EqWorld logo

EqWorld

The World of Mathematical Equations

IPM Logo

Home Page Exact Solutions Methods Software Education About This Site Math Forums

Exact Solutions > Nonlinear Partial Differential Equations > Second-Order Elliptic Partial Differential Equations

PDF version of this page

3. Nonlinear Elliptic Equations

3.1. Nonlinear Heat Equations of the Form wxx + wyy = f(w)

  1. wxx + wyy = aw + bwn.
  2. wxx + wyy = awn + bw2n−1.
  3. wxx + wyy = aeβw.
  4. wxx + wyy = aeβw + be2βw.
  5. wxx + wyy = aw ln(βw).
  6. wxx + wyy = a sin(βw).
  7. wxx + wyy = f(w).

3.2. Heat Equations of the Form [f(x)wx]x + [g(y)wy]y = h(w)

  1. (axnwx)x + (bymwy)y = f(w).    Anisotropic heat (diffusion) equation.
  2. awxx + (beμywy)y = f(w).    Anisotropic heat (diffusion) equation.
  3. (aeβxwx)x + (beμywy)y = f(w).    Anisotropic heat (diffusion) equation.
  4. [f(x)wx]x + [g(y)wy]y = kw ln w.    Anisotropic heat (diffusion) equation.

3.3. Heat Equations of the Form [f(w)wx]x + [g(w)wy]y = h(w)

  1. wxx + [(αw + β)wy]y = 0.    Stationary Khokhlov--Zabolotskaya equation.
  2. wxx + (aeβwwy)y = 0.    Anisotropic heat (diffusion) equation.
  3. [f(w)wx]x + [g(w)wy]y = 0.    Anisotropic heat (diffusion) equation.

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2004-2017 Andrei D. Polyanin