|
|
Alexei Ivanovich ZHUROV
Ph.D., Associate Professor |
Born: 9 March 1967, Moscow Region, Russia
Education:
- 1984–1990, Faculty of Airphysics and Space Research,
Moscow Institute of Physics and Technology,
Dolgoprudny, Russia; graduated with honours;
- 1990–1994, Moscow Institute of Physics and Technology, Dolgoprudny, Russia;
Ph.D. course.
Degrees:
Current Professional Status:
- Senior Researcher, Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia;
- Associate Professor,
Moscow Institute of Physics and Technology, Dolgoprudny, Russia;
- Research Officer,
Cardiff University, Cardiff, UK.
Membership:
Awards:
- 1997–2000, Russian State Scientific Stipend to Young Scientists;
- 2000–2003, Russian State Scientific Stipend to Outstanding Scientists.
Areas of Expertise:
- nonlinear differential equations, exact solutions,
- theory of heat and mass transfer and chemical hydrodynamics,
- soft-tissue and bone biomechanics,
- geometric morphometrics,
- dynamical systems,
- computer algebra.
Author:
- 3 books,
- over 70 research articles.
Books:
- Chernoutsan, A.I., Egorov, A.V., Manzhirov, A.V., Polyanin, A.D., Polyanin, V.D.,
Popov, V.A., Putyatin, B.V., Repina, Yu.V., Safrai, V.M., Zhurov, A.I. (2010).
A Concise Handbook of Mathematics, Physics, and Engineering Sciences.
Chapman & Hall/CRC Press, Boca Raton–London (ISBN: 9781439806395).
- Polyanin, A.D., Zaitsev, V.F., and Zhurov, A.I. (2005).
Solution methods for nonlinear equations of mathematical physics and mechanics (in Russian).
Moscow: Fizmatlit.
- Polyanin, A.D., Vyazmin, A.V., Zhurov, A.I., and Kazenin, D.A. (1998).
Handbook of exact solutions for heat and mass transfer equations (in Russian).
Moscow: Faktorial.
Selected Articles:
- Polyanin, A.D., Zhurov, A.I. (2012).
On RF-pairs, Bäcklund transformations and linearization of nonlinear equations.
Commun Nonlinear Sci Numer Simulat, 12(2), 536-544,
doi:10.1016/j.cnsns.2011.03.03.
- Toma, A.M., Zhurov, A.I., Playle, R., Marshall, D., Rosin, P.L., Richmond, S. (2011).
The assessment of facial variation in 4747 British school children.
The European Journal of Orthodontics, doi:10.1093/ejo/cjr106.
- Polyanin, A.D., Zhurov, A.I. (2011).
On order reduction of non-linear equations of mechanics and mathematical
physics, new integrable equations and exact solutions.
Int J Non-Linear Mechanics, doi:10.1016/j.ijnonlinmec.2011.04.032.
- Djordjevic, J., Toma, A.M., Zhurov, A.I., Richmond, S. (2011).
Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning.
The European Journal of Orthodontics, doi:10.1093/ejo/cjr091.
- Djordjevic, J., Pirttiniemi, P., Harila, V., Heikkinen, T., Toma, A.M., Zhurov, A.I., Richmond, S. (2011).
Three-dimensional longitudinal assessment of facial symmetry in adolescents.
The European Journal of Orthodontics, doi:10.1093/ejo/cjr006.
- Primozic, J., Richmond, S., Kau, C.H., Zhurov, A.I., Ovsenik, M. (2011).
Three-dimensional evaluation of early crossbite correction: a longitudinal study.
The European Journal of Orthodontics, doi:10.1093/ejo/cjq198.
- Zhurov, A., Richmond, S., Kau, C.H., Toma, A. (2010).
Averaging Facial Images.
In: Kau, C.H., Richmond, S. (Eds.) Three-Dimensional Imaging for Orthodontics and Maxillofacial Surgery (pp. 126-144).
John Wiley & Sons (ISBN: 1-4051-6240-6).
- Richmond, S., Zhurov, A., Toma, A., Kau, C.H., Hartles, F. (2010). Visualizing Facial Growth.
In: Kau, C.H., Richmond, S. (Eds.) Three-Dimensional Imaging for Orthodontics and Maxillofacial Surgery (pp. 205-225).
John Wiley & Sons (ISBN: 1-4051-6240-6).
- Kau, C.H., Richmond, S., Zhurov, A., Ovsenik, M., Tawfik, W., Borbely, P., English, J.D. (2010).
Use of 3-dimensional surface acquisition to study facial morphology in 5 populations.
AJO-DO, 137(4), S56.e1-S56.e9.
[pdf]
- Richmond, S., Toma, A.M., Zhurov, A.I. (2009).
Nouvelles perspectives sur la croissance cranio-faciale.
L'Orthodontie Française, 80(4), 359-369.
- Primozic, J., Ovsenik, M., Richmond, S., Kau, C.H., Zhurov, A. (2009).
Early crossbite correction: a three-dimensional evaluation.
European Journal of Orthodontics, 31, 352-356.
[pdf]
- Toma, A.M., Zhurov, A., Playle, R., Ong, E., Richmond, S. (2009).
Reproducibility of facial soft tissue landmarks on 3D laser-scanned facial images.
Orthod Craniofac Res, 12, 33-42.
[pdf]
- Bozic, M., Kau, C.H., Richmond ,S., Hren, N., Zhurov, A., Udovic, M., Melink, S., Ovsenik, M. (2009).
Facial morphology of Slovenian and Welsh white populations using 3-dimensional imaging.
Angle Orthodontist, 79(4), 640-645.
[pdf].
- Polyanin, A.D., Zhurov, A.I. (2009).
The
von Mises transformation: order reduction and construction of
Bäcklund transformations and new integrable equations,
Website EqWorld — The World of Mathematical Equations,
(see also arXiv:0907.0586v2 [math-ph]).
- Polyanin, A.D., Zhurov, A.I. (2009).
The von Mises transformation: order reduction and construction of
Bäcklund transformations and new integrable equations,
arXiv:0907.3170v1 [nlin.SI].
- Zhurov A.I., Holt, C.A., Evans, S.L., Middleton, J. (2008).
A nonlinear compressible transversely-isotropic viscohyperelastic constitutive model of the periodontal ligament.
Proceedings of IMECE08, October 31-November 6, 2008, Boston, USA, 13 p.
- Keating, A.P., Knox, J., Bibb, R., Zhurov, A.I. (2008).
A comparison of plaster, digital and reconstructed study model accuracy.
Journal of Orthodontics, 35(3), 191-201. ISSN: 1465-3125.
[pdf].
- Toma, A.M., Zhurov, A., Playle, R., Richmond, S. (2008).
A three-dimensional look for facial differences between males and females in a British-Caucasian sample aged 15½ years old.
Orthodontics and Craniofacial Research, 11(3), 180-185. ISSN: 1601-6335.
[pdf].
- Polyanin, A.D., Schiesser, W.E., Zhurov, A.I. (2008).
Partial differential equation. Scholarpedia. 3(10):4605
(http://www.scholarpedia.org/article/Partial_differential_equation).
- Polyanin, A.D., Zhurov, A.I. (2008).
Electronic publications and sientific resources on the Internet.
Priroda [Nature] (in Russian), 2, 5-13. ISSN: 0032-874X.
[pdf; extended version].
- Polyanin, A.D., Zhurov, A.I., Vyazmina, E.A. (2008).
Exact solutions to nonlinear equations and systems of equations of general form in mathematical physics.
AIP Conference Proceedings, 1067, 64-86. ISSN 0094-243X.
- Polyanin, A.D., Zhurov, A.I. (2008).
Exact solutions to some classes of nonlinear integral, integro-functional, and integro-differential equations.
Doklady Mathematics, 419(1), 30-34.
- Zhurov A.I., Limbert G., Aeschlimann D.P., Middleton J. (2007).
A constitutive model for the periodontal ligament as a compressible transversely isotropic visco-hyperelastic tissue.
Computer Methods in Biomechanics and Biomedical Engineering, 10(3), 223-235.
- Kazenin, D.A., Karlov, S.P., Pokusaev, B.G., Zhurov, A.I., Aeschlimann, D.P. (2007).
The calculation of geometric and operating parameters of a flow microbioreactor for cultivation of stem cells.
Vestnik SamGU [Bulletin of Samara State University] (in Russian), 54(4), 169-175.
[pdf, English abstract available].
- Kau, C.H., Zhurov, A., Richmond, S., Knox, J., Sugar, S., Bibb, R., and Hartles, F. (2006).
The 3-dimensional construction of the average 11-year-old child face: a clinical evaluation and application.
Journal of Oral and Maxillofacial Surgery, 64, 1086-1092.
[pdf].
- Kau, C.H., Zhurov, A.I., and Richmond, S. (2006).
3D soft tissue imaging and its clinical application in orthodontics - Book Chapter.
In A Glimpse into the future: Digital radiography and three-dimensional
imaging: Craniofacial growth series. Centre for Human Growth and Development, The University of Michigan, Ann Arbor.
- Kau, C.H., Cronin, A., Durning, P., Zhurov, A., and Richmond, S. (2006).
A new method for the 3D measurement of postoperative swelling following
orthognathic surgery.
Orthodontics and Craniofacial Research, 9(1), 31-37.
[pdf].
- Kau, C.H., Richmond, S., Zhurov, A.I., Savio, C., and Mallorie, C. (2006).
Facial templates: a new perspective in three dimensions.
Orthodontics and Craniofacial Research, 9(1), 10-17.
[pdf].
- Kau, C.H., Zhurov, A.I., Knox, J., Chestnutt, I., Playle, R.,
Hartles, F.R., and Richmond, S. (2005). Reliability of measuring
facial morphology using a 3-dimensional laser scanning system.
American Journal of Orthodontics and Dentofacial Orthopedics,
128(3), 424-430.
[pdf].
- Kau, C.H., Zhurov, A.I., Bibb, R., Hunter, M.L., and Richmond, S. (2005).
The investigation of the changing facial appearance of identical
twins employing a 3-dimensional laser device.
Orthodontics and Craniofacial Research, 8(2), 85-90.
[pdf].
- Kau, C.H., Zhurov, A.I., Hartles, F.R., Knox, J., and Richmond, S. (2005).
Natural head posture for measuring 3-dimensional facial morphology.
In J. Middleton, N.G. Shrive, and Jones, M.L.
(Eds.). Computer methods in biomechanics & biomedical
engineering-5. Cardiff: CUWCM. ISBN: 0-9549670-0-3.
- Kau, C.H., Zhurov, A.I., Hartles, F.R., Knox, J., and Richmond, S. (2005).
Measuring facial morphology in young subjects.
In J. Middleton, N.G. Shrive, and Jones, M.L.
(Eds.). Computer methods in biomechanics & biomedical
engineering-5. Cardiff: CUWCM. ISBN: 0-9549670-0-3.
- Zhurov, A.I., Kau, C.H., and Richmond, S. (2005).
Computer methods for measuring 3D facial morphology.
In J. Middleton, N.G. Shrive, and Jones, M.L.
(Eds.). Computer methods in biomechanics & biomedical
engineering-5. Cardiff: CUWCM. ISBN: 0-9549670-0-3.
- Kau, C.H., Zhurov, A.I. et al. (2004). Feasibility of measuring
three-dimensional morphology in children. Orthodontics and
Craniofacial Research, 7(4), 198-204.
[pdf].
- Orlik, J., Zhurov, A.I., and Middleton, J. (2003). On the secondary
stability of coated cementless hip replacement: parameters that affected
interface strength. Medical Engineering & Physics,
25(10), 825-831. [pdf].
- Orlik, J., Zhurov, A.I., and Middleton, J. (2002). Deriving the
macrocontact condition between cementless hip replacement and bone from
the microgeometry of the replacement coating. In J. Middleton, N.G.
Shrive, and M.L. Jones, (Eds.). Computer methods in biomechanics
& biomedical engineering-4. Cardiff: UWCM. [pdf].
- Orlik, J., Zhurov, A., and Middleton, J. (2002). Homogenised
macrocontact condition between cementless hip implant and bone. Acta
of Bioengineering and Biomechanics, 4(Suppl.1), 272-273.
- Polyanin, A.D. and Zhurov, A.I. (2002). Methods of generalized and
functional separation of variables in hydrodynamic and heat- and
mass-transfer equations. Theoretical Foundations of Chemical
Engineering, 36(3), 201-213.
- Polyanin, A.D. and Zhurov, A.I. (2002). The generalized and
functional separation of variables in mathematical physics and
mechanics. Doklady Mathematics, 65(1), 129-134.
- Polyanin, A.D. and Zhurov, A.I. (2001). Methods of generalized and
functional separation of variables in nonlinear equations of
mathematical physics. In A.D. Polyanin, Handbook of linear partial
differential equations for engineers and scientists (pp. 681-737).
New York: Chapman & Hall/CRC.
- Polyanin, A.D., Zhurov, A.I., and Vyazmin, A.V. (2000). Generalized
separation of variables in nonlinear heat and mass transfer equations.
J. Non-Equilibrium Thermodynamics, 25(3/4), 251-267.
[pdf].
- Polyanin, A.D. and Zhurov, A.I. (2000). Exact solutions of heat and
mass transfer equations. Matematica Contemporanea, 19,
105-127.
- Polyanin, A.D., Zhurov, A.I., and Vyazmin, A.V. (2000). On exact
solutions of heat- and mass-transfer equations. Theoretical
Foundations of Chemical Engineering, 34(5), 403-415.
[pdf].
- Zhurov, A.I. (1999). A porous particle in a shear flow. The
effective viscosity of a dilute suspension. In Progress in Industrial
Mathematics at ECMI 98 (pp. 231-238). Stuttgart, Leipzig: B.G.
Teubner.
- Polyanin, A.D. and Zhurov, A.I. (1998). Exact solutions to nonlinear
equations of mechanics and mathematical physics. Physics Doklady,
43(6), 381-385.
- Zhurov, A.I. (1997). Equations of the form
(A3y3 +
A2xy2 +
A1x2y +
A0x3 + a1y
+ a0x) y'x =
B3y3 +
B2xy2 +
B1x2y +
B0x3 + b1y
+ b0x. In A.D. Polyanin and V.F. Zaitsev,
Handbook on Nonlinear Ordinary Differential Equations (in
Russian, pp. 101-106). Moscow: Faktorial. [pdf].
- Sergeev, Yu.A. and Zhurov, A.I. (1997). Asymptotic theory of
two-phase gas-solids flow through a vertical tube at moderate pressure
gradient. Physica A, 236, 243-267. [pdf].
- Zhurov, A.I. (1995). Equations of the form
(A22y2 +
A12xy +
A11x2 + A2y
+ A1x) y'x =
B22y2 +
B12xy +
B11x2 + B2y
+ B1x. In A.D. Polyanin and V.F. Zaitsev,
Ordinary Differential Equations. Handbook of Exact Solutions
(pp. 65-73). Boca Raton, New York: CRC Press. [pdf].
- Zhurov, A.I., Polyanin, A.D., and Potapov, E.D. (1995). Shear flow
over a porous particle. Fluid Dynamics, 1995, 30(3),
428-434.
- Zhurov, A.I. (1995). Shear flow around a porous cylinder.
Theoretical Foundations of Chemical Engineering, 29(2),
196-199.
- Polyanin, A.D. and Zhurov, A.I. (1994). The algebraic method for
integration of differential equations of nonlinear mechanics.
Physics-Doklady, 39(7), 534-537.
[pdf English, pdf Russian].
Mailing Address:
Institute for Problems in Mechanics
Russian Academy of Sciences
101 Vernadsky Avenue, Bldg 1
119526 Moscow, Russia
E-mail: zhurov@ipmnet.ru
|
|
|