quantities onto the time
line and onto the spatial section (time and three-dimensional space) of
the reference body of the observer.

The operator of projection onto the time line of an observer is the
world-vector of four-dimensional velocity

bα =
dxα

ds
(1.8)

of his reference body with respect to him. This world-vector is tangential
to the world-line of the observer in each point of his world-trajectory,
so this is a unit-length vector

bαb
α = gαβ

dxα

ds

dxβ

ds
=
gαβ dx

αdxβ

ds2
= +1 . (1.9)

The operator of projection onto the spatial section of the observer
(his local three-dimensional space) is determined as a four-dimensional
symmetric tensor hαβ , which is

hαβ = − gαβ + bαbβ

hαβ = − gαβ + bαbβ

hβα = − gβα + bαb
β




. (1.10)
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The world-vector bα and the world-tensor hαβ are orthogonal to each
other. Mathematically this means that their common contraction is zero

hαβ b
α = − gαβ bα + bαb

αbβ = − bβ + bβ = 0

hαβbα = − gαβ bα + bβbαb
α = − bβ + bβ = 0

hαβ bα = − gαβ bα + bβ b
αbα = − bβ + bβ = 0

hβα b
α = − gβα bα + bβbαb

α = − bβ + bβ = 0





. (1.11)

So, the main main properties of the operators of projection are com-
monly expressed, obviously, as follows

bαb
α = +1 , hβα b

α = 0 . (1.12)

If the observer rests with respect to his references (such a case is
known as the accompanying frame of reference), bi =0 in his reference
frame. The coordinate nets of the same spatial section are connected to
each other through the transformations

x̃0 = x̃0
(
x0, x1, x2, x3

)

x̃i = x̃i
(
x1, x2, x3

)
,

∂x̃i

∂x0
= 0



 (1.13)

where the third equation means the fact that the spatial coordinates
in the tilde-marked net are independent from time of the non-tilded
net, that is equivalent to a coordinate net where the lines of time are
fixed xi = const at any point. Transformation of the spatial coordi-
nates is nothing but only transition from one coordinate net to another
within the same spatial section. Transformation of time means changing
the whole set of clocks, so this is transition to another spatial section
(another three-dimensional space of reference). In practice this means
replacement of one reference body with all of its physical references
with another reference body that has its own physical references. But
when using different references, the observer will obtain different results
(other observable quantities). Therefore, the physically observable pro-
jections in an accompanying frame of reference should be invariant with
respect to the transformation of time, i.e. they should be invariant with
respect to the transformations (1.13). In other word, such quantities
should possess the property of chronometric invariance.

We therefore refer to the physically observable quantities determined
in an accompanying frame of reference as chronometrically invariant
quantities, or chronometric invariants in short.
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The tensor hαβ , being considered in the space of a frame of reference
accompanying an observer, possesses all properties attributed to the
fundamental metric tensor, namely

hαi h
k
α = δki − bib

k = δki , δki =




1 0 0
0 1 0
0 0 1


 , (1.14)

where δki is the unit three-dimensional tensor∗. Therefore, in the accom-
panying frame of reference the three-dimensional tensor hik can lift or
lower indices in chronometrically invariant quantities.

So, in the accompanying frame of reference the main properties of
the operators of projection are

bαb
α = +1 , hiαb

α = 0 , hαi h
k
α = δki . (1.15)

We calculate the components of the operators of projection in the
accompanying frame of reference. The component b0 comes from the
obvious condition bαbα = gαβ b

αbβ = 1, which in the accompanying frame
of reference (bi =0) is bαbα = g00 b

0b0 =1. This component, in common
with the rest components of bα is

b0 =
1√
g00

, bi = 0

b0 = g0αb
α =

√
g00 , bi = giαb

α =
gi0√
g00




, (1.16)

while the components of hαβ are

h00 = 0 , h00 = − g00+
1
g00

, h0
0 = 0

h0i = 0 , h0i = − g0i, hi0 = δi0 = 0

hi0 = 0 , hi0 = − gi0, h0
i =

gi0
g00

hik = − gik +
g0ig0k
g00

, hik = − gik, hik = − gik = δik





. (1.17)

Zelmanov developed a common mathematical method how to calcu-
late the chronometrically invariant (physically observable) projections
of any general covariant (four-dimensional) tensor quantity, and set it
forth as a theorem (we refer to it as Zelmanov’s theorem):

∗This tensor δk
i is the three-dimensional part of the four-dimensional unit ten-

sor δα
β , which can be used to replace indices in four-dimensional quantities.
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Zelmanov’s theorem: We assume that Qik...p00...0 are the compo-
nents of the four-dimensional tensor Qµν...ρ00...0 of the r-th rank, in
which all upper indices are not zero, while all m lower indices are
zero. Then, the tensor quantities

T ik...p = (g00)
−m

2 Qik...p00...0 (1.18)

constitute a chronometrically invariant three-dimensional contra-
variant tensor of (r−m)-th rank. Hence the tensor T ik...p is a re-
sult of m-fold projection onto the time line by the indices α, β . . . σ
and onto the spatial section by r−m the indices µ, ν . . . ρ of the
initial tensor Qµν...ραβ...σ.

According to the theorem, the chronometrically invariant (physically ob-
servable) projections of a four-dimensional vector Qα are the quantities

bαQα =
Q0√
g00

, hiαQ
α = Qi, (1.19)

while the chr.inv.-projections of a symmetric tensor of the 2nd rank Qαβ

are the following quantities

bαbβQαβ =
Q00

g00
, hiαbβQαβ =

Qi0√
g00

, hiαh
k
β Q

αβ = Qik. (1.20)

The chr.inv.-projections of a four-dimensional coordinate interval
dxα are the interval of the physically observable time

dτ =
√
g00 dt+

g0i
c
√
g00

dxi, (1.21)

and the interval of the observable coordinates dxi which are the same as
the spatial coordinates. The physically observable velocity of a particle
is the three-dimensional chr.inv.-vector

vi =
dxi

dτ
, vivi = hik vivk = v2, (1.22)

which at isotropic trajectories becomes the three-dimensional chr.inv.-
vector of the physically observable velocity of light

ci = vi =
dxi

dτ
, cic

i = hik c
ick = c2. (1.23)

Projecting the covariant or contravariant fundamental metric tensor
onto the spatial section of an accompanying frame of reference (bi =0)

hαi h
β
k gαβ = gik − bibk = −hik

hiαh
k
β g

αβ = gik − bibk = gik = −hik

}
, (1.24)
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we obtain that the chr.inv.-quantity

hik = − gik + bibk (1.25)

is the chr.inv.-metric tensor (the observable metric tensor), using which
we can lift and lower indices of any three-dimensional chr.inv.-tensorial
object in the accompanying frame of reference. The contravariant and
mixed components of the observable metric tensor are, obviously,

hik = − gik, hik = − gik = δik . (1.26)

Expressing gαβ through the definition of hαβ =−gαβ + bαbβ , we ob-
tain the formula for the four-dimensional interval

ds2 = bαbβ dx
αdxβ − hαβ dx

αdxβ , (1.27)

expressed through the operators of projection bα and hαβ . In this for-
mula bαdxα = cdτ , so the first term is bαbβ dxαdxβ = c2dτ2. The second
term hαβ dx

αdxβ = dσ2 in the accompanying frame of reference is the
square of the observable three-dimensional interval∗

dσ2 = hik dx
idxk. (1.28)

Thus, the four-dimensional interval, represented through the physi-
cally observable quantities, is

ds2 = c2dτ2 − dσ2. (1.29)

The main physically observable properties attributed to the accom-
panying space of reference were deduced by Zelmanov in the framework
of the theory, in particular — proceeding from the property of non-
commutativity ∗∂2

∂xi∂t
−

∗∂2

∂t ∂xi
=

1
c2
Fi

∗∂
∂t
, (1.30)

∗∂2

∂xi∂xk
−

∗∂2

∂xk ∂xi
=

2
c2
Aik

∗∂
∂t

(1.31)

of the chr.inv.-operators of derivation he introduced as follows
∗∂
∂t

=
1√
g00

∂

∂t
,

∗∂
∂xi

=
∂

∂xi
− g0i
g00

∂

∂x0
. (1.32)

First two physically observable properties are characterized by the
following three-dimensional chr.inv.-quantities: the vector of the gravi-

∗This is due to the fact that hαβ in the accompanying frame of reference possesses
all properties of the fundamental metric tensor gαβ .
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tational inertial force Fi and the antisymmetric tensor of the angular
velocities of rotation of the space of reference Aik which are

Fi =
1

1− w

c2

(
∂w
∂xi

− ∂vi
∂t

)
, (1.33)

Aik =
1
2

(
∂vk
∂xi

− ∂vi
∂xk

)
+

1
2c2

(
Fivk − Fkvi

)
. (1.34)

Here w and vi characterize the body of reference and its reference’s
space. These are the gravitational potential

w = c2 (1−√g00 ) , 1− w
c2

=
√
g00 , (1.35)

and the linear velocity of rotation of the space

vi = − c g0i√
g00

, vi = − c g0i√g00

vi = hikv
k, v2 = vkv

k = hik v
ivk




. (1.36)

We note that w and vi don’t possess the property of chronometric
invariance, despite vi =hikv

k can be obtained as for a chr.inv.-quantity,
through lowering the index by the chr.inv.-metric tensor hik.

Zelmanov had also found that the chr.inv.-quantities Fi and Aik are
linked to each other by two identities which are known as Zelmanov’s
identities

∗∂Aik
∂t

+
1
2

(∗∂Fk
∂xi

−
∗∂Fi
∂xk

)
= 0 , (1.37)

∗∂Akm
∂xi

+
∗∂Ami
∂xk

+
∗∂Aik
∂xm

+
1
2

(
FiAkm + FkAmi + FmAik

)
= 0 . (1.38)

In the framework of quasi-Newtonian approximation, i.e. in a weak
gravitational field at velocities much lower than the velocity of light and
in the absence of rotation of space, Fi becomes a regular non-relativistic
gravitational force Fi = ∂w

∂xi .
Zelmanov had also proved the following theorem setting up the con-

dition of holonomity of space:
Zelmanov’s theorem on holonomity of space: Identical
equality of the tensor Aik to zero in a four-dimensional region of
the space (space-time) is the necessary and sufficient condition for
the spatial sections to be everywhere orthogonal to the time lines
in this region.
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In other word, the necessary and sufficient condition of holonomity of
a space should be achieved by equating to zero of the tensor Aik. Natu-
rally, if the spatial sections are everywhere orthogonal to the time lines
(in such a case the space is holonomic), the quantities g0i are zero.
Since g0i =0, we have vi =0 and Aik =0. Therefore, we will also refer
the tensor Aik to as the space non-holonomity tensor.

If somewhere the conditions Fi =0 and Aik =0 are met in common,
there the conditions g00 =1 and g0i =0 are present as well (i.e. the con-
ditions g00 =1 and g0i =0 can be satisfied through the transformation
of time in such a region). In such a region, according to (1.21), dτ = dt:
the difference between the coordinate time t and the physically observ-
able time τ disappears in the absence of gravitational fields and rotation
of the space. In other word, according to the theory of chronometric in-
variants, the difference between the coordinate time t and the physically
observable time τ originates in both gravitation and rotation attributed
to the space of reference of the observer (actually — his reference body,
the Earth in the case of an Earth-bound observer), or in each of the
motions separately.

On the other hand, it is doubtful to find such a region of the Universe
wherein gravitational fields or rotation of the background space would
be absent in clear. Therefore, in practice the physically observable time
τ and the coordinate time t differ from each other. This means that the
real space of our Universe is non-holonomic, and is filled with a grav-
itational field, while a holonomic space free of gravitation can be only
a local approximation to it.

The condition of holonomity of a space (space-time) is linked direct
to the problem of integrability of time in it. The formula for the interval
of the physically observable time (1.21) has no an integrating multiplier.
In other word, this formula cannot be reduced to the form

dτ = Adt , (1.39)

where the multiplier A depends on only t and xi: in a non-holonomic
space the formula (1.21) has non-zero second term, depending on the
coordinate interval dxi and g0i. In a holonomic space Aik =0, so g0i =0.
In such a case the second term of (1.21) is zero, while the first term is
the elementary interval of time dt with an integrating multiplier

A =
√
g00 = f

(
x0, xi

)
, (1.40)

so we are allowed to write the integral

dτ =
∫ √

g00 dt . (1.41)
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Hence time is integrable in a holonomic space (Aik =0), while it can-
not be integrated in the case where the space is non-holonomic (Aik 6=0).
In the case where time is integrable (a holonomic space), we can synchro-
nize the clocks in two distantly located points of the space by moving a
control clock along the path between these two points. In the case where
time cannot be integrated (a non-holonomic space), synchronization of
clocks in two distant points is impossible in principle: the larger is the
distance between these two points, the more is the deviation of time on
these clocks.

The space of our planet, the Earth, is non-holonomic due to the
daily rotation of it around the Earth’s axis. Hence two clocks located
at different points of the surface of the Earth should manifest a deviation
between the intervals of time registered on each of them. The larger is
the distance between these clocks, the larger is the deviation of the
physically observable time expected to be registered on them. This
effect was sure verified by the well-known Hafele-Keating experiments
[9–12] concerned with displacing standard atomic clocks by an airplane
around the terrestrial globe, where rotation of the Earth’s space sensibly
changed the measured time. During a flight along the Earth’s rotation,
the observer’s space on board of the airplane had more rotation than
the space of the observer who stayed fixed on the ground. During a
flight against the Earth’s rotation it was vice versa. An atomic clock on
board of such an airplane showed significant variation of the observed
time depending on the velocity of rotation of the space.

Because synchronization of clocks at different locations on the sur-
face of the Earth is a highly important problem in marine navigation
and also aviation, in early time de-synchronization corrections were in-
troduced as tables of the empirically obtained corrections which take
the Earth’s rotation into account. Now, thank to the theory of chrono-
metric invariants, we know the origin of the corrections, and are able to
calculate them on the basis of the General Theory of Relativity.

In addition to gravitation and rotation, the reference body can de-
form, changing its coordinate nets with time. This fact should also be
taken into account in measurements. This can be done by introducing
into the equations the three-dimensional symmetric chr.inv.-tensor of
the rates of deformation the space of reference

Dik =
1
2

∗∂hik
∂t

, Dik = −1
2

∗∂hik

∂t

D = hikDik = Dn
n =

∗∂ ln
√
h

∂t
, h = det ‖hik‖




. (1.42)
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Zelmanov had also deduced formulae for the four-dimensional quan-
tities Fα, Aαβ , Dαβ [13]

Fα = − 2c2bβaβα , (1.43)

Aαβ = chµαh
ν
β aµν , (1.44)

Dαβ = chµαh
ν
β dµν , (1.45)

which are the general covariant generalization of the chr.inv.-quantities
Fi, Aik, Dik. The auxiliary quantities aαβ and dαβ here are

aαβ =
1
2

(∇α bβ −∇β bα
)
, dαβ =

1
2

(∇α bβ +∇β bα
)
. (1.46)

The usual Christoffel symbols of the 1st rank Γαµν and the Christoffel
symbols of the 1st rank Γµν,σ

Γαµν = gασ Γµν,σ =
1
2
gασ

(
∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
(1.47)

are linked to the respective chr.inv.-Christoffel symbols

∆i
jk = him∆jk,m =

1
2
him

(∗∂hjm
∂xk

+
∗∂hkm
∂xj

−
∗∂hjk
∂xm

)
(1.48)

determined similarly to Γαµν . The only difference is that here instead
of the fundamental metric tensor gαβ the chr.inv.-metric tensor hik is
used. Components of the usual Christoffel symbols are linked to the
other chr.inv.-chractersitics of the accompanying space of reference by
the relations

Di
k +A·ik· =

c√
g00

(
Γi0k −

g0kΓi00
g00

)
, (1.49)

F k = − c2 Γk00
g00

, (1.50)

giαgkβ Γmαβ = hiqhks∆m
qs . (1.51)

Zelmanov had also deduced formulae for the chr.inv.-projections of
the Riemann-Christoffel tensor. He followed the same procedure by
which the Riemann-Christoffel tensor was built, proceeding from the
non-commutativity of the second derivatives of an arbitrary vector taken
in the given space. Taking the second chr.inv.-derivatives of an arbitrary
vector

∗∇i∗∇kQl −∗∇k∗∇iQl =
2Aik
c2

∗∂Ql
∂t

+H ...j
lki·Qj , (1.52)
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he obtained the chr.inv.-tensor

H ...j
lki· =

∗∂∆j
il

∂xk
−
∗∂∆j

kl

∂xi
+ ∆m

il ∆
j
km −∆m

kl∆
j
im , (1.53)

which is like Schouten’s tensor from the theory of non-holonomic man-
ifolds [14]. The tensor H ...j

lki· differs algebraically from the Riemann-
Christoffel tensor because the presence of rotation of the space Aik in
the formula (1.52). Nevertheless its generalization gives the chr.inv.-
tensor

Clkij =
1
4

(Hlkij −Hjkil +Hklji −Hiljk) , (1.54)

which possesses all the algebraic properties of the Riemann-Christoffel
tensor in this three-dimensional space. Therefore Zelmanov called Ciklj
the chr.inv.-curvature tensor, which actually is the tensor of the phys-
ically observable curvature of the spatial section of the observer. Its
contraction step-by-step

Ckj = C ···ikij· = himCkimj , C = Cjj = hljClj (1.55)

gives the chr.inv.-scalar C which means the observable three-dimensional
curvature of this space.

Substituting the necessary components of the Riemann-Christoffel
tensor into the formulae for its chr.inv.-projections

Xik = − c2 R
·i·k
0·0·
g00

, Y ijk = − c R
·ijk
0 ···√
g00

, Zijkl = c2Rijkl, (1.56)

and by lowering indices Zelmanov obtained the formulae

Xij =
∗∂Dij

∂t
−(
Dl
i+A

·l
i·
)(
Djl+Ajl

)
+

1
2

(∗∇iFj+∗∇jFi
)− 1

c2
FiFj , (1.57)

Yijk = ∗∇i
(
Djk +Ajk

)−∗∇j
(
Dik +Aik

)
+

2
c2
AijFk , (1.58)

Ziklj = DikDlj−DilDkj+AikAlj−AilAkj+2AijAkl−c2Ciklj , (1.59)

where we have Y(ijk) =Yijk +Yjki +Ykij =0 just like in the Riemann-
Christoffel tensor. Contraction of the spatial observable projection Ziklj
step-by-step gives

Zil = DikD
k
l −DilD +AikA

·k
l· + 2AikAk··l − c2Cil , (1.60)

Z = hilZil = DikD
ik −D2 −AikA

ik − c2C . (1.61)



24 Chapter 1 Kinds of Particles in the Pseudo-Riemannian Space

These are the basics of the mathematical apparatus of physically
observable quantities — Zelmanov’s chronometric invariants [2–4].

Given these definitions, we can find how any geometric object of
the four-dimensional pseudo-Riemannian space (space-time) is seemed
from the viewpoint of any observer whose location is this space. For
instance, having any equation obtained in the general covariant tensor
analysis, we can calculate the chr.inv.-projections of it onto the time
line and onto the spatial section of any particular body of reference,
then formulate the chr.inv.-projections in the terms of the physically
observable properties of the space of reference. This way we will arrive
at equations containing only quantities measurable in practice.

§1.3 Mass-bearing particles and massless particles

According to up-to-date physical concepts [15], mass-bearing particles
are characterized by the four-dimensional vector of momentum Pα,
while massless particles are characterized by the four-dimensional wave
vector Kα

Pα = m0
dxα

ds
, Kα =

ω

c

dxα

dσ
, (1.62)

where m0 is the rest-mass that characterizes a mass-bearing particle,
while ω is the frequency that characterizes a massless particle. The
space-time interval ds is taken as the derivation parameter for mass-
bearing particles (non-isotropic trajectories, ds 6=0). Along isotropic
trajectories ds=0 (for massless particles), but the observable three-
dimensional interval is dσ 6=0. Therefore dσ is taken as the derivation
parameter for massless particles.

The square of the momentum vector Pα along the trajectories of
mass-bearing particles is not zero, and is constant

PαP
α = gαβ P

αP β = m2
0 = const 6= 0 , (1.63)

i.e. Pα is a non-isotropic vector. The square of the wave vector Kα is
zero along the trajectories of massless particles

KαK
α = gαβK

αKβ =
ω2

c2
gαβ dx

αdxβ

dσ2
=
ω2

c2
ds2

dσ2
= 0 , (1.64)

so Kα is an isotropic vector.
Since ds2 in the chr.inv.-form (1.29) expresses itself through the

square of the relativistic root as

ds2 = c2dτ2 − dσ2 = c2dτ2

(
1− v2

c2

)
, v2 = hik vivk, (1.65)
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we can put Pα and Kα down as

Pα = m0
dxα

ds
=
m

c

dxα

dτ
, Kα =

ω

c

dxα

dσ
=
k

c

dxα

dτ
, (1.66)

where k= ω
c is the wave number and m is the relativistic mass. From

the obtained formulae, we can see that the physically observable time
τ can be used as a universal derivation parameter with respect to both
isotropic and non-isotropic trajectories, i.e. as the single derivation pa-
rameter for mass-bearing and massless particles.

Calculation of the contravariant components of Pα and Kα gives

P 0 = m
dt

dτ
, P i =

m

c

dxi

dτ
=

1
c
mvi , (1.67)

K0 = k
dt

dτ
, Ki =

k

c

dxi

dτ
=

1
c
kvi , (1.68)

wheremvi is the three-dimensional chr.inv.-vector of the momentum of a
mass-bearing particle, while kvi is the three-dimensional wave chr.inv.-
vector of a massless particle. The observable chr.inv.-velocity of massless
particles equals the observable chr.inv.-velocity of light vi = ci (1.23).

The formula for dt
dτ

can be obtained from the square of the vector of
the four-dimensional velocity of a particle Uα, which for a subluminal
velocity, the velocity of light, and a superluminal velocity is, respectively

gαβ U
αUβ = +1 , Uα =

dxα

ds
, ds = cdτ

√
1− v2

c2
, (1.69)

gαβ U
αUβ = 0 , Uα =

dxα

dσ
, ds = 0 , dσ = cdτ , (1.70)

gαβ U
αUβ = −1 , Uα =

dxα

|ds| , ds = cdτ

√
v2

c2
− 1 . (1.71)

Substituting the definitions of §1.2 for hik, vi, vi into each formulae
for gαβ UαUβ , we arrive at three quadratic equations with respect to dt

dτ
.

They are the same for subluminal velocities, the velocity of light, and
superluminal velocities

(
dt

dτ

)2

− 2vivi

c2
(
1− w

c2

) dt
dτ

+
1

(
1− w

c2

)2
(

1
c4
vivkvivk − 1

)
= 0 . (1.72)

This quadratic equation has two solutions
(
dt

dτ

)

1,2

=
1

1− w

c2

(
1
c2
vivi ± 1

)
. (1.73)
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The function dt
dτ

allows us to recognize what direction in time the
particle takes. If dt

dτ
> 0, the time coordinate parameter t increases,

i.e. the particle moves from the past into the future (the direct flow
of time). If dt

dτ
< 0, the time coordinate parameter decreases, i.e. the

particle moves from the future into the past (the reverse flow of time).
The quantity 1− w

c2
=
√
g00 > 0, because the other cases

√
g00 =0

and
√
g00< 0 contradict the signature conditions (+−−−). Therefore the

coordinate time t stops dt
dτ

=0 provided that

vivi = − c2, vivi = + c2. (1.74)

The coordinate time t has the direct flow dt
dτ
> 0, if in the first and

in the second solutions, are, respectively

1
c2
vivi + 1 > 0 ,

1
c2
vivi − 1 > 0 . (1.75)

The coordinate time t has the reverse flow dt
dτ
< 0 at

1
c2
vivi + 1 < 0 ,

1
c2
vivi − 1 < 0 . (1.76)

For subluminal particles, vivi<c2 is always true. Hence the direct
flow of time for regularly observed mass-bearing particles takes a place
under the first condition from (1.75) while the reverse flow of time takes
a place under the second condition from (1.76).

Note that we have looked at the problem of the direction of the
coordinate time t assuming that the physically observable time is dτ > 0
always due to the perception of any observer to see the events of his
world in the order from the past to the future.

Now using formulae (1.67), (1.68), (1.73) we calculate the covariant
components Pi and Ki, then — the projections of the four-dimensional
vectors Pα and Kα onto the time line. We obtain

Pi = − m

c
(vi ± vi) , Ki = − k

c
(vi ± vi) , (1.77)

P0√
g00

= ±m,
K0√
g00

= ±k , (1.78)

where the time projections +m and +k take a place during the obser-
vation of these particles moving into the future (the direct flow of time),
while −m and −k take a place during the observation of these particles
moving into the past (the reverse flow of time).
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Therefore, the physically observable quantities are as follows. For a
mass-bearing particle these are its relativistic mass ±m and the three-
dimensional quantity 1

cmvi, where mvi is the observable vector of the
momentum of the particle. For a massless particle these are the wave
number of the particle ±k and the three-dimensional quantity 1

c kvi,
where kvi is the observable wave vector of the particle.

From the obtained formulae (1.77) and (1.78), we can see that the
observable wave vector kvi characterizing massless particles is the com-
plete analogue of the observable vector of the momentum mvi, which
characterizes mass-bearing particles.

Substituting the obtained formulae for P 0, P i, K0, Ki, and also the
formula for gik expressed through hik =−gik + 1

c2
vivk into the formulae

for PαPα (1.63) andKαK
α (1.64), we arrive at the relations between the

physically observable energy and the physically observable momentum
for a mass-bearing particle

E2

c2
−m2vivi =

E2
0

c2
, (1.79)

and also that for a massless particle

hikvivk = c2, (1.80)

where E=±mc2 is the relativistic energy of the mass-bearing particle,
while E0 =m0c

2 is its rest-energy.
Therefore, by comparing the new common formulae for Pα and Kα

(1.66) we have obtained, we arrive at an universal derivation parameter,
which is the physically observable time τ , and is the same for both
mass-bearing and massless particles. This is despite the fact that the
four-dimensional dynamical vectors for particles of each of these two
kinds, the vectors Pα and Kα, differ from each other.

Now we are going to find a universal dynamical vector, which in
particular cases can be represented as the dynamical vector of a mass-
bearing particle Pα and that of a massless particle Kα.

We will tackle this problem by assuming that the wave-particle dual-
ity, first introduced by Lois de Broglie for massless particles, is peculiar
to particles of all kinds without any exception. That is, we will consider
the motion of massless and mass-bearing particles as the propagation
of waves in the approximation of geometric optics.

The four-dimensional wave vector of massless particles Kα in the
approximation of geometric optics is [15]

Kα =
∂ψ

∂xα
, (1.81)
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where ψ is the wave phase (known also as the eikonal) [15]. Following
the same way, we set up the four-dimensional vector of the momentum
of a mass-bearing particle

Pα =
~
c

∂ψ

∂xα
, (1.82)

where ~ is Planck’s constant, while the coefficient ~c equates the dimen-
sions of both parts of the equation. From these formulae we arrive at

K0√
g00

=
1
c

∗∂ψ
∂t

,
P0√
g00

=
~
c2

∗∂ψ
∂t

. (1.83)

Equating the quantities (1.83) to (1.78) we obtain

±ω =
∗∂ψ
∂t

, ±m =
~
c2

∗∂ψ
∂t

. (1.84)

From here we see that the value +ω for a massless particle and +m
for a mass-bearing particle take a place at the wave phase ψ which
increases with time, while −ω and −m take a place at the wave phase
decreasing with time. From these expressions, we obtain a formula for
the energy of both massless and mass-bearing particle, which takes the
dual (wave-particle) nature of the particle into account. This is

±mc2 = ± ~ω = ~
∗∂ψ
∂t

= E . (1.85)

Now from (1.82) we obtain the dependence between the chr.inv.-
momentum pi of a particle and its wave phase ψ

pi = mvi = − ~hik
∗∂ψ
∂xk

, pi = mvi = − ~
∗∂ψ
∂xi

. (1.86)

Furthermore, as known [15], the condition KαK
α =0 can be pre-

sented in the form
gαβ

∂ψ

∂xα
∂ψ

∂xβ
= 0 , (1.87)

which is the basic equation of geometric optics known as the eikonal
equation. Formulating the regular operators of derivation through the
chr.inv.-differential operators

∗∂
∂t

and
∗∂
∂xi , and taking into account that

g00 =
1− 1

c2
viv

i

g00
, gik = −hik, vi = − c g0i√g00 , (1.88)

we arrive at the chr.inv.-eikonal equation for massless particles

1
c2

(∗∂ψ
∂t

)2

+ hik
∗∂ψ
∂xi

∗∂ψ
∂xk

= 0 . (1.89)
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In the same way, we obtain the chr.inv.-eikonal equation for mass-
bearing particles

1
c2

(∗∂ψ
∂t

)2

+ hik
∗∂ψ
∂xi

∗∂ψ
∂xk

=
m2

0c
2

~2
, (1.90)

which at m0 =0 becomes the same as the former one.
Substituting the relativistic mass m (1.84) into (1.66), we obtain the

dynamical vector Pα which characterizes the motion of both massless
and mass-bearing particles in geometric-optical approximation

Pα =
~ω
c3

dxα

∂τ
, PαP

α =
~2ω2

c4

(
1− v2

c2

)
. (1.91)

The length of the vector is a real quantity at v<c, is zero at v = c,
and is an imaginary quantity at v>c. Therefore, the obtained dynam-
ical vector Pα characterizes particles with any rest-mass (real, zero, or
imaginary).

The observable projections of the obtained universal vector Pα are

P0√
g00

= ± ~ω
c2

, P i =
~ω
c3

vi, (1.92)

where the observable time projection has the dimension of mass and the
quantity pi = cP i has the dimensions of momentum.

§1.4 Fully degenerate space-time. Zero-particles

As known, along the trajectories of massless particles (isotropic trajec-
tories) the four-dimensional interval is zero

ds2 = c2dτ2 − dσ2 = 0 , c2dτ2 = dσ2 6= 0 . (1.93)

But ds2 =0 not only at c2dτ2 = dσ2, but also when even a stricter
condition is true, c2dτ2 = dσ2 = 0. The condition dτ2 =0 means that the
physically observable time τ has the same numerical value along the en-
tire trajectory. The condition dσ2 =0 means that all three-dimensional
trajectories have zero lengths. Taking into account the definitions of
dτ (1.21), dσ2 (1.28), and the fact that in any accompanying frame of
reference h00 =h0i = 0, we set down the conditions dτ2 =0 and dσ2 =0
in the following, expanded form

cdτ =
[
1− 1

c2
(
w + viu

i
)]
cdt = 0 , dt 6= 0 , (1.94)

dσ2 = hik dx
idxk = 0 , (1.95)
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where ui = dxi

dt
is the three-dimensional coordinate velocity of the par-

ticle, which isn’t a physically observable chr.inv.-quantity.
As known, the necessary and sufficient condition of full degeneration

of a metric means zero value of the determinant of the metric tensor.
For the three-dimensional physically observable metric dσ2 =hik dx

idxk

this condition is
h = det ||hik|| = 0 . (1.96)

On the other hand, the determinant of the chr.inv.-metric tensor hik
has the form [2–4]

h = − g

g00
, (1.97)

where g=det ||gαβ ||. Hence degeneration of the three-dimensional form
dσ2, i.e. h=0, means degeneration of the four-dimensional form ds2,
i.e. g=0. Therefore a four-dimensional space (space-time), wherein the
conditions (1.94) and (1.95) are true, is a fully degenerate space-time.

Substituting hik =−gik + 1
c2
vivk into (1.95), then dividing it by dt2,

we obtain (1.94) and (1.95), which are the physical conditions of degen-
eration of the space in the final form

w + viu
i = c2, giku

iuk = c2
(
1− w

c2

)2

, (1.98)

where viui is the scalar product of the linear velocity of the space rota-
tion vi and the coordinate velocity of the particle ui.

If all quantities vi =0 (i.e. the space is holonomic), w = c2 and also√
g00 =1− w

c2
=0. This means that the gravitational potential of the

body of reference w is strong enough at the given point of the space
(it is distant from the body) to bring the space to gravitational collapse
at this point. This case will not be discussed here.

Below we shall look at the degeneration of the four-dimensional space
(space-time) in the case, where the space is non-holonomic (vi 6=0), i.e.
the spatial section of the observer experiences rotation.

Using the definition of dτ (1.21), we obtain the relation between the
coordinate velocity ui and the observable velocity vi

vi =
ui

1− 1

c2
(w + vkuk)

. (1.99)

Now we can write down ds2 in a form in order to have the conditions
of degeneration presented explicitly

ds2 = c2dτ2

(
1− v2

c2

)
= c2dt2

{[
1− 1

c2
(
w+vkuk

)]2

− u2

c2

}
. (1.100)
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As obvious, the degenerate space-time can only host the particles
for which the physical conditions of degeneration (1.98) are true.

We will refer to fully degenerate space-time as zero-space, while
the particles allowed in a fully degenerate space-time (zero-space) will
be referred to as zero-particles.

§1.5 An extended space for particles of all three kinds

When looking at the motion of mass-bearing and massless particles, we
considered it in a four-dimensional space-time with the strictly non-
degenerate metric (g < 0). Now we are going to consider it in such
a space-time wherein degeneration of metric is allowed (g6 0).

We already obtained, in the previous paragraph, the metric of such
an extended space-time (see formula 1.100). Hence, the vector of the
momentum of a mass-bearing particle Pα in such an extended space-
time (g6 0) takes the form

Pα = m0
dxα

ds
=
M

c

dxα

dt
, (1.101)

M =
m0√[

1− 1

c2
(w + vkuk)

]2− u2

c2

, (1.102)

where M stands for the gravitational rotational mass of the particle.
Such a mass M depends not only on the three-dimensional velocity of
the particle with respect to the observer, but also on the gravitational
potential w (the field of the body of reference) and on the linear velocity
of rotation vi of the space.

From the obtained formula (1.101) we see that in a four-dimensional
space-time wherein degeneration of the metric is allowed (g6 0), the
generalized parameter of derivation is the coordinate time t.

Substituting v2 from (1.99) and m0 =m
√

1− v2/c2 into this for-
mula, we arrive at the relationship between the relativistic mass of a
particle m and its gravitational rotational mass M

M =
m

1− 1

c2
(w + viui)

. (1.103)

From the obtained formula we see that M is a ratio between two
quantities, each one is equal to zero in the case of degenerate metric
(g=0), but the ratio itself is not zero M 6=0.

This fact is no surprise. The same is true for the relativistic mass m
in the case of v2 = c2. Once there m0 =0 and

√
1− v2/c2 =0, the ratio

of these quantities is still m 6= 0.
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Therefore, light-like (massless) particles are the ultimate case of
mass-bearing particles at v→ c. Zero-particles can be regarded the ul-
timate case of light-like ones that move in a non-holonomic space at
the observable velocity vi (1.99), which depends on the gravitational
potential w of the body of reference and on the direction with respect
to the linear velocity of rotation of the space.

The time component of the world-vector Pα (1.101) and the physi-
cally observable projection of the vector onto the time line are

P 0 = M =
m

1− 1

c2
(w + viui)

, (1.104)

P0√
g00

= M

[
1− 1

c2
(
w + viu

i
)]

= m, (1.105)

while the spatial components of the vector are

P i =
M

c
ui =

m

c
vi, (1.106)

Pi = −M

c

[
ui + vi − 1

c2
vi

(
w + vku

k
)]
. (1.107)

In a fully degenerate region of the extended space-time, i.e. under the
physical conditions of degeneration (1.98), these components become

P 0 = M 6= 0 ,
P0√
g00

= m = 0 , (1.108)

P i =
M

c
ui, Pi = −M

c
ui , (1.109)

i.e. particles of the degenerate space-time (zero-particle) bear zero rel-
ativistic mass, but their gravitational rotational masses are not zero.

Now we are going to look at mass-bearing particles in the extended
space-time within the wave-particle duality concept. In such a case the
components of the universal dynamical vector Pα = ~

c

∗∂ψ
∂xα (1.82) are

P0√
g00

= m = M

[
1− 1

c2
(
w + viu

i
)]

=
~
c2

∗∂ψ
∂t

, (1.110)

Pi =
~
c

(∗∂ψ
∂xi

− 1
c2
vi
∗∂ψ
∂t

)
, (1.111)

P i =
m

c
vi =

M

c
ui = − ~

c
hik

∗∂ψ
∂xk

, (1.112)
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P 0 = M =
~

c2
(
1− w

c2

)
(∗∂ψ
∂t

− vi
∗∂ψ
∂xi

)
. (1.113)

From these components, the following two formulae can be obtained

Mc2 =
1

1− 1

c2
(w + viui)

~
∗∂ψ
∂t

= ~Ω = E tot , (1.114)

Mui = − ~hik
∗∂ψ
∂xk

, (1.115)

where Ω is the gravitational rotational frequency, while ω is the regular
frequency

Ω =
ω

1− 1

c2
(w + viui)

, ω =
∗∂ψ
∂t

. (1.116)

The first relation (1.114) links the gravitational rotational mass M
to its corresponding total energy Etot. The second relation (1.115) links
the three-dimensional generalized momentumMui to the gradient of the
wave phase ψ.

The condition PαPα = const in the approximation of geometric op-
tics (the eikonal equation) takes the form (1.90). For the corpuscular
form of this condition in the extended space-time we obtain the chr.inv.-
formula

E2

c2
−M2u2 =

E2
0

c2
, (1.117)

where M2u2 is the square of the three-dimensional generalized momen-
tum vector, E=mc2, and E0 =m0c

2. Using this formula, we obtain the
formula for the universal dynamic vector

Pα =
~Ω
c3

dxα

dt
=

~
∗∂ψ
∂t

c3
[
1− 1

c2
(w + viui)

]
dxα

∂t
, (1.118)

PαP
α =

~2Ω2

c4

{[
1− 1

c2
(
w + viu

i
)]2

− u2

c2

}
, (1.119)

where the conditions of degeneration have been included.
In a degenerate region of the extended space-time we have m0 =0,

m=0, ω=
∗∂ψ
∂t

=0, and PαPα =0. This means that from the viewpoint
of an observer located in our world particles of a degenerate region (i.e.
zero-particles) bear zero rest-mass m0, zero relativistic mass m, zero rel-
ativistic frequency ω (which corresponds to the relativistic mass within
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the wave-particle duality), while the length of the four-dimensional dy-
namical vector of any zero-particle is indeed conserved. Further for
zero-particles, the gravitational rotational mass M (1.102), the three-
dimensional generalized momentum Mui (1.115), and the gravitational
rotational frequency Ω (1.116), which corresponds to the mass M ac-
cording to the wave-particle duality, are not zero.

The zero-space metric dµ2 is not invariant from the viewpoint of
an internal observer who is located in the zero-space. It can be proven
proceeding from the 2nd condition of degeneration dσ2 =hik dx

idxk =0.
Substituting here hik =−gik + 1

c2
vivk, dividing it by dt2, and then sub-

stituting the 1st condition of degeneration w + viu
i = c2, we arrive at

the internal zero-space metric

dµ2 = gik dx
idxk =

(
1− w

c2

)2

c2dt2 6= inv , (1.120)

which is not invariant, as obvious. Hence, from the viewpoint of an ob-
server located within the zero-space, the length of the four-dimensional
vector of any zero-particle is not conserved along its trajectory

UαU
α = giku

iuk =
(
1− w

c2

)2

c2 6= const. (1.121)

The eikonal equation for zero-particles can be obtained by substitut-
ing the conditions m=0, ω=

∗∂ψ
∂t

=0, PαPα =0 into the eikonal equa-
tion (1.89) or (1.90) we have obtained for mass-bearing and massless
particles, respectively. As a result we obtain that the eikonal equation
for zero-particles in the frame of reference of a regular observer whose
location is our world is

hik
∗∂ψ
∂xi

∗∂ψ
∂xk

= 0 , (1.122)

and this is a standing wave equation. This means that zero-particles
may seem from the point of view of us standing light waves — the waves
of stopped light (e.g. information circles).

As a result of our study of the extended space-time wherein full
degeneration of the metric is allowed, we conclude that two ultimate
space-time barriers exist in such a space-time:

1) Light barrier, to overcome which a particle should exceed the ve-
locity of light;

2) Zero-transition for which a particle should be in a state of specific
rotation depending on a particular distribution of matter (the con-
ditions of degeneration).
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§1.6 Equations of motion: general considerations

Now we are going to obtain the dynamical equations of motion of free
particles in the extended space-time (g6 0), i.e. the equations of motion
for mass-bearing, massless, and zero particles in a common form.

From the geometric viewpoint, the equations in question are those
of parallel transfer in the sense of Levi-Civita applied to the universal
dynamical vector Pα, i.e.

DPα = dPα + ΓαµνP
µdxν = 0 . (1.123)

The equations of parallel transfer (1.123) are written in the general
covariant form. In order for us to be able to use them in practice,
the equations should contain only chronometrically invariant (physically
observable) quantities. To bring the equations to the desired form we
project them onto the time line and onto the spatial section of a frame
of reference which accompanies to our references. We obtain

bαDPα =
√
g00

(
dP 0 + Γ0

µνP
µdxν

)
+

+
g0i√
g00

(
dP i + ΓiµνP

µdxν
)

= 0

hiβDP
β = dP i + ΓiµνP

µdxν = 0




. (1.124)

The Christoffel symbols found in these chr.inv.-equations (1.124)
are not yet expressed in the terms of chr.inv.-quantities. We express
the Christoffel symbols of the 2nd kind Γαµν and those of the 1st kind
Γµν,σ included in them

Γαµν = gασΓµν,σ , Γµν,ρ =
1
2

(
∂gµρ
∂xν

+
∂gνρ
∂xµ

− ∂gµν
∂xρ

)
(1.125)

through the chr.inv.-properties of the accompanying frame of refer-
ence. Expressing the components gαβ and the first derivatives from gαβ
through Fi, Aik, Dik, w, and vi, after some algebra we obtain

Γ00,0 = − 1
c3

(
1− w

c2

) ∂w
∂t

, (1.126)

Γ00,i =
1
c2

(
1− w

c2

)2

Fi +
1
c4
vi
∂w
∂t

, (1.127)

Γ0i,0 = − 1
c2

(
1− w

c2

) ∂w
∂xi

, (1.128)

Γ0i,j = − 1
c

(
1− w

c2

)(
Dij +Aij +

1
c2
Fjvi

)
+

1
c3
vj
∂w
∂xi

, (1.129)
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Γij,0 =
1
c

(
1− w

c2

)[
Dij− 1

2

(
∂vj
∂xi

+
∂vi
∂xj

)
+

1
2c2

(
Fivj+Fjvi

)]
, (1.130)

Γij,k = −∆ij,k +
1
c2

[
viAjk + vjAik +

1
2
vk

(
∂vj
∂xi

+
∂vi
∂xj

)
−

− 1
2c2

vk
(
Fivj + Fjvi

)]
+

1
c4
Fkvivj , (1.131)

Γ0
00 = − 1

c3

[
1

1− w

c2

∂w
∂t

+
(
1− w

c2

)
vkF

k

]
, (1.132)

Γk00 = − 1
c2

(
1− w

c2

)2

F k, (1.133)

Γ0
0i =

1
c2

[
− 1

1− w

c2

∂w
∂xi

+ vk

(
Dk
i +A·ki· +

1
c2
viF

k

)]
, (1.134)

Γk0i =
1
c

(
1− w

c2

)(
Dk
i +A·ki· +

1
c2
viF

k

)
, (1.135)

Γ0
ij = − 1

c
(
1− w

c2

)
{
−Dij +

1
c2
vn×

×
[
vj

(
Dn
i +A·ni·

)
+ vi

(
Dn
j +A·nj·

)
+

1
c2
vivjF

n

]
+

+
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

2c2
(
Fivj + Fjvi

)−∆n
ij vn

}
, (1.136)

Γkij = ∆k
ij−

1
c2

[
vi

(
Dk
j +A·kj·

)
+ vj

(
Dk
i +A·ki·

)
+

1
c2
vivjF

k

]
. (1.137)

Here ∆i
jk stands for the chr.inv.-Christoffel symbols (1.48), which

are determined similarly to Γαµν with use of hik instead of gαβ .
Having the regular operators of derivation expressed through the

chr.inv.-differential operators, and writing down dx0 = cdt through dτ
(1.21), we obtain a chr.inv.-formula for the regular differential

d =
∂

∂xα
dxα =

∗∂
∂t
dτ +

∗∂
∂xi

dxi. (1.138)

Now, having the chr.inv.-projections of Pα denoted as

P0√
g00

= ϕ , P i = qi, (1.139)
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so that P0 =ϕ
√
g00 and P i = qi, we obtain the rest components of Pα

P 0 =
1√
g00

(
ϕ+

1
c
vkq

k

)
, Pi = − ϕ

c
vi − qi . (1.140)

With the formulae substituted into (1.124) we arrive at the chr.inv.-
equations of parallel transfer of the vector Pα, which are

dϕ+
1
c

(
Fiq

idτ +Dik q
idxk

)
= 0

dqi+
(ϕ
c
dxk+qkdτ

)(
Di
k+A·ik·

)− ϕ

c
F idτ+∆i

mk q
mdxk = 0




. (1.141)

From the obtained equations (1.141) we can make an easy transition
to the desired dynamical equations of motion, with ϕ and qi for the
particles of different kinds substituted into (1.141) and divided by dt.

§1.7 Equations of motion in the extended space

The corpuscular and wave forms of the universal dynamical vector Pα

for this case have been obtained in §1.5.

§1.7.1 Equations of motion of real mass-bearing particles

From (1.105) and (1.106) we obtain the chr.inv.-projections of Pα, taken
the corpuscular form in the case of real mass-bearing particles,

ϕ = M

[
1− 1

c2
(
w + vku

k
)]
, qi = M

ui

c
, (1.142)

where u2

[
1− 1

c2
(w + viui)

]2 <c2, dτ 6=0, dt 6=0.

From here we immediately arrive at the corpuscular form of the
dynamical equations of motion for real mass-bearing particles

d

dt

{
M

[
1− 1

c2
(
w + vku

k
)]}

−

−M

c2

[
1− 1

c2
(
w + vku

k
)]
Fiu

i +
M

c2
Diku

iuk = 0

d

dt

(
Mui

)
+ 2M

[
1− 1

c2
(
w + vku

k
)] (

Di
n +A·in·

)
un−

−M

[
1− 1

c2
(
w + vku

k
)]
F i +M∆i

nku
nuk = 0





, (1.143)
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where d=
∗∂
∂t
dτ +

∗∂
∂xi

dxi, d
dτ

=
∗∂
∂t

+vi
∗∂
∂xi

, and also

d

dt
=

∗∂
∂t

dτ

dt
+ ui

∗∂
∂xi

=
[
1− 1

c2
(w + vmu

m)
] ∗∂
∂t

+ ui
∗∂
∂xi

. (1.144)

For the wave form of the universal dynamical vector Pα in the case of
real mass-bearing particles we obtain, according to (1.110) and (1.112),

ϕ =
~
c2

∗∂ψ
∂t

, qi = − ~
c
hik

∗∂ψ
∂xk

, (1.145)

where the physically observable change of the wave phase ψ with time,
i.e. the chr.inv.-derivative

∗∂ψ
∂t

, is positive for the particles moving from
the past into the future, and is negative for those moving from the future
into the past. From here we arrive at the wave form of (1.143), i.e. at
the dynamical equations of propagation of waves, which correspond to
real mass-bearing particles according to the wave-particle duality

± d

dτ

(∗∂ψ
∂t

)
+

[
1− 1
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. (1.146)

As seen, the first term in the time chr.inv.-equation and two terms in
the spatial chr.inv.-equations of (1.146) are positive for particle-waves
moving from the past into the future, while these terms are negative in
the case of motion from the future into the past.

§1.7.2 Equations of motion of imaginary mass-bearing par-
ticles

In this case ϕ and qi of the corpuscular form of Pα will differ from those
presented for real mass-bearing particles (1.142) only by the presence
of the multiplier i=

√−1

ϕ = iM

[
1− 1

c2
(
w + vku

k
)]
, qi = iM

ui

c
, (1.147)

where u2

[
1− 1

c2
(w + viui)

]2 >c2, dτ 6=0 , dt 6=0.
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Respectively, the corpuscular form of the dynamical equations of
motion for imaginary mass-bearing particles (superluminal particles —
tachyons) will differ from the equations obtained for real (subluminal)
particles (1.143) by the presence of the coefficient i in the mass term M .

The chr.inv.-quantities ϕ and qi for the wave form of the dynamical
vector in the case of imaginary mass-bearing particles are the same as
those for real mass-bearing particles (1.145). Hence, the wave form
of the dynamical equations of motion is the same for both imaginary
particle-waves and real particle-waves, and it is (1.146).

§1.7.3 Equations of motion of massless particles

According to (1.99), for massless (light-like) particles in the extended
space-time (with taking the condition v = c into account) we have

u2

[
1− 1

c2
(w + viui)

]2 = c2, dτ 6= 0 , dt 6= 0 . (1.148)

Having this formula substituted into ϕ and qi obtained for real mass-
bearing particles being considered as corpuscles, i.e. into (1.142), we
obtain

ϕ = M
u

c
, qi = M

ui

c
. (1.149)

Respectively, the corpuscular form of the dynamical equations of
motion for massless particles is

d
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(Mu) +
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. (1.150)

The chr.inv.-quantities ϕ and qi for the wave form of massless par-
ticles are the same that ϕ and qi in the case of the wave form of
mass-bearing particles (1.145). Respectively, the dynamical equations
of propagation of waves, which correspond to massless particles in the
framework of the wave-particle duality, are the same that those obtained
for mass-bearing particle-waves (1.146).

§1.7.4 Equations of motion of zero-particles

In the degenerate space-time, i.e. under the conditions of degeneration,
the chr.inv.-projections of Pα, taken in the corpuscular form, are

ϕ = 0 , qi = M
ui

c
, (1.151)
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where w + vku
k = c2, dτ = 0, dt 6=0. Applying these to the common

chr.inv.-equations of parallel transfer (1.141), we obtain the corpuscular
form of the dynamical equations of motion for zero-particles

M

c2
Diku

iuk = 0

d

dt

(
Mui

)
+M∆i

nku
nuk = 0




. (1.152)

The chr.inv.-projections ϕ and qi for the wave form of the generalized
dynamical vector Pα in the degenerate space-time are

ϕ = 0 , qi = − ~
c
hik

∗∂ψ
∂xk

, (1.153)

from which we arrive at the wave form of the dynamical equations of
motion of zero-particles
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, (1.154)

i.e. the dynamical equations of propagation of waves which correspond
to zero-particles in the framework of the wave-particle duality.

§1.8 Equations of geodesic motion in the strictly non-
degenerate space

In this case, the corpuscular and the wave forms of the universal dy-
namical vector Pα were obtained earlier in §1.3.

§1.8.1 Equations of motion of real mass-bearing particles

According to (1.78) and (1.67), for the corpuscular form of Pα in the
case of real mass-bearing particles we have

ϕ = ±m, qi =
1
c
mvi, (1.155)

where v2<c2, dτ 6=0, dt 6=0. Using these chr.inv.-quantities on (1.141),
we obtain the dynamical equations of motion of particles with the pos-
itive relativistic mass m> 0 (they move from the past into the future)
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, (1.156)
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and also the equations of motion of particles with the negative relativis-
tic mass m< 0 (they move from the future into the past)

− dm
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Dikvivk = 0

d
(
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+mF i +m∆i

nkv
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. (1.157)

For the wave form of Pα, from (1.83) and (1.86) we obtain formulae
which are similar to those we obtained earlier for the wave form of Pα

in the extended space-time (1.145)

ϕ =
~
c2

∗∂ψ
∂t

, qi = − ~
c
hik

∗∂ψ
∂xk

, (1.158)

where
∗∂ψ
∂t

, i.e. the change of the physically observable wave phase with
time, is positive for the motion from the past into the future, and is neg-
ative for the motion from the future into the past. Taking into account
the fact that the chr.inv.-equations of parallel transfer of Pα (1.141) in
the strictly non-degenerate space-time should be divided by the interval
of the physically observable time dτ , we obtain the wave form of the
dynamical equations of motion of mass-bearing real particles
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The first term of the time chr.inv.-equation and the first two terms
of the spatial chr.inv.-equations of (1.159) are positive for the motion
from the past into the future, and are negative for the motion from the
future into the past.

§1.8.2 Equations of motion of imaginary mass-bearing par-
ticles

In this case, the corpuscular form of ϕ and qi is different from that
obtained in the case of real mass-bearing particles (1.155) by only the
presence of the multiplier i=

√−1

ϕ = ± im , qi =
1
c
imvi, (1.160)
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where v2>c2, dτ 6=0, dt 6=0. Respectively, the corpuscular form of the
dynamical equations of motion of imaginary (superluminal) particles
are different from those we have obtained for real (subluminal) particles
by the presence of the coefficient i in the mass term m.

The wave form of ϕ and qi for imaginary mass-bearing particles
is similar to that of real mass-bearing particles (1.158). Respectively,
the dynamical equations of propagation of waves, which correspond to
imaginary mass-bearing particles, are similar to the dynamical equa-
tions of propagation of waves, which correspond to real mass-bearing
particles (1.159).

We now see that in the framework of the wave concept there is no
difference at what velocity a mass-bearing particle travels (a wave prop-
agates) — below the velocity of light or above that. On the contrary,
in the framework of the corpuscular concept the equations of motion of
superluminal (imaginary) particles differ from those of subluminal ones
by the presence of the coefficient i in the mass term m.

§1.8.3 Equations of motion of massless particles

In this case, the corpuscular form of ϕ and qi takes the form

ϕ = ± ω

c
= ± k , qi =

1
c
kvi =

1
c
kci, (1.161)

where v2 = c2, dτ 6=0, dt 6= 0, and also the physically observable chr.inv.-
velocity of light ci (1.23) is attributed to any massless particle

vi =
dxi

dτ
= ci, cic

i = hik c
ick = c2. (1.162)

According to all the parameters, we obtain the corpuscular dynam-
ical equations of motion of massless particles. They are
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in the case of massless particles which bear the positive relativistic fre-
quency ω> 0 (they move from the past into the future), and also
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in the case of massless particles which bear ω< 0 (they move from the
future into the past)

The wave form of ϕ and qi for massless particles is similar to that
for mass-bearing particles (1.158). Therefore the dynamical equations
of propagation of waves corresponding to massless (light-like) particles
in the framework of the wave-particle duality are similar to those of
mass-bearing particles in the framework of this concept (1.159). The
only difference is in the observable velocity vi, which should be replaced
with the vector of the observable velocity of light ci.

§1.9 A particular case: equations of geodesic lines

What are geodesic equations? As we mentioned in §1.1, these are the
kinematic equations of motion of particles along the shortest (geodesic)
trajectories. From the geometric viewpoint, geodesic equations are
equations of the Levi-Civita parallel transfer

DQα

dρ
=
dQα

dρ
+ ΓαµνQ

µ dx
ν

dρ
=
d2xα

dρ2
+ Γαµν

dxµ

dρ

dxν

dρ
= 0 (1.165)

of the four-dimensional kinematic vector of a particle Qα = dxα

dρ
, which

is directed tangential to the trajectory at its every point. Respectively,
the non-isotropic geodesic equations (they set up the trajectories of
mass-bearing free particles) are

DQα

ds
=
d2xα

ds2
+ Γαµν

dxµ

ds

dxν

ds
= 0 , Qα =

dxα

ds
, (1.166)

while the isotropic geodesic equations (they set up the trajectories of
massless free particles) are

DQα

dσ
=
d2xα

dσ2
+ Γαµν

dxµ

dσ

dxν

dσ
= 0 , Qα =

dxα

dσ
. (1.167)

On the other hand any kinematic vector, similar to the dynami-
cal vector Pα of a mass-bearing particle and to the wave vector Kα

of a massless particle, is a particular case of the arbitrary vector Qα,
for which we have obtained the universal chr.inv.-equations of parallel
transfer. Hence with the chr.inv.-projections ϕ and qi of the kinematic
vector of a mass-bearing particle, substituted into the universal chr.inv.-
equations of parallel transfer (1.141), we should immediately arrive at
the non-isotropic geodesic equations in the chr.inv.-form. Similarly, hav-
ing substituted ϕ and qi of the kinematic vector of a massless particle,
we should arrive at the chr.inv.-equations of isotropic geodesics. This is
what we are going to do now, in this paragraph.



44 Chapter 1 Kinds of Particles in the Pseudo-Riemannian Space

For the kinematic vector of mass-bearing particles we have
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For massless particles, taking into account that dσ= cdτ on isotropic
trajectories, we have
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. (1.169)

With these ϕ and qi substituted into the universal chr.inv.-equations
of parallel transfer (1.141), we obtain the chr.inv.-geodesic equations of
non-isotropic geodesics (mass-bearing free particles)
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and also the chr.inv.-geodesic equations of isotropic geodesics (massless
free particles)
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. (1.171)

The upper sign in the alternating terms in these equations stands
for the motion of particles from the past into the future (the direct flow
of time), while the lower sign stands for the motion from the future
into the past (the reverse flow of time). As seen, we again have the
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asymmetry of motion along the axis of time. The same asymmetry
was found in the dynamical equations of motion. We see that such an
asymmetry does not depend on the physical properties of the moving
particles, but rather on the properties of the space of reference of the
observer (actually, on the properties of his body of reference), such as
F i, Aik, Dik. In the absence of gravitational inertial forces, rotation or
deformation of the space of reference, the asymmetry vanishes.

§1.10 A particular case: Newtion’s laws

In this paragraph we prove that the dynamical chr.inv.-equations of mo-
tion of mass-bearing particles are the four-dimensional generalizations
of Newton’s 1st and 2nd laws in the space (space-time), which is non-
holonomic (i.e. is rotating, Aik 6=0) and deforming (Dik 6=0), and is also
filled with a gravitational field (F i 6= 0).

At low velocities we havem=m0, so the general covariant dynamical
equations of motion take the form

DPα

ds
= m0

d2xα

ds2
+m0Γαµν

dxµ

ds

dxν

ds
= 0 , (1.172)

where having these equations divided by m0, the dynamical equations
turn immediately into kinematic ones, i.e. the regular non-isotropic
geodesic equations.

These are the dynamic equations of motion of the so-called “free
particles”, i.e. particles which fall freely under the action of a gravita-
tional field.

The motion of particles under the action of both gravitational field
and additional force Rα not of gravitational nature, is not geodesic

m0
d2xα

ds2
+m0Γαµν

dxµ

ds

dxν

ds
= Rα. (1.173)

All these are the dynamical equations of motion of particles in the
four-dimensional space-time, while Newton’s laws were set forth for the
three-dimensional space. In particular, the derivation parameter we use
in these equations is the space-time interval, not applicable to a three-
dimensional space.

Let us now look at the dynamical chr.inv.-equations of motion of
mass-bearing particles. At low velocities the equations are
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where the spatial chr.inv.-projections are the actual dynamical equa-
tions of motion along the spatial section (three-dimensional space).

In a four-dimensional space (space-time), wherein the spatial sec-
tions have the Euclidean metric, all quantities hki = δki and the tensor of
the space deformation is zero Dik = 1

2

∗∂hik

∂t
=0. In such a case ∆i

kn =0,
hence m0∆i

nkv
nvk =0. If there also F i=0 and Aik =0, the spatial

chr.inv.-projections of the equations of motion take the form

m0
d2xi

dτ2
= 0 , (1.175)

or, in another form,

vi =
dxi

dτ
= const. (1.176)

Hence the four-dimensional generalizations of Newton’s 1st law for
mass-bearing particles can be set forth as follows:

Newton’s 1st law: If a particle is free from the action of grav-
itational inertial forces (or such forces are balanced) and, at the
same time, both rotation and deformation of the space is absent,
it will experience straight, even motion.

Such a condition, as seen from the formulae for the Christoffel symbols
(1.132 – 1.137), is only possible in the case where all Γαµν =0, because
any component of the Christoffel symbols is function of at least one of
the quantities F i, Aik, Dik.

Now let us assume that F i 6= 0, but Aik =0 and Dik =0. In such
a case, the spatial chr.inv.-equations of motion take the form

d2xi

dτ2
= F i. (1.177)

On the other hand, the gravitational potential and the force F i as
well as the quantities Aik and Dik according their definitions describe
the body of reference and the local space connected to it. The quantity
F i sets up the gravitational inertial force acting on a unit-mass particle.
The force acting on a particle with a mass m0 is

Φi = m0F
i, (1.178)

so the spatial chr.inv.-equations of motion become

m0
d2xi

dτ2
= Φi. (1.179)

Correspondingly, the four-dimensional generalizations of Newton’s
2nd law for mass-bearing particles can be set forth as follows:
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Newton’s 2nd law: The acceleration that a particle gains from
a gravitational field is proportional to the gravitational inertial
force acting on the particle from the side of this field, and is recip-
rocal to its mass, in the absence of both rotation and deformation
of the space.

Having any particular value of the gravitational inertial force Φi sub-
stituted into the spatial chr.inv.-equations of motion, which constitute
the second equation of (1.174),

m0
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+m0∆i

nkv
nvk + 2m0
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Di
k +A·ik·

)
vk = Φi, (1.180)

we can solve the equations in order to obtain the three-dimensional ob-
servable coordinates of a mass-bearing particle in the three-dimensional
space at any moment of time (the trajectory of this particle).

As seen from the equations, the presence of the gravitational inertial
force is not mandatory to make the motion curved and uneven. This
happens if at least one of the quantities F i, Aik, Dik is not zero. Hence,
theoretically, a particle can be in the state of uneven and curved motion
in even the absence of gravitational inertial forces, but in the case where
the space rotates or deforms or both.

If a particle moves under the joint action of the gravitational inertial
force Φi and another force Ri not of gravitational nature, the spatial
chr.inv.-equations of motion of the particle take the form

m0
d2xi

dτ2
+m0 ∆i

nkv
nvk + 2m0

(
Di
k +A·ik·

)
vk = Φi +Ri. (1.181)

Given a flat three-dimensional space, there ∆i
kn =0 is true: the sec-

ond term in the equations vanishes. Due to the fact that such a space is
free of rotation and deformation, the spatial chr.inv.-equations of mo-
tion of the particle take the form

m0
d2xi

dτ2
= Φi, m0

d2xi

dτ2
= Φi +Ri, (1.182)

respectively in the case of only the force of gravitation and inertia Φi,
and in the case of that in common with an additional force Ri not of
gravitational nature, which deviates particles from a geodesic line.

Thus we have obtained that motion under the action of gravitational
inertial forces is possible in either curved or flat space. Why?

As known, the curvature of a Riemannian space is characterized by
the Riemann-Christoffel curvature tensor Rαβγδ consisting of the second
derivatives of the fundamental metric tensor gαβ and the first derivatives
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of it. The necessary and sufficient condition of a Riemannian space to
be curved is Rαβγδ 6=0. To have non-zero curvature, it is necessary and
sufficient that the second derivatives of gαβ are non-zero.

On the other hand we also know that the first derivatives of the
fundamental metric tensor gαβ in a flat space may not be zero.

The chr.inv.-equations of motion contain the quantities ∆i
kn, F

i,
Aik, Dik, which depend on the first derivatives of gαβ . Therefore at
Rαβγδ =0 (a flat space) the Christoffel symbols ∆i

kn, the gravitational
inertial force F i, the space rotation Aik, and the space deformation Dik

may not be equal to zero.

§1.11 Analysis of the equations: the ultimate transitions
between the basic space and zero-space

As we can see, at w =−viui in our formulae the quantities of the ex-
tended space-time (g6 0) are replaced by those of the strictly non-
degenerate space-time (g < 0)

dτ =
[
1− 1

c2
(
w + viu

i
)]
dt = dt , (1.183)

ui =
dxi

dt
=
dxi

dτ
= vi, (1.184)

M =
m

1− 1

c2
(w + viui)

= m, (1.185)

P 0 = M = m, P i =
1
c
Mui =

1
c
mvi, (1.186)

and in this transition the coordinate time t coincides with the physically
observable time τ .

Of course, once w→ 0 (weak gravitational field) and vi =0 (no ro-
tation of the space) at the same time, the transformation also occurs
under a narrower condition w =−viui =0. On the other hand, it is
doubtful to find a region free of rotation and gravitational fields in the
observed part of the Universe. We therefore see that the transition to
the regular (strictly non-degenerate) space-time always happens at

w = − viui = − vivi. (1.187)

Substituting this condition into the equations of motion we have
obtained in §1.7 and §1.8, we arrive at the following conclusions on the
geometrical structure of the extended space-time.
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The corpuscular equations of motion (particle-balls) in the extended
space-time transform into those in the regular (strictly non-degenerate)
space-time in full, i.e. no terms are vanished or new terms are added
up, only in the case of motion from the past into the future (m> 0,
im> 0, ω> 0). For particle-balls, which move from the future into the
past (m< 0, im< 0, ω< 0), such a transformation is incomplete.

On the other hand, the wave equations of motion (particle-waves) in
the extended space-time transform into those in the regular space-time
in full for both particles with m> 0, im> 0, ω> 0 (they move from the
past into the future) and particles with m< 0, im< 0, ω< 0 (they move
from the future into the past).

In the next §1.12 we are going to find out why this happens.
In the regular space-time (g < 0) we have P 0 (1.67), which after

substitution of dt
dτ

(1.73) and the transition condition w =−viui =−vivi
becomes the sign-alternating relativistic mass

P 0 = m
dt

dτ
=

m

1− w

c2

(
1
c2
vivi ± 1

)
= ±m. (1.188)

In the extended space-time (g6 0) we have obtained P 0 =M , but
through another method (1.104), without use of dt

dτ
which is the source

of the alternating sign in the formula (1.188).
Hence the component P 0 =±m obtained in the regular space-time

(1.188), taking two numerical values, can not be a particular case of the
single value P 0 =M obtained in the extended space-time.

To understand the reason why, we turn from the sign-alternating
formula P 0 =±m of the regular space-time to the formula P 0 =M of
the extended space-time. This can be easily done by substituting the
already known relationship between the physically observable velocity
vi and the coordinate velocity ui (1.99) into the sign-alternating formula
P 0 =±m (1.188).

As a result, we obtain the expanded relation for the component P 0

in the extended space-time
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c2
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c2
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± 1


 , (1.189)

which evidently takes the alternating sign. For particles, which move in
the extended space-time from the past into the future, P 0 becomes

P 0 =
m

1− 1

c2
(w + viui)

= +M , (1.190)
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which is the same that (1.104). For particles, which move move from
the future into the past, P 0 becomes

P 0 =
m

[
1

c2

(
2viui + w

)− 1
]

(
1− w

c2

)[
1− 1

c2
(w + viui)

] = −M . (1.191)

These are two funally generalized formulae for P 0. Naturally, in
the framework of the regular space-time the first formula P 0 =+M
(1.190) unambiguously transforms into P 0 =+m, while the second for-
mula P 0 =−M (1.191) transforms into P 0 =−m.

It should be noted that the remarks made on the sign-alternating
formulae for P 0 do not affect all dynamical equations of motion we
have obtained in the extended space-time. This is because the obtained
equations of motion include the gravitational rotational mass in the
general notation, M , without any respect to a particular composition of
it. Substituting these two values of M into the equations of motion, we
arrive at mere the equations of two kinds: the equation of motion from
the past into the future, and the equation of motion from the future
into the past.

Let us now come back to the physical condition w =−viui (1.187),
which manifests the transition from the dynamical equations of motion
in the extended space-time to those in the regular space-time. We have
also found that dτ = dt (1.183) under this condition. On the other hand
we know that the equality dτ = dt is not imperative in the regular space-
time. On the contrary, in the observed Universe the interval of the
physically observable time dτ is almost always a bit different from the
interval of the coordinate time dt.

Therefore, the ultimate transition from the extended space-time to
the regular space-time that occurs under the condition w =−viui is not
a case of the conditions usual in the regular space-time.

Does that contain a contradiction between the equations of motion
in the regular space-time and those in the extended space-time?

No it doesn’t. All laws applicable to the regular space-time (g < 0)
are as well true in a non-degenerate region (g < 0) of the extended space-
time g6 0. At the same time those two non-degenerate regions are not
the same. That is, the degenerate space-time added up to the regular
space-time produces two absolutely segregate manifolds. The extended
space-time is a different manifold and is absolutely independent of either
strictly non-degenerate space-time or degenerate one. So there is no
surprise in the found fact that the transition from one to another occurs
under very limited particular conditions.
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The only question is what configuration of those manifolds exists in
the observable Universe. Two options are possible here:

a) The non-degenerate space-time (g < 0) and the degenerate space-
time (g=0) exist as two segregate manifolds: the regular space-
time of the General Theory of Relativity with a small “add-on”
of zero-space;

b) The non-degenerate space-time and the degenerate space-time ex-
ist as two internal regions of the same manifold — the extended
space-time (g6 0) which we have looked at.

In either case, the ultimate transition from the non-degenerate space-
time into the degenerate space-time occurs under the physical conditions
of degeneration (1.98). Future experiments and astronomical observa-
tions will show which one of these two options exists in reality.

§1.12 Analysis of the equations: asymmetry of the space
and the world beyond the mirror

Compare the corpuscular equations of motion for particles with m> 0
(1.156) and ω> 0 (1.163) with those for particles with m< 0 (1.157)
and ω< 0 (1.164).

Even a first look manifests the obvious fact that the corpuscular
equations of motion (particle-balls) from the past into the future are
different from those for from the future into the past. The same asym-
metry exists for the wave form of the equations (particle-waves). Why?

From the purely geometrical viewpoint, asymmetry of the equations
of motion into the future or into the past manifests follows:

There in the four-dimensional, curved, inhomogeneous space-time
(pseudo-Riemannian space) is a primordial asymmetry of the di-
rections into the future and into the past.

To understand the origin of such a primordial asymmetry we consider
an example.

Assume that there in the four-dimensional space-time is a mirror,
which coincides with the spatial section and, hence, separates the past
from the future. Assume also that the mirror reflects all particles and
waves coming on it from the past and from the future. In such a case the
particles and waves which move from the past into the future (m> 0,
im> 0, ω> 0) always hit the mirror, then bounce back into the past so
that their properties reverse (m< 0, im< 0, ω< 0). At the same time,
vice versa, the particles and waves which move from the future into the
past (m< 0, im< 0, ω< 0) hitting the mirror change the sign of their
properties (m> 0, im> 0, ω> 0) to bounce back into the future.
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With the aforementioned concept of the mirror everything becomes
easy to understand. Look at the wave form of the equations of motion
(1.159). After reflection from the mirror, the quantity

∗∂ψ
∂t

changes
its sign. Hence the equations of propagation of waves into the future
(“plus” in the equations) become those of the same wave propagating
into the past (“minus” in the equations), and vice versa the equations
of propagation of waves into the past (“minus”) after reflection become
those of the same wave propagating into the future (“plus”).

Noteworthy, the equations of propagation of waves into the future
and those into the past transform into each other in full, i.e. no terms
are vanished and no new terms are added up. Hence the wave form of
matter fully reflects from the mirror.

This is not the case for the corpuscular equations of motion. After
reflection from the mirror, the quantity ϕ=±m for mass-bearing par-
ticles and also ϕ=±k=± ω

c for massless particles change their signs.
However the corpuscular equations of motion into the future transform
into those of motion into the past not in full. In the spatial chr.inv.-
equations of motion into the future, there is an additional term present.
This term is not found in the spatial chr.inv.-equations of motion into
the past. This term for mass-bearing and massless particles is, respec-
tively,

2m
(
Di
k +A·ik·

)
vk, 2k

(
Di
k +A·ik·

)
ck. (1.192)

Hence a particle which moves from the past into the future hits the
mirror and bounces back to lose a term in its spatial chr.inv.-equations
of motion, and vice versa a particle moving from the future into the
past bounces from the mirror to acquire an additional term in the spatial
chr.inv.-equations of motion. So, we have obtained that the mirror itself
affects the trajectories of particles!

As a result, a particle with negative mass or frequency is not a simple
mirror reflection of a particle whose mass or frequency is positive. Either
in the case of particle-balls or in the case of particle-waves we do not deal
with simple reflection or bouncing from the mirror, but with entering
through the mirror into the mirror world. There in the mirror world all
particles bear negative masses or frequencies, and move from the future
into the past (it is from the viewpoint of an observer whose location is
our world) .

Particle-waves of our world have no effect on the mirror world as
well as particle-waves of the mirror world have no effect on us. On the
contrary, particle-balls of our world may affect the mirror world, and
particle-balls of the mirror world may have some effect on our world.
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Full isolation of our world from the mirror world, i.e. the absence of
mutual influence between particles of both worlds, takes a place under
the obvious condition

Di
kv

k = −A·ik·vk, (1.193)

which sets up the asymmetric term (1.192) of the corpuscular equations
of motion to be zero. This happens only if A·ik·=0 and Di

k =0, i.e. in
a region of the space which is free of rotation and deformation.

Noteworthy, if particles of positive mass (frequency) were co-existing
in our world with those of negative mass (frequency), they would inter-
fere to destroy each other inevitably so no particles would be left in our
world. On the contrary, we observe nothing of the kind.

Therefore in the second part of our analysis of the obtained equations
of motion we arrive at the following conclusions:

1) The primordial (fundamental) asymmetry of the space-time direc-
tions into the future and into the past is due to a certain space-
time mirror, which coincides geometrically with the spatial section
of the observer, and reflects all particles or waves which bounce
it from the side of the past or of the future. At the same time
the space-time mirror maintains such physical conditions, which
very differ from those in the regular space-time, and meet the
particular physical conditions in a fully degenerate region of the
space-time (zero-space), wherein the physically observable time
stops. We therefore arrive at an obvious conclusion that the rôle
of such a space-time mirror is played by the whole zero-space or
by a particular region in it;

2) The space-time falls apart into our world and the mirror world. In
our world (positive relativistic masses and frequencies) all particles
and waves move from the past into the future. In the mirror
world (negative relativistic masses and frequencies) all particles
and waves move from the future into the past;

3) If entering into the mirror world through the mirror, particles and
waves of our world become seemed having negative masses and
frequencies, and moving from the future into the past;

4) We observe neither particles with negative masses or frequencies
nor waves with negative phases, because they exist in the mir-
ror world, i.e. beyond the mirror. Particles or waves we can ob-
serve are those of our world, or those at the exit from the mirror
(or when bouncing the mirror, as it seems to us) as they have come
from the mirror world, so all particles and waves we can observe
move from the past into the future.
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§1.13 The physical conditions characterizing the direct
and reverse flow of time

In this paragraph, we are going to look at physical conditions under
which: a) time has direct flow, i.e. from the past into the future, b) time
has reverse flow, i.e. from the future into the past, and c) time stops.

In the General Theory of Relativity, time is determined as the fourth
coordinate x0 = ct of the four-dimensional space-time, where c is the
velocity of light, while t is the coordinate time. The formula itself man-
ifests the fact that t changes even with the velocity of light and does
not depend on the physical conditions of observation. Therefore the
coordinate time t is also referred to as the ideal time. Aside for the
ideal time, there is the physically observable time τ (real time), which
very depends on the conditions of observation. The theory of chrono-
metric invariants determines the interval of the physically observable
time as the chr.inv.-projection of the increment of the four-dimensional
coordinates dxα on the line of time of the observer

dτ =
1
c
bαdx

α. (1.194)

In the frame of reference, which accompanies to a regular subluminal
(substantial) observer, dτ is, according to (1.21),

dτ =
(
1− w

c2

)
dt− 1

c2
vidx

i = dt− 1
c2

wdt− 1
c2
vidx

i. (1.195)

From here we see that dτ consists of three parts: a) the interval
of the coordinate time dt, b) the interval of the “gravitational” time
dtg = 1

c2
wdt, and c) the interval of the “rotational” time dtr = 1

c2
vidx

i.
The stronger is the field of gravity of the body of reference and the faster
rotates the space of the body (the space of reference of the observer),
the slower flows the observable time dτ of the observer. Theoretically
the strong enough gravitational field and the fast enough rotation of the
space may stop the flow of the physically observable time.

We define the mirror world as the space-time where time flows back-
ward with respect to that in our own frame of reference, located in our
space-time.

The direction of the coordinate time t, which describes the displace-
ment along the time coordinate axis x0 = ct, is displayed by the sign of
the derivative dt

dτ
. Respectively, the sign of the derivative dτ

dt
displays

the direction of the physically observable time τ .
In §1.3 we have obtained the coordinate time function dt

dτ
(1.73),

which comes from the condition of conservation of the four-dimensional
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velocity of a subluminal, light-like and superluminal particle along its
four-dimensional trajectory (1.69 –1.71). On the other hand, the coor-
dinate time function can also be obtained in another way by presenting
the space-time interval ds2 = c2dτ2− dσ2 as

ds2 =
(
1− w

c2

)2

c2dt2 − 2
(
1− w

c2

)
vidx

idt+ gik dx
idxk. (1.196)

From here we see that the elementary space-time distance between
two infinitely adjacent world-points consists of the three-dimensional
distance gik dxidxk and two terms, which depend on the physical prop-
erties of the space (space-time).

The term
(
1− w

c2

)
cdt is due the fourth dimension (time) and the

gravitational potential w which characterizes the field of the body of
reference. In the absence of gravitational fields, the time coordinate
x0 = ct changes evenly with the velocity of light. Once w 6=0, the co-
ordinate x0 changes in a “slower” manner by the quantity w

c2
. The

stronger gravitational potential w, the slower time flows. At w = c2 the
coordinate time t stops completely. As well-known, such a condition is
implemented in the state of gravitational collapse.

The term
(
1− w

c2

)
vidx

idt is due to the joint action of the gravita-
tional inertial force and the space rotation. This term is not zero only
if w 6= c2 (i.e. out gravitational collapse) and also vi 6=0 (the space is
non-holonomic, i.e. the three-dimensional space experiences rotation).

Having both parts of (1.196) divided by ds2 = c2dτ2
(
1− v2

c2

)
, we ob-

tain a quadratic equation the same that (1.72), which has two solutions
(1.73). Proceeding from the solutions (1.73), we see that the coordi-
nate time increases dt

dτ
> 0, stops dt

dτ
=0, and decreases dt

dτ
< 0 under the

following conditions
dt

dτ
> 0 if vivi > ± c2, (1.197)

dt

dτ
= 0 if vivi = ± c2, (1.198)

dt

dτ
< 0 if vivi < ± c2. (1.199)

As known, the regular (substantional) particles we observe move
at velocities which are slow to the velocity of light. So the physical
condition under which the coordinate time stops vivi =±c2 (1.198) can
not be met in the world of substance, but is permitted for the other
states of matter (light-like matter, for instance).
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The coordinate time increases ( dt
dτ
> 0) at vivi>±c2. In a regular

laboratory, the linear velocity of the space rotation (e.g. the linear
velocity of the daily rotation of the earth) is also slow to the velocity
of light. Hence in a regular laboratory we have vivi>−c2 (the angle
α between the linear velocity of the space rotation and the observable
velocity of the particle we observe is within the limits −π

2 <α<
π
2 ). In

such a regular case the flow of the coordinate time is direct, i.e. the
particle moves from the past into the future.

The coordinate time decreases ( dt
dτ
< 0) at vivi<±c2.

Until now we have only looked at the flow of the coordinate time t.
Now we are going to analyze the possible directions of the physically
observable time τ , which depends on the sign of the derivative dτ

dt
. To

obtain a formula for this derivative, we divide the formula we have
obtained for dτ (1.195) by dt. We obtain

dτ

dt
= 1− 1

c2
(
w + viu

i
)
. (1.200)

By definition, the clock of any regular observer registers always pos-
itive intervals of time irrespective of in what direction the clock’s hands
rotate. Therefore in a regular laboratory bound on the Earth, the physi-
cally observable time may increase or stop, but it never decreases. Nev-
ertheless, the decrease of the observable time (dτ

dt
< 0) is possible in

certain circumstances.
From (1.200) we see that the observable time increases, stops, or

decreases under the following conditions, respectively

dτ

dt
> 0 if w + viu

i < c2, (1.201)

dτ

dt
= 0 if w + viu

i = c2, (1.202)

dτ

dt
< 0 if w + viu

i > c2. (1.203)

As obvious, the condition under which the observable time stops
w + viu

i = c2 is also the condition of degeneration of the space-time
(1.98). In a particular case, where the space is free of rotation, the
observable time stops following gravitational collapse w = c2.

Generally speaking, the state of zero-space can be given by any of
the whole scale of physical conditions represented as w + viu

i = c2. The
state of gravitational collapse (w = c2) is only a particular case in the
scale of the conditions, which occurs in the absence of the space rotation
(vi =0). In other words, the mirror membrane between the world with
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the direct flow of time and the world with the reverse flow of time
(the mirror world) is not a particular region of a zero-space wherein
gravitational collapse occurs, but the whole zero-space in general.

So what is the flow of the coordinate time t and what is the flow of
the physically observable time τ?

In the function of the coordinate time dt
dτ

we assume that the real
time measured by any observer, the quantity τ , is the standard to which
the coordinate time t is determined. In any calculation or observation
we are linked to the observer himself. So, the function of the coordinate
time dt

dτ
manifests the motion of the observer along the time axis x0 = ct,

observed from his own viewpoint.
In the function of the observable time dτ

dt
the standard to which the

observer compares his measurements is the time coordinate t of him.
That is, the physically observable time τ registered by the observer is
determined with respect to the motion of the whole spatial section of the
observer along the axis of time (this motion occurs evenly at the velocity
of light). Therefore the function of the observable time dτ

dt
gives a view

of the observer from “outside”, showing his true motion with respect to
the time axis.

In other words, the function of the coordinate time dt
dτ

shows the
membrane between our world and the mirror world from the viewpoint
of an observer himself (his logic recognizes always the observed time
as that flowing from the past into the future). The function of the
observable time dτ

dt
gives an abstracted glimpse at the membrane from

“outside”. This means that the function of the observable time mani-
fests the true structure of the space-time membrane between our world
and the mirror world, where time flows at the opposite direction.

§1.14 Basic introduction into the mirror world

To obtain a more detailed view of the space-time membranes, we are
going to use a local geodesic frame of reference. The fundamental metric
tensor within the infinitesimal vicinity of a point in such a frame is

g̃µν = gµν +
1
2

(
∂2g̃µν
∂x̃ρ∂x̃σ

)
(x̃ρ − xρ) (x̃σ − xσ) + . . . , (1.204)

i.e. the numerical values of its components in the vicinity of a point
differ from those at this point itself only in the 2nd order terms or the
higher other terms, which can be neglected. Therefore at any point in a
local geodesic frame of reference the fundamental metric tensor (within
the 2nd order terms withheld) is a constant, while the first derivatives
of the metric, i.e. the Christoffel symbols, are zero [2–4].



58 Chapter 1 Kinds of Particles in the Pseudo-Riemannian Space

As obvious, within the infinitesimal vicinity of any point in a Rie-
mannian space a local geodesic frame of reference can be set up. As a
result, at any point belonging to the local geodesic frame of reference,
a flat space can be set up tangential to the Riemannian space so that
the local geodesic frame of reference in the Riemannian space is a global
geodesic frame in the tangential flat space. Because in a flat space the
fundamental metric tensor is constant, in the vicinity of a point in the
Riemannian space, the quantities g̃µν converge to those of the tensor
gµν in the tangential flat space. That means that, in the tangential flat
space, we can set up a system of the basis vectors ~e(α) tangential to the
curved coordinate lines of the Riemannian space. Because the coordi-
nate lines of a Riemannian space are curved (in a general case), and, in
the case where the space is non-holonomic, are not even orthogonal to
each other, the lengths of the basis vectors are sometimes substantially
different from the unit length.

Consider the world-vector d~r of an infinitesimal displacement, i.e.
d~r =(dx0, dx1, dx2, dx3). Then d~r=~e(α)dx

α, where the components are

~e(0) = (e0(0), 0, 0, 0) , ~e(1) = (0, e1(1), 0, 0)

~e(2) = (0, 0, e2(2), 0) , ~e(3) = (0, 0, 0, e3(3))



 . (1.205)

The scalar product of the vector d~r with itself gives d~rd~r= ds2. On
the other hand, it is ds2 = gαβ dx

αdxβ . So, we obtain a formula

gαβ = ~e(α)~e(β) = e(α)e(β) cos (xα;xβ) , (1.206)

which facilitates our better understanding of the geometric structure
of different regions within the Riemannian space and even beyond it.
According to (1.206),

g00 = e2(0) , (1.207)

while, on the other hand,
√
g00 =1− w

c2
. Hence the length of the time

basis vector ~e(0) (it is tangential to the real line of time x0 = ct) is

e(0) =
√
g00 = 1− w

c2
, (1.208)

so the lesser it is than one, the greater the gravitational potential w. In
the case of gravitational collapse (w = c2), the length of the time basis
vector ~e(0) becomes zero.

According to (1.206) the quantity g0i is

g0i = e(0)e(i) cos (x0;xi) , (1.209)
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on the other hand, g0i =− 1

c
vi

(
1− w

c2

)
=− 1

c
vi e(0). Hence

vi = − c e(i) cos (x0;xi) . (1.210)

Then according to the general formula (1.206)

gik = e(i)e(k) cos (xi;xk) , (1.211)

we obtain the chr.inv.-metric tensor hik =−gik+ 1

c2
vivk in the form

hik = e(i)e(k)

[
cos (x0;xi) cos (x0;xk)− cos (xi;xk)

]
. (1.212)

From (1.210), we see that, from the geometrical viewpoint, vi is the
projection (scalar product) of the spatial basis vector ~e(i) onto the time
basis vector ~e(0), multiplied by the velocity of light. If the spatial sections
are everywhere orthogonal to the lines of time (giving holonomic space),
cos (x0;xi)= 0 and vi =0. In a non-holonomic space, the spatial sections
are not orthogonal to the lines of time, so cos (x0;xi) 6=0. Generally
|cos (x0;xi)|6 1, hence the linear velocity of the space rotation vi (1.210)
can not exceed the velocity of light.

If cos (x0;xi)=±1, the velocity of the space rotation is

vi = ∓ ce(i) , (1.213)

and the time basis vector ~e(0) coincides with the spatial basis vectors ~e(i)

(time “falls” into space). At cos (x0;xi) =+1 the time basis vector is
co-directed with the spatial ones ~e(0)↑↑~e(i). In the case cos (x0;xi)=−1
the time and spatial basis vectors are oppositely directed ~e(0)↑↓~e(i).

Let us have a closer look at the condition cos (x0;xi)=±1. If any
spatial basis vector is co-directed (or oppositely directed) relative to
the time basis vector, the space is degenerate. Maximum degeneration
occurs when all three vectors ~e(i) coincide with each other and with the
time basis vector ~e(0).

The terminal condition of the coordinate time vivi =±c2 presented
through the basis vectors is

e(i) vi cos (x0;xi) = ∓ c (1.214)

and becomes true when e(i) =1, v = c, and cos (x0;xi)=±1. In such a
case, once the linear velocity of the space rotation reaches the velocity
of light the angle between the time line and the spatial lines becomes
either zero or π depends on the direction of the space rotation.

Let us illustrate this with a few examples.
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Space does not rotate, i.e. is holonomic In this case vi =0, so
the spatial sections are everywhere orthogonal to the lines of time and
the angle between them is α= π

2
. Hence, in the absence of the space

rotation, the time basis vector ~e(0) is orthogonal to all spatial basis
vectors ~e(i). This means that all clocks can be synchronized, and will
display the same time (synchronization of clocks at different points in
the space does not depend on the path of synchronization). The linear
velocity of the space rotation is vi =−c e(i)cosα=0. At vi =0 we have

dτ =
(
1− w

c2

)
cdt , hik = − gik , (1.215)

and the metric of the space-time ds2 = c2dτ2− dσ2 becomes

ds2 =
(
1− w

c2

)2

c2dt2 + gik dx
idxk, (1.216)

i.e. the observable time depends only on the gravitational potential w.
Two options are possible here:

a) The gravitational inertial force is Fi =0, and also the linear ve-
locity of the space rotation is vi =0. In such a case, according to
the definitions of Fi and vi (see §1.2), we obtain

√
g00 =1− w

c2
=1

and g0i =− 1
c

√
g00 vi =0. The fact that the gravitational potential

w vanishes means, in particular, that it does not depend on the
three-dimensional coordinates (a homogeneous distributed gravi-
tational field). In this case the motion of an observer across the
space leaves the rates of clocks the same (the global synchroniza-
tion of clocks remains unchanged with time).

b) Once Fi 6=0 and vi =0, we have the derivative ∂w
∂xi 6=0 in the for-

mula for Fi (1.33). This means that the gravitational potential
w depends on the three-dimensional coordinates, i.e. the rate of
clocks differs at different points of the space. Hence at Fi 6=0 the
synchronization of clocks at different points of a holonomic space
(a space free of rotation) does not preserve with time.

In a holonomic space (a space free of rotation) gravitational collapse may
occur (w = c2) only if Fi 6=0. If Fi =0 in a holonomic space, according
to the definition of Fi (1.33) we have w = 0 so gravitational collapse is
not possible.

Space rotates at subluminal velocity In such a case the spatial
sections are not orthogonal to the lines of time vi =−c e(i) cosα 6=0. Be-
cause −1 6 cosα6+1, we have −c6 vi 6+c. Hence vi> 0 at cosα> 0,
and also vi< 0 at cosα< 0.
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Space rotates at the velocity of light (1st case) The lesser
α, the greater vi. In the ultimate case, where α=0, the linear velocity
of the space rotation is vi =−c. In such a case the spatial basis vectors
~e(i) coincide with the time basis vector ~e(0) (space coincides with time).

Space rotates at the velocity of light (2nd case) If α=π,
vi =+c and the time basis vector ~e(0) also coincides with the spatial basis
vectors ~e(i), but is oppositely directed. This case may be understood as
space coinciding time flowing from the future into the past.

§1.15 Who is a superluminal observer?

We can outline a few types of the frames of reference which may exist in
the space-time of the General Theory of Relativity. Particles including
an observer himself moving at a subluminal velocity (“inside” the light
cone) bear real relativistic masses. In other words, such particles, body
of reference, and observer are in the state of matter commonly referred
to as “substance”. Therefore any observer whose frame of reference is
subluminal will be referred to as subluminal observer or substantional
observer in other word.

Particles and an observer moving at the velocity of light (i.e. over
the surface of the light cone) bear m0 =0, but their relativistic masses
(masses of motion) are m 6= 0. They are in the light-like state of matter.
Hence we will call an observer whose frame of reference is characterized
by the light-like state a light-like observer.

Accordingly, we will call particles and an observer moving at a su-
perluminal velocity superluminal particles and superluminal observer.
They are in the state of matter where m0 6=0, while their relativistic
masses are imaginary.

It is intuitively clear who a subluminal observer is, this term requires
no further explanation. The same more or less applies to a light-like
observer. From the viewpoint of a light-like observer, the world around
looks like a colourful system of light waves. But who is a superluminal
observer? To understand this let us give an example.

Imagine a new supersonic jet airplane to be commissioned into op-
eration. All members of the commission are inborn blind. And so is the
pilot. Thus we may assume that all information about the surrounding
world the pilot and the members of the commission gain from sound,
that is from sound waves in air. It is sound waves that build a picture
that those people will perceive as their “real world”.

Now the airplane has taken off and begun to accelerate. As long
as its velocity is less than the velocity of sound, the blind members
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of the commission match up its “heard” position in the sky with the
one we can see. But once the sound barrier is overcome, everything
changes. The blind members of the commission still perceive the velocity
of the airplane as equal to the velocity of sound regardless of its real
velocity. For them the velocity of propagation of sound waves in the air
is the ultimate high speed of propagation of information, while the real
supersonic jet airplane is beyond their “real world”, it is located in the
world of “imaginary objects” and all properties of it are imaginary from
their viewpoint. The blind pilot will hear nothing as well. Not a single
sound will reach him from the past reality, and only local sounds from
the cockpit (which also moves at the supersonic velocity) will break the
silence. Once the velocity of sound is overcome, the blind pilot leaves
the subsonic world for a new supersonic one. From his new viewpoint
(the supersonic frame of reference), the old subsonic fixed world that
contains the airport and the members of the commission will simply
disappear, becoming a region of “imaginary quantities”.

What is light? Transverse waves that run across a certain medium
at a constant velocity. We perceive the world around through sight,
receiving light waves from other objects. It is waves of light that build
our picture of the “true real world”.

Now imagine a spaceship which accelerates faster and faster to even-
tually overcome the light barrier at still growing velocity. From the
purely mathematical viewpoint, this is quite possible in the space-time
of the General Theory of Relativity. For us the velocity of the spaceship
will still be equal to the velocity of light whatever is its real velocity. For
us the velocity of light will be the ultimate high speed of propagation of
information, while the real spaceship for us will stay in another “unreal”
world of superluminal velocities wherein all properties are imaginary.
The same is true for the spaceship’s pilot. From his viewpoint, having
the light barrier overcome brings him into a new superluminal world
which becomes his “true reality”, while the old world of subluminal
velocities is gone, left behind in the region of “imaginary reality”.

§1.16 Gravitational collapse in different regions of space

We will call gravitational collapsar a region of the space-time wherein
the gravitational collapse condition g00 =0 is true.

According to the theory of chronometric invariants
√
g00 =1− w

c2
.

So, the condition of collapse g00 =0 also means w = c2. We will look at
such a collapsed region from outside, from the viewpoint of a regular
observer who stays distant from such a region.
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We put down the formula for the four-dimensional interval so that
it contains an explicit ratio of w and c2, i.e.

ds2 =
(
1− w

c2

)2

c2dt2 − 2
(
1− w

c2

)
vidx

idt+ gik dx
idxk. (1.217)

Having substituted w = c2 into this formula, we obtain the space-
time metric on the surface of the gravitational collapsar

ds2 = gik dx
idxk. (1.218)

From here we see that gravitational collapse in the four-dimensional
space-time can be correctly determined only if the the space-time is holo-
nomic, i.e. the three-dimensional space of the observer is free of rotation
(his spatial section is everywhere orthogonal to the lines of time).

Since in the absence of the space rotation the interval of the physi-
cally observable time is dτ =

√
g00 dt=

(
1 − w

c2

)
dt, the observable time

stops (dτ =0) on the surface of a gravitational collapsar.
As a matter of fact that the denominator of the linear velocity of

the space rotation

vi = − c g0i√
g00

= − c g0i

1− w

c2

(1.219)

goes over to zero in the case of collapse (w = c2) and vi becomes infinite.
To avoid this, we assume g0i =0. Then metric (1.217) takes the form

ds2 =
(
1− w

c2

)2

c2dt2 + gik dx
idxk, (1.220)

so the problem of a singular state of the space-time becomes automat-
ically removed. Proceeding from this, the metric on the surface of a
gravitational collapsar (1.218) is

ds2 = − dσ2 = −hik dxidxk, hik = − gik . (1.221)

From here we see that the four-dimensional interval on the surface of
a gravitational collapsar is space-like: the elementary distance between
two point on the surface of a gravitational collapsar is imaginary

ds = idσ = i
√
hik dxidxk . (1.222)

If ds=0, the observable three-dimensional distance dσ between two
points on the surface of a gravitational collapsar also becomes zero.

Now we are going to look at gravitational collapse in different regions
of the four-dimensional space-time.
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Collapse in a subluminal region Within this region, ds2> 0.
This is the habitat of regular, real particles which move at sublumi-
nal velocities. Hence a gravitational collapsar in this region is filled
with collapsed substance (substantional collapsar). On the surface of
such a collapsar, the metric is space-like: here ds2< 0, so all particles
there bear imaginary relativistic masses. Of course, the metric on the
surface of such a gravitational collapsar is non-degenerate.

Collapse in a light-like region Within this region ds2 =0. This
is an isotropic space of light-like (massless) particles. A gravitational
collapsar in this region is filled with light-like matter (light-like collap-
sar). The metric (1.221) on its surface is dσ2 =−gik dxidxk =0. This
can be true provided that:

a) The surface of the light-like collapsar shrinks into a point (in other
word, all dxi =0), or

b) The three-dimensional spatial metric is degenerate (det ||gik||=0).
Because the four-dimensional metric is degenerate too, such a
light-like collapsar is a zero-space in this case.

Collapse in a degenerate region (zero-space) As obvious the
matter of a fully degenerate space-time region (zero-space) can collapse
too. We will call such gravitational collapsars degenerate collapsars. As
a matter of fact, from the condition of degeneration

w + viu
i = c2, gik dx

idxk =
(
1− w

c2

)2

c2dt2, (1.223)

we see that in the case of collapse (w = c2) there is

viu
i = 0 , gik dx

idxk = 0 . (1.224)

Hence gravitational collapse in a zero-space region also occurs in
the absence of the space rotation (vi =0), and, because the conditions
(1.224) are true, at the same time the surface of a degenerate collapsar
is shrunk into a point.



Chapter 2 Motion of Particles as a Result

of Motion of Space Itself

§2.1 Problem statement

Having substituted the gravitational potential w and the linear velocity
of the space rotation vi into the definition of the interval of the physically
observable time dτ (1.21), we obtain the formula (1.21) as

(
1 +

1
c2
vivi

)
dτ =

(
1− w

c2

)
dt . (2.1)

From here we see that a significant difference between dτ and dt
may result from either a strong gravitational field or the velocities com-
parable to the velocity of light. Hence, in everyday life the difference
between dτ and dt is not significantly great.

The physically observable time coincides with the coordinate time
dt= dτ only under the condition

w = − vivi. (2.2)

Actually, such a condition means that the gravitational attraction
of a particle by the reference body of the observer is fully compensated
by the rotation of the space of the reference body (the reference space)
and the motion of the particle itself. That is, (2.2) is the mathemat-
ical formulation of the weightless condition. Having the gravitational
potential plugged in according to Newton’ formula, we obtain

GM

r
= vivi. (2.3)

If the orbital velocity of the particle is equal to the linear velocity of
rotation of the gravitating body in this orbit, the weightless condition
for the particle takes the form

GM

r
= v2, (2.4)

i.e. the more distant the orbit from the attracting body, the lesser the
velocity of a satellite in this orbit.
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Is this statement met by experimental data? The Table below gives
the orbital velocities of the Moon and the planets measured in astronom-
ical observations and those calculated from the weightless condition.

Planet
Orbital velocity, km/sec

Measured Calculated

Mercury 47.9 47.9

Venus 35.0 35.0

Earth 29.8 29.8

Mars 24.1 24.1

Jupiter 13.1 13.1

Saturn 9.6 9.6

Uranus 6.8 6.8

Neptune 5.4 5.4

Pluto 4.7 4.7

Moon 1.0 1.0

From the Table we see that the weightless condition we have obtained
is true for any satellite which orbits a gravitating body. Note that the
condition is true, if the orbital velocity of a planet is equal (or is very
close) to the linear velocity of rotation of the space of the gravitating
body in this orbit (2.4). This means that the rotating space of the
gravitating body carries all bodies around it, generating their rotation.

If the space of the gravitating body would rotate like a solid body i.e.
without any deformation, its angular velocity was constant (ω= const),
while the orbital velocities v =ωr of the accompanying satellites were
grow along with the radii of their orbits. However as we have just seen
from the example of the planets in the solar system, the linear velocity
of the orbital rotation decreases along with the distance from the Sun.
This means that in reality the space of a gravitating body (the space
of reference) does not rotate like a solid body, but rather like a viscous
and deformable medium, wherein the layers distant from the centre do
not rotate as far as those closer to the centre. As a result, the space of
the gravitating body is twisted and the profile of the orbital velocities
simply repeats the structure of the twisted space.

Hence we see that the orbital motion of particles in a gravitational
field results from the rotation of the space of the attracting body itself.

What are the possible sequels for our present mathematical theory
of the motion of particles following the conclusions we have just arrived
at? We are going to find out shortly in what follows.
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Assume a metric space. As obvious, the motion of the space itself
allows us to match any of the points of this space to the vector of
motion of such a point Qα. It is also obvious that all points of the space
will experience the same motion as the space itself. Hence Qα can be
regarded as the vector of motion of the space itself (at a given point).
As a result, we obtain a vector field which describes the motion of the
whole space.

Of course if the length of the vector Qα remains constant in the
motion, such a space moves so that its metric remains unchanged too.
Hence if in such a space the vector of motion Qα is set at a given point,
the metric of the space can be found proceeding from the motion of the
point (along with the motion of the space).

A way to solve this problem was paved in the late 19th century
by Sophus Lie [16]. He obtained equations for the exterior derivative
from the fundamental metric tensor gαβ of the space with respect to
the trajectory of motion of the vector Qα, where the components of Qα

were present as fixed coefficients. The number of the equations is equal
to the number of the components of the metric tensor. Hence having the
vector Qα fixed, i.e. having the motion of the space set, we can solve the
equations to find the components of the metric tensor gαβ proceeding
from the components Qα.

Later Van Danzig suggested calling such a derivative of the metric
Lie’s derivative.

Now we are going to look at a particular case of motion of the
space which leaves its metric constant. This case was studied by Wal-
ter Killing [17]. As obvious, such a motion amounts to making Lie’s
derivative equal to zero (Killing’s equations). Hence if the motion of
the space leaves its metric the same and we know the vector Qα for any
of its points (the motion of the space at this point is set), the motion of
the point(s) can be used to obtain the metric of the space from Killing’s
equations.

On the other hand, the motion of particles is described by the equa-
tions of motion. On the contrary, these equations leave the metric of
the space fixed and the problem here is to find the dynamical vector
of the particle Qα. The fixed metric in the equations of motion makes
the Christoffel symbols, which are functions of the metric components
gαβ , appear in the equations as fixed coefficients. Hence as soon as a
particular metric of space is set, we can use the equations of motion to
obtain the vector Qα for the particle in such a space.

Therefore we now arrive at the following. Because gαβ is a sym-
metric tensor (gαβ = gβα), only 10 components, out of 16, have different
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numerical values. In Killing’s equations (10 equations), the vector of
motion of a point in the space is fixed, while the components of the
metric tensor are unknown (10 unknowns). The equations of motion of
a free particle (4 equations), on the contrary, leave the metric fixed, but
the components of the vector of motion of the particle (4 components)
are unknown. Then as soon as we look at the free motion of a particle
as the motion of any of the points in the space carried by the motion
of the space itself, we can create a system of 10 Killing equations (the
equations of motion of the space) and of 4 equations of motion of the
particle. The system of 14 equations will have 14 unknowns, 10 out
of which are unknown components of the metric and 4 are unknown
components of the dynamical vector of the particle. Hence, having this
system solved, we obtain the motion of the particle in the space and the
metric of the space at the same time.

In particular, while solving the system of the equations, we can find
the motions of particles which result from the motion of the space itself.
For this type of motion the knowledge of the motion of a certain particle
can manifestly produce the metric of the space itself.

For instance, having Killing’s equations and the dynamical equations
of motion solved for a satellite (or a planet) we can use its motion to
find the metric of the space of the gravitating body.

In the next paragraph we shall proceed to obtain Killing’s equations
in the chr.inv.-form.

§2.2 Equations of motion and Killing’s equations

Assume a moving space (not necessarily a metric one). As obvious, the
vector of motion Qα of any point of the space is the vector of motion of
the space itself at this point. The motion of a metric space is described
by Lie’s derivative

δ
L
gαβ = Qα

∂gαβ
∂xσ

+ gασ
∂Qσ

∂xβ
+ gβσ

∂Qσ

∂xα
, (2.5)

which is the derivative of the fundamental metric tensor of the space
with respect to the direction of parallel transfer of the vector Qα (the di-
rection of motion of the space itself).

We will now be looking at the picture as follows. We assume a point
in the space. If the space moves, the point is a subject to the action of
the accompanying vector Qα which is the vector of motion of the space
itself. For the point itself, the space rests and only the “wind” produced
by the motion of the space as the vector Qα will disclose the motion of
the whole space.
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In a general case Lie’s derivative is not zero. That is, the motion
of the space alters its metric. But in a Riemannian space the metric is
fixed by definition, so the length of a vector parallel-transferred to itself
remains constant. This means that the parallel transport of a vector
across a “non-smooth” structure in a Riemannian space will alter the
vector along with the configuration of the space. As a result, Lie’s
derivative of the metric in a Riemannian space should be zero

δ
L
gαβ = 0 . (2.6)

Lie’s equations in a Riemannian space were first studied by Killing
and, as we mentioned above, are known as Killing’s equations. Later
Petrov showed [18] that Killing’s equations for any point are the neces-
sary and sufficient condition for the motion of the point to be the motion
of a Riemannian space itself. In other words, if a point is carried by
the motion of a Riemannian space and moves along with it, Killing’s
equations must be true for that point.

As obvious, to obtain the components of the metric tensor out of
Killing’s equations we need to invoke a particular vector Qα of motion
of a point. Then we will have 10 Killing equations versus 10 unknown
metric components, so we able to solve the system.

Generally speaking, there may be different kinds of motion in a Rie-
mannian space. We will set up the vector of motion Qα so as to fit the
needs of our problem.

There exists free (geodesic) motion in which a point moves along a
geodesic trajectory (the shortest one among the others that between two
points). We assume that any point of the Riemannian space carried by
the motion of the space itself moves along a geodesic trajectory. Hence
the motion of the entire Riemannian space will be geodesic as well.
Then we can match the motion of a point carried by the motion of the
space to the motion of a free particle.

We call a motion the geodesic motion of a space if the free motion
of particles results from their being carried by the moving space.

Let us look at the following system of the dynamical equations of
motion of free particles and Killing’s equations

DQα

dρ
= 0

δ
L
gαβ = 0




, (2.7)

where Qα stands for the dynamical vector of motion of the particle, ρ
stands for the derivation parameter along to the trajectory of motion,
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while Lie’s derivative can be expressed through Lie’s differential as

δ
L
gαβ =

D
L
gαβ

dρ
. (2.8)

Actually, the system of equations (2.7) means that the motion of
a free particle is a geodesic one and, at the same time, results from the
particle being carried by the motion of the space. The system solves
as a set of the components of the dynamical vector Qα as well as the
components of the metric tensor gαβ for which the geodesic motion of
particles results from the geodesic motion of the space itself.

To solve the problem in correct way, we need to present Killing’s
equations in the chr.inv.-form, thus presenting them through the phys-
ical properties (standards) of the space. It is especially interesting to
know what physical standards result from the motion of the space itself.

According to the theory of chronometric invariants, the physically
observable quantities produced from Killing’s equations should be the
chr.inv.-projections of the equations onto the time line (1 component),
the mixed projection (3 components), and the spatial projection (6 com-
ponents)

δ
L
g00

g00
= 0

δ
L
gi0

√
g00

=
giα δ

L
g0α

√
g00

= 0

δ
L
gik = giαgkβ δ

L
gαβ = 0





. (2.9)

Here we are looking at the motion of the space and particles from
the viewpoint of a regular subluminal observer.

Having presented the derivatives of the metric in Lie’s derivative
through the chr.inv.-differential operators, and substituted a short no-
tation for the chr.inv.-projections of the dynamical vector of a particle
Qα as ϕ= Q0√

g00
and qi =Qi, we arrive at the chr.inv.-Killing equations

∗∂ϕ
∂t

− 1
c
Fiq

i = 0

1
c

∗∂qi

∂t
− him

∗∂ϕ
∂xm

− ϕ

c2
F i +

2
c
A·ik·q

k = 0

2ϕ
c
Dik + himhknql

∗∂hmn
∂xl

+ him
∗∂qk

∂xm
+ hkm

∗∂qi

∂xm
= 0





. (2.10)
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If the vector Qα at the same time complies with the chr.inv.-Killing
equations and the dynamical chr.inv.-equations of motion of the particle,
this particle is said to be in motion, carried by the geodesic motion of
the space.

The joint solution of the equations in a general form is problematic
and so we will limit ourselves to a single particular case, which is still
of great importance. Let the dynamical vector of motion of the space
Qα be the dynamical vector of motion of a mass-bearing particle

Qα = m0
dxα

ds
=
m

c

dxα

dτ
, (2.11)

and the observer accompanies the particle (vi =0). In such a case

ϕ = m0 = const, qi =
m

c
vi, (2.12)

and the chr.inv.-Killing equations (2.10) are simplified to

F i = 0

Dik = 0

}
. (2.13)

According to (1.42), Dik =0 means a stationary state of the observ-
able metric: hik = const. The condition F i =0 is meant for the following
equalities to be true only by transformation of the time coordinate

g00 = 1 ,
∂g0i
∂t

= 0 . (2.14)

Besides, the quantities F i and Aik are linked through Zelmanov’s
identity (see formula 1.37 in §1.2)

1
2

(∗∂Fk
∂xi

−
∗∂Fi
∂xk

)
+
∗∂Aik
∂t

= 0 , (2.15)

from which we see that F i =0 means also
∗∂Aik
∂t

= 0 , (2.16)

so the space motion in such a case is a stationary rotation.
Further, as seen from the Killing equations (2.13), the tensor of the

rates of deformation of the space is zero, hence stationary rotation does
not alter the structure of the space. The vanishing of the gravitational
inertial force in the Killing equations means that, from the viewpoint
of an observer linked to a particle being carried in motion of the space
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(vi =0), this particle weighs nothing and is not attracted to anything
(the weightless state). This does not contradict the weightless condition
w =−vivi obtained earlier, because from the viewpoint of such an ob-
server the gravitational potential of the body of reference satisfies w =0
and F i =0 as well.

Hence if Qα is the vector of motion of a mass-bearing particle in
a Riemannian space, the geodesic motion of the space along to this
vector is stationary rotation.

As seen, the geodesic motion of mass-bearing particles is stationary
rotation. Such a stationary rotation results from the carrying of the
gravitating body (the body of reference) by the space of reference sur-
rounding it. At the same time we know that the basic type of motion
in the Universe is the orbiting. Hence the basic motion in the Universe
is a geodesic motion which results from the carrying of objects by the
stationary (geodesic) rotation of the spaces of the gravitating bodies.

§2.3 Conclusions

So what is a space, which bears a gravitational potential w, can be
deformed, and, in rotation, behaves like a viscous media? It is worth
noting that if we place a particle in the space, the moving space will
carry it just like an oceanic stream carries a tiny boat and a giant
iceberg.

The answer is as follows: according to the results we have obtained
in the above, the space of reference of a body and its gravitational field
are the same thing. Physically speaking, points of the space of reference
can be considered as particles in the gravitational field of the body of
reference.

If the space of reference does not rotate, a satellite will fall on the
body of reference under the action of the gravitational force. But in
the presence of the space rotation, the satellite will be under the action
of the carrying force. This force acts like a wind or an oceanic stream,
pushing the satellite forward, not allowing it to fall down and making it
orbiting the gravitating body along with the rotating space (of course,
an additional velocity given to the satellite will make it move faster than
the rotating space).
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Detecting Gravitational Waves

§3.1 Gravitational wave detectors

Consider two particles of a rest-mass m0 each one connected by a force
Φα not of gravitational nature. Such particles move along neighbouring
non-geodesic world-lines with the same four-dimensional velocity Uα,
according to the non-geodesic equations of motion

dUα

ds
+ ΓαµνU

µUν =
Φα

m0c2
, (3.1)

while relative deviations of the world-lines (particles) are given by the
Synge-Weber equation [19]

D2ηα

ds2
+Rα·βγδ U

βUδηγ =
1

m0c2
DΦα

dv
dv , (3.2)

where Dηα = dηα +Γαµν η
µdxν is the absolute differential, ηα = ∂xα

∂v
dv

is the vector of the relative deviation of the particles, v is a parameter
having the same numerical value along a world-line and different as dv
in the neighbouring world-lines.

If two neighbouring particles are free (Φα= 0), they move along
neighbouring geodesics, according to the geodesic equations of motion

dUα

ds
+ ΓαµνU

µUν = 0 , (3.3)

while relative deviations of the geodesics (particles) are given by the
Synge equations [20]

D2ηα

ds2
+Rα·βγδ U

βUδηγ = 0 . (3.4)

A gravitational wave as a wave of the space metric deforming the
space should produce some effect in a two-particle system. The effect
could be found as a solution of the deviation equations in the gravita-
tional wave metric. Therefore two kinds of gravitational wave detectors
were presumed in 1960’s by Joseph Weber, who pioneered experimental
research on gravitational waves:
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a) Solid-body detector — a freely suspended cylindrical pig, approx-
imated by two masses connected by a spring. Such a detector
should be deformed under the action of a gravitational wave. This
deformation should lead to a piezoelectric effect therein;

b) Free-mass detector — a system, consisting of two freely suspended
mirrors, distantly separated within the visibility, and fitted with
a laser range-finder. Supposed deviations of the mirrors, derived
from a gravitational wave, should be registered by the laser beam.

§3.2 A brief history of the measurements

Initial interest in gravitational waves arose in 1968–1970 when Joseph
Weber, professor at Maryland University (USA), carried out his first
experiments with solid-body gravitational wave detectors. He registered
a few weak signals, in common with all his independent detectors, which
were as distant located from each other as up to 1000 km [21–23]. He
supposed that some processes at the centre of the Galaxy were the origin
of the registered signals.

The experiments were continued in the next decades by many groups
of researchers working at laboratories and research institutes throughout
the world. The registering systems used in these attempts were more
sensitive than those of Weber. In his pioneering observations of 1968–
1970 Weber used very simple detectors in room-temperature conditions.
To amplify the effect in measurements, the level of noise in all solid-
body detectors of the second generation was lowered by cooling the
cylinder pigs down to temperature close to 0 K. Besides gravitational
antennae of the solid-body kind, many antennae based on free masses
were constructed. But even the second generation of gravitational wave
detectors have not led scientists to the expected results. None registered
something similar to the Weber effect.

Nonetheless it is accepted by most physicists that the discovery of
gravitational waves should be expected as one of the main effects of
the General Theory of Relativity. The main arguments in support of
this thesis are [15]: 1) gravitational fields bear an energy described
by the energy-momentum pseudotensor; 2) a linearized form of Ein-
stein’s equations permits a solution describing weak plane gravitational
waves, which are transverse; 3) an energy flux, radiated by gravitational
waves, can be calculated through the energy-momentum pseudotensor
of a gravitational field.

Therefore no doubt that gravitational radiation will have been dis-
covered in the future.
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The corner-stone of the problem was the fact that Weber’s conclu-
sions on the construction of the gravitational wave detectors were not
based on an exact solution to the deviation equations, but on an ap-
proximate analysis of what could be expected: Weber expected that a
plane weak wave of the space metric (gravitational wave) may displace
two particles at rest with respect to each other.

Here we deduce exact solutions to both the Synge equation and
the Synge-Weber equation (the exact theory to free-mass and solid-
body detectors). The exact solutions show instead Weber’s supposition
that gravitational waves cannot displace resting particles; some effect
may be produced only if the particles are in motion. According to the
exact solutions we may alter the construction of both solid-body and
free-mass detectors so that they may register oscillations produced by
gravitational waves. Weber most probably detected them as claimed by
him in 1968–1970, as his room-temperature solid-body pigs may have
their own relative oscillations of the butt-ends, whereas the oscillations
are inadvertently suppressed as noise in the detectors developed by his
all followers, who have had no positive result in over 35 years.

§3.3 Weber’s approach and criticism thereof

Weber proposed the relative displacement of the particles ηα consisting
of a constant distance rα and an infinitely small displacement ζα caused
by a gravitational wave

ηα = rα + ζα, ζα ¿ rα,
Drα

ds
= 0 . (3.5)

Thus the non-geodesic deviation equation (3.2) is

D2ζα

ds2
+Rα·βγδ U

βUδ (rγ + ζγ) =
Φα

m0c2
, (3.6)

Then he takes Φα as the sum of the returning elastic force kασ ζσ and
the damping factor dασ

Dζσ

ds
, while kασ and dασ describe the properties of

the spring. As a result the equation (3.6) becomes

D2ζα

ds2
+

dασ
m0c2

Dζσ

ds
+

kασ
m0c2

ζσ = −Rα·βγδ (rγ + ζγ) (3.7)

that is the equation of forced oscillations, where the curvature tensor
Rα·0σ0 is a forcing factor. After some simplifications, he transformed the
non-geodesic deviation equation (3.7) to

d2ζα

dt2
+
dασ
m0

dζσ

dt
+
kασ
m0

ζσ = − c2Rα·0σ0 r
σ. (3.8)



76 Chapter 3 Deviation of World-Lines. Detecting Gravitational Waves

Weber didn’t solve his equation (3.8). He limited himself by using
the curvature tensor as a forcing factor in his calculations of expected
resonant oscillations in solid-body detectors [19].

Solution of Weber’s equation (3.8) with all his simplifications was ob-
tained in 1978 by Borissova [24], in the field of a weak plane gravitational
wave. Assuming, according to Weber, rα and its length r=

√
gµνrµrν

to be covariantly constant Drα

ds
=0, Borissova showed that in the case of

a gravitational wave linearly polarized in the x2 direction, and propagat-
ing along x1, the equation Drα

ds
=0 gives r2 = r2(0)

[
1−A sin ω

c

(
ct+ x1

)]

(in a case where the detector is oriented along x2).
From this result, she obtained Weber’s equation (3.8) in the form

d2ζ2

dt2
+ 2λ

dζ2

dt
+ Ω2

0 ζ
2 = −Aω2r2(0) sin

ω

c

(
ct+ x1

)
, (3.9)

i.e. an equation of forced oscillations, where the forcing factor is the rela-
tive displacement of the particles caused by the gravitational wave. Here
2λ= b

m0
and Ω2

(0)=
k
m0

come from the formula for the non-gravitational
force, acting along x2 in this case: Φ2 =−kζ2−b ζ̇2. The elastic coeffi-
cient of the “spring” is k, the friction coefficient is b.

She then obtained the exact solution of the equation: the relative
displacement η2=ηy of the butt-ends transverse to the falling gravita-
tional wave is

η2 = r2(0)

[
1−A sin

ω

c

(
ct+ x1

)]
+Me−λt sin (Ωt+ α)−

− Aω2r2(0)
(Ω2

0 − ω2)2
cos

(
ωt+ δ +

ω

c
x1

)
, (3.10)

where Ω=
√

Ω2
0−ω2, δ= arctan 2λω

ω2−Ω2
0
, while M and α are constants.

In this solution the relative oscillations consist of the “basic” har-
monic oscillations and relaxing oscillations (first two terms), and also
the resonant oscillations (third term).

As was shown by Borissova [24], Weber’s final equation (3.8) can
only be obtained under his simplifications:

a) He has actually two detectors in one: a big pig having the constant
length r and a small pig which length ζ changes under the same
gravitational wave. However in actual experiments a solid-body
pig reacts as a whole to external influences;

b) Christoffel’s symbols Γαµν are all zero. However, since the curva-
ture tensor is different from zero, Γαµν cannot be reduced to zero
in a finite region [18]. So in the neighbouring particle Γαµν 6=0;
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c) The butt-ends of the pig are at rest with respect to the observer
(U i = 0) all the time before a gravitational wave passes. Therefore
only resonant oscillations can be registered by such a detector.
Parametric oscillations cannot appear there.

Because the same assumptions were applied to the geodesic deviation
equation, all that has been said is applicable to a free-mass detector.

Thus, by his simplified equation (3.8), Weber actually postulated
that gravitational waves force rest-particles to undergo relative reso-
nant oscillations. His assumptions led to a specific construction of the
solid-body and free-mass detectors, where parametric oscillations are
obviated.

§3.4 The main equations

Here we solve the deviation equations in conjunction with the equa-
tions of motion in the general case where both particles in the pair
move initially with respect to the observer (U i 6=0), and without We-
ber’s simplifications. We solve the equations in the terms of physically
observable quantities [2–4], which are the chr.inv.-projections of four-
dimensional quantities onto the line of time and onto the spatial section
of an observer. For instance (see §1.2 of Chapter 1), any vector Qα has
two chr.inv.-projections: Q0√

g00
and Qi. We denote

σ =
Φ0√
g00

, f i = Φi (3.11)

for the connecting force Φα, and also

ϕ =
η0√
g00

, ηi ≡ ηi (3.12)

for the deviation vector ηα.
We consider the deviating non-geodesics as a common case, where

the right side is non-zero.
The general covariant non-geodesic equations of motion (3.1) have

two chr.inv.-projections

dm

dτ
− m

c2
Fivi +

m

c2
Dikvivk =

σ

c

d

dτ
(mvi)−mF i + 2m

(
Di
k+A

·i
k·

)
+m∆i

knv
kvn = f i




, (3.13)

where m is the relativistic mass of the particle, vi is its physically ob-
servable chr.inv.-velocity, dτ is the interval of the physically observable
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time, Fi is the chr.inv.-vector of the gravitational inertial force, Aik is
the chr.inv.-tensor of the angular velocities of the space rotation, Dik

is the tensor of the space deformations, ∆i
kn are the chr.inv.-Christoffel

symbols, built like Christoffel’s usual symbols Γαµν using hik instead gαβ
(see definitions of the chr.inv.-quantities in §1.2 of Chapter 1).

We write the Synge-Weber equation of the deviating non-geodesics
(3.2) in the expanded form

d2ηα

ds2
+ 2Γαµν

dηµ

ds
Uν +

∂Γαβδ
∂xγ

UβU δηγ =
1

m0c2
∂Φα

∂xγ
ηγ , (3.14)

where ds2 can be expressed through the observable time interval dτ ac-
cording to (1.29) as ds2 = c2dτ2− dσ2 = c2dτ2

(
1− v2

c2

)
.

We consider the well-known metric of the field of weak plane gravi-
tational waves

ds2 = c2dt2 − (dx1)2 − (1 + a)(dx2)2 +

+ 2bdx2dx3 − (1− a)(dx3)2,
(3.15)

where a and b are functions of ct+x1 (if propagation is along x1), and
are small values so the squares and products of their derivatives vanish.

The velocity of both particles (butt-ends) in a detector is obviously
small. In such a case, in the gravitational wave metric (3.15),

dτ = dt , η0 = η0 = ϕ , Φ0 = Φ0 = σ

Γ0
kn =

1
c
Dkn , Γi0k =

1
c
Di
k , Γikn = ∆i

kn



 . (3.16)

With these, after algebra we obtain the chr.inv.-projections of the
Synge-Weber equation (3.14)

d2ϕ

dt2
+

2
c
Dkn

dηk

dt
vn +

(
ϕ
∂Dkn

∂t
+ c

∂Dkn

∂xm
ηm

)
vkvn

c2
=

=
1
m0

(
ϕ

c

∂σ

∂t
+

∂σ

∂xm
ηm

)

d2ηi

dt2
+

2
c
Di
k

(
dϕ

dt
vk + c

dηk

dt

)
+ 2∆i

kn

dηk

dt
vn+

+2
(
ϕ

c

∂Di
k

∂t
+
∂Di

k

∂xm
ηm

)
vk+

(
ϕ

c

∂∆i
kn

∂t
+
∂∆i

kn

∂xm
ηm

)
vkvn =

=
1
m0

(
ϕ

c

∂f i

∂t
+

∂f i

∂xm
ηm

)





. (3.17)
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In component notation, the obtained chr.inv.-deviation equations
(3.17) are a system of four 2nd order differential equations with respect
to ϕ, η1, η2, η3, where the variable coefficients of the functions are the
quantities ȧ, ä, v1, v2, v3. To solve this system we will get a from the
given gravitational wave metric (3.15), while vi come as the solutions
to the non-geodesic equations of motion (3.13).

§3.5 Exact solution for a free-mass detector

We first solve the chr.inv.-deviation equations (3.17) for a free-mass
detector, where two particles don’t interact with each other (Φα = 0) —
the right side is zero in the equations.

We find the solution in the field of a gravitational wave falling
along x1 and linearly polarized in the x2 direction (b=0). With these
the gravitational wave metric (3.15) gives

D22 = −D33 =
1
2
ȧ ,

d

dx1
=

1
c

d

dt

∆1
22 = −∆1

33 = − 1
2c

ȧ , ∆2
12 = −∆3

13 =
1
2c

ȧ




. (3.18)

In such a case, and since Φα =0, the chr.inv.-equations of motion
(3.13) take the form

(v2)2 − (v3)2 = 0

dv1

dt
= 0 ,

dv2

dt
+ ȧv2 = 0 ,

dv3

dt
+ ȧv3 = 0




. (3.19)

As seen v1 =v1
(0) = const, so a transverse gravitational wave does not

move a single particle in the longitudinal direction. Henceforth,

v1 = v1
(0) = 0 . (3.20)

The rest two spatial equations of (3.19) are also simple to integrate.
We obtain

v2 = v2
(0)e

−a, v3 = v3
(0)e

+a. (3.21)

Assuming the wave simple harmonic, ω= const, with a constant am-
plitude A= const, i.e. a=A sin ω

c (ct+x1), and expanding the exponent
into series (with high order terms withheld), we obtain

v2 = v2
(0)

[
1−A sin

ω

c
(ct+x1)

]
, (3.22)

v3 = v3
(0)

[
1 +A sin

ω

c
(ct+x1)

]
. (3.23)
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Substituting these solutions into the chr.inv.-equations of deviating
non-geodesics (3.17) and setting the right side to zero as for geodesics,
we obtain

d2ϕ

dt2
+
ȧ

c

(
dη2

dt
v2

(0) −
dη3

dt
v3

(0)

)
= 0 , (3.24)

d2η1

dt2
− ȧ

c

(
dη2

dt
v2

(0) −
dη3

dt
v3

(0)

)
= 0 , (3.25)

d2η2

dt2
+ ȧ

dη2

dt
+
ȧ

c

(
dϕ

dt
+
dη1

dt

)
v2

(0) +
ä

c
(ϕ+ η1) v2

(0) = 0 , (3.26)

d2η3

dt2
− ȧ

dη3

dt
− ȧ

c

(
dϕ

dt
+
dη1

dt

)
v2

(0) −
ä

c
(ϕ+ η1) v2

(0) = 0 . (3.27)

Summing the first two equations then integrating the sum, we obtain

ϕ+ η1 = B1 t+B2 , (3.28)

where B1 and B2 are integration constants. Substituting these into the
other two, we obtain two equations which are different solely in the sign
of a, and can therefore be solved in the same way

d2η2

dt2
+ ȧ

dη2

dt
+
ȧ

c
B1v2

(0) +
ä

c
(B1t+B2) v2

(0) = 0 , (3.29)

d2η3

dt2
− ȧ

dη2

dt
− ȧ

c
B1v3

(0) −
ä

c
(B1t+B2

)
v3

(0) = 0 . (3.30)

We introduce a new variable y= dη2

dt
. Then we have a linear uniform

equation of the 1st order with respect to y

ẏ + ȧy = − ȧ

c
B1 v2

(0) −
ä

c

(
B1t+B2

)
v2

(0) , (3.31)

which has the solution

y = e−F
(
y0 +

∫ t

0

g (t) eF dt
)
, F (t) =

∫ t

0

f (t) dt , (3.32)

where, in the given case, F (t)= ȧ, g(t)=− ȧ
cB1v2

(0)−(B1t+B2)v2
(0). Ex-

panding the exponent into series in y (3.32), and then integrating, we
obtain

y = η̇2 = η̇2
(0)

[
1−A sin

ω

c
(ct+x1)

]
− Aω

c
v2

(0)×

× (
B1t+B2

)
cos

ω

c
(ct+x1)+

Aω

c
B2v2

(0) . (3.33)



3.5 Exact solution for a free-mass detector 81

We integrate this equation, then apply the same method for η3. As
a result, we obtain the physically observable relative displacements η2

and η3 in a free-mass detector

η2 = η2
(0) +

(
η̇2

(0) +
AωB2 v2

(0)

c

)
t+

A

ω

(
η̇2

(0) −
v2

(0)

c
B1

)
×

×
[
cos

ω

c
(ct+x1)− 1

]
− Av2

(0)

c
(B1t+B2) sin

ω

c
(ct+x1) , (3.34)

η3 = η3
(0) +

(
η̇3

(0) −
AωB2 v3

(0)

c

)
t− A

ω

(
η̇3

(0) −
v3

(0)

c
B1

)
×

×
[
cos

ω

c
(c t+x1)− 1

]
+
Av3

(0)

c

(
B1t+B2

)
sin

ω

c
(c t+x1) . (3.35)

With η̇2 and η̇3, we get the physically observable relative displace-
ment η1 (3.25) in a free-mass detector and the physically observable
time shift ϕ (3.24) at its ends

η1 = η̇1
(0) t−

A

ωc

(
v2

(0) η̇
2
(0)−v3

(0) η̇
3
(0)

)[
1− cos

ω

c
(ct+x1)

]
+ η1

(0) , (3.36)

ϕ = ϕ̇(0) t+
A

ωc

(
v2

(0) η̇
2
(0)−v3

(0) η̇
3
(0)

)[
1− cos

ω

c
(ct+x1)

]
+ η1

(0) . (3.37)

Finally, we substitute ϕ and η1 into ϕ+ η1 =B1 t+B2 (3.28) to fix
the integration constants. We obtain

B1 = ϕ̇(0) + η̇1
(0) , B2 = ϕ(0) + η1

(0) . (3.38)

Thus, we have obtained the exact solutions ϕ, η1, η2, η3 to the chr.
inv.-equations of the deviating geodesics in a gravitational wave field.

Proceeding from the exact solutions we arrive at the next conclusions
on a free-mass detector:

1) As seen from the solutions η2 (3.34) and η3 (3.35), gravitational
waves may force the ends of a free-mass detector to undergo rel-
ative oscillations in the directions x2 and x3, transverse to that
of the wave propagation. At the same time, this effect is permit-
ted only if the detector initially moves with respect to the local
space (v2

(0) 6= 0 or v3
(0) 6=0) or, alternatively, its ends initially move

with respect to each other (η̇2
(0) 6= 0 or η̇3

(0) 6=0). For instance, if
the ends of a free-mass detector are at rest with respect to x2, an
x1-propagating gravitational wave cannot displace them in the x2

direction;



82 Chapter 3 Deviation of World-Lines. Detecting Gravitational Waves

2) The solution η1 (3.36) manifests that gravitational waves may
oscillatory bounce the ends of a free-mass detector even in the
same direction of the wave propagation, if they initially move both
with respect to the local space and each other in at least one of
the transverse directions x2 and x3;

3) The solution ϕ (3.37) is the time shift in the clocks located at
the ends of a free-mass detector, caused by a gravitational wave.
From (3.37), this effect is permitted if the ends initially move both
with respect to the local space and each other in at least one of
the transverse directions x2 and x3.

In view of these results we have obtained, we propose a new experimental
statement, based on a free-mass detector:

New experiment (free-mass detector): A free-mass detec-
tor, where two mirrors, distantly separated, are suspended and
vibrating so that they have free oscillations with respect to each
other (η̇i(0) 6=0) or common oscillations along parallel lines (vi(0) 6=0).
According to the exact solution for a free-mass detector given
above, a falling gravitational wave produces a parametric effect in
the basic oscillations of the mirrors, that may be registered with a
laser range-finder. Besides, as the solution predicts, a time shift is
produced in the mirrors, that may be registered by synchronized
clocks located with each of the mirrors: their de-synchronization
means a gravitational wave detection.

§3.6 Exact solution for a solid-body detector

We assume the elastic force Φα =−kασ xσ connecting two particles in
a solid-body detector to be independent of time (k0

σ =0). In such a case
the chr.inv.-equations of motion (3.13) take the form

(v2)2 − (v3)2 = 0 , (3.39)

dv1

dt
= − k1

σ

m0
xσ, (3.40)

dv2

dt
+ ȧv2 = − k2

σ

m0
xσ, (3.41)

dv3

dt
− ȧv3 = − k3

σ

m0
xσ, (3.42)

where (3.40) means v1 = v1
(0) = const. Henceforth, in the detector,

v1 = v1
(0) = 0 , k1

σ = 0 . (3.43)
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Only two equations, (3.41) and (3.42), are essential. They differ
solely by the sign of ȧ, so we solve only (3.41).

Let the solid-body detector be elastic in only two directions trans-
verse to the direction x1 of the propagation of the gravitational wave,
which falls onto the detector. In such a case the elastic coefficient is
k2
σ=k3

σ=k=const. With that, since a=A sin ω
c (ct+x1) as previously,

and denoting x2≡x, k
m0

=Ω2, Aω=−µ, we reduce (3.41) to

ẍ+ Ω2x = µ cos
ω

c
(c t+x1) ẋ , (3.44)

where µ is the so-called “small parameter”. We solve this equation using
the small parameter method of Poincaré, known also as the perturba-
tion method: we consider the right side as a forcing perturbation of
a harmonic oscillation described by the left side. The Poincaré method
is related to exact solution methods, because a solution produced with
it is a power series expanded by the small parameter (see Chapter XII,
§2 in Lefschetz [25]).

We introduce a new variable t′=Ωt in order to make it dimensionless
as according to Lefschetz, and µ′= µ

Ω

ẍ+ x = µ′ cos
ω

Ωc
(c t′+Ωx1) ẋ . (3.45)

A general solution of this equation, representable as

ẋ = y , ẏ = −x+ µ′ cos
ω

Ωc
(ct′+ Ωx1) y (3.46)

with the initial data x(0) and y(0) at t′=0, is determined by the series
pair (Lefschetz)

x = P0 (x(0), y(0), t
′) + µ′P1(x(0), y(0), t

′) + . . .

y = Ṗ0 (x(0), y(0), t
′) + µ′ Ṗ1(x(0), y(0), t

′) + . . .

}
. (3.47)

We substitute these into (3.46) and, equating coefficients in the same
orders of µ′, obtain

P̈0 + P0 = 0

P̈1 + P1 = Ṗ0 cos
ω

Ωc
(ct′+Ωx1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





(3.48)

with the initial data P0(0)=ξ, Ṗ0(0)=ϑ, P1(0)= Ṗ1(0)=0 (where n>0)
at t′=0. Because the amplitude A (we have it in the variable µ′=−ω

Ω
A)
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is small, this problem takes only the first two equations into account.
The first of them is a harmonic oscillation equation, with the solution

P0 = ξ cos t′ + ϑ sin t′, (3.49)

while the second equation, with this solution, is

P̈1 + P1 = (− ξ sin t′ + ϑ cos t′) cos
ω

Ωc
(c t′+Ωx1) . (3.50)

This is a linear uniform equation. The solution, according to Kamke
(see Part III, Chapter II, §2.5 in [26]), is

P1 =
ϑΩ2

2

{
cos

[
(Ω−ω)t− ω

c x
1
]

Ω2−(Ω−ω)2
+

cos
[
(Ω+ω)t+ ω

c x
1
]

Ω2−(Ω+ω)2

}
−

− iξΩ2

2

{
sin

[
(Ω−ω)t− ω

c x
1
]

Ω2−(Ω−ω)2
+

sin
[
(Ω+ω)t+ ω

c x
1
]

Ω2−(Ω+ω)2

}
, (3.51)

where the brackets contain the real and imaginary parts of the sum
ei(Ω−ω) t−ω

c x
1
+ei(Ω+ω) t+ ω

c x
1
. Substituting these into (3.47), and going

back to x=x2, we obtain the final solution in the reals

x2 = ξ cosΩt+ ϑ sinΩt− AωΩϑ
2

×

×
{

cos
[
(Ω−ω)t−ω

c x
1
]

Ω2−(Ω−ω)2
+

cos
[
(Ω+ω)t+ω

c x
1
]

Ω2−(Ω+ω)2

}
,

(3.52)

while the solution for x3 will differ solely in the sign of A.
With this result we solve the chr.inv.-equations of the deviating non-

geodesics (3.17).
For the cylindrical pig under consideration we assume v1 =0, v2=v3,

Φ1 =0, Φ2=− k
m0
η2, Φ3 =− k

m0
η3, where v2=v3 means that the initial

conditions ξ and ϑ are the same in both x2 and x3 directions. So the
deviation equations along x0 = ct and x1 are

d2ϕ

dt2
= 0 ,

d2η1

dt2
= 0 , (3.53)

so we may put their solutions as ϕ= 0 and η1 =0.
With all these, the deviation equation along x2 (it differs to that

along x3 by the sign of A) is

d2η2

dt2
+

k

m0
η2 = −Aω cos

ω

c
(ct+x1)

dη2

dt
, (3.54)
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which is like (3.44). So the solutions η2 and η3 should be like (3.52).
As a result we obtain

η2 = ξ cos Ωt+ ϑ sin Ωt− AωΩϑ
2

×

×
{

cos
[
(Ω−ω)t−ω

c x
1
]

Ω2−(Ω−ω)2
+

cos
[
(Ω+ω)t+ω

c x
1
]

Ω2−(Ω+ω)2

}
, (3.55)

η3 = ξ cos Ωt+ ϑ sin Ωt+
AωΩϑ

2
×

×
{

cos
[
(Ω−ω)t−ω

c x
1
]

Ω2−(Ω−ω)2
+

cos
[
(Ω+ω)t+ω

c x
1
]

Ω2−(Ω+ω)2

}
. (3.56)

These are the exact solutions to the chr.inv.-equations of the devi-
ating non-geodesics in a gravitational wave field. The solutions lead us
to the conclusions:

1) The solutions ϕ= const and η1 = const manifest that a gravita-
tional wave falling down from upstarts onto a horizontally sus-
pended solid-body pig does not change both the vertical size η1

of the pig and the time shift ϕ at its butt-ends;
2) As seen from the solutions η2 (3.55) and η3 (3.56), gravitational

waves may force the butt-ends of a solid-body pig to undergo
relative oscillations, transverse to the wave propagation: a) forced
relative oscillations at a frequency ω of the gravitational waves;
b) resonant oscillations which occur as soon as the gravitational
wave’s frequency becomes double the frequency of the butt-ends’
basic oscillation (ω= 2Ω). Both effects have parametric origin:
they are permitted only if the butt-ends of the pig have an initial
relative oscillation (Ω 6=0). If there is no initial oscillation, such a
solid-body detector does not react on gravitational waves.

Owing to the theoretical results we have obtained, we propose a new
experimental statement for a solid-body detector:

New experiment (solid-body detector): Use a solid-body
detector (cylindrical pig), horizontally suspended and having a
laboratory induced oscillation of its body so that there are rela-
tive oscillations of its butt-ends (Ω 6=0). Such a system, accord-
ing to the exact solution for a solid-body detector, may have a
parametric effect in the basic oscillations of its butt-ends due to
a falling gravitational wave that may be measured as a piezo-effect
in the pig.
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§3.7 Conclusions

The experimental statement on gravitational waves proceeds from the
equation for deviating geodesic lines and the equation for deviating non-
geodesics. Weber’s result was not based on an exact solution to the
equations, but on an approximate analysis of what could be expected:
he expected that a plane weak wave of the space metric may displace
two resting particles with respect to each other. Exact solutions have
been obtained here for the deviation equation of both free and spring-
connected particles. The solutions show that a gravitational wave may
displace particles in a two-particle system only if they are in motion
with respect to each other or the local space (there is no effect if they
are at rest). Thus, gravitational waves produce a parametric effect on
a two-particle system. According to the solutions, an altered detector
construction can be proposed such that it might interact with gravi-
tational waves: a) a free-mass detector where suspended mirrors have
laboratory induced basic oscillations relative to each other; b) a hori-
zontally suspended cylindrical pig, whose butt-ends have basic relative
oscillations induced by a laboratory source.



Chapter 4 Instant Displacement World-

Lines. Teleporting Particles

§4.1 Trajectories for instant displacement. Zero-space:
the way for non-quantum teleportation of photons

As well-known, the basic space-time of the General Theory of Relativ-
ity is a four-dimensional pseudo-Riemannian space, which is, in general,
curved, inhomogeneous, anisotropic, non-holonomic (rotating), and de-
formed. Therein, the space-time interval ds2 = gαβ dx

αdxβ , being ex-
pressed in the terms of physically observable quantities [2–4], is

ds2 = c2dτ2 − dσ2. (4.1)
where the quantity

dτ =
(
1− w

c2

)
dt− 1

c2
vidx

i (4.2)

is the interval of the physically observable time, w = c2(1−√g00) is the
gravitational potential, vi is the linear velocity of the space rotation,
dσ2 =hik dx

idxk is the square of the spatial physically observable inter-
val, hik is the physically observable chr.inv.-metric tensor.

Following the form (4.2), we consider a particle displaced by ds in
the space-time. We write ds2 as follows

ds2 = c2dτ2

(
1− v2

c2

)
, (4.3)

where v2 =hik vivk, while vi = dxi

dτ
is the observable three-dimensional

velocity of the particle. So the numerical value of the space-time in-
terval ds is: a) a substantial number under v<c; b) zero under v = c;
c) an imaginary number under v>c.

According to the formula for ds2, particles with non-zero rest-masses
(m0 6= 0) can be moved: a) along real world-trajectories (cdτ >dσ),
having real relativistic masses; b) along imaginary world-trajectories
(cdτ <dσ), having imaginary relativistic masses (tachyons). The world-
lines of both kinds are non-isotropic. In both cases relativistic masses
are not zero (m 6= 0). These are the particles of substance.
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Massless particles — particles with zero rest-masses (m0 =0), having
non-zero relativistic masses (m 6=0), move along world-trajectories of
zero four-dimensional length (ds=0, cdτ = dσ 6=0) at the velocity of
light. These are isotropic trajectories. Massless particles are related to
light-like particles — the quanta of an electromagnetic field (photons).

A condition under which a particle may realize an instantaneous dis-
placement (teleportation) is the vanishing of the observable time interval
dτ = 0 so that the teleportation condition is

w + viu
i = c2, (4.4)

where ui = dxi

dt
is its three-dimensional coordinate velocity. Hence the

space-time interval by which this particle is instantaneously displaced
takes the form

ds2 = − dσ2 = −
(
1− w

c2

)2

c2dt2 + gik dx
idxk 6= 0 , (4.5)

where 1− w

c2
= viu

i

c2
in this case, because dτ =0.

In such a case the signature (+−−−) in the space-time region of a reg-
ular observer becomes (−+++) in the space-time region where particles
may be teleported. So the terms “time” and “three-dimensional space”
are interchanged in such a region. “Time” of teleporting particles is
“space” of the regular observer, and vice versa “space” of teleporting
particles is “time” of the regular observer.

Let us first consider substantial particles. As it easy to see, instant
displacement (teleportation) of such particles manifests along world-
trajectories in which ds2 =−dσ2 6=0 is true. So these trajectories rep-
resented in the terms of physically observable quantities are purely
spatial lines of imaginary three-dimensional lengths dσ, although when
taken in the ideal world-coordinates t and xi the trajectories are four-
dimensional. In a particular case, where the space is free of rotation
(vi =0) or the linear velocity of its rotation vi is orthogonal to the
coordinate velocity ui of the teleporting particle (their scalar product
is viui = |vi||ui| cos (vi;ui)= 0), substantial particles may be teleported
only if gravitational collapse occurs (w = c2). In this case, the world-
trajectories of teleportation taken in the ideal world-coordinates also
become purely spatial ds2 = gik dx

idxk.
The second case, massless light-like particles (e.g. photons). Such

particles may be teleported along world-trajectories located in a space
possessing the metric

ds2 = − dσ2 = −
(
1− w

c2

)2

c2dt2 + gik dx
idxk = 0 , (4.6)
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because for photons ds2 =0 by definition. As a result we see that
the space of photon teleportation characterizes itself by the conditions
ds2 =0 and dσ2 = c2dτ2 =0.

The obtained condition of photon teleportation (4.6) is like the light
cone equation c2dτ2− dσ2 = 0, where dσ 6=0 and dτ 6=0. This equation
describes the light cone, elements of which are the world-trajectories of
massless (light-like) particles. In contrast to the light cone equation, the
obtained equation (4.6) is constituted by the ideal world-coordinates
t and xi, i.e. not this equation in the terms of physically observable
quantities. So teleporting photons actually move along trajectories,
which are the elements of the world-cone (like the light cone) in the
region of the space-time, where substantial particles may be teleported
as well (the metric inside such a region has been obtained above).

Considering the condition of photon teleportation (4.6) from the
viewpoint of a regular observer, we can see the obvious fact that, in such
a case, the observable spatial metric dσ2 =hik dx

idxk becomes degen-
erate: h= det ||hik||=0. This case means actually the degenerate light
cone. Taking the relationship g=−hg00 [2–4] into account, we conclude
that the four-dimensional metric ds2 = gαβ dx

αdxβ becomes degenerate
there as well: g= det ||gαβ ||=0. The last fact means that the signature
conditions, which determine a pseudo-Riemannian space, are broken,
so photon teleportation manifests outside the basic space-time of the
General Theory of Relativity. Such a fully degenerate space-time, con-
sidered earlier in §1.4 and §1.5 of Chapter 1 in this book, is referred to
as zero-space since, from the viewpoint of a regular observer, all spatial
and time intervals are zero therein.

Once dτ =0 and dσ=0, the observable relativistic mass m and the
frequency ω become zero. Thus, from the viewpoint of a regular ob-
server, any particle located in a zero-space (in particular, a teleporting
photon) having zero rest-mass m0 =0 appear as zero relativistic mass
m=0 and frequency ω=0. Therefore particles of this kind may be
assumed to be the ultimate case of massless (light-like) particles.

In §1.4 we have introduced a term zero-particles for all particles
located in a zero-space.

According to the wave-particle duality each particle can be resent as
a wave. In the framework of this concept each mass-bearing particle is
given by its own four-dimensional wave vector Kα = ∂ψ

∂xα , where ψ is the
wave phase known also as eikonal. The eikonal equation KαK

α =0 [15],
setting forth the fact that the length of a four-dimensional vector re-
mains unchanged in the four-dimensional pseudo-Riemannian space, for
regular massless light-like particles (regular photons) it becomes a trav-
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elling wave equation (see §1.3 for detail)

1
c2

(∗∂ψ
∂t

)2

− hik
∗∂ψ
∂xi

∗∂ψ
∂xk

= 0 . (4.7)

The eikonal equation in a zero-space region takes the form (see §1.5)

hik
∗∂ψ
∂xi

∗∂ψ
∂xk

= 0 , (4.8)

because there ω=
∗∂ψ
∂t

=0, putting the time term of the equation to zero.
It is a standing wave equation. So, from the viewpoint of a regular
observer, in the framework of the wave-particle concept, all particles
located in a zero-space region manifest as standing light waves, so that
the entire zero-space appears filled with a system of standing light waves
— light-like holograms. This means that an experiment for discovering
non-quantum teleportation of photons should be linked to stationary
(stopped) light.

At the end, we conclude that instant displacements of particles are
naturally permitted in the space-time of the General Theory of Rela-
tivity. As it has been shown, teleportation of substantial particles and
photons realizes itself in different space-time regions. But it would be a
mistake to think that teleportation requires accelerating a substantial
particle to superluminal velocities (into tachyonic regime), while a pho-
ton needs to be accelerated to infinite velocity. No — as it is easy to
see from the teleportation condition w + viu

i = c2, if the gravitational
potential is essential and if the space rotates at a velocity close to the
velocity of light, substantial particles may be teleported at regular sub-
luminal velocities. Photons can reach the teleportation condition easier,
because they move at the velocity of light. From the viewpoint of a reg-
ular observer, as soon as the teleportation condition realizes itself in
the neighbourhood around a moving particle, the particle “disappears”
although it continues its motion at a subluminal (or light) coordinate
velocity ui in another space-time region invisible to us. Then, having
its velocity lowered or if something else breaks the teleportation condi-
tion (such as lowering the gravitational potential or the linear velocity
of rotation of the space), it “appears” at the same observable moment
at another point in our observable space at that distance and in the
direction which it has got itself.

There is no problem with photon teleportation being realized along
fully degenerate world-trajectories (g=0) outside the basic pseudo-
Riemannian space (g < 0), while teleportation trajectories of substantial
particles are strictly non-degenerate (g < 0) so these world-lines are lo-



4.1 Trajectories for instant displacement. Non-quantum teleportation 91

cated in the pseudo-Riemannian space∗. It presents no problem because
at any point in the pseudo-Riemannian space we can place a tangent
space of g6 0 consisting of the regular pseudo-Riemannian space (g < 0)
and the zero-space (g=0) as two different regions of the same manifold.
A space of g6 0 is a natural generalization of the basic space-time of
the General Theory of Relativity, permitting non-quantum ways for tele-
portation of both photons and substantial particles (previously achieved
only in the strict quantum fashion — quantum teleportation of photons
in 1998 [27] and of atoms in 2004 [28,29]).

Until now teleportation has had an explanation given only by Quan-
tum Mechanics [30]. Now the situation changes: with our theory we
can find physical conditions for the realization of teleportation of both
photons and substantial particles in a non-quantum way (non-quantum
teleportation), in the framework of the General Theory of Relativity.

The only difference is that from the viewpoint of a regular observer
the length of any parallel transported vector remains unchanged. It
is also an “observable truth” for vectors in a zero-space region, be-
cause the observer reasons the standards (properties) of his pseudo-
Riemannian space anyway. The eikonal equation in a zero-space re-
gion, expressed in his observable world-coordinates, is KαK

α=0. How-
ever in the ideal world-coordinates t and xi the metric inside zero-
space, ds2 =−(

1− w

c2

)2
c2dt2 + gik dx

idxk = 0, degenerates into a three-
dimensional dµ2 which, depending on the gravitational potential w un-
compensated by something else, is not invariant

dµ2 = gik dx
idxk =

(
1− w

c2

)2

c2dt2 6= inv . (4.9)

As a result, within a zero-space the length of a transported vector,
the four-dimensional vector of a coordinate velocity Uα for instance,
being degenerate into a spatial U i, does not remain unchanged

UiU
i = gikU

iUk =
(
1− w

c2

)2

c2 6= const , (4.10)

so that although the observed geometry inside the zero-space is Rieman-
nian for a regular observer, the real geometry of the zero-space within
the space itself is non-Riemannian.

∗Any space in Riemannian geometry has strictly non-degenerate metric nature
g < 0 by definition. Pseudo-Riemannian spaces are a particular case of Riemannian
spaces, where the metric is sign-alternating. Einstein set forth a four-dimensional
pseudo-Riemannian space of the signature (+−−−) or (−+++) as the base of the
General Theory of Relativity. So the basic space-time of the General Theory of
Relativity is as well of strictly non-degenerate metric (g < 0).
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In connexion with the results, it is important to remember the “Infi-
nite Relativity Principle”, introduced by Abraham Zelmanov. Proceed-
ing from his studies on relativistic cosmology, he concluded that [31,32]:

Zelmanov’s “Infinite Relativity Principle”: In homoge-
neous isotropic cosmological models spatial infinity of the Uni-
verse depends on our choice of that reference frame from which
we observe the Universe (the observer’s reference frame). If the
three-dimensional space of the Universe, being observed in one
reference frame, is infinite, it may be finite in another reference
frame. The same is just as well true for the time during which the
Universe evolves.

We have come to the “Finite Relativity Principle” here. As we have
showed, because of a difference between the physically observable world-
coordinates and the ideal world-coordinates, the same space-time re-
gions may be very different, being determined in each of the frames.
Thus, in the observable world-coordinates, a zero-space region is a
point (dτ =0, dσ=0), while dτ =0 and dσ=0 taken in the ideal world-

coordinates become −(
1− w

c2

)2
c2dt2 + gik dx

idxk =0, which is a four-
dimensional cone equation like the light cone equation c2dτ2− dσ2 =0.
Actually, here is the “Finite Relativity Principle” for observed objects
— an observed point is the whole space taken in the ideal coordinates.

Moreover, this research is currently the sole theoretical explanation
of the observed phenomenon of teleportation [27–29] given by the Gen-
eral Theory of Relativity.

§4.2 The geometric structure of zero-space

As we have obtained, a regular real observer perceives the entire zero-
space as a region determined by the observable conditions of degenera-
tion, which are dτ =0 and dσ2 =hik dx

idxk =0 (see §1.4 for detail).
The physical sense of the first condition dτ = 0 is that the real ob-

server perceives any two events in the zero-space as simultaneous, at
whatever distance from them they are. Such a way of instantaneous
spread of information is referred to as the long-range action.

The second condition dσ2 =0 means the absence of observable dis-
tance between the event and the observer. Such “superposition” of ob-
server and observed object is only possible if we assume that our regular
four-dimensional pseudo-Riemannian space meets the entire zero-space
at each point (as is “stuffed” with the zero-space).

Let us now turn to the mathematical interpretation of the conditions
of degeneration.
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The quantity cdτ is a chr.inv.-projection of the four-dimensional
coordinate interval dxα onto the line of time: cdτ = bαdx

α. The proper
world-vector of the observer bα by definition is not zero and dxα is not
zero as well. Then dτ =0 is true at dσ2 =0 only if the space-time metric
ds2 = c2dτ2− dσ2 = gαβ dx

αdxβ is degenerate, i.e. the determinant of
the fundamental metric tensor is zero

g = det ||gαβ || = 0 . (4.11)

Similarly, the condition dσ2 =hik dx
idxk = 0 in a region means that,

in this region, the observable three-dimensional metric is degenerate

h = det ||hik|| = 0 . (4.12)

Having the conditions of degeneration of space-time, w + viu
i = c2

and gik dxidxk =
(
1− w

c2

)2
c2dt2, substituted into dσ2 =hik dx

idxk =0 we
obtain the zero-space metric

ds2 =
(
1− w

c2

)2

c2dt2 − gikdx
idxk = 0 . (4.13)

Hence inside a zero-space (from the viewpoint of an “inner” observer)
the three-dimensional space is holonomic, while rotation of the zero-
space is present in the time component of its metric

(
1− w

c2

)2

c2dt2 =
(
viu

i

c2

)2

c2dt2. (4.14)

If w = c2 (the condition for gravitational collapse), the zero-space
metric (4.13) takes the form

ds2 = − gikdxidxk = 0 , (4.15)

i.e. it becomes purely three-dimensional and the three-dimensional space
becomes degenerate as well

g(3D) = det ||gik|| = 0 . (4.16)

Here the condition g(3D) = 0 originates in the fact that gik dxidxk is
sign-definite, so it can only become zero provided the determinant of
the three-dimensional metric tensor gik is zero.

Because in any zero-space w + viu
i = c2, in the case of gravitational

collapse the condition viui =0 also becomes true.
The quantity viu

i = vu cos (vi;ui), which is the scalar product of
the linear velocity of the space rotation, and the coordinate velocity of
a zero-particle will be referred to as the chirality of the zero-particle.
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In the case where viui> 0, the angle α between vi and ui is within
the range of 3π

2
<α< π

2
. Because gikuiuk = c2

(
1− w

c2

)2, i.e. the second

condition of degeneration, means that u= c
(
1− w

c2

)
, in this case the

gravitational potential is w<c2 (a regular gravitational field).
In the case where viui< 0, the angle α is within π

2
<α< 3π

2
, so we

obtain w>c2 (a super-strong gravitational field).
The condition viui =0 is only true if α= {π

2
; 3π

2
} or if w = c2 (grav-

itational collapse).
Hence the chirality of a zero-particle is zero if either the velocity of

the particle is orthogonal to the linear velocity of the space rotation, or
if gravitational collapse occurs∗.

Because w = c2(1− e(0)) and vi =−c e(i) cos (x0;xi) in the basis form,
the condition of degeneration w + viu

i = c2 can be written as

c e(0) = − e(i)u
i cos (x0; xi) . (4.17)

The dimension of a space is determined by the number of the linearly
independent basis vectors in it. In our formula (4.17), which is the basic
notation for the condition w + viu

i = c2, the time basis vector is linearly
dependent on all spatial basis vectors. This means actual degeneration
of the space-time. Hence our formula (4.17) can be regarded as the
geometric condition of degeneration.

In the case of gravitational collapse (w = c2) the length of the time
basis vector e(0) =1− w

c2
becomes zero. In the absence of gravitational

fields (w = 0), or in a weak gravitational field (w→ 0), the quantity e(0)

takes its maximum length equal to 1. In intermediate cases, e(0) becomes
shorter as the gravitational field becomes stronger.

As known, at any point in the four-dimensional space-time, there
exists an isotropic cone — a hyper-surface whose metric is

gαβ dx
αdxβ = 0 . (4.18)

Geometrically speaking, this is a region of the space-time which hosts
light-like particles. Because the space-time interval in such a region is
zero, all directions inside it are equal (in other word, they are isotropic).
Therefore the region which hosts light-like particles is commonly re-
ferred to as the isotropic cone or the light cone.

Because in a zero-space the metric is also equal to zero (4.13) an
isotropic cone can be constructed at any of its points. Such an isotropic

∗This is because, under the condition of gravitational collapse, the modulus of
the coordinate velocity of the particle equals zero (u =0).
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cone is described by a somewhat different equation
(
1− w

c2

)2

c2dt2 − gik dx
idxk = 0 . (4.19)

The difference between such an isotropic cone and the light cone is
that it satisfies the condition

1− w
c2

=
viu

i

c2
, (4.20)

which is only typical for a degenerate space-time (zero-space). We there-
fore will call it the degenerate isotropic cone. Because the specific term
(4.20) is function of the space rotation, the degenerate isotropic cone is
a cone of rotation.

Under gravitational collapse (w = c2) the first term in (4.20) be-
comes zero (the stopping point of the coordinate time), while the re-
maining second term gik dx

idxk =0 describes a three-dimensional de-
generate hyper-surface. However if w = 0, viui = 0 and the equation of
the degenerate isotropic cone (4.20) becomes

c2dt2 − gik dx
idxk = 0 , (4.21)

i.e. the coordinate time flows evenly.
The greater the gravitational potential w, the more severe the de-

generate cone becomes and the closer it is to the spatial section. In the
ultimate case where w = c2 the degenerate cone becomes flattened over
the three-dimensional space (collapses). The “lightest” cone w =0 is
the most distant one from the spatial section.

Hence a gravitational collapsar in a zero-space region is similar to
the zero-space observed by a regular observer like us. In other words,
the entire zero-space for us is a degenerate state of the regular space-
time, while for a zero-observer a gravitational collapsar is the degenerate
state of the zero-space. This means that an isotropic light cone contains
a degenerate isotropic cone of the entire zero-space, which, in turn,
contains a particular collapsed degenerate isotropic zero-space cone of
a collapsar inside the zero-space. This is an illustration of the fractal
structure of the world presented here as a system of the isotropic cones
found inside each other.

§4.3 Zero-space as home space for virtual particles. Geo-
metric interpretation of Feynman diagrams

As well-known, the Feynman diagrams are a graphical description of the
various interactions between elementary particles. The diagrams clearly
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show that the actual carriers of interactions are virtual particles. In
other words, almost all physical processes rely on the emission and the
absorption of virtual particles (e.g. virtual photons) by real particles of
our world.

Another notable property of the Feynman diagrams is that they are
capable of describing particles (e.g. electrons) and antiparticles (e.g. po-
sitrons) at the same time. In this example, a positron is represented as
an electron which moves back in time.

According to Quantum Electrodynamics, the interaction of parti-
cles at every branching point of the Feynman diagrams conserves four-
dimensional momentum. This suggests a possible geometric interpreta-
tion of the Feynman diagrams in the General Theory of Relativity.

As a matter of fact, in the four-dimensional pseudo-Riemannian
space, which is the basic space-time of the General Theory of Relativity,
the following objects can get correct, formal definitions:

1) Mass-bearing particle — a particle, whose rest-mass is not zero
(m0 6= 0) and allowed trajectories are non-isotropic (ds 6= 0). These
are subluminal mass-bearing particles (real particles) and super-
luminal mass-bearing particles (tachyons). Mass-bearing particles
include both particle and antiparticle options, realizing motion
from the past into the future and from the future into the past,
respectively;

2) Massless particle — a particle with zero rest-mass (m0 =0), but
a non-zero relativistic mass (m 6=0), which moves along isotropic
trajectories (ds=0) at the velocity of light. These are light-like
particles, e.g. photons. Massless particles include both particle
and antiparticle options as well;

3) Zero-particle — a particle with zero rest-mass and zero relativis-
tic mass, which moves along trajectories in the fully degenerate
space-time (zero-space). From the viewpoint of a regular observer,
whose location is our world, the physicall observable time stops on
zero-particles. So both particle and anti-particle options become
senseless for zero-particles.

Hence to translate Feynman diagrams into the space-time geometry of
the General Theory of Relativity we only need a formal definition for
virtual particles. The way to do it is as follows.

In Quantum Electrodynamics, virtual particles are particles for
which, contrary to regular ones, the relationship between energy and
momentum

E2 − c2p2 = E2
0 , (4.22)
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where E=mc2, p2 =m2v2, E0 =m0c
2, is not true. In other word, for

virtual particles
E2 − c2p2 6= E2

0 . (4.23)

In a pseudo-Riemannian space, the relationship (4.22) in the chr.inv.-
form has a similar representation

p2 = hik p
ipk, (4.24)

where pi =mvi stands for the physically observable chr.inv.-vector of
the momentum of the particle. Dividing (4.24) by c4, we obtain

m2 − p2

c2
= m2

0 , (4.25)

i.e. the chr.inv.-formulation for the conservation of the four-dimensional
momentum of a mass-bearing real particle

PαP
α = gαβ P

αP β = m2
0 gαβ

dxα

ds

dxβ

ds
= m2

0 (4.26)

in parallel transfer along to the entire trajectory of this particle, where
ds2> 0, i.e. along a subluminal trajectory. For a superluminal particle
(tachyon), whose four-dimensional momentum is

Pα = m0
dxα

|ds| , (4.27)

the chr.inv.-relationship between mass and momentum (4.25) becomes

p2

c2
−m2 = (im0)

2
. (4.28)

For massless (light-like) particles, e.g. photons, the rest-mass is zero
and the relationship between mass and momentum transforms as

m2 =
p2

c2
, (4.29)

where the relativistic mass m is determined from the mass-energy equiv-
alence E=mc2, while the physically observable momentum pi =mci is
expressed through the chr.inv.-vector of the velocity of light.

Thus the obtained equations (4.25), (4.28), (4.29) characterize the
chr.inv.-relationship between mass and momentum for regular particles
which inhabit the space-time of the General Theory of Relativity. In-
teractions between regular particles are carried out by virtual particles.
Given this fact, in order to geometrically interpret the Feynman dia-
grams we need a geometric description of virtual particles.
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By definition, the chr.inv.-formula (4.25) presenting the observable
relationship between mass and momentum should not be true for vir-
tual particles. From the geometric viewpoint, this means that the
length of the four-dimensional vector of momentum of any virtual par-
ticle does not conserve in parallel transfer of it along to the world-
trajectory of the virtual particle. In a Riemannian space, particularly
in the four-dimensional pseudo-Riemannian space (the basic space of
the General Theory of Relativity), the length of any vector remains
unchanged in parallel transfer of it, by definition of Riemannian ge-
ometry. This means that world-trajectories of virtual particles lie in a
space with non-Riemannian geometry, i.e. outside the four-dimensional
pseudo-Riemannian space.

In §1.4 unrelated to virtual particles, we have showed that trajec-
tories, along which the square of a tangential vector being transferred
in parallel to itself does not conserve, are located in a zero-space we
called a fully degenerate space-time (g= det ||gαβ ||=0). In a pseudo-
Riemannian space g < 0 is always true by definition of the Rieman-
nian metric. Hence the entire zero-space is located beyond the four-
dimensional pseudo-Riemannian space and its geometry is not Rieman-
nian. Besides, as we have showed, the relativistic masses of particles
which the zero-space hosts (zero-particles) is zero and, from the view-
point of an observer whose location is our world, their motion expects
to be observed as instantaneous displacement (long-range action).

Analysis of the above facts brings us into the conclusion that zero-
particles can be equated to virtual particles in the extended space-time,
wherein g60 (we introduced such a space in §1.5). Such an extended
space (space-time) permits degeneration of the metric and considering
not only the motion of regular mass-bearing and massless particles, but
also their interaction by means of their exchange with virtual particles
(zero-particles) in the zero-space. In fact, this is the geometric interpre-
tation of the Feynman diagrams in the General Theory of Relativity.

In particular, because the zero-space metric dµ2 (4.9) is not invariant
dµ2 = gik dx

idxk =
(
1− w

c2

)2
c2dt2 6= inv, the length of a degenerate four-

dimensional vector being transferred in parallel to itself in the zero-space
does not conserve. For instance, for a degenerate world-vector Uα= dxα

dt
we have

UαU
α = giku

iuk =
(
1− w

c2

)2

c2 6= const. (4.30)

Applying the theory of physically observable quantities to this situ-
ation again shows us the way out. Since we consider all quantities from
the viewpoint of an observer, all quantities, including those in a zero-
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space, can be expressed through the physical observable characteristics
(physical standards) of his space of reference. Therefore a zero-particle
from the viewpoint of a regular observer possesses a four-dimensional
vector of momentum Pα, whose length remains unchanged in parallel
transfer in the host space of it (zero-space)

Pα = m0
dxα

ds
=
M

c

dxα

dt
, PαP

α =
M2

c2
ds2

dt2
= 0 , (4.31)

because in a zero-space, by definition, ds2 =0. On the other hand, once
we turn out to the frame of reference of a hypothetical observer whose
location is the zero-space, i.e. to the space with the metric dµ2 (4.9),
the length of the transferred vector does not conserve any longer.

Now we are going to look what kinds of particles are hosted by the
zero-space. First we look at the degeneration conditions (1.98) in the
absence of the gravitational potential (w =0). These are

viu
i = c2, giku

iuk = c2, (4.32)

i.e. in the absence of gravitation zero-particles move in the zero-space
at a coordinate velocity, which is equal to the velocity of light

u =
√
gikuiuk = c , (4.33)

despite the fact that their motion seems to be instantaneous displace-
ment from the viewpoint of a regular observer like us, located in the
strictly non-degenerate pseudo-Riemannian space.

The first condition of degeneration is the scalar product between the
linear velocity of the space rotation and the three-dimensional coordi-
nate velocity of the particle

viu
i = vu cos

(
vi;ui

)
= c2. (4.34)

Since u= c, this condition is true for the vectors vi and ui which
are co-directed (or coincide with each other, like in this case). Hence in
the absence of gravitation zero-particles move in the zero-space which
hosts them at the velocity of light, while, at the same time, the zero-
space rotates with the velocity of light as well. We will refer to such
zero-particles as virtual photons. The zero-space metric along their tra-
jectories is

dµ2 = gik dx
idxk = c2dt2 6= 0 , (4.35)

similar to the metric dσ2 = c2dτ2 6=0 along the trajectories of regular
photons in the pseudo-Riemannian space.
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Now we will look what kinds of particles are hosted by the zero-space
in the presence of the gravitational potential (w 6=0). In such a case the
degeneration conditions (1.98) are

viu
i = c2 − w , u2 = gik dx

idxk =
(
1− w

c2

)2

c2, (4.36)

so the scalar product viui = c2−w can be represented as

viu
i = vu cos

(
vi;ui

)
= vc

(
1− w

c2

)
cos

(
vi;ui

)
=

(
1− w

c2

)
c2. (4.37)

This equation is true given that the vectors vi and ui are co-directed,
and also v= c, i.e. in the presence of gravitation zero-particles move in
the zero-space which hosts them at a velocity of the magnitude

u = c
(
1− w

c2

)
, (4.38)

while the zero-space itself rotates at the velocity of light v= c.
Just we turn to the zero-space metric in the presence of gravitation

dµ2 = gik dx
idxk =

(
1− w

c2

)2

c2dt2, (4.39)

we see that the real time parameter here is not the coordinate time
t, but the following variable (it can be called the gravitational time,
because dependent on the potential)

t∗ =
(
1− w

c2

)
t , (4.40)

i.e. the real coordinate velocity of zero-particles along such trajectories
depends on the gravitational potential

ui∗ =
dxi

dt∗
=

ui

1− w

c2

. (4.41)

Due to the second degeneration condition of (1.98), the real coordi-
nate velocity of these zero-particles equals the velocity of light

u2
∗ = giku

i
∗u

k
∗ =

gik dx
idxk

(
1− w

c2

)2 = c2, (4.42)

i.e. they are virtual photons as well. Due to the first degeneration con-
dition of (1.98), we see that in the presence of gravitation the real linear
velocity of rotation of the zero-space which hosts virtual photons is as
well the velocity of light

viu
i
∗ = c2. (4.43)
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It is worth noting that considering virtual mass-bearing particles
is senseless, because all particles hosted by a zero-space by definition
possess zero rest-mass, and therefore are not mass-bearing particles.
Therefore only virtual photons and their varieties are virtual particles.

Now we are going to define virtual particles in a collapsed zero-space
area (w = c2). We will refer to virtual particles as virtual collapsars. For
them, the degeneration conditions (1.98) become

viu
i = 0 , gik dx

idxk = 0 , (4.44)

i.e. zero-collapsars either rest with respect to the space of reference of
an observer whose location is the zero-space, or the world around him
shrinks into a point (all dxi = 0), or the three-dimensional metric of the
collapsed zero-space area is degenerate g(3D)= det ||gik||=0. The zero-
space metric along the trajectories of virtual collapsars is

dµ2 = gik dx
idxk = 0 . (4.45)

So we have obtained that virtual particles of two kinds can exist in
a zero-space, which is a degenerate four-dimensional space-time:

1) Virtual photons — they possess forward motion at the velocity of
light, while the zero-space which hosts them rotates at the velocity
of light as well;

2) Virtual collapsars which rest with respect to the zero-space.
As a result we arrive at a conclusion that all interactions between reg-

ular mass-bearing and massless particles in the basic space-time of the
General Theory of Relativity (the four-dimensional pseudo-Riemannian
space), are affected through an exchange buffer, in whose capacity the
zero-space acts. Material carriers of interactions within such a buffer
are virtual particles of the two aforementioned kinds.

In §1.5 of Chapter 1, on considering particles in the framework of
the wave-particle duality, we have obtained that the eikonal equation
for zero-particles is a standing wave equation of stopped light (1.122).
Hence virtual particles are actually standing light waves, and interac-
tion between regular particles in our regular space-time is transmitted
through a system of standing light-like waves (standing-light holograms),
which fills the exchange buffer (zero-space).

This research currently is the sole explanation of virtual particles
and virtual interaction given by the geometrical methods of Einstein’s
General Theory of Relativity.



Conclusions

With the foregoing results, we can now draw the general picture of
the kinds of particles, which are theoretically conceivable in the four-
dimensional space-time of the General Theory of Relativity.

We solved this problem with use of the mathematical apparatus of
physically observable quantities (chronometric invariants). The essence
of this method, developed in 1944 by Abraham Zelmanov, is simple. As
known, the components of a tensor quantity are determined in a system
of the orthogonal ideal (straight and uniform) axes, which are tangential
to the real (curved and non-uniform) axes at the origin of the coordi-
nates. Real space-time can be imagined as a set of the curved and non-
uniform spatial sections (three-dimensional spaces), “pierced” in each
point by the non-uniform axes of time. Projecting a four-dimensional
quantity onto the line of time and onto the spatial section of an ob-
server, we obtain quantities really registered by him. Because projec-
tion is done in the real space, the result depends on the properties of the
space such as its rotation, deformation, curvature, etc. Numerous ex-
periments, which have been done since 1950’s, showed significant impact
of the properties of space on the measured length and time. The most
tremendous out of those experiments were no-landing flights around the
terrestrial globe in the 1970’s (the Hafele-Keating experiment).

As we found, the mathematical method of chronometric invariants
presents two cases, which could not be studied using the general co-
variant method: a) “splitting” the space-time into a region, where time
flows from the past into the future (our world) and a region, where time
flows into the opposite direction (the mirror world); b) a region, where
the four-dimensional interval, the observable three-dimensional interval,
and the interval of observable time are zeroes (zero-space).

Let us discuss the first case first. The method of chronometric invari-
ants manifests that relativistic mass m is the scalar observable projec-
tion of the four-dimensional vector of the momentum of a mass-bearing
particle, while relativistic frequency ω is the scalar observable projection
of the four-dimensional wave vector of a massless (light-like) particle.
According to this result, mass-bearing particles with positive relativis-
tic masses m> 0 inhabit our world wherein they move from the past
into the future with respect to a regular observer, realizing the direct
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flow of time. Particles with negative relativistic masses m< 0 inhabit
the mirror world wherein they move from the future into the past, from
our point of view, so we see that there time flows in the opposite direc-
tion. All these events occur in the “internal” region of the light cone.
Inside the “walls” of the light cone, the condition c2dτ2 = dσ2 6=0 is
true, i.e. the time and spatial projections of the four-dimensional coor-
dinates are equal and non-zero, while the space-time interval is degen-
erate ds2 = c2dτ2− dσ2 =0. This is the habitat of massless (light-like)
particles, e.g. photons. Light-like particles of our world bear positive
frequencies ω> 0; they move from the past into the future. In the mir-
ror world, light-like particles bear negative frequencies ω< 0 and move
from the future into the past, from our point of view.

Further, we found that the chronometrically invariant (observable)
equations of motion for particles of our world and for those of the mirror
world are asymmetric, i.e. for particles observable motion either into the
past or into the future is not the same. This fact means that the physical
conditions of motion into the past or into the future differ from each
other. Such an asymmetry depends on only the properties of space-time
such as the gravitational inertial force, the space rotation, and the space
deformation.

If the physically observable time τ was not different from the coordin-
ate time t (they differ due to the gravitational potential and the rotation
of space), the very statement of a problem of the space-time regions with
either the direct or reverse flow of time would be impossible.

Here we come to an important question. Assume four independent
coordinate axes — one time axis and three spatial axes. From the
geometric viewpoint both directions along the time axis are absolutely
equal. But what asymmetry are we speaking about and isn’t it a sort of
mistake? No, it isn’t a mistake. Of course, if the spatial section (three-
dimensional space) is uniform and isotropic, both directions into the
past and into the future are equal. But as soon as the spatial section
becomes rotated or deformed (this is like a crumpled paper sheet set
upon an axis and rotated around it), the space-time becomes anisotropic
with respect to the line of time. This anisotropy leads to different
physical conditions of motion into the past and into the future.

Furthermore, looking at the motion of particles as the propagation of
waves (within de Broglie’s wave-particle duality), we observe no asym-
metry: the propagation of waves is observed to be the same in both
directions in time, while the motion of “particle-balls” is not.

As a result, in our real space-time we should have two different four-
dimensional regions: our world with the direct flow of time and the
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mirror world wherein, from our point of view, time flows in the opposite
direction. These regions are separated with a space-time membrane, on
which, from the viewpoint of an “external observer” whose location is
our world or the mirror world, the observable time stops dτ =0.

What sort of membrane is that and isn’t it merely a border surface
between our world and the mirror world? Our study of the question
using the method of physical observable quantities gave the following
result. Inside the membrane, which separates our world from the mirror
world, a somewhat stricter condition is true dτ =0, i.e. the observable
time is degenerate. This fact manifest two cases on the four-dimensional
interval ds2 = c2dτ2− dσ2 in the space-time region occupied by such a
membrane: a) dτ =0, while dσ 6= 0 and ds2 =−dσ2 6=0, so this part of
the space-time membrane should be observed by us a three-dimensional
region inhabited by mass-bearing particles all physical processes on
whom have been stopped; b) dτ =0, while dσ= 0 and ds2 =0 as well.
The second case manifests both physically observable time dτ , four-
dimensional metric ds2 = gαβ dx

αdxβ and observable three-dimensional
metric dσ2 =hik dx

idxk to be degenerate. Mathematically this means
full degeneration of the space-time region. This part of the space-time
membrane should be observed as an entire three-dimensional region
shrunk into a single point, despite the fact that the coordinate time in-
terval dt and the coordinate three-dimensional metric dµ2 = gik dx

idxk

are non-degenerate inside such a region.
What is a fully degenerate space-time and does it contain any par-

ticles? According to the general covariant method, which isn’t related
to any specific frame of reference, in such a case we have absolute zero
and the very statement of the problem is nonsense. We therefore called
a fully degenerate space-time or any fully degenerate region of the reg-
ular, non-degenerate space-time zero-space. But the method of physical
observable quantities, linked to a real frame of reference and its prop-
erties, allows an observer to “look” inside a zero-space so that we see
what is going on therein. As a result we found that any zero-space con-
tained an entire world with its own coordinates, trajectories and parti-
cles (zero-particles). On the other hand, due to the geometric structure
of the four-dimensional space-time a regular observer on the Earth sees
an entire zero-space shrunk into a single point where the observable
time stops. But this fact doesn’t mean that the only way to enter
the zero-space from our world is through a single special point. Quite
the contrary, the entrance is permitted at any point. What is necessary
is to create the physical condition of degeneration in the local space of
the entering object. This condition means a special combination of the
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gravitational potential w, of the linear velocity of the space rotation vi,
and of the penetrating object’s linear velocity ui, which finally takes the
form w+ viu

i = c2. In a particular case, in the absence of the rotation
of the object’s local space or if this object rests, the degeneration con-
dition meets the condition of gravitational collapse w= c2: the entering
a zero-space is possible also through the state of gravitational collapse.

Because the interval of observable time and the observable spatial
interval in a zero-space are observed from our world as zeroes, any
displacements of zero-particles are instantaneous from the viewpoint of
a regular observer. We call such way of interaction long-range action.
Because particles of our world can not move in instant, they cannot
carry long-range action. But if interaction between two particles of
our world is transmitted through a zero-space region (by means of the
exchange of zero-particles), long-range action becomes possible: in such
a case the observed time between the emission and the reception of a
signal becomes zero.

Further studies showed that zero-particles also bear a mass and fre-
quency, but to see them we must enter the zero-space themselves.

How do zero-particles look like from the viewpoint of an observer who
is located in our world? Can we detect zero-particles in experiments?
We have looked at this problem within de Broglie’s wave-particle con-
cept. We have found that the wave phase equation (eikonal equation)
of zero-particles is a standing wave equation. In other words, from our
point of view zero-particles should be observed as light-like standing
waves — the waves of “stopped” light. So all zero-space is filled with
standing light waves, or, in other word, standing light holograms. It
is possible that the “stop-light experiments” done in Harvard by Lene
Hau’s group and independently by Lukin and Walsworth may be an
experimental “foreword” to discovery of zero-particles.

In up-to-date science the one and only type of particles is known
for which the relationship between the energy and the momentum is
not true. These are virtual particles. According to the contemporary
views based on experimental data, virtual particles carry interaction
between any two observable particles (either mass-bearing or light-like
ones). This fact allows unambiguous interpretation of zero-particles and
zero-space: a) zero-particles are virtual particles that carry interaction
between any regular particles; b) zero-space is a space-time region in-
habited by virtual particles, and, at the same time, this is the membrane
between our world and the mirror world.

Gravitational collapse is also allowed in a zero-space. As long as
the gravitational potential w grows, we “descend” into the funnel of the
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zero-space deeper and deeper until w finally becomes equal to c2 and
we shall find ourselves in a gravitational collapsar. From the viewpoint
of a hypothetical observer whose location is a zero-space, the surface
of a gravitational collapsar in the zero-space shrinks into a single point
gik dx

idxk =0. This is the matter of degenerate gravitational collapsars
which, contrary to the regular gravitational collapsars, are located in
a zero-space.

There is another interesting fact. A zero-space can only exist in the
presence of the space rotation under the condition w + viu

i = c2. In
the absence of the rotation, the zero-space always collapses: in such a
case the gravitational collapsar expands to occupy the whole zero-space.
If both gravitational field and space rotation are absent, the entering
into the space-time membrane becomes impossible and any connexion
between our world and the mirror world is lost.

In general, such a purely geometric approach allowed us to see the
fact that all properties of the particles which inhabit the substantional
world, the light-like world, and the zero-world are a sequel of the geo-
metrical structure of those regions of the space-time.

All of the aforementioned results have been obtained exclusively
thanks to Zelmanov’s method of physically observable quantities (chro-
nometric invariants). The regular generally covariant method has been,
and will be, of no use here.

As a result, we can see that not all physical effects in the General
Theory of Relativity are yet known in contemporary science. Further
developments in experimental physics and observational astronomy will
discover new phenomena, related, in particular, to the acceleration, ro-
tation, deformation, and curvature of the local (laboratory) space of
reference considered here.



Epilogue

In Far Rainbow, written by Arcady and Boris Strugatsky over 40
years ago a character recalls that. . .

“. . . Being a schoolboy he was surprised by the problem: move
things across vast spaces in no time. The goal was set to contradict
any existing views of absolute space, space-time, kappa-space. . .
At that time they called it “punch of Riemannian fold”. Later
it would be dubbed “hyper-infiltration”, “sigma-infiltration”, or
“zero-contraction”. At length it was named zero-transportation
or “zero-T” for short. This produced “zero-T-equipment”, “zero-
T-problems”, “zero-T-tester”, “zero-T-physicist”.
— What do you do?
— I’m a zero-physicist.
A look full of surprise and admiration.
— Excuse me, could you explain what zero-physics is? I don’t
understand a bit of it.
— Well. . . Neither I do”.

This passage might be a good afterword to our study. In the early 1960’s
words like “zero-space” or “zero-transportation” sounded science-fiction
or at least something to be brought to (real) life generations from now.

But science is progressing faster then we think. The results obtained
in this book suggest that the variety of existing particles, along with the
types of their interactions, is not limited to those known to contempo-
rary physics. We should expect that further advancements in experi-
mental technique will discover zero-particles, which inhabit degenerate
space-time (zero-space) and can be observed as waves of “stopped light”
(standing light waves). From the viewpoint of a regular observer, zero-
particles move in instant (despite they move in zero-space at the velocity
of light), thus they can realize zero-transportation.

Here, we think it’s a mistake to believe or take for granted that most
Laws of Nature have already been discovered by contemporary science.
What seems more likely is that we are just at the very beginning of
a long, long road to the Unknown World.



Appendix A Notations of tensor algebra

and analysis

Ordinary differential of a vector:

dAα =
∂Aα

∂xσ
dxσ.

Absolute differential of a contravariant vector:

DAα = ∇β Aαdxβ = dAα + ΓαβµA
µdxβ .

Absolute differential of a covariant vector:

DAα = ∇β Aαdxβ = dAα − ΓµαβAµdx
β .

Absolute derivative of a contravariant vector:

∇βAα =
DAα

dxβ
=
∂Aα

∂xβ
+ ΓαβµA

µ.

Absolute derivative of a covariant vector:

∇βAα =
DAα
dxβ

=
∂Aα
∂xβ

− ΓµαβAµ .

Absolute derivative of a 2nd rank contravariant tensor:

∇β F σα =
∂F σα

∂xβ
+ ΓαβµF

σµ + ΓσβµF
αµ.

Absolute derivative of a 2nd rank covariant tensor:

∇β Fσα =
∂Fσα
∂xβ

− ΓµαβFσµ − ΓµσβFαµ .

Absolute divergence of a vector:

∇αAα =
∂Aα

∂xα
+ ΓαασA

σ.

Chr.inv.-divergence of a chr.inv.-vector:

∗∇i qi =
∗∂qi

∂xi
+ qi

∗∂ ln
√
h

∂xi
=

∗∂qi

∂xi
+ qi∆j

ji .
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Physical chr.inv.-divergence:

∗∇̃i qi = ∗∇i qi − 1
c2
Fi q

i.

D’Alembert’s general covariant operator:

¤ = gαβ ∇α∇β .
Laplace’s ordinary operator:

∆ = − gik∇i∇k .
Chr.inv.-Laplace operator:

∗∆ = hik ∗∇i ∗∇k .
Chr.inv.-derivative with respect to the time coordinate and that with
respect to the spatial coordinates:

∗∂
∂t

=
1√
g00

∂

∂t
.

∗∂
∂xi

=
∂

∂xi
+

1
c2
vi
∗∂
∂t
.

The square of the physically observable velocity:

v2 = vivi = hik vivk.

The linear velocity of the space rotation:

vi = − c g0i√
g00

, vi = − cg0i√g00 , vi = hik v
k.

The square of vi. This is the proof: because of gασgσβ = gβα, then under
α=β=0 we have g0σgσ0 = δ00 =1, hence v2 = vkv

k = c2(1−g00 g00), i.e.:

v2 = hikv
ivk.

The determinants of the metric tensors gαβ and hαβ are connected as:
√
− g =

√
h

√
g00 .

Derivative with respect to the physically observable time:

d

dτ
=

∗∂
∂t

+ vk
∗∂
∂xk

.

The 1st derivative with respect to the space-time interval:

d

ds
=

1

c
√

1− v2

c2

d

dτ
.
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The 2nd derivative with respect to the space-time interval:

d2

ds2
=

1
c2−v2

d2

dτ2
+

1

(c2−v2)2

(
Dikvivk +vi

dvi

dτ
+

1
2

∗∂hik
∂xm

vivkvm
)
d

dτ
.

The chr.inv.-metric tensor:

hik = − gik +
1
c2
vivk , hik = − gik, hki = δki .

Zelmanov’s relations between the Christoffel regular symbols and the
chr.inv.-characteristics of the space of reference:

Di
k +A·ik· =

c√
g00

(
Γi0k −

g0kΓi00
g00

)
,

giαgkβΓmαβ = hiqhks∆m
qs , F k = − c2 Γk00

g00
.

Zelmanov’s 1st identity and 2nd identity:

∗∂Aik
∂t

+
1
2

(∗∂Fk
∂xi

−
∗∂Fi
∂xk

)
= 0 ,

∗∂Akm
∂xi

+
∗∂Ami
∂xk

+
∗∂Aik
∂xm

+
1
2

(
FiAkm + FkAmi + FmAik

)
= 0 .

Derivative from v2 with respect to the physically observable time:

d

dτ

(
v2

)
=

d

dτ

(
hikvivk

)
= 2Dikvivk +

∗∂hik
∂xm

vivkvm + 2vk
dvk

dτ
.

The completely antisymmetric chr.inv.-tensor:

εikm =
√
g00E

0ikm =
e0ikm√

h
, εikm =

E0ikm√
g00

= e0ikm
√
h .
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Exact Solution for a Gravitational Wave Detector — by Dmitri
Rabounski and Larissa Borissova — The experimental statement on gravi-
tational waves proceeds from the equation for deviating geodesic lines and
the equation for deviating non-geodesics. Weber’s result was not based upon
an exact solution to the equations, but on an approximate analysis of what
could be expected: he expected that a plane weak wave of the space met-
ric may displace two resting particles with respect to each other. In this
work, exact solutions are presented for the deviation equation of both free
and spring-connected particles. The solutions show that a gravitational wave
may displace particles in a two-particle system only if they are in motion
with respect to each other or the local space (there is no effect if they are at
rest). Thus, gravitational waves produce a parametric effect on a two-particle
system. According to the solutions, an altered detector construction can be
proposed such that it might interact with gravitational waves: 1) a horizon-
tally suspended cylindrical pig, whose butt-ends have basic relative oscilla-
tions induced by a laboratory source; 2) a free-mass detector where suspended
mirrors have laboratory induced basic oscillations relative to each other.
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