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Examples of very unstable linear partial functional differential equations

R. S. Ismagilov, N. A. Rautian, V. V. Vlasov

Abstract

We consider the examples of partial functional differential equations with delay

in the Laplacian. First of these equations is linear parabolic equation, the second

one is linear hyperbolic equation, third equation is perturbed hyperbolic equation

with delay. We show that there are the sequence of eigenvalues in both cases with

real parts tends to plus infinity.

1. Introduction

Nowdays there exists many works devoted to the researching and comparison of dif-

ferent models of diffusions and heat conductions in media with memory ([1], [8]). Most of

these models use Maxwell-Cattaneo hyperbolic regularization of heat equation (Maxwell-

Cattaneo equation)
∂T (x, t)

∂t
+ τ

∂T 2(x, t)

∂t2
= λ ·∆T (x, t). (1)

The left part of this equation is the first order Taylor expansion of the so called time

delayed heat conduction equation

∂T (x, t + τ)

∂t
= λ ·∆T (x, t). (2)

where τ > 0 corresponds to the time delay between cause and effect. The fact that

time delayed heat conduction equation is more reasonable model was first noticed by

Maxwell [9]. There was many investigations and numerical examples for a long time

period showed that the Maxwell-Cattaneo equation (1) is a good approximation of the

equation (2). But in the last decade of the twenty century and in the first decade of present

century investigations in the field of non-stationary heat transfer processes became really

widespread. The reason for it is a development of technologies. There were many new

models of heat conductivity, among which the ballistic-diffusive heat conduction model

[8], model of hyperbolic self-consistent problem of heat transfer in rapid solidification of
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supercooled liquid, model of heat propagation dynamics in thin silicon layers etc. But all

these models based on Maxwell-Cattaneo equation.

Our main purpose is to demonstrate that there exists qualitative difference between

spectra of the time delayed equations and its hyperbolic regularizations and correspond-

ing equations without delay. Namely, we will present the examples of the partial delay

equations which spectra have the sequence of eigenvalues λn such that Reλn → +∞. We

will call such equations unstable. In turn the spectra of the symbols of hyperbolic and

parabolic equation lies in the left part {λ : Reλ < ω, ω ∈ R+} of complex plane, thus hy-

perbolic and parabolic equations are stable in the sense defined above. Thus we will show

that the spectra of the symbols of hyperbolic and parabolic equations seriously different

from the spectra of partial functional differential equations.

We show motivated by the simple looking linear parabolic and hyperbolic equations

with delay in Laplacian operator that initial value problems for these equations are awfully

unstable. The heat equation with delay was considered earlier in [1]. It was shown in [1]

that initial problem for this equation can be solved in the carefully chosen Frechet space.

Moreover it was shown in [1] that there exists a sequence of eigenvalues λn = xn+iyn such

that xn → +0 (n → +∞). Thus the authors obtained the lack of exponential dichotomy.

They note that heat equation with delay arises when we consider random movement of a

biological species and when we assume spatial movement of the species is delayed.

2. Examples

Example 1. We consider the heat equation with delay of the following form:

ut = uxx(t− h, x), t > 0, 0 < x < π, h > 0 (3)

with Dirihlet boundary conditions

u|x=0 = u|x=π = 0. (4)

The main purpose of our considerations is to study the spectrum distribution of the

symbol of equation (3). In oder to do this we will look for the solution of the equation

(3) in the form

u(t, x) =
∞
∑

n=1

Tn(t) sinnx,
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using the Fourier method. Then we obtain infinite number of ordinary delay equations

T ′

n(t) = −n2Tn(t− h), n ∈ N, (5)

from the equation (3).The following equations

λ+ n2e−λh = 0, n ∈ N, λ = x+ iy, (6)

are the symbols (characteristic quasipolinomials) of the equations (5). Let us put h = 1

for the symplicity.

Example 2. Now let us consider wave equation with delay

utt = uxx(t− h, x), t > 0, 0 < x < π, h > 0, (7)

with Dirihlet boundary conditions

u|x=0 = u|x=π = 0. (8)

We will look for the solution of equation (7) in the following form

u(t, x) =
∞
∑

n=1

Tn(t) sinnx,

using the Fourier method. Thus we obtain the infinite number of ordinary delay equations

T ′′

n (t) = −n2Tn(t− h), n ∈ N. (9)

The following quasipolinomials

λ2 + n2e−λh = 0, n ∈ N, λ = x+ iy (10)

are the symbols of the equations (10). Let us put h = 1 for the symplicity.

Example 3. Now let us consider perturbed wave equation with delay

utt = uxx(t, x) + uxx(t− h, x), t > 0, 0 < x < π, h > 0, (11)

with Dirihlet boundary conditions

u|x=0 = u|x=π = 0. (12)
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We will look for the solution of equation (7) in the following form

u(t, x) =
∞
∑

n=1

Tn(t) sinnx,

using the Fourier method. Thus we obtain the infinite number of ordinary delay equations

T ′′

n (t) = −n2 (Tn(t) + Tn(t− h)) , n ∈ N. (13)

The following quasipolinomials

λ2 + n2(1 + e−λh) = 0, n ∈ N, λ = x+ iy (14)

are the symbols of the equations (10). Let us put h = 1 for the symplicity.

2. Statements of the results and Proofs.

First we shall prove that the equations (6), (10), (14) are very unstable. Equations

(6), (10) can be written in the following form

λ + b · lnλ− w = 0, (15)

where w = 2 lnn+ iπ and constant b = 1 for the equation (6) and b = 2 for the equation

(10). Here we consider such brunch of that lnλ = ln |λ|+ i · arg λ, arg λ ∈ (−π, π).

Lemma 1. Let us consider w ∈ C, Rew > 0, r = |w|. If r is sufficiently large then there

exists the unique solution λ = λ(w) of the equations (6), (10) in the circle |λ−w| < r/2.

Proof. Let us consider the equation (15) and equation λ − w = 0. We have

the inequality |λ| 6 3/2 · r on the circle |λ − w| = r/2 and hence we obtain inequality

|b lnλ| 6 b ln r + C where constant C depends on b. So we have |b lnλ| < |λ− w| on the

circle |λ−w| = r/2 and due to Rouche theorem the equation (6) and (10) has the unique

solution λ = λ(w) in the circle |λ− w| < r/2.

Corollary 1. We have Reλ → +∞ when Rew → +∞.

Due to corollary we obtain that equations (6), (10) are very unstable in the following

sense: there exists such solution λn = xn + iyn of the equation (6) or (10) that xn → +∞
(n → +∞).
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Remark 1. If we substitute n2 by nθ (θ > 0) in the equations (6), (10) the results of

Lemma 1 and Corollary 1 will be valid. Due to this fact the equations

ut = ∆u(t− h, x),

utt = ∆u(t− h, x), x ∈ G ⊂ R
N , t > 0, h > 0

with Dirithlet boundary conditions

u|∂G = 0,

where G is bounded domain with smooth boundary are also unstable.

Moreover if we substitute Laplacian in these equations by more general elliptic selfa-

joint operator of oder 2m in bounded domain with smooth boundary the corresponding

equations will be also unstable.

In the following propositions 1 and 2 we present the concrete sequences of zeroes

λn = xn + iyn of the equations (6) and (10) such that xn → +∞.

Proposition 1. There is a family of solutions λn = xn + iyn of the equation (6) such

that xn ∼ lnn2 − ln lnn2, for n → +∞.

Proof. We can write (6) like the following system extracting real and imaginary

parts






ex (x cos y − y sin y) = −n2,

y cos y + x sin y = 0.
(16)

If y = 0 then (16) has unique sulution (0, 0) for n = 0. Let us put y 6= 0 then we have

x = −y cos y

sin y

and

e−
y cos y
sin y

y

sin y
= n2.

Note that x = g(y) = −y cos y
sin y

→ +∞ for y → π − 0. If we put y = π − δ, δ > 0 the

equation (3) has the following form

e
(π−δ) cos δ

sin δ
(π − δ)

sin δ
= n2,

that equivalent to the equation

e(
π
δ
−1)
(π

δ
− 1
)

= n2
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as δ → 0. Denote by θ =
π

δ
− 1 then (4) has the form

θeθ = n2.

Using the results from the monograph of M.V. Fedoryuk ([2], pp. 51–52 in Russian) we

obtain the following asymptotic representation for θ:

θ = lnn2 − ln lnn2 +O

(

ln lnn2

lnn2

)

, n → +∞.

Thus we have
π

δ
= lnn2 − ln lnn2 +O

(

ln lnn2

lnn2

)

, n → +∞

and

δ ∼ sin δ ∼ π

lnn2 − ln lnn2
, n → +∞.

Then

yn ∼ π

(

1− 1

lnn2 − ln lnn2

)

, n → +∞

and

xn = −yn
cos yn
sin yn

∼ −π

(

1− 1

lnn2 − ln lnn2

)

cosπ
(

1− 1
lnn2−ln lnn2

)

sin π
(

1− 1
lnn2−ln lnn2

) ∼

∼ lnn2 − ln lnn2 → +∞, n → +∞.

Proposition 2. There exists a family of solutions λn = xn + iyn of the equation (10)

such that xn ∼ 2(ln(n/2)− ln ln(n/2)), for n → +∞.

Proof. Let us extract the real and imaginary parts of the equation (10):







x2 − y2 + n2e−x cos y = 0

2xy − n2e−x sin y = 0
(17)

We deduce from (17) the following system











ctgy =
y2 − x2

2xy
=

1

2

(

y

x
− x

y

)

,

(

x2 + y2
)

ex = n2.

(18)

We put t =
x

y
. Then we have for t the following equation

2ctgy =
1

t
− t,
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hence

t2 + 2ctgy · t− 1 = 0,

t = −ctgy ±
√

ctg2y + 1 =
− cos y ± 1

sin y
.

Thus we have

x = y

(− cos y ± 1

sin y

)

.

Denote by y = π − δ and consider small enough δ > 0. Then we obtain

x = (π − δ)
1 + cos δ

sin δ
=

2π

δ
− 2− πδ

6
+

δ2

6
+ (δ2), δ → +0. (19)

Then we obtain from the second equation of the system (18) the following equation

(π − δ)2

[

1 +

(

1− cos(π − δ)

sin δ

)2
]

e(π−δ)( 1−cos(π−δ)
sin δ ) ≈

(

4π2

δ2
− 8π

δ
+ 4

)

e
2π
δ
−2 = n2,

δ → +0. (20)

Denote θ =
2π

δ
, θ → +∞, (δ → +0) then the we can write the equation (20) in the

following form

(θ − 2)2 eθ−2 = n2

Denote η = θ − 2, then we obtain the following equation

η2eη = n2.

Using the results from the monograph of M.V. Fedoryuk ([1], pp. 51–52 in Russian) we

have

η = 2
(

ln
n

2
− ln ln

n

2

)

+O

(

ln ln n
2

ln n
2

)

, n → +∞

Hence we obtain the following asyptotic representations:

2π

δ
= θ = 2

(

ln
n

2
− ln ln

n

2

)

+O

(

ln ln n
2

ln n
2

)

+ 2, δ → 0+, n → +∞.

δ =
2π

(

ln
n

2
− ln ln

n

2

)

+ 2 +O

(

ln ln n
2

ln n
2

) , n → +∞,

Thus we obtain the following asymptotic representations from the representation (19) :

xn = 2
(

ln
n

2
− ln ln

n

2

)

+O

(

ln ln n
2

ln n
2

)

, n → +∞.

Consider the equations (14) for λ2 + n2
(

1 + e−λ
)

= 0, n ∈ N.
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Lemma 2. There exists a sequence λn = xn + iyn of the solutions of the equations (14)

such that Reλn = xn → +∞ for n → +∞. Moreover

xn = lnn− ln lnn+O

(

ln lnn

lnn

)

, n → ∞.

Proof. We need the equation xex = t where t > 0, x > 0. This equation has a

unique solution x = Φ(t). Hence ex =
t

Φ(t)
and Φ(t) = ln t− ln ln t + O

(

ln ln t

ln t

)

≃ ln t

(t → ∞). We put λ = x+ iy. Then the equation (11) may be written like a system







x2 − y2 + n2(1 + e−x cos y) = 0,

2xy − n2e−x sin y = 0.
(21)

The second equation in (21) we shall rewrite in the following way:

xex = t, t =
n2 sin y

2y

Hence

x = Φ(t), ex =
t

Φ(t)
.

Substituting it into the first equation of the system (21) we obtain the equation for

function Φ(t): Φ2(t)− y2 + n2 + n2Φ(t) cos y/t = 0. Solving this equation we obtain

Φ(t) = Φ

(

n2 sin y

2y

)

= −y cos y −
√

y2 − n2sin2y

sin y

Let us denote

Un(y) = Φ

(

n2 sin y

2y

)

+
y cos y −

√

y2 − n2sin2y

sin y
.

Consider the integers n such that cosn > α > 0 and cos(n + 1) < −1/4. It is possible to

show that There is infinite number of such integers. For these numbers we have sinn > α,

sin(n + 1) > α where α > 0. Consider function Un(y) for y ∈ [n, n+ 1]. We will show

that numbers U(n) and U(n+1) have different signs. We have U(n) = Φ

(

n sinn

2

)

> 0.

From the other hand we have

Un(n + 1) < Φ

(

(n+ 1)2 sin(n + 1)

2n+ 2

)

+
(n + 1) cos(n+ 1)

sin(n + 1)
< c1 lnn− c2n, c1, c2 > 0.

Here we used the inequality Φ(t) < t and also the inequalities cos(n + 1) < −1/4,

sin(n + 1) > 0. So we obtain that Un(n + 1) < 0 if n is sufficiently large. Hence, the
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equation Un(y) = 0 has the solution yn ∈ (n, n + 1). Using the inequality sin yn > α we

obtain that xn = Φ

(

n2 sin yn
2yn

)

→ +∞ and xn = lnn− ln lnn +O

(

ln lnn

lnn

)

(n → ∞).

Remark. In comparison with hyperbolic case (equation (14)), parabolic equation with

delay

ut = uxx(t, x) + uxx(t− h, x), 0 < x < π, t > 0, h > 0 (22)

is stable in the following sence: the semiplate {λ : Reλ > ω} is free for any ω > 0 of

eigenvalues λn. That is for arbitrary zeroes λn = xn+iyn of characteristic quasipolinomials

λ+ n2(1 + e−λh) = 0, n ∈ N

the real parts xn 6 ω.

It is relevant to note that equation (22) can be written in abstract form

du

dt
+ A2u(t) + A2u(t− h) = 0 h > 0, (23)

where A2y = −y′′(x), y(0) = y(π) = 0.

The equation (23) is the simplest case of the equations which were considered in

many articles. We restrict ourselves and cite only articles [3]-[5]. The abstract parabolic

functional differential equations with unbounded operator coefficients were considered in

the articles [3]-[4]. The main part of these equations is the abstract parabolic equation

du

dt
+ A2u(t) = 0.

where A2 is selfadjoint positive operator, having compact inverse. The correct solvability

of functional differential equations mentioned above was obtained in weighted Sobolev

spaces W 1
2,γ (R+, A

2). Moreover it was shown in autonomous case in [3] (see lemma 2,

proposition 3 and lemma 3 for details) that symbol of this equation (analogue of charac-

teristic quasipolinomial) is invertible in the semiplate {λ : Reλ > γ}. So in this situation

there are no sequences of eigenvalues λn = xn + iyn such that xn → +∞.

It is relevant to note that abstract functional differential equations having main part

is abstract hyperbolic equation
d2u

dt2
+ A2u(t) = 0

was considered in [6].
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2. Concluding remarks.

The simplest equation (3), (7), (11) considered in this article can be written in the

following abstract form:
du

dt
+ A2u(t− h) = 0, (24)

d2u

dt2
+ A2u(t− h) = 0, (25)

d2u

dt2
+ A2u(t) + A2u(t− h) = 0. (26)

where A2 is selfadjoint positive operator in the Hilbert spaceH ≡ L2 (0, π) having compact

inverse, A2y = −y′′(x), y(0) = y(π) = 0. The examples 1-3 show that classical initial

problems for these equations can’t be solved in weighted Sobolev spaces W n
2,γ (R+, A

n).

The understandable reason of this fact is the Laplace transforms of the functions from

the space W n
2,γ (R+, A

n) is analytic in the semiplate {λ : Reλ > γ}.
Let us consider the spectrum of the equation (1) in one dimensional case under the

following assumptions

λ = 1, τ = 1, ∆T = Txx(t, x), T (t, 0) = T (t, π) = 0.

Using the Fourier method

T (t, x) =

∞
∑

n=1

Tn(t) sinnx,

we obtain the following ordinary differential equations

T ′′

n (t) + T ′

n(t) = −n2Tn(t), n ∈ N.

The characteristic polynomials have the form

λ2 + λ+ n2 = 0, n ∈ N

Hence we have

λ±

n =
−1±

√
1− 4n2

2
= −1

2
± in

(

1− 1

8n2
+ o

(

1

n3

))

and the spectra of this problem is

σ =
∞
⋃

n=1

λ±
n.
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At the same time the spectra of the problem (6), (7) which coincides with the spectra of

the equation (2) for λ = 1, τ = 1 and it can be represented in the following way

Σ =
∞
⋃

n=1

⋃

k∈Z

λnk (27)

where λnk are the zeroes of quasipolinomials (6) having the following asymptotic repre-

sentations (for fixed n)

λnk
± = ln(n2)− ln

∣

∣

∣

π

2
+ 2πk

∣

∣

∣
+

π

2πk
+ o

(

1

k

)

± i

[

π

2
+ 2πk +O

(

ln k

k

)]

. (28)

(see, for example monograph [7], chapter 4).

Formulas (27) and (28) shows that the structure of the spectra of the equation (3) and

(4) are seriously differs. Example 1 wchich was considered in this paper confirm it. So it

is naive to expect that properties of solutions of the equation (3) and (4) will be similar.
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