9. $F\left(x, y(x), y\left(\sqrt{a^{2}-x^{2}}\right)\right)=0, \quad 0 \leq x \leq a$.

On substituting $\sqrt{a^{2}-x^{2}}$ for x, we obtain

$$
F\left(\sqrt{a^{2}-x^{2}}, y\left(\sqrt{a^{2}-x^{2}}\right), y(x)\right)=0 .
$$

On eliminating $y\left(\sqrt{a^{2}-x^{2}}\right)$ from this equation and the original one, we arrive at an ordinary algebraic (or transcendental) equation of the form $\Psi(x, y(x))=0$.

In other words, the solution of the original functional equation, $y=y(x)$, is determined parametrically by the system of two algebraic (transcendental) equations

$$
F(x, y, t)=0, \quad F\left(\sqrt{a^{2}-x^{2}}, t, y\right)=0
$$

where t is the parameter.

Reference

Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations: Exact Solutions (Supplement. Some Functional Equations) [in Russian], Faktorial, Moscow, 1998.

