|
EqWorld
The World of Mathematical Equations |
|
Information >
Mathematical Books >
Handbook of Integral Equations, Second Edition > Index
|
|
|
|
Handbook of Integral Equations Second Edition, Updated, Revised and Extended
Publisher: Chapman & Hall/CRC Press
Publication Date: 14 February 2008
Number of Pages: 1144
|
Index
A
- Abel equation
- — first kind, 10
- — generalized, 519, 527
- — Abel equation, generalized, first kind, 531
- — Abel equation, generalized, second kind, 141, 548
- — Abel equation, second kind, 138
- Abel problem, 520
- Abel type two-dimensional equation, 15
- absolutely continuous function, 529
- abstract Hilbert space, 873
- Airy equation, 1023
- Airy function, 1023
- — asymptotic expansions, 1023
- — definition, 1023
- — first kind, 1023
- — power series, 1023
- — second kind, 1023
- algebraic equations
- — linear, infinite system, 858, 861, 864, 868, 971
- — linear, infinite system, symmetric matrix, 850, 853
- alternating sums of powers of natural numbers, 920
- alternative, Fredholm, 637, 638, 643
- — alternative, Fredholm, symmetric equations, 643
- alternative Fourier transform, 512
- amplitude, 1039
- analysis, functional, 1055
- analytic continuation theorem, 595, 714
- application of integral equations to differential equations, 875
- approach, Carleman–Vekua, 778
- approximate methods
- — nonlinear equations, constant integration limits, 826
- — nonlinear equations, variable integration limit, 811
- approximate solution, 688, 693
- approximate values of eigenvalues, Hilbert–Schmidt kernel, 845
- approximating a kernel, 687
- approximation
- — characteristic values, 646
- — eigenfunctions, Hilbert–Schmidt operator, 868, 872
- — eigenvalues, Hilbert–Schmidt operator, 868, 872
- — kernel, 687
- — Lanczos, 798
- — method, successive, 566, 579, 632, 633, 811, 826, 876
- — solution, 854
- arbitrary functions, 111, 191, 278, 357, 406, 410, 413, 437, 444, 456
- arbitrary parameters, 408, 411, 433, 453
- arbitrary powers, 12, 139, 223, 317, 939, 977
- arccosine, 176, 344
- arccotangent, 178, 347
- arcsine, 177, 345
- arctangent, 178, 346
- argument, complicated, 227, 346, 254
- Arutyunyan equation, 198
- associated Legendre functions, 107, 271, 1031, 1032, 1033
- — first kind, 1032
- — general case, 1032
- — integer indices, real argument, 1031
- — modified, 1033
- — second kind, 1032
- asymmetric form
- — Fourier cosine transform, 514
- — Fourier sine transform, 515
- — Fourier transform, 512
- asymptotic expansions, 509, 1017, 1022–1024, 1035
- — Airy functions, 1023
- — Bessel functions, 1017
- — modified Bessel functions, 1022
- — parabolic cylinder functions, 1035
- — Tricomi confluent hypergeometric functions, 1024
- asymptotic methods, 618
- — equations with logarithmic singularity, 618
- auxiliary conditions, 843, 845, 851, 856, 862, 869, 870
- auxiliary equation, 546, 550, 551, 527
- — application, 527
- — first kind, 550
- — second kind, 551
- auxiliary integral conditions, 841–843
- auxiliary results, 784
- axioms for addition, vectors, 1065
- axioms for addition and multiplication by scalars, vectors, 1065
- axis, real, 575, 713
- — Holder condition, axis, real, Holder condition, 575
- — Sokhotski–Plemelj formulas, 713
B
- Banach space, 1062, 1065, 1067
- base, Napierian, 906
- base of Napierian logarithm, 905
- base of natural logarithm, 905, 906
- basis
- — abstract space, 844, 863
- — Euclidean space, 857, 869
- — Hilbert space, 857, 867, 869
- — Hilbert space, special, 869
- — orthonormal, 855, 856
- Bateman method, 689
- — general scheme, 689
- — special cases, 690
- Bernoulli numbers, 1008
- Bernoulli polynomials, 1052
- Bessel's formula, 1018
- Bessel equation, 1016
- — modified, 1021
- Bessel function, 88, 187, 264, 269, 353, 958, 1016
- — asymptotic expansions, 1017
- — definitions, 1016
- — first kind, 261, 297, 1016
- — integral representations, 1017
- — modified, 97, 189, 269, 355, 1021
- — modified, first kind, 266, 1021
- — modified, second kind, 266, 1021
- — orthogonality properties, 1019
- — second kind, 264, 299, 1016
- — third kind, 1020
- — zeros, 1019
- beta function, 1012, 1014
- — incomplete, 1014, 1015
- bifurcation point, nonlinear integral equations, 834, 835
- bilinear series, 640
- — iterated kernels, 642
- binomial coefficients, 909, 920, 1007
- Boas transform, 250
- boundary conditions, 887
- boundary value problem,
- — first, 895, 896
- — Hilbert, 742
- — linear, representation, 892
- — nth-order differential equations 882
- — ODEs, 881
- — ODEs, reduction to Fredholm equations, 881
- — ODEs, reduction to Volterra equations, 877
- — Riemann, 595, 714
- — second, 895, 897
- — second-order differential equations, 883
- bounded closed domain, 839
- bounded set, 866
- — closed, 842
- bounded variation function, 1055, 1058
- — classes, 1056
- — criteria, 1057
- — definition, 1055
- — properties, 1056, 1057
- Boussinesq equation, 900
- Bubnov–Galerkin method, 697
- Buchholz transform, 274
- Bueckner equation, 801
C
- C(a, b), space of continuous functions, 1066
- Cα(0, 1), Holder space, 1066
- calculation of eigenvalues, 877
- canonical factorization, 680
- canonical form, 805–807
- — Hammerstein equation, 807
- canonical function, nonhomogeneous Riemann problem, 605
- Carleman equation, 243, 590
- Carleman method,
- — characteristic equations, 761
- — equation, convolution type, first kind, 606
- — equation, convolution type, second kind, 660
- — equation, difference kernels, 610
- Carleman–Vekua regularization, 778
- Cauchy criterion, 1067
- Cauchy integral, 708
- Cauchy kernel, 707, 757
- — characteristic equation, 761
- — complete singular equation, 757
- — equation on real axis, 743
- — general singular equation, first kind, 745
- — generalized, 783
- — integral equation, 743, 757
- Cauchy principal value, 709
- Cauchy problem,
- — first-order ODEs, 875, 876
- — ODEs, reduction to integral equations, 875
- — second-order ODEs, 876
- — special $n$th-order linear ODE, 876
- Cauchy residue theorem, 504
- Cauchy–Schwarz–Bunyakovsky inequality, 501
- Cauchy type and Fourier integrals, 592
- Cauchy type integral, 708
- Cauchy-type kernel, 751, 753
- characteristic equation, 758, 761
- — Cauchy kernel, 761
- — exceptional case, 767
- — Hilbert kernel, 769
- — real axis, 765
- — transposed, 758, 764
- characteristic operator, 758
- — transposed, 758
- characteristic value, 301, 625, 637, 639, 645, 697
- — approximation, 646
- — extremal properties, 644
- — system, 640
- Chebyshev formula, 535
- Chebyshev functions, 1049
- Chebyshev nodes, 748
- Chebyshev polynomial,
- — first kind, 109, 1048
- — second kind, 750, 1049
- closed-form solution,
- — case of constant coefficients, 770
- — general case, 771
- closed bounded set, 842
- closed domain, bounded, 839
- closed kernel, 578
- coefficient,
- — binomial, 909, 920, 1007
- — discontinuous, 739
- — rational, 601, 723
- — Riemann problem, 596, 718
- — undetermined, 692
- collocation method, 692, 693, 815
- — hypersingular integral equation, 755
- collocation points, 693
- combination,
- — elementary functions, 73, 255
- — hyperbolic functions, 39
- — trigonometric functions, 63, 252
- compact operator, 842, 843, 1069
- — self-adjoint, 843
- — self-adjoint positive, 873
- — self-adjoint positive definite, 1069
- compact self-adjoint operator, 843
- compact self-adjoint positive definite operator, 1069
- — eigenvalues, 1069
- compact self-adjoint positive operator, 873
- compactness of integral operator, sufficient condition, 842
- compatibility condition, 896, 897
- complementary error function, 1009, 1025
- complementary modulus, 1036, 1037
- complete elliptic integral,
- — first kind, 1035
- — second kind, 1035
- complete equation,
- — generalized Cauchy kernel, 783
- — Hilbert kernel, 780
- complete kernel, 578
- complete orthonormal system of functions, 844, 855
- complete singular integral equation, 757, 770, 772
- — Cauchy kernel, 757
- — Hilbert kernel, 759, 780
- — regularization method, 772
- — solution methods, 757
- complete space, 1067
- complete system, 1067
- complete system of eigenfunctions, 640
- complex linear space, 1065
- complicated argument, 227, 246, 254
- concentration, 890
- — integral equation, 890
- — integral equation, numerical method, 891
- condition,
- — auxiliary integral, 841–843, 845, 851, 856, 862, 869, 870
- — boundary, 887
- — compatibility, 896, 897
- — Holder, 709, 1066
- — Holder, real axis, 575
- — Lipschitz, 709, 1056, 1059
- — normality, 596
- — sufficient for compactness of integral operator, 842
- confluent hypergeometric equation, 1024
- confluent hypergeometric function, 107, 1024
- — Kummer, 1024
- — Tricomi, 1024, 1025
- — Tricomi, asymptotic expansions, 1024
- — Tricomi, integral representations, 1024
- — Whittaker, 1027
- — Wronskian, 1026
- conjugate kernels, 582
- connected domain, 731
- constant,
- — Euler, 533, 1013, 1017, 1026
- — Holder, 709
- continuation,
- — continuation, analytic, 714
- continuity, principle, 714
- continuous function of real argument,
- — values in Banach space, 840
- — values in Hilbert space, 840
- — values in space of functions square integrable over a closed bounded set, 842
- — values in space of functions square integrable over a ring-shaped domain, 841
- — values in space of square integrable functions, 840
- continuous operator, 1068
- contour, smooth, 708
- convergence,
- — almost everywhere, 1060
- — mean-square, 501
- convergent series, 509
- convolution theorem, 507, 513
- convolution type, 574, 606, 660, 669
- coordinate functions, 693, 697
- cosine, 46, 166, 246, 335, 558, 928
- — hyperbolic, 22, 154, 238, 327
- cosine integral, 87, 258, 1011
- cosine transform, 514
- cotangent, 62, 175, 252, 343
- — hyperbolic, 38, 162, 242, 333
- criterion, Cauchy, 1067
- Crum transform, 268
- curves, open, Riemann problem, 734
- cuspidal point, 708
- cylinder function, 1016
- cylindrical function, 1016
- — definitions, 1016
D
- De Moivre formulas, 911
- definite integrals, tables, 951
- definition,
- — Cauchy type integral, 708
- — hyperbolic functions, 913
- degenerate hypergeometric equation, 1024
- degenerate kernel, 111, 191, 278, 357, 519, 522, 539, 540–543, 569, 573, 589, 625, 627, 631, 810, 817
- — general, 523, 628
- — simplest, 627
- density, potential, 893
- derivative,
- — fractional, definition, 529
- — fractional, left-sided, 529
- — fractional, properties, 530
- — fractional, right-sided, 529
- — integrable, fractional, 531
- — logarithmic of gamma function, 1017, 1021
- — Riemann–Liouville, 529
- determinant, Fredholm, 636
- — Fredholm, method, 635
- difference kernel, 114, 203, 283, 372, 519, 524, 539, 544, 573, 574, 586, 625, 610, 626, 655, 683
- — entire axis, 655
- — finite interval, 683
- — weak singularity, 588
- differential equation
- — nth-order, boundary value problems, 882
- — ordinary, 527, 547, 686, 875, 877
- — ordinary, linear, 881
- — second-order, boundary value problems, 883
- differential equation and Volterra integral equations, 877
- differentiating, method for integral equations, 820
- differentiation,
- — fractional, method, 529
- — method, 564, 583, 810
- differentiation formulas, 910, 913, 916, 917
- diffusion flux, integral equations, 890
- digamma function, 1013, 1017
- direct sum of orthogonal subspaces, 845, 863, 869
- Dirichlet–Mehler integral, 1030
- Dirichlet problem,
- — exterior, 896
- — interior, 895
- — reduction to integral equations, 895, 896
- discontinuous coefficient, 739
- divisor transform, 269
- Dixon equation, 136
- domain,
- — bounded closed, 839
- — circular, 841
- — multidimensional, 839
- — one-dimensional, 839
- — ring-shaped, 841, 855, 862
- double layer potential, 893
- — Gauss formula, 894
- dual integral equation,
- — first kind, 295, 575, 610
- — first kind, exact solutions, 613
- — reduction to Fredholm equation, 615
- — second kind, 627
- — second kind, convolution type, 669
E
- eigenfunctions, 301, 625, 639, 834, 867
- — construction, 696, 699
- — extremal properties, 644
- — Fredholm equation, second kind, 694
- — Hilbert–Schmidt kernel, 854, 856, 858, 861, 864, 865
- — Hilbert–Schmidt operator, 871
- — kernel, 844
- — linear operator, 1068
- — nonlinear equation, 834
- — nonlinear operator, 834
- — system, 640
- — system, complete, 640
- — system, incomplete, 640
- eigenvalues, 301, 625, 834
- — calculation, 877
- — compact self-adjoint positive definite operator, 1069
- — Hilbert–Schmidt kernel, 854, 856, 858, 861, 864, 865
- — Hilbert–Schmidt operator, 871
- — kernel, 844
- — linear operator, 1068
- — matrix, 845, 848, 856, 859, 861, 868, 872
- — operator, 867
- — positive, 648
- — self-adjoint operator, 1069
- eigenvectors of matrix, orthonormal, 845, 848, 856, 859, 868, 872
- eigenvectors of self-adjoint operator, 1069
- electrostatic problem, Roben, 897
- elementary functions, 73, 255, 257, 348, 905
- — combinations, 179
- — properties, 905
- elements,
- — linearly dependent, 1065
- — linearly independent, 843, 1065
- elliptic function, 1038
- — Jacobi, 1039
- — Weierstrass, 1042
- elliptic integral, 1035, 1036
- — complete, 1035
- — complete, first kind, 1035
- — complete, second kind, 1035
- — first kind, 1037
- — incomplete, 1037
- — second kind, 1037
- — third kind, 1037
- elliptic modulus, 1037
- elliptic theta functions, 1043
- entire axis, equation, 574, 586, 587, 626, 655
- equation,
- — Abel, first kind, 10
- — Abel, generalized, 519, 527
- — Abel, generalized, first kind, 531
- — Abel, generalized, second kind, 141, 548
- — Abel, second kind, 138
- — Abel type, first kind, 15
- — Abel type, two-dimensional, 15
- — Airy, 1023
- — Arutyunyan, 198
- — auxiliary, 546
- — auxiliary, application, 527
- — auxiliary, first kind, 550
- — auxiliary, second kind, 551
- — Bessel, 1016
- — Bessel, modified, 1021
- — Boussinesq, 900
- — Bueckner, 801
- — Carleman, 243, 590
- — Cauchy kernel, complete, 757
- — Cauchy kernel, first kind, 707
- — Cauchy kernel, first kind, real axis, 743
- — Cauchy kernel, general of first kind, 745
- — Cauchy kernel, simplest of first kind, 707, 743
- — Cauchy kernel, simplest of first kind, real axis, 743
- — characteristic, 758, 761
- — characteristic, Cauchy kernel, 761
- — characteristic, exceptional case, 767
- — characteristic, Hilbert kernel, 769
- — characteristic, real axis, 765
- — characteristic, transposed, 758, 764
- — compact self-adjoint and positive definite operator, 843
- — complete, generalized Cauchy kernels, 783
- — complete, Hilbert kernel, 780
- — complete singular, 757, 770, 772
- — complete singular, Cauchy kernel, 757
- — complete singular, regularization method, 772
- — confluent hypergeometric, 1024
- — contain arbitrary functions, 410, 413
- — contain arbitrary parameters, 408, 411
- — contain modulus, 278, 583
- — contain unknown function of complicated argument, 227, 254
- — convolution type, first kind, 574
- — convolution type, first kind, Carleman method, 606
- — convolution type, second kind, 626, 655, 657
- — convolution type, second kind, Carleman method, 660
- — degenerate kernel, 111, 191, 278, 357, 522, 540–543
- — degenerate kernel, nonlinear, method of differentiation, 810
- — difference kernel, 114, 203, 283, 372, 524, 544, 574, 586, 626, 685
- — difference kernel, Carleman method, 610
- — difference kernel, entire axis, 655
- — difference kernel, finite interval, 683, 685
- — difference kernel, weak singularity, 588
- — differential, 875, 877
- — differential, $n$th-order, boundary value problems, 882
- — differential, ordinary, 527, 547, 686
- — differential, ordinary, linear, 881
- — differential, second-order, boundary value problems, 883
- — diffusion flux, 890
- — Dixon, 136
- — dual, first kind, 295, 575, 610
- — dual, first kind, exact solutions, 613
- — dual, reduction to Fredholm equation, 615
- — dual, second kind, 627
- — dual, second kind, convolution type, 669
- — eigenfunctions, Fredholm equation, second kind, 694
- — elasticity, 621
- — entire axis, 574, 586, 587, 626, 655
- — exact methods, 588–592
- — exact solutions, 3–500
- — exponential nonlinearity, 411, 467
- — finite interval, 683, 685
- — finite interval, first kind, 744
- — first kind, 3, 519, 591, 624
- — first kind, reduction to equations of second kind, 591
- — first kind, weak singularity, 574
- — Fredholm, degenerate kernel, second kind, 627
- — Fredholm, first kind, 573, 623
- — Fredholm, second kind, 625, 685, 698, 701
- — Fredholm, second kind, system, 701
- — Fredholm, second kind on contour, 759
- — Fredholm, spectrum, 760
- — Fredholm, symmetric kernel, second kind, 639
- — Fredholm and dual equations, 615
- — Fredholm and Green's function, 881
- — function of complicated argument, 246
- — Gaussian hypergeometric, 1028
- — Gelfand–Levitan–Marchenko, 900
- — Gelfand–Levitan–Marchenko type, 898
- — general degenerate kernel, 523
- — generalized Abel, 519, 527
- — generalized Abel, first kind, 531
- — generalized Abel, second kind, 141, 548
- — generalized Cauchy kernel, complete, 783
- — generalized Schlomilch, equation, generalized Schl\"omilch, 254
- — Hammerstein, canonical form, 807
- — Hammerstein, first kind, 807
- — Hammerstein, second kind, 807
- — Hammerstein, second kind, degenerate kernel, 817
- — Hammerstein type, 807
- — Hilbert kernel, complete, 759, 780
- — Hilbert kernel, first kind, 707, 746
- — Hilbert kernel, general of first kind, 708, 747
- — Hilbert kernel, simplest of first kind, 707, 746
- — Hilbert kernel, simplest of first kind, complete, 759
- — Hilbert–Plessner, 255
- — homogeneous, 301, 502, 539, 625, 627, 637, 708, 751
- — hyperbolic nonlinearity, 414, 468
- — hypergeometric, 1028
- — hypergeometric, confluent, 1024
- — hypergeometric, degenerate, 1024
- — hypersingular, Cauchy-type kernel, first kind, 751
- — hypersingular, Cauchy-type kernel, general of first kind, 751
- — hypersingular, Cauchy-type kernel, simplest of first kind, 231, 751, 753
- — hypersingular, collocation method, 755
- — hypersingular, Hilbert-type kernel, first kind, 751
- — hypersingular, Hilbert-type kernel, general of first kind, 751
- — hypersingular, Hilbert-type kernel, simplest of first kind, 255, 754
- — hypersingular, numerical methods, 754
- — infinite integration limit, first kind, 537
- — infinite limits of integration, second kind, 702
- — Kadomtsev–Petviashvili, 901
- — kernel contains arbitrary functions, 111, 191, 278, 357
- — kernel contains arbitrary powers, 12
- — kernel contains combinations of elementary functions, 73, 179, 255, 348
- — kernel contains combinations of various functions, 565
- — kernel contains exponential functions, 15, 144, 231, 320
- — kernel contains higher-order polynomials in arguments, 6
- — kernel contains hyperbolic functions, 22, 154, 238, 327
- — kernel contains inverse trigonometric functions, 66, 176, 344
- — kernel contains logarithmic functions, 42, 45, 164, 242, 334
- — kernel contains power-law functions, 4, 45, 127, 217, 301
- — kernel contains rational functions, 7
- — kernel contains special functions, 86, 187, 258, 353
- — kernel contains square roots, 9
- — kernel contains sum of exponential functions, 564
- — kernel contains sum of hyperbolic functions, 564
- — kernel contains sum of trigonometric functions, 564
- — kernel contains trigonometric functions, 46, 166, 246, 335
- — kernel cubic in arguments, 5
- — kernel linear in arguments, 4
- — kernel quadratic in arguments, 4
- — Korteweg–de Vries, 899
- — Korteweg–de Vries, modified, 900
- — Krein's method, 588
- — Lalesco–Picard, 323
- — Laplace, 893
- — Laplace, potentials, properties, 892
- — Laplace, potentials, types, 892
- — Legendre, 1032
- — linear, constant integration limits, 502
- — linear, constant integration limits, first kind, 217, 502, 573
- — linear, constant integration limits, second kind, 301, 502, 625
- — linear, first kind, 502
- — linear, operator methods, 549
- — linear, second kind, 502
- — linear, solution methods, 519, 539, 573, 625
- — linear, structure of solutions, 502
- — linear, variable integration limit, first kind, 3, 502
- — linear, variable integration limit, second kind, 127, 502
- — linear and nonlinear PDEs, 898
- — logarithmic nonlinearity, 419, 472
- — logarithmic singularity, 618
- — logarithmic singularity, asymptotic methods, 618
- — Mathieu, 1045
- — Mathieu, modified, 1046
- — method of differentiating, 564, 583, 820
- — mixed multidimensional, bounded set, projection method, 866
- — mixed multidimensional, closed bounded set, 842
- — mixed multidimensional, Fredholm operator, 842
- — mixed multidimensional, Hilbert–Schmidt operator, 869
- — mixed multidimensional, integral operators of Volterra and Hilbert–Schmidt types, 866
- — mixed multidimensional, integral operators of Volterra and Schmidt types, 866
- — mixed multidimensional, methods of solving, 839–874
- — mixed multidimensional, Schmidt operator, 843
- — mixed multidimensional, Schmidt operator, equivalent form, 843
- — mixed multidimensional, symmetric Fredholm kernel, 842
- — mixed operator, 866, 869
- — mixed operator, auxiliary conditions, 869
- — mixed two-dimensional, circular domain, 841
- — mixed two-dimensional, finite interval, 840
- — mixed two-dimensional, finite interval, methods of solving, 843–854
- — mixed two-dimensional, Hilbert–Schmidt kernel and auxiliary conditions, finite interval, 845
- — mixed two-dimensional, Hilbert–Schmidt kernel and auxiliary conditions, ring-shaped domain, 856
- — mixed two-dimensional, Hilbert–Schmidt kernel and given right-hand side, finite interval, 843
- — mixed two-dimensional, Hilbert–Schmidt kernel and given right-hand side, ring-shaped domain, 855
- — mixed two-dimensional, ring-shaped domain, 841
- — mixed two-dimensional, ring-shaped domain, methods of solving, 855–866
- — mixed two-dimensional, Schmidt kernel, 841
- — mixed two-dimensional, Schmidt kernel, equivalent form, 842
- — mixed two-dimensional, Schmidt kernel and auxiliary conditions, ring-shaped domain, 862
- — mixed two-dimensional, Schmidt kernel and given right-hand side, finite interval, 848
- — modified Bessel, 1021
- — modified Korteweg–de Vries, 900
- — modified Mathieu, 1046
- — Nekrasov, 836
- — nonhomogeneous, 502, 539, 627, 708, 751
- — nonhomogeneous, positive solutions, 649
- — nonhomogeneous, solution, 642
- — nonlinear, 805, 807, 834, 899
- — nonlinear, bifurcation points, 834, 835
- — nonlinear, constant integration limits, 806, 829
- — nonlinear, constant integration limits, approximate methods, 826
- — nonlinear, constant integration limits, exact methods, 817
- — nonlinear, constant integration limits, first kind, 433
- — nonlinear, constant integration limits, numerical methods, 826
- — nonlinear, constant integration limits, second kind, 453
- — nonlinear, degenerate kernels, 817
- — nonlinear, eigenfunctions, 834
- — nonlinear, existence theorems, 830
- — nonlinear, uniqueness theorems, 830
- — nonlinear, variable integration limit, 805
- — nonlinear, variable integration limit, approximate methods, 811
- — nonlinear, variable integration limit, exact methods, 809
- — nonlinear, variable integration limit, first kind, 393
- — nonlinear, variable integration limit, numerical methods, 811
- — nonlinear, variable integration limit, second kind, 403
- — nonlinear, Volterra, 805
- — nonlinear, with parameter, local solutions, 835
- — nonlinearity, general form, 399, 425, 447, 477
- — nonnegative kernel, 648
- — nonsymmetric kernel, first kind, 580
- — one-sided, first kind, 574
- — one-sided, second kind, 626
- — operator, general projection problem, 873
- — operator, mixed, 866, 869
- — operator, mixed with auxiliary conditions, 869
- — operator, quadratic, 552
- — operator, solution, 553
- — ordinary differential, 527, 547, 686
- — parameter, 625
- — Picard–Goursat, 134
- — Poisson, 894
- — power-law nonlinearity, 408, 464
- — power-law nonlinearity that contains arbitrary functions, 444
- — quadratic nonlinearity, 819
- — quadratic nonlinearity that contains arbitrary functions, 397, 406, 437, 456
- — quadratic nonlinearity that contains arbitrary parameters, 393, 403, 433, 453
- — quadratic operator, 552
- — reducible to symmetric equation, 647
- — renewal, 203
- — right-hand side, 519, 539, 573, 625
- — right-hand side, special, 555
- — Schlomilch, 254, 452, 825
- — Schlomilch, generalized, 254
- — Schmidt integral operator, 843
- — Schmidt kernel, 843, 859, 863
- — Schmidt kernel and auxiliary conditions, finite interval, 851
- — Schmidt kernel and auxiliary conditions, ring-shaped domain, 862
- — Schmidt kernel and given right-hand side, finite interval, 848
- — Schmidt kernel and given right-hand side, ring-shaped domain, 859
- — Schmidt operator, 869
- — second kind, 591
- — second kind, operator method, 654
- — semiaxis, 574, 587, 626, 657
- — simplest hypersingular, Cauchy-type kernel, first kind, 231, 753
- — simplest hypersingular, Hilbert-type kernel, first kind, 255, 754
- — single kernel, first kind, 574, 626
- — singular, 228, 255, 319, 344, 707
- — singular, Bueckner type, 801
- — singular, complete, 757, 770, 772
- — singular, first kind, 707, 743
- — singular, generalized kernel, 792
- — singular, numerical solution, 799
- — singular, transposed, 758
- — singular, two-dimensional, 231
- — skew-symmetric, 647
- — solution methods, 501–901
- — special right-hand side, 555
- — surface concentration, 890
- — surface concentration, numerical method, 891
- — symmetric, 639, 647
- — symmetric, Fredholm alternative, 643
- — symmetric kernel, 639
- — symmetric kernel, first kind, 577
- — system, 701
- — transposed, 573, 575, 625, 627, 637
- — transposed of characteristic equation, 764
- — Tricomi, 319, 769, 769
- — Tricomi–Gellerstedt, 320
- — trigonometric nonlinearity, 420, 473
- — truncated first kind, 549
- — two kernels, first kind, 574, 607
- — two kernels, second kind, 626, 664
- — Urysohn, 806, 832
- — Urysohn, first kind, 806, 829
- — Urysohn, first kind, special, method, 821
- — Urysohn, second kind, 806
- — Urysohn, second kind, degenerate kernel, 818
- — Urysohn, second kind, special, method, 822
- — Urysohn type, 806
- — variable integration limit, 3
- — variable lower integration limit, first kind, 537
- — variable lower integration limit, second kind, 570
- — Volterra, 549, 805, 877
- — Volterra, first kind, 519, 524, 565
- — Volterra, first kind, connection with Volterra equations of second kind, 524
- — Volterra, first kind, existence of solution, 519
- — Volterra, first kind, Hammerstein form, 806
- — Volterra, first kind, problems, 520
- — Volterra, first kind, uniqueness of solution, 519
- — Volterra, first kind, Urysohn form, 805, 815
- — Volterra, Hammerstein form, 806
- — Volterra, nonlinear, 805
- — Volterra, quadratic nonlinearity, 809
- — Volterra, reduction to Wiener–Hopf equation, 528
- — Volterra, second kind, 524, 539, 565
- — Volterra, second kind, connection with Volterra equations of first kind, 524
- — Volterra, second kind, Hammerstein form, 816
- — Volterra, second kind, sequence, 855
- — Volterra, second kind, sequence of independent, 853, 865, 872
- — Volterra, second kind, Urysohn form, 805
- — Volterra, sequence, 844, 850, 862
- — Volterra, sequence of independent, 847, 858
- — Volterra, Urysohn form, 805, 811, 814, 816
- — weak singularity, 519
- — weak singularity, first kind, 532, 574
- — weak singularity, second kind, 625
- — weakly singular kernel, 532
- — Whittaker, 1027
- — Wiener–Hopf, 574, 626, 679
- — Wiener–Hopf, first kind, 285, 574, 538, 606
- — Wiener–Hopf, Krein's method, 679
- — Wiener–Hopf, second kind, 373, 547, 571, 626, 660, 679
- — Wiener–Hopf, second kind, exceptional case, 678
- — Wiener–Hopf, second kind, homogeneous, 672
- — Wiener–Hopf, second kind, index, 661
- — Wiener–Hopf, second kind, nonhomogeneous, 677
- — Wiener–Hopf, second kind, solution, 681
- — Wiener–Hopf, Volterra equation, 528
- equidistant surface, method, 891
- equilibrium potential, 897
- equivalent regularization, problem, 776
- Erdelyi–Kober operators, 532
- error function, 86, 258, 549, 1009, 1024
- — complementary, 1009, 1025
- estimates for spectral radius, 649
- Euclidean space, 845, 857, 863, 869, 1067
- — basis, 857, 869
- Euler constant, 533, 1013, 1017, 1026
- Euler formula, 911, 1013
- Euler numbers, 1008
- Euler polynomials, 1053
- exceptional case,
- — characteristic equation, 767
- — regularization, 779
- — Riemann problem, 605, 727
- — Wiener–Hopf equation, second kind, 678
- existence theorems, 875
- — nonlinear equations, 830
- — Stieltjes integral, 1058
- expansion, asymptotic, 509
- — Airy functions, 1023
- — Bessel functions, 1017
- — modified Bessel functions, 1022
- — parabolic cylinder functions, 1034
- — Tricomi confluent hypergeometric functions, 1024
- expansion in power series, 910, 913, 916, 918
- exponent, growth, 505
- exponential form, 555
- exponential function, 15, 73, 77, 78, 144, 151, 179–181, 231, 234, 236, 257, 320, 326, 348, 349, 419, 564, 905, 940, 954, 963, 978, 984, 990, 998, 1002
- — properties, 905
- exponential integral, 86, 258, 1009, 1010, 1025
- exponential nonlinearity, 411, 467
- exponents, singularity, 787, 789
- expressions with,
- — arbitrary powers, 977
- — exponential functions, 963, 978, 984, 990, 998, 1002
- — hyperbolic functions, 964, 979, 985, 991
- — logarithmic functions, 965, 980, 985, 992, 999, 1002
- — power-law functions, 963, 983, 989, 998, 1001
- — rational functions, 971
- — special functions, 967, 981, 987, 993, 1000, 1004
- — square roots, 975
- — trigonometric functions, 966, 981, 986, 992, 999, 1003
- exterior Dirichlet problem, 896
- — reduction to integral equations, 896
- exterior Neumann problem, 897
- — reduction to integral equations, 896
F
- factorization, 597, 674, 676, 677, 679, 720, 723
- — canonical, 680
- factorization problem, 676, 679
- Feller potential, 226
- Feller transform, 226
- field of scalars, 1065
- finite functional sums, 922
- finite interval, 683, 840, 843
- — equation, 683, 685
- — integrals, 951, 956
- — mixed equations, 840
- finite numerical sums, 919
- finite sums, 919
- finitely many singular points, 507
- first-order ODEs, 875, 876
- first boundary value problem, 895, 896
- Fischer–Riesz, theorem, 1062
- flow,
- — fluid, 888
- — nonisothermal in plane channel, 884
- fluid flow, 888
- flux, diffusion integral equations, 890
- form
- — canonical, 805–807
- — canonical of Hammerstein equation, 807
- — equivalent of mixed multidimensional equation with Schmidt operator, 843
- — equivalent of mixed two-dimensional equation with Schmidt kernel, 842
- — exponential, 555
- — Hammerstein, for Volterra equation, 806
- — Hammerstein, for Volterra equation of first kind, 806
- — Hammerstein, for Volterra equation of second kind, 816
- — polynomial, 553
- — quadratic, 644
- — Urysohn, for Volterra equation, 805, 811, 814, 816
- — Urysohn, for Volterra equation of first kind, 805, 815
- — Urysohn, for Volterra equation of second kind, 805
- form of infinite products, representation, 910, 916
- formula
- — Bessel's, 1018
- — Chebyshev, 535
- — Euler, 1013
- — Fourier inversion, 512
- — Gauss, 535
- — Gauss, for double layer potential, 894
- — Gauss, for volume potential, 894
- — Green's, 895
- — Hilbert inversion, 746
- — Hopf–Fock, 683
- — Kontorovich–Lebedev inversion, 516
- — Meijer inversion, 516
- — Poincare–Bertrand, 714
- — Poisson's, 1018
- — Post–Widder, 510
- — quadrature, 534, 815
- — Sokhotski–Plemelj, 713, 785
- — Stirling, 1013
- formulas
- — addition, 909, 915
- — calculation, 504
- — De Moivre, 911
- — differentiation, 910, 913, 916, 917
- — Euler, 911
- — integration, 910, 913, 916, 918
- — quadrature, 534, 793
- — reduction, 907, 939, 947
- — Sokhotski–Plemelj, for real axis, 713
- Fourier cosine transform, 514, 518
- — asymmetric form, 514
- — Parseval's relation, 514
- — tables, 983
- Fourier integral,
- — left, 594
- — one-sided, 593, 594
- — relationships with Cauchy type integral, 592
- — right, 594
- Fourier inversion formula, 512
- Fourier sine transform, 514, 518
- — asymmetric form, 515
- — Parseval's relation, 515
- — tables, 989
- Fourier transform, 235, 511, 512, 518, 658
- — alternative, 512
- — asymmetric form, 512
- — definition, 512
- — inverse, 512
- — inversion formula, 512
- — properties, 513
- — rational, 685
- fractional derivative, 529
- — definition, 529
- — integrable, 531
- — left-sided, 529
- — properties, 530
- — right-sided, 529
- fractional differentiation, method, 529
- fractional integral,
- — definition, 529
- — left-sided, 529
- — properties, 530
- — Riemann–Liouville, 529
- — right-sided, 529
- fractional integration, 548
- — by parts, 529
- — operator, 529
- — semigroup property, 529
- fractional order, integral, 529
- fractional powers, 138
- fracture mechanics, 791
- Fredholm alternative, 637, 638
- — symmetric equations, 643
- Fredholm determinant, 636
- — method, 635
- Fredholm equation, 615, 881
- — degenerate kernel, second kind, 627
- — first kind, 573, 623
- — second kind, 625, 685, 698, 701
- — second kind, on contour, 759
- — second kind, system, 701
- — spectrum, 760
- — symmetric kernel, second kind, 639
- Fredholm kernel, 573, 625, 839–841
- — positive definite, 840
- — positive definite, symmetric, 866
- — symmetric definite, 840
- — symmetric positive, 841
- — symmetric positive definite, 866
- Fredholm minor, 636
- Fredholm operator, 758, 842
- — symmetric kernel, generalization, 843
- Fredholm theorems, 637, 702, 777
- Fresnel cosine integral, 1012
- — generalized, 1012
- Fresnel integrals, 87, 258, 1011, 1012
- — generalized, 1012
- Fresnel sine integral, 1012
- — generalized, 1012
- Fubini theorem, 1064
- full measure, set, 1060
- function
- — absolutely continuous, 529
- — Airy, 1023
- — arccosine, 66
- — arccotangent, 71
- — arcsine, 68
- — arctangent, 70
- — associated Legendre, 107, 271, 1030–1033
- — associated Legendre, first kind, 1032
- — associated Legendre, general case, 1032
- — associated Legendre, integer indices and real argument, 1031
- — associated Legendre, second kind, 1032
- — Bessel, 88, 187, 264, 269, 353, 958, 1016
- — Bessel, asymptotic expansions, 1017
- — Bessel, definitions, 1016
- — Bessel, first kind, 261, 297, 1016
- — Bessel, integral representations, 1017
- — Bessel, modified, 97, 189, 269, 355, 1021
- — Bessel, modified, first kind, 266, 1021
- — Bessel, modified, second kind, 266, 1021
- — Bessel, orthogonality properties, 1019
- — Bessel, second kind, 264, 299, 1016
- — Bessel, third kind, 1020
- — Bessel, zeros, 1019
- — beta, 1012, 1014
- — beta, incomplete, 1014, 1015
- — canonical of nonhomogeneous Riemann problem, 605
- — Chebyshev, 1049
- — complementary error, 1009, 1025
- — confluent hypergeometric, 107, 1024
- — confluent hypergeometric, Kummer, 1024
- — confluent hypergeometric, Tricomi, 1024
- — confluent hypergeometric, Whittaker, 1027
- — confluent hypergeometric, Wronskian, 1026
- — cosine, 46
- — cotangent, 62
- — cylinder, 1016
- — cylindrical, 1016
- — digamma, 1013, 1017
- — elementary, 73, 179, 255, 257, 348
- — elementary, properties, 905
- — elliptic, 1038
- — elliptic, Jacobi, 1039
- — elliptic, Weierstrass, 1042
- — elliptic theta, 1043
- — error, 86, 258, 549, 1009, 1024
- — error, complementary, 1009, 1025
- — exponential, 15, 73, 77, 78, 144, 151, 179–181, 213, 234, 236, 257, 320, 326, 348, 349, 419, 564, 905, 940, 954, 963, 978, 984, 990, 998, 1002
- — exponential, properties, 905
- — gamma, 260, 1012
- — gamma, incomplete, 88, 260, 1014, 1024, 1025
- — gamma, logarithmic derivative, 1017, 1021
- — Gauss hypergeometric, 275, 1028
- — generalized Riemann zeta, 277
- — generating, 555, 580
- — generating, power-law, 557
- — generating contain cosines, 558
- — generating contain sines, 558
- — generating of exponential form, 555
- — Green's, 881–883
- — Hankel, 1020
- — Hankel, first kind, 265
- — Hankel, second kind, 265
- — harmonic, 893
- — Hermite, 1050
- — hyperbolic, 22, 73, 83, 84, 154, 164, 179, 185, 186, 238, 255, 327, 334, 348, 351, 352, 564, 911, 913, 922, 940, 955, 964, 979, 985, 991
- — hyperbolic, inverse, 917
- — hyperbolic, of half argument, 915
- — hyperbolic, of multiple argument, 915
- — hypergeometric, 1028
- — hypergeometric, confluent, 107, 1024
- — hypergeometric, confluent, Wronskian, 1026
- — hypergeometric, Gauss, 275, 1028
- — hypergeometric, Kummer confluent, 272
- — hypergeometric, Tricomi confluent, 273, 1025
- — hypergeometric, Whittaker confluent, 274, 1027
- — incomplete beta, 1014, 1015
- — incomplete gamma, 88, 260, 1014, 1024, 1025
- — index, 595
- — influence, 577, 882
- — integrable, 501, 502, 1058
- — integrable, Lebesgue, 1059, 1061
- — inverse hyperbolic, 917
- — inverse trigonometric, 66, 176, 344, 911, 948
- — irrational, 937
- — Jacobi elliptic, 1039
- — Jacobi elliptic, connection with Jacobi theta functions, 1044
- — Jacobi theta, 110, 1043
- — Jacobi theta, connection with Jacobi elliptic functions, 1044
- — Jacobi weight, 793
- — Kummer confluent hypergeometric, 272, 1024
- — Lebesgue integrable, 1059, 1061
- — left, 594
- — Legendre, 270, 1030
- — Legendre, associated, 107, 271, 1030–1033
- — Legendre, associated, first kind, 1032
- — Legendre, associated, second kind, 1032
- — Legendre, modified associated, 1033
- — Legendre, spherical of first kind, 299
- — Legendre, Wronskians, 1034
- — logarithmic, 42, 45, 77, 83, 85, 164, 165, 180, 185, 187, 242, 244, 255, 256, 334, 335, 349, 351, 353, 905, 943, 955, 965, 980, 985, 992, 999, 1002
- — logarithmic, properties, 906
- — MacDonald, 266, 1021
- — Mathieu, 1045, 1046
- — Mathieu, modified, 1046
- — measurable, 1060
- — modified associated Legendre, 1033
- — modified Bessel, 97, 189, 269, 355, 1021
- — modified Bessel, asymptotic expansions, 1022
- — modified Bessel, definitions, 1021
- — modified Bessel, first kind, 266, 1021
- — modified Bessel, integral representations, 1022
- — modified Bessel, second kind, 266, 1021
- — modified Mathieu, 1046
- — multivalued, 711
- — Neumann, 1016
- — of complicated argument, 227, 346, 254
- — one-sided, 594
- — parabolic cylinder, 276, 1034
- — parabolic cylinder, asymptotic expansions, 1035
- — parabolic cylinder, basic formulas, 1034
- — parabolic cylinder, definitions, 1034
- — parabolic cylinder, integral representations, 1035
- — parabolic cylinder, linear relations, 1035
- — parabolic cylinder, Weber, 1034
- — power, properties, 905
- — power-law, 4, 45, 127, 151, 165, 217, 236, 244, 301, 326, 335, 419, 951, 963, 983, 989, 998, 1001
- — power-law generating, 557
- — psi, 1012, 1013
- — rational, 7, 136, 220, 314, 933, 971
- — rational, inverse transforms, 506
- — Riemann zeta, generalized, 277
- — special, 86, 111, 187, 258, 277, 353, 967, 981, 987, 993, 1000, 1004
- — special, properties, 1007
- — spherical, Legendre of first kind, 299
- — square integrable, 501, 502
- — Struve, 264, 299, 516, 518
- — summable, 1059, 1061
- — summable, integral, 1061
- — tangent, 60
- — theta, Jacobi, 1043
- — total variation, 1055
- — Tricomi confluent hypergeometric, 273, 1024, 1025
- — Tricomi confluent hypergeometric, asymptotic expansions, 1024
- — Tricomi confluent hypergeometric, integral representations, 1024
- — trigonometric, 78, 84, 85, 166, 176, 181, 186, 187, 246, 252, 256, 295, 335, 344, 349, 352, 353, 564, 907, 922, 944, 956, 966, 981, 986, 992, 999, 1003
- — trigonometric, inverse, 176, 344, 911, 948
- — trigonometric, of half argument, 909
- — trigonometric, of multiple arguments, 909
- — trigonometric, of single argument, relations, 908
- — trigonometric, powers, 908
- — Weber, 88
- — Weber parabolic cylinder, 1034
- — Weierstrass elliptic, 1042
- — weight, Jacobi, 793
- — Whittaker, 1027
- — Whittaker confluent hypergeometric, 274, 1027
- function of bounded variation, 1055
- function of real argument,
- — values in Banach space, continuous, 840
- — values in Hilbert space, continuous, 840
- — values in space of functions square integrable functions, continuous, 841
- — values in space of functions square integrable over closed bounded set, continuous, 842
- — values in space of functions square integrable over ring-shaped domain, continuous, 841
- function of several variables, 839
- functional analysis, some notions, 1055
- functional series, infinite, 925
- functional sums, finite, 922
- functions
- — coordinate, 693, 697
- — measurable, 1060
- — of bounded variation, 1055, 1058, 1066
- — orthogonal, 582
- — power, 905
- — real-valued, multidimensional, 839
- — with finitely many singular points, 507
- fundamental solution, 881
G
- Galerkin method, 582
- gamma function, 260, 1012
- — incomplete, 88, 260, 1014, 1024, 1025
- — logarithmic derivative, 1017, 1021
- Gauss formula, 535
- — for double layer potential, 894
- — for volume potential, 894
- Gauss hypergeometric functions, 275, 1028
- Gauss transform, 237
- Gaussian hypergeometric equation, 1028
- Gegenbauer polynomials, 1051
- Gelfand–Levitan–Marchenko equation, 900
- general degenerate kernel, 523
- general equation of first kind with Cauchy kernel, 745
- general hypersingular equation of first kind with Cauchy-type kernel, finite interval, 751
- general hypersingular equation of first kind with Hilbert-type kernel, 751
- general projection problem, 873
- — special case, 846, 852, 857, 870
- general scheme,
- — Bateman method, 689
- — method of quadratures, 568
- — quadrature method for Fredholm equations of second kind, 698
- — solving of dual integral equations, 611
- — successive approximation method, 566
- general singular equation of first kind with Hilbert kernel, 708, 747
- generalization of Fredholm integral operator with symmetric kernel, 843
- generalized Abel equation, 519, 527
- — first kind, 531
- — second kind, 141, 548
- generalized Cauchy kernel, 783
- generalized Fresnel cosine integral, 1012
- generalized Fresnel integral, 1012
- generalized Fresnel sine integral, 1012
- generalized Jentzch theorem, 648
- generalized kernel of integral equation, 783
- generalized Laguerre polynomials, 1047
- generalized Liouville theorem, 595, 714
- generalized Mehler–Fock transform, 271
- generalized Riemann zeta function, 277
- generalized Schlomilch equation, 254
- generating function, 555, 580
- — containing cosines, 558
- — containing sines, 558
- — exponential form, 555
- — power-law, 557
- Green's formula, 895
- Green's function, 881–883
- growth exponent, 505
H
- Hammerstein equation, 807, 817, 830
- — canonical form, 807
- — degenerate kernel, second kind, 817
- — first kind, 807
- — second kind, 807
- Hammerstein form, Volterra equation, 806
- — — first kind, 806
- — — second kind, 816
- Hankel function, 1020
- — first kind, 265
- — second kind, 265
- Hankel transform, 261, 515, 518
- — Parseval's relation, 515, 516
- Hardy transform, 264
- harmonic function, 893
- Hartley transform, 252, 518
- Hermite functions, 1050
- Hermite interpolation polynomial, 716
- Hermite polynomial, 108, 1024, 1025, 1050
- Hilbert boundary value problem, 742
- Hilbert inversion formula, 746
- Hilbert kernel, 707, 780
- — characteristic equation, 769
- — complete singular equation, 759, 780
- — equation, 759
- — equations of first kind, 746
- Hilbert Plessner equation, 255
- Hilbert problem, 742
- Hilbert–Schmidt kernel, 841, 843, 845, 853, 855, 856, 860
- Hilbert–Schmidt kernel, approximate values of eigenvalues, 845
- Hilbert–Schmidt kernel, eigenfunctions, 854, 856, 858, 861, 864, 865
- Hilbert–Schmidt operator, 842, 843, 866, 871
- — approximation for eigenfunctions, 868, 872
- — approximation for eigenvalues, 868, 872
- — eigenfunctions, 871
- — eigenvalues, 871
- Hilbert–Schmidt theorem, 641, 1069
- Hilbert–Schmidt theory, 843
- Hilbert space, 839, 845, 857, 863, 867, 869, 1067
- — abstract, 873
- — basis, 857, 867, 869
- — linear operators, 1067, 1068
- — special basis, 869
- Hilbert transform, 228, 255, 518, 743
- Hilbert transform on semiaxis, 229
- Hilbert type kernel, 751, 754
- Holder condition, 709, 1066
- Holder condition on real axis, 575
- Holder constant, 709
- Holder inequality, 1065
- Holder space, 1066
- homogeneous integral equation, 301, 502, 539, 625, 627, 637, 708, 751
- homogeneous problem, 596, 602, 742
- homogeneous problem solution, 720
- homogeneous Wiener–Hopf equation, second kind, 672
- Hopf–Fock formula, 683
- hyperbolic cosine, 22, 154, 238, 327
- hyperbolic cotangent, 38, 162, 242, 333
- hyperbolic function, 22, 73, 83, 84, 154, 179, 185, 186, 238, 255, 327, 334, 348, 351, 352, 564, 911, 913, 922, 940, 955, 964, 979, 985, 991
- — combinations, 164
- — half argument, 915
- — multiple argument, 915
- hyperbolic nonlinearity, 414, 468
- hyperbolic sine, 28, 156, 238, 329
- hyperbolic tangent, 36, 161, 241, 332
- hypergeometric equation, 1028
- — confluent, 1024
- — degenerate, 1024
- hypergeometric function, 1028
- — confluent, 107, 1024
- — confluent, Kummer, 272, 1024
- — confluent, Tricomi, 1024, 1025
- — confluent, Whittaker, 274, 1027
- — confluent, Wronskian, 1026
- — Gauss, 275, 1028
- — Gauss, basic properties, 1028
- — Kummer confluent, 272, 1024
- — Tricomi confluent, 273
- — Whittaker confluent, 274, 1027
- hypergeometric series, 1028
- hypersingular equation, 751
- — Cauchy-type kernel, 751, 753
- — collocation method, 755
- — first kind, Cauchy-type kernel on finite interval, 751
- — first kind, Hilbert-type kernel, 751
- — Hilbert-type kernel, 751, 754
- — numerical methods, 754
- — simplest of first kind, Cauchy-type kernel, 231, 753
- — simplest of first kind, Hilbert-type kernel, 255, 754
- hypersingular integral,
- — definition, 751
- — in sense of Hadamard principal value, 752
I
- identities, integral, 895
- identity operator, 842, 873
- ill-posed problem, 623
- — general notions, 623
- incomplete beta function, 1014, 1015
- incomplete elliptic integrals, 1036
- incomplete gamma function, 88, 260, 1014, 1024, 1025
- incomplete kernel, 578
- incomplete system of eigenfunctions, 640
- indefinite integrals, tables, 933
- independent elements, linearly, 843, 1063
- index, 603, 661, 664
- — notion, 716
- index of function, 595
- index of Riemann problem, 596, 731
- index of Wiener–Hopf equation, 661
- inequality,
- — Cauchy–Schwarz–Bunyakovsky, 501
- — Holder, 1063
- — triangle, 501
- infinite functional series, 925
- infinite numerical series, 924
- infinite products, 910, 916
- infinite system of linear algebraic equations, 858, 861, 864, 868, 971
- infinite system of linear algebraic equations with symmetric matrix, 850, 853
- influence function, 577, 882
- inner product, 501, 644
- integrable fractional derivative, 531
- integrable function, 501, 502, 1056
- — Lebesgue, 1059
- integral,
- — Cauchy, 708
- — Cauchy type, 708
- — Cauchy type, relationships with Fourier integral, 592
- — complete elliptic, 1035
- — complete elliptic, first kind, 1035
- — complete elliptic, second kind, 1035
- — cosine, 87, 258, 1011
- — definite, tables, 951
- — Dirichlet–Mehler, 1030
- — elliptic, 1035, 1036
- — elliptic, complete, 1035
- — elliptic, first kind, 1036
- — elliptic, incomplete, 1036
- — elliptic, second kind, 1036
- — elliptic, third kind, 1036
- — exponential, 86, 258, 1009, 1010, 1025
- — Fourier, left, 594
- — Fourier, one-sided, 593, 594
- — Fourier, relationships with Cauchy type integral, 592
- — Fourier, right, 594
- — fractional, definition, 529
- — fractional, left-sided, 529
- — fractional, properties, 530
- — fractional, Riemann–Liouville, 529
- — fractional, right-sided, 529
- — fractional order, 529
- — Fresnel, 87, 258, 1011, 1012
- — Fresnel, generalized, 1012
- — Fresnel cosine, 1012
- — Fresnel cosine, generalized, 1012
- — Fresnel sine, 1012
- — Fresnel sine, generalized, 1012
- — hypersingular, definition, 751
- — hypersingular, in sense of Hadamard principal value, 752
- — incomplete elliptic, 1036
- — indefinite, tables, 933
- — involving arbitrary powers, 939
- — involving Bessel functions, 958
- — involving exponential functions, 940, 954
- — involving hyperbolic functions, 940, 955
- — involving inverse trigonometric functions, 948
- — involving irrational functions, 937
- — involving logarithmic functions, 943, 955
- — involving power-law functions, 951
- — involving rational functions, 933
- — involving trigonometric functions, 944, 956
- — Jacobi weight function, 793
- — Laplace, 1030
- — Lebesgue, 1057
- — Lebesgue, definition, 1059
- — Lebesgue, properties, 1059
- — left Fourier, 594
- — logarithmic, 258, 1009, 1010, 1025
- — Mehler, 299, 615
- — one-sided Fourier, 593, 594
- — probability, 1009
- — Riemann, 1057
- — Riemann–Liouville fractional, 529
- — right-sided fractional, 529
- — right Fourier, 594
- — sine, 87, 258, 1011
- — singular, 709
- — singular, principal value, 709
- — step-function, 1059
- — Stieltjes, 1055, 1056
- — Stieltjes, basic definitions, 1055
- — Stieltjes, existence theorems, 1056
- — Stieltjes, properties, 1056
- — summable function, 1059
- integral conditions, auxiliary, 841–843
- integral equation, {\it see\/ equation
- integral identities, 895
- integral operator,
- — compactness, sufficient condition, 842
- — Fredholm, 842
- — Fredholm, symmetric kernel, 843
- — Hilbert–Schmidt, 842, 843, 866
- — positive definite, 842
- — positive definite kernel, 843
- — Schmidt, 843, 866
- — self-adjoint, 842, 843
- — spectral radius, 649
- — symmetric kernel, 843
- — Volterra, 842
- integral representations,
- — Bessel functions, 1017
- — modified Bessel functions, 1022
- — parabolic cylinder functions, 1034
- — Tricomi confluent hypergeometric functions, 1024
- integral sum, Stieltjes, 1055
- integral transform, {\it see\/ transform
- integrand,
- — contain exponential functions, 419
- — contain power-law functions, 419
- — nonlinearity, 414–416, 418, 420, 422–424, 467–470, 472–475
- integration,
- — fractional, 548
- — fractional, by parts, 529
- — fractional, operator, 529
- — fractional, semigroup property, 529
- interior Dirichlet problem, 895
- — reduction to integral equations, 895
- interior Neumann problem, 895
- — reduction to integral equations, 895
- interpolation nodes, 534
- interpolation polynomial,
- — Hermite, 716
- — Lagrange, 748
- inverse Fourier transform, 512
- inverse hyperbolic functions, 917
- inverse Laplace transforms, tables, 969
- inverse Mellin transform, 510, 1001
- inverse transform,
- — rational functions, 506
- — representation as asymptotic expansions, 509
- — representation as convergent series, 509
- inverse trigonometric function, 66, 176, 344, 911, 948
- inversion formula,
- — Hilbert, 746
- — Kontorovich–Lebedev, 516
- — Meijer, 516
- inversion of functions with finitely many singular points, 507
- investigation of differential equations, 875
- irrational functions, 937
- iterated kernel, 566, 632
- — bilinear series, 642
- iteration process, 811, 814
J
- Jacobi elliptic function, 1038
- — connection with Jacobi theta functions, 1042
- Jacobi polynomials, 1049
- Jacobi theta function, 110, 1042
- — connection with Jacobi elliptic functions, 1042
- — properties, 1042
- — relations and formulas, 1042
- — series representation, 1042
- Jacobi weight function, 793
- Jentzch theorem, generalized, 648
- Jordan lemma, 505
- jump problem, 596
K
- K-transform, 518
- Kadomtsev–Petviashvili equation, 901
- Kellog's method for finding characteristic values in case of symmetric kernel, 645
- kernel
- — approximation, 687
- — Cauchy, 707, 757
- — Cauchy, characteristic equation, 761
- — Cauchy, complete singular integral equation, 757
- — Cauchy, generalized, 783
- — Cauchy, integral equations, 757
- — Cauchy-type, 751, 753
- — closed, 578
- — complete, 578
- — conjugate, 582
- — containing arbitrary functions, 111, 191, 278, 357
- — containing arbitrary powers, 12, 139, 223, 317
- — containing arccosine, 66, 176, 344
- — containing arccotangent, 71, 178, 347
- — containing arcsine, 68, 177, 345
- — containing arctangent, 70, 178, 346
- — containing associated Legendre functions, 107, 271
- — containing Bessel functions, 88, 187, 353
- — containing Bessel functions of first kind, 261, 297
- — containing Bessel functions of second kind, 264, 299
- — containing Chebyshev polynomials, 109
- — containing combination of Bessel and modified Bessel functions, 269
- — containing combination of Bessel functions, 264
- — containing combination of elementary functions, 179, 255, 348
- — containing combination of hyperbolic functions, 39, 164, 334
- — containing combination of trigonometric functions, 63, 176, 252, 344
- — containing combination of various functions, 565
- — containing confluent hypergeometric functions, 107
- — containing cosine, 46, 166, 246, 335
- — containing cosine integral, 87
- — containing cosine integrals, 258
- — containing cotangent, 62, 175, 252, 343
- — containing elementary functions, 257
- — containing error function, 86, 258
- — containing exponential function, 15, 19, 73, 77, 78, 144, 151, 179–181, 231, 234, 236, 257, 320, 326, 348, 349
- — containing exponential integral, 86, 258
- — containing fractional powers, 138
- — containing Fresnel integral, 87, 258
- — containing gamma function, 260
- — containing Gauss hypergeometric function, 275
- — containing Hermite polynomial, 108
- — containing higher-order polynomial in arguments, 6, 133, 311
- — containing hyperbolic cosine, 22, 154, 238, 237
- — containing hyperbolic cotangent, 38, 162, 242, 333
- — containing hyperbolic function, 22, 73, 83, 84, 154, 179, 185, 186, 238, 255, 327, 348, 351, 352
- — containing hyperbolic sine, 28, 156, 238, 329
- — containing hyperbolic tangent, 36, 161, 241, 332
- — containing incomplete gamma function, 88, 260
- — containing integer powers of arguments, 220
- — containing inverse trigonometric function, 66, 176, 344
- — containing Jacobi theta functions, 110
- — containing Kummer confluent hypergeometric function, 272
- — containing Laguerre polynomial, 110
- — containing Legendre function, 270
- — containing Legendre polynomial, 105
- — containing Legendre spherical function of first kind, 299
- — containing logarithmic function, 42, 45, 77, 83, 85, 164, 165, 180, 185, 187, 242, 244, 255, 256, 334, 335, 349, 351, 353
- — containing logarithmic integral, 258
- — containing modified Bessel function, 97, 189, 355
- — containing modified Bessel function of first kind, 266
- — containing modified Bessel function of second kind, 266
- — containing other special function, 111, 277
- — containing parabolic cylinder function, 276
- — containing power-law function, 4, 19, 45, 127, 151, 165, 217, 236, 244, 301, 326, 335
- — containing rational function, 7, 136, 220, 314
- — containing sine, 52, 169, 247, 337
- — containing sine integral, 87, 258
- — containing special function, 86, 187, 258, 353
- — containing square roots, 9, 222
- — containing square roots powers, 138
- — containing sum of exponential functions, 564
- — containing sum of hyperbolic functions, 564
- — containing sum of trigonometric functions, 564
- — containing tangent, 60, 174, 251, 342
- — containing Tricomi confluent hypergeometric function, 273
- — containing trigonometric function, 46, 78, 84, 85, 166, 181, 186, 187, 246, 256, 295, 335, 349, 352, 353
- — containing Whittaker confluent hypergeometric function, 274
- — cubic in arguments, 5, 132, 307
- — degenerate, 111, 191, 278, 357, 519, 522, 539, 540–543, 569, 573, 589, 625, 627, 631, 810, 817
- — degenerate, general, 523
- — degenerate, general case, 628
- — degenerate, simplest, 627
- — difference, 114, 203, 283, 372, 519, 524, 539, 544, 573, 574, 586, 610, 625, 626, 655, 683
- — difference, on entire axis, 655
- — difference, with weak singularity, 588
- — eigenfunction, 844
- — eigenvalue, 844
- — Fredholm, 573, 625, 839–841
- — Fredholm, positive definite, 840
- — Fredholm, positive definite, symmetric, 866
- — Fredholm, symmetric definite, 840, 841
- — general degenerate, 523
- — generalized, 783
- — Hilbert, 707, 780
- — Hilbert, characteristic equation, 769
- — Hilbert, complete singular integral equation, 759, 780
- — Hilbert, integral equations, 759
- — Hilbert–Schmidt, 841, 843, 845, 853, 855, 856, 860
- — Hilbert–Schmidt, approximate values of eigenvalues, 845
- — Hilbert–Schmidt, eigenfunctions, 854, 856, 858, 861, 864, 865
- — Hilbert–Schmidt, eigenvalues, 854, 856, 858, 864, 865
- — Hilbert-type, 751, 754
- — incomplete, 578
- — iterated, 566, 632
- — iterated, bilinear series, 642
- — linear in arguments, 4, 127, 217, 301
- — logarithmic, 519, 588
- — nondegenerate, 589, 631
- — nonnegative, 648
- — nonsymmetric, 580, 647
- — of integral equation, 519, 573, 625
- — of integral transform, 503
- — orthogonal, 634
- — oscillation, 651
- — oscillation, definition, 651
- — oscillation, theorems, 651
- — polar, 519, 532, 574, 588
- — positive definite, 641
- — quadratic in arguments, 4, 129, 219, 304
- — resolvent, 844
- — Schmidt, 582, 841, 848, 851, 859, 860, 862
- — simplest degenerate, 627
- — singular, weakly, 532
- — spectral radius, 649
- — stochastic, 654
- — symmetric, 573, 577, 625, 639, 645
- — symmetric, resolvent, 644
- — trace, 646
- — transformation, method, 532
- — Volterra, 839
- — weakly singular, 532
- — with logarithmic singularity, 533
- — with rational Fourier transforms, 685
- — with weak singularity, 519, 532, 574, 588, 625
- Kontorovich–Lebedev inversion formula, 516
- Kontorovich–Lebedev transform, 267, 516, 518
- Korteweg–de Vries equation, 899
- — modified, 900
- Krein's method, 588, 683
- — for integral equations, 588
- — for Wiener–Hopf equations, 679
- Kummer confluent hypergeometric function, 272, 1024
- Kummer series, 1024
- Kummer transformation, 1025
L
- L2-norm, 501
- Lagrange interpolation polynomial, 748
- Laguerre polynomial, 110, 1024, 1045
- — generalized, 1045
- Lalesco–Picard equation, 323
- Lanczos approximation, 798
- Laplace equation, 893
- — potentials, properties, 892
- Laplace integral, 1030
- Laplace transform, 235, 505, 511, 518, 524, 544, 658, 809
- — definition, 505
- — inverse, tables, 969
- — inversion formula, 505
- — properties, 507
- — solution method, 524
- — tables, 961
- — two-side, 234, 518
- Lavrentiev regularization method, 621
- layer potential, single, 893
- least squares method, 695
- — description, 695
- — normal system, 695
- Lebedev transform, 269
- Lebesgue integrable function, 1059
- Lebesgue integral, 1057
- — definition, 1059
- — properties, 1059
- Lebesgue space Lp(a, b), 1064
- Lebesgue theorem on dominated convergence, 1060
- left-sided fractional derivative, 529
- left-sided fractional integral, 529
- left Fourier integral, 594
- left function, 594
- left regularization, 775
- — method, 775
- left regularizer, 703
- Legendre equation, 1032
- Legendre functions, 270, 1030
- — associated, 107, 271, 1030
- — associated, first kind, 1032
- — associated, modified, 1033
- — associated, second kind, 1032
- — modified associated, 1033
- — Wronskians, 1034
- Legendre polynomials, 105, 856, 1030
- — orthonormal, 844
- Legendre spherical functions, first kind, 299
- lemma, Jordan, 505
- limit theorems, 507
- linear algebraic equations,
- — infinite system, 858, 861, 864, 868, 971
- — infinite system with symmetric matrix, 850, 853
- linear boundary value problems, representation, 892
- linear equation, 898
- — constant integration limits, 502
- — first kind, 502
- — first kind, constant integration limits, 217, 573
- — first kind, variable integration limit, 3
- — operator methods, 549
- — second kind, 502
- — second kind, constant integration limits, 301, 625
- — second kind, variable integration limit, 127
- — solution methods, 519, 539, 573, 625
- — structure of solutions, 502
- — variable integration limit, 502
- linear normed spaces, 1063
- linear operator, 502, 1066
- — eigenfunction, 1066
- — eigenvalue, 1066
- linear operators in Hilbert spaces, 1065, 1066
- linear ordinary differential equations, 881
- linear relations of parabolic cylinder functions, 1034
- linear space, 1063
- — complex, 1063
- — real, 1063
- linear superposition principle, 502
- linearly dependent elements, 1063
- linearly independent elements, 843, 1063
- Liouville theorem, generalized, 714
- Lipschitz condition, 709, 1054, 1057
- local solutions of nonlinear integral equation with parameter, 835
- logarithm,
- — Napierian, base, 905
- — natural, base, 905
- logarithmic derivative of gamma function, 1017, 1021
- logarithmic function, 42, 45, 77, 83, 85, 164, 165, 180, 185, 187, 242, 244, 255, 256, 334, 335, 349, 351, 353, 905, 943, 955, 965, 980, 985, 992, 999, 1002
- — properties, 906
- logarithmic integral, 258, 1009, 1010, 1025
- logarithmic kernel, 519, 588
- logarithmic nonlinearity, 419, 472
- logarithmic singularity, 533, 618
- — kernel, 533
M
- MacDonald function, 266, 1021
- mass transfer to particle in fluid flow complicated by surface reaction, 888
- Mathieu equation, 1043
- — modified, 1045
- Mathieu function, 1043, 1044
- — modified, 1043, 1045
- matrix,
- — eigenvalues, 845, 848, 856, 859, 861, 868, 872
- — eigenvectors, orthonormal, 845, 848, 856, 859, 868, 872
- — orthonormal eigenvectors, 845, 848, 856, 859, 868, 872
- mean-square convergence, 501
- measurable function, 1058
- measurable set, 1060
- — integration, 1061
- measure,
- — full, set, 1058
- — zero, set, 1058
- measure of set, 1061
- mechanics, fracture, 791
- Mehler–Fock transform, 270, 518
- — generalized, 271
- Mehler integral, 299, 615
- Meijer inversion formula, 516
- Meijer transform, 266, 516, 517
- Mellin transform, 510, 511, 518, 587, 657, 658
- — definition, 510
- — inverse, 510
- — inverse, tables, 1001
- — inversion formula, 510
- — properties, 511
- — tables, 997
- method,
- — approximation, successive, 566
- — Bateman, 689
- — Bateman, general scheme, 689
- — Bateman, special cases, 690
- — Bubnov–Galerkin, 697
- — Bubnov–Galerkin, description, 697
- — Carleman, for characteristic equations, 761
- — Carleman, for equations of convolution type of first kind, 606
- — Carleman, for equations with difference kernels, 610
- — Carleman, for integral equations of convolution type of second kind, 660
- — collocation, 692, 693, 815
- — collocation, for solving hypersingular integral equation, 755
- — exact, 588
- — Galerkin, 582
- — Kellog's, for finding characteristic values in case of symmetric kernel, 645
- — Krein's, 588, 683
- — Krein's, for integral equations, 588
- — Krein's, for Wiener–Hopf equations, 679
- — Multhopp–Kalandiya, 747
- — Newton–Kantorovich, 813, 814, 827
- — Newton–Kantorovich, modified, 814, 827
- — nonlinear equations with constant integration limits, exact, 817
- — nonlinear equations with variable integration limit, exact, 809
- — operator, 549, 654
- — operator, for solving integral equations of second kind, 654
- — Picard, 876
- — projection, for solving mixed equations on bounded set, 866
- — quadrature, 698, 816 829
- — quadrature, general scheme, 698
- — regularization, 704
- — regularization, for complete singular integral equations, 772
- — regularization, for equations with infinite limits of integration, 702
- — regularization, Lavrentiev, 621
- — regularization, Tikhonov, 622, 829
- — solution, Laplace transform, 524
- — successive approximation, 566, 811, 826
- — successive approximation, general scheme, 566
- — successive approximation, resolvent, 566
- — Tikhonov regularization, 829
- — trace, for approximation of characteristic values, 646
- — Wiener–Hopf, 671
- — Wiener–Hopf, scheme, 676
- — Zakharov–Shabat, 898
- method based on solution of auxiliary equation, 546
- method for,
- — solving quadratic operator equations, 552
- — special Urysohn equations of first kind, 821
- — special Urysohn equations of second kind, 822
- method of,
- — approximating kernel by degenerate one, 687
- — differentiating, for integral equations, 820, 564, 583
- — differentiation, 564, 583, 810
- — differentiation, for nonlinear equations with degenerate kernel, 810
- — equidistant surface, 891
- — fractional differentiation, 529
- — fractional integration, for generalized Abel equation, 548
- — Fredholm determinants, 635
- — Fredholm determinants, 635
- — integral transforms, 586, 655, 809, 819
- — least squares, 695
- — least squares, description, 695
- — least squares, normal system, 695
- — left regularization, 775
- — model solutions, 559, 655, 659
- — model solutions, description, 560
- — numerical integration of equation for surface concentration, 891
- — quadratures, 534, 568, 698
- — quadratures, algorithm based on trapezoidal rule, 536
- — quadratures, general scheme, 535, 568
- — quadratures, trapezoidal rule, 568
- — replacing kernel by degenerate kernel, 687
- — right regularization, 775
- — successive approximations, 579, 632, 633, 811, 876
- — successive approximations, for ODEs, 876
- — transformation of kernel, 532
- methods
- — approximate, for nonlinear equations with constant integration limits, 826
- — approximate, for nonlinear equations with variable integration limit, 811
- — asymptotic, 618
- — asymptotic, for solving equations with logarithmic singularity, 618
- — exact, for integral equations, 588
- — exact, for nonlinear equations with constant integration limits, 817
- — exact, for nonlinear equations with variable integration limit, 809
- — for solving complete singular integral equations, 757
- — for solving equations with difference kernels on finite interval, 683
- — for solving integral equations, 499
- — for solving linear equations, 519, 539, 573, 625
- — for solving multidimensional mixed integral equations, 839
- — for solving nonlinear integral equations, 805
- — for solving singular integral equations of first kind, 707
- — integral equations of first kind, 707
- — numerical, for hypersingular equations, 754
- — numerical, for nonlinear equations with constant integration limits, 826
- — numerical, for nonlinear equations with variable integration limit, 811
- — of solving mixed integral equations on finite interval, 843
- — of solving mixed integral equations on ring-shaped domain, 855
- — operator, for solving linear integral equations, 549
- — regularization, 621
- minor, Fredholm, 636
- mixed equation, 839
- — bounded set, projection method, 866
- — circular domain, 841
- — closed bounded set, 842
- — finite interval, 840
- — Hilbert–Schmidt kernel, finite interval, 843
- — Hilbert–Schmidt kernel, ring-shaped domain and given right-hand side, 855
- — multidimensional, 839
- — multidimensional, solution methods, 839
- — on finite interval, methods of solving, 843
- — on ring-shaped domain, methods of solving, 855
- — ring-shaped domain, 841
- — Schmidt kernel and auxiliary conditions on ring-shaped domain, 862
- — Schmidt Kernel and given right-hand side on interval, 848
- mixed multidimensional equation,
- — Fredholm operator, 842
- — Schmidt operator, 843
- — Schmidt operator, equivalent form, 843
- — symmetric Fredholm kernel, 842
- — Volterra and Hilbert–Schmidt types operators, 866
- — Volterra and Schmidt types operators, 866
- mixed operator equation, 866, 869
- — with given right-hand side, 866
- mixed operator equations with auxiliary conditions, 869
- mixed two-dimensional equation, Schmidt kernel, 841
- — equivalent form, 842
- model solution,
- — cosine-shaped right-hand side, 563
- — exponential right-hand side, 561
- — power-law right-hand side, 562
- — sine-shaped right-hand side, 562
- model solutions, method, 559, 655, 659
- modified associated Legendre functions, 1033
- modified Bessel equation, 1021
- modified Bessel function, 97, 189, 269, 355, 1021
- — asymptotic expansions, 1022
- — definitions, 1021
- — first kind, 266, 1021
- — integral representations, 1022
- — second kind, 266, 1021
- modified Korteweg–de Vries equation, 900
- modified Mathieu function, 1043, 1045
- modified Newton–Kantorovich method, 814, 827
- modulus, 278, 583
- — complementary, 1036
- — elliptic, 1036
- Multhopp–Kalandiya method, 747
- multidimensional domain, 839
- — integration, 839
- multidimensional equation, mixed, 839
- — Fredholm operator, 842
- — integral operators of Volterra and Hilbert–Schmidt types, 866
- — integral operators of Volterra and Schmidt types, 866
- — Schmidt operator, 843
- — solution methods, 839
- — symmetric Fredholm kernel, 842
- multidimensional real-valued functions, 839
- multiply connected domain, 731
- multivalued functions, 711
N
- Napierian base, 906
- Napierian logarithms, base, 905
- natural logarithms, base, 905
- natural numbers, powers, sums, 919
- Nekrasov equation, 836
- Neumann function, 1016
- Neumann problem,
- — exterior, reduction to integral equations, 896
- — interior, 895
- — interior, reduction to integral equations, 895
- Neumann series, 567, 633
- Newton–Kantorovich method, 813, 814, 827
- — modified, 814, 827
- nodes,
- — Chebyshev, 748
- — interpolation, 534
- — quadrature, 534
- nondegenerate kernel, 589, 631
- nonhomogeneous equation, 502, 539, 627, 708, 751
- — positive solutions, 649
- — solution, 642
- nonhomogeneous problem, 604, 742
- — solution, 721
- nonhomogeneous Riemann problem, canonical function, 605
- nonhomogeneous Wiener–Hopf equation of second kind, 677
- nonisothermal flow in plane channel, 884
- nonlinear equation, 807, 834, 899
- — bifurcation points, 834, 835
- — constant integration limits, 806, 829
- — constant integration limits, approximate methods, 826
- — constant integration limits, exact methods, 817
- — constant integration limits, numerical methods, 826
- — degenerate kernel, 817
- — degenerate kernel, method of differentiation, 810
- — eigenfunctions, 834
- — existence theorems, 830
- — first kind with constant limits of integration, 433
- — parameter, local solutions, 835
- — second kind with variable limit of integration, 403
- — second kind with constant limits of integration, 453
- — solution methods, 805
- — uniqueness theorems, 830
- — variable limit of integration, 805
- — variable limit of integration, approximate methods, 811
- — variable limit of integration, exact methods, 809
- — variable limit of integration, numerical methods, 811
- nonlinear operator, eigenfunctions, 834
- nonlinear PDEs, 898
- nonlinear problem of nonisothermal flow in plane channel, 884
- nonlinear Volterra integral equation, 805
- nonlinearity, 414–416, 418, 467–470, 472–475
- — exponential, 411, 467
- — general form, 399, 425, 447, 477
- — hyperbolic, 414, 468
- — logarithmic, 419, 472
- — power-law, 408, 444, 464
- — quadratic, 393, 397, 403, 406, 437, 453, 456
- — trigonometric, 420, 473
- nonnegative kernels, 648
- nonorthogonal polynomials, 1050
- nonsymmetric kernel, 580, 647
- norm, 501, 644, 839
- — operator, 1066
- normal system of method of least squares, 695
- normality condition, 596
- normed space, 1063
- — linear, 1063
- notion of almost everywhere, 1058
- notion of index, 716
- nth-order differential equations, boundary value problems, 882
- nth-order linear ODE, 876
- numbers, 1007
- — Bernoulli, 1008
- — Euler, 1008
- — natural, powers, sums, 919
- numerical integration, method, 891
- numerical methods for hypersingular equations, 754
- numerical methods for nonlinear equations with constant integration limits, 826
- numerical methods for nonlinear equations with variable limit of integration, 811
- numerical series, 924
- — infinite, 924
- numerical solution, singular equations, 799
- — generalized kernels, 792
- numerical sums, 921
- — finite, 919
O
- ODE,
- — first-order, 875, 876
- — method of successive approximations, 876
- — nth-order, linear, 876
- — second-order, 876
- Olevskii transform, 276
- one-dimensional domain, 839
- — integration, 839
- one-sided equation, 574, 626
- one-sided Fourier integrals, 593, 594
- one-sided function, 594
- open curves, 734
- — Riemann problem, 734
- operator
- — compact, 842, 843, 1067
- — compact, self-adjoint, 843
- — compact, self-adjoint positive, 873
- — compact, self-adjoint positive definite, 1067
- — compact, self-adjoint positive definite, eigenvalues, 1067
- — Erdelyi–Kober, 532
- — Fredholm, 758, 842
- — Fredholm, symmetric kernel, generalization, 843
- — Hilbert–Schmidt, 842, 843, 866, 871
- — Hilbert–Schmidt, approximation for eigenfunctions, 868, 872
- — Hilbert–Schmidt, approximation for eigenvalues, 868, 872
- — Hilbert–Schmidt, eigenfunction, 871
- — Hilbert–Schmidt, eigenvalues, 871
- — identity, 842, 873
- — integral, characteristic, 758
- — integral, characteristic, transposed, 758
- — integral, compactness, sufficient condition, 842
- — integral, continuous, 1066
- — integral, domain, 1066
- — integral, domain of definition, 1066
- — integral, eigenvalues, 867
- — integral, positive definite, 842
- — integral, self-adjoint, 842, 843, 1067
- — integral, self-adjoint, eigenvalues, 1067
- — integral, self-adjoint, eigenvectors, 1067
- — integral, spectral radius, 649
- — integral, spectrum, 1066
- — integral, transposed, 758
- — integral, transposed characteristic, 758
- — integral with positive definite kernel, 843
- — integral with symmetric kernel, 843
- — linear, 502, 1066
- — linear, eigenfunction, 1066
- — linear, eigenvalue, 1066
- — linear in Hilbert spaces, 1065, 1066
- — nonlinear, eigenfunctions, 834
- — norm, 1066
- — orthogonal projection, 1067
- — point, continuous, 1066
- — positive definite, 842, 1067
- — regular, 758
- — regularizing, 703
- — Schmidt, 843, 866
- — singular, 758
- — singular, certain properties, 772
- — Volterra, 842, 873
- operator equation,
- — general projection problem, 873
- — general projection problem, 873
- — mixed, 866, 869
- — mixed with auxiliary conditions, 869
- — quadratic, 552
- — solution, 553
- operator method, 549, 654
- operator method for solving integral equations of second kind, 654
- operator of fractional integration, 529
- operator of orthogonal projection, 846, 852, 857, 563, 870
- order, fractional, integral, 529
- ordinary differential equations, 527, 547, 686
- — linear, 881
- orthogonal function, 582
- orthogonal kernels, 634
- orthogonal polynomials, 1045
- — system, 795
- orthogonal projection, operator, 846, 852, 857, 563, 870, 1067
- orthogonal projector, 1067
- orthogonal subspaces, 873
- — direct sum, 845, 863, 869
- orthogonal system, 1065
- orthogonal vectors, 1065
- orthogonality properties of Bessel functions, 1019
- orthonormal basis, 855, 856
- orthonormal eigenvectors of matrix, 845, 848, 856, 859, 868, 872
- orthonormal Legendre polynomials, 844
- orthonormal system, 1065
- — complete, 844, 855
- oscillation kernel, 651
- — definition, 651
- — theorems, 651
P
- Paley–Wiener transform, 260
- parabolic cylinder function, 276, 1034
- — asymptotic expansions, 1034
- — basic formulas, 1034
- — definitions, 1034
- — integral representations, 1034
- — linear relations, 1034
- — Weber, 1034
- parameter of integral equation, 625
- parameters, arbitrary, 408, 411, 433, 453
- Parseval's relation,
- — Fourier cosine transform, 514
- — Fourier sine transform, 515
- — Hankel transform, 515, 516
- particular solutions of PDEs, 887
- PDEs, nonlinear, 898
- PDEs with boundary conditions,
- — third kind, 887
- — third kind, reduction to integral equations, 887
- permutator, 654
- Picard–Goursat equation, 134
- Picard method, 876
- Pochhammer symbol, 1007
- Poincare–Bertrand formula, 714
- point
- — bifurcation, 835
- — bifurcation of nonlinear integral equations, 834, 835
- — collocation, 693
- — cuspidal, 708
- — regular, 1066
- — singular, 507
- point operator, continuous, 1066
- Poisson's formula, 1018
- Poisson equation, 894
- polar kernel, 519, 532, 574, 588
- polynomial
- — Bernoulli, 1050
- — Chebyshev, 109, 1047
- — Chebyshev, second kind, 750
- — Euler, 1051
- — Gegenbauer, 1050
- — generalized Laguerre, 1045
- — Hermite, 108, 1024, 1025, 1048
- — higher-order in arguments, 6, 133, 311
- — interpolation, Hermite, 716
- — interpolation, Lagrange, 748
- — Jacobi, 1049
- — Lagrange interpolation, 748
- — Laguerre, 110, 1024, 1045
- — Laguerre, generalized, 1045
- — Legendre, 105, 856, 1030
- — Legendre, orthonormal, 844
- — nonorthogonal, 1050
- — orthogonal, 1045
- — orthogonal, system, 795
- — orthonormal Legendre, 844
- — ultraspherical, 1050
- polynomial form, 553
- positive definite Fredholm kernel, 840
- — symmetric, 866
- positive definite integral operator, 842
- positive definite kernel, 641
- positive definite operator, 1067
- positive eigenvalue, 648
- positive Fredholm kernel, symmetric, 841
- positive solutions of nonhomogeneous integral equation, 649
- Post–Widder formula, 510
- potential,
- — density, 893
- — double layer, 893
- — double layer, Gauss formula, 894
- — equilibrium, 897
- — Feller, 226
- — Laplace equation, 892
- — Laplace equation, properties, 892
- — layer, single, 893
- — Riesz, 226
- — Roben, 897
- — single layer, 893
- — volume, 893
- — volume, Gauss formula, 894
- power-law functions, 4, 45, 127, 151, 165, 217, 236, 244, 301, 326, 335, 419, 951, 963, 983, 989, 998, 1001
- power-law generating function, 557
- power-law nonlinearity, 408, 464
- power-law nonlinearity that contain arbitrary functions, 444
- power function, 905
- — properties, 905
- power series, 925
- — expansion, 910, 913, 916, 918
- power series in parameter, 632
- power series of Airy functions, 1023
- powers, arbitrary, 139, 223, 317, 939, 977
- powers, fractional, 138
- powers of natural numbers, sums, 919
- principal value,
- — curvilinear integral, 712
- — singular curvilinear integral, 712
- — singular integral, 709
- principle
- — linear superposition, 502
- principle of argument, 714
- principle of continuity, 714
- probability integral, 1009
- problem
- — Abel, 520
- — boundary value, first, 895, 896
- — boundary value, for nth-order differential equations, 882
- — boundary value, for ODEs, 877, 881
- — boundary value, for second-order differential equations, 883
- — boundary value, linear, representation, 892
- — boundary value, Riemann, 595
- — boundary value, second, 895, 897
- — Cauchy, for ODEs, reduction to integral equations, 875
- — Cauchy, for second-order ODEs, 876
- — Cauchy, for special nth-order linear ODE, 876
- — Dirichlet, exterior, reduction to integral equations, 896
- — Dirichlet, interior, 895
- — Dirichlet, interior, reduction to integral equations, 895
- — electrostatic, Roben, 897
- — factorization, 676, 679
- — general projection, 873
- — general projection, for operator equation, 873
- — general projection, special case, 846, 852, 857, 870
- — Hilbert, 742
- — Hilbert, boundary value, 742
- — homogeneous, 596, 602, 742
- — homogeneous, solution, 720
- — ill-posed, 623, 624
- — ill-posed, general notions, 623
- — interior Dirichlet, 895
- — interior Dirichlet, reduction to integral equations, 895
- — interior Neumann, 895
- — interior Neumann, reduction to integral equations, 895
- — jump, 596
- — linear boundary value, representation, 892
- — Neumann, exterior, reduction to integral equations, 896
- — Neumann, interior, 895
- — Neumann, interior, reduction to integral equations, 895
- — nonhomogeneous, 604, 742
- — nonhomogeneous, solution, 721
- — nonhomogeneous Riemann, canonical function, 605
- — nonlinear of nonisothermal flow in plane channel, 884
- — projection, general, for operator equation, 873
- — projection, general, special case, 846, 852, 857, 870
- — Riemann, 596, 685, 714
- — Riemann, boundary value, 595
- — Riemann, coefficient, 596, 718
- — Riemann, discontinuous coefficient, 739
- — Riemann, exceptional cases, 727
- — Riemann, for half-plane, 725
- — Riemann, for open curves, 734
- — Riemann, for real axis, 592
- — Riemann, general case, 741
- — Riemann, index, 596, 731
- — Riemann, multiply connected domain, 731
- — Riemann, nonhomogeneous, canonical function, 605
- — Riemann, open curves, 734
- — Riemann, right-hand side, 596, 718
- — Riemann, statement, 718
- — Riemann, with discontinuous coefficient, 739
- — Riemann, with rational coefficients, 723
- — Roben electrostatic, 897
- — second boundary value, 895, 897
- — tautochrone, 520
- — well-posed, 623
- problem of equivalent regularization, 776
- problem with rational coefficients, 601
- process, iteration, 811, 814
- product
- — infinite, 910, 916
- — inner, 501, 644
- — scalar, 839
- progressions, 919, 924
- projection, orthogonal, operator, 846, 852, 857, 563, 870
- projection method for solving mixed equations on bounded set, 866
- projection problem
- — general, for operator equation, 873
- — general, special case, 846, 852, 857, 870
- projector, orthogonal, 1067
- properties
- — basic of Gauss hypergeometric functions, 1028
- — certain of singular operators, 772
- — orthogonality of Bessel functions, 1019
- property, semigroup of fractional integration, 529
- psi function, 1012, 1013
Q
- quadratic form, 644
- quadratic nonlinearity, 393, 397, 403, 406
- — containing arbitrary functions, 437, 456
- — containing arbitrary parameters, 433, 453
- quadrature formula, 534, 793, 815
- quadrature method, 698, 816, 829
- — general scheme, 698
- quadrature nodes, 534
- quadratures, method, 534, 568, 698
- — algorithm based on trapezoidal rule, 536
- — general scheme, 535
R
- radius,
- — estimates, 649
- — of integral operator, 649
- — of kernel, 649
- rational coefficients, 601, 723
- rational Fourier transforms, 685
- rational functions, 7, 136, 220, 314, 933, 971
- — inverse transforms, 506
- reaction, surface, 888
- real-valued functions, multidimensional, classes, 839
- real axis
- — Holder condition, 575
- — Sokhotski–Plemelj formulas, 713
- real linear space, 1063
- rectangle rule, 534
- recurrent relations, 636
- reduction formulas, 907, 939, 947
- regular operator, 758
- regular points, 1066
- regular value, 301, 625, 637
- regularization, 774
- — Carleman–Vekua, 778
- — equivalent, problem, 776
- — left, 775
- — left, method, 775
- — right, 776
- — right, method, 775
- regularization in exceptional cases, 779
- regularization method, 621, 704
- — complete singular integral equations, 772
- — equations with infinite limits of integration, 702
- — Lavrentiev, 621
- — Tikhonov, 622, 829
- regularizer, 774
- — left, 703
- — right, 704
- regularizing operators, 703
- relation,
- — linear of parabolic cylinder functions, 1034
- — Parseval's, Fourier cosine transform, 514
- — Parseval's, Fourier sine transform, 515
- — Parseval's, Hankel transform, 515, 516
- recurrent, 636
- relations between Mellin, Laplace, and Fourier transforms, 511
- remainder, 534
- renewal equation, 203
- representation,
- — Bessel functions, 1017
- — form of infinite products, 910, 916
- — Gauss hypergeometric functions, 1028
- — inverse transforms as asymptotic expansions, 509
- — inverse transforms as convergent series, 509
- — modified Bessel functions, 1022
- — parabolic cylinder functions, 1034
- — series of Jacobi theta functions, 1042
- — Tricomi confluent hypergeometric functions, 1024
- residual, 692
- residue theorem, Cauchy, 504
- residues, 504
- resolvent, 539, 567, 626, 633, 635
- — construction, 633
- — kernel, 844
- — symmetric kernel, 644
- results, auxiliary, 784
- Riemann boundary value problem, 595, 714
- Riemann integral, 1057
- Riemann–Liouville derivatives, 529
- Riemann–Liouville fractional integrals, 529
- Riemann problem, 596, 685, 714
- — coefficient, 596, 718
- — exceptional cases, 727
- — for half-plane, 725
- — for multiply connected domain, 731
- — for open curves, 734
- — for real axis, 592
- — general case, 741
- — index, 596, 731
- — nonhomogeneous, canonical function, 605
- — right-hand side, 596, 718
- — statement, 718
- — with discontinuous coefficient, 739
- — with rational coefficients, 723
- Riemann zeta function, generalized, 277
- Riesz potential, 226
- Riesz Schauder theory, Riesz–Schauder theory, 843
- Riesz transform, 226
- right-hand side, 757
- — equation, 519, 573, 625
- — integral equation, 539
- — Riemann problem, 596, 718
- — special, 555
- right-sided fractional derivative, 529
- right-sided fractional integral, 529
- right Fourier integral, 594
- right function, 594
- right regularization, 776
- — method, 775
- right regularizer, 704
- ring-shaped domain, 841, 855, 862
- Roben electrostatic problem, 897
- Roben potential, 897
- roots, square, 138, 222, 975
- rule
- — rectangle, 534
- — Simpson's, 534
- — trapezoidal, 534, 568
S
- scalar, 1063
- scalar product, 839
- scalars, field, 1063
- scheme,
- — general, Bateman method, 689
- — general, method of quadratures, 568
- — general, successive approximation method, 566
- Schlomilch equation, 254, 452, 825
- Schlomilch equation, generalized, 254
- Schmidt integral operator, 843, 866
- Schmidt kernel, 582, 841, 848, 851, 859, 860, 862
- Schmidt operator, 866
- second-order differential equations, boundary value problems, 883
- second-order ODEs, 876
- second boundary value problem, 895, 897
- segment, finite, equation, 683, 685
- self-adjoint operator, 842, 843, 1067
- — eigenvalues, 1067
- — eigenvectors, 1067
- semiaxis,
- — equation, 574, 587, 626, 657
- — Hilbert transform, 229
- semigroup property of fractional integration, 529
- sequence of independent Volterra equations, 847, 858
- sequence of independent Volterra equations of second kind, 853, 865, 872
- sequence of Volterra equations, 844, 850, 862
- sequence of Volterra equations of second kind, 855
- series,
- — bilinear, 640
- — bilinear, iterated kernels, 642
- — convergent, 509
- — functional, infinite, 925
- — hypergeometric, 1028
- — infinite, 919
- — infinite functional, 925
- — infinite numerical, 924
- — Kummer, 1024
- — Neumann, 567, 633
- — numerical, 924
- — numerical, infinite, 924
- — power, 913, 925
- — power, expansion, 910, 916, 918
- — power in parameter, 632
- — power of Airy functions, 1023
- — trigonometric, in one variable, involving cosine, 928
- — trigonometric, in one variable, involving sine, 927
- — trigonometric, in two variables, 930
- series representation of Jacobi theta functions, 1042
- set, 866
- — bounded, closed, 842
- — closed bounded, 842
- — measurable, 1060
- — measure, 1061
- set of full measure, 1058
- set of zero measure, 1058
- sets, measurable, 1060
- — measurable, integration, 1061
- — zero measure, 1058
- several variables, function, 839
- side, right-hand
- — of equation, 519, 573, 625
- — of integral equation, 539
- — of Riemann problem, 596
- — of Riemann problem, 718
- — special, 555
- simple hypersingular equation of first kind with Cauchy-type kernel, 231
- simple hypersingular equation of first kind with Hilbert-type kernel, 255
- simplest degenerate kernel, 627
- simplest equation with Cauchy kernel, 743
- simplest hypersingular equation for first kind with Hilbert-type kernel, 754
- simplest singular equation of first kind with Hilbert kernel, 707, 746
- Simpson's rule, 534
- sine, 52, 169, 247, 337, 558, 927
- — hyperbolic, 28, 156, 238, 329
- sine integral, 87, 258, 1011
- sine transform, Fourier, Parseval's relation, 515
- single layer potential, 893
- singular curvilinear integral, principal value, 712
- — 228, 255, 319, 344
- — Bueckner type, 801
- — Cauchy kernel, complete, 757
- — Cauchy kernel, first kind, 707
- — complete, 757, 770, 772
- — first kind, 743
- — generalized kernels, 792
- — generalized kernels, direct numerical solution, 792
- — Hilbert kernel, 759
- — Hilbert kernel, complete, 759, 780
- — numerical solution, 799
- — simplest of first kind with Hilbert kernel, 707, 746
- — transposed, 758
- — two-dimensional, 231
- singular equations of first kind, 707
- singular integral, 709
- — principal value, 709, 712
- singular kernel, weakly, 532
- singular operator, 758
- singular operators, certain properties, 772
- singular points, 507
- singularities, solutions, 783
- singularity
- — logarithmic, 533, 618
- — logarithmic, kernel, 533
- — weak, 574, 588, 625
- — weak, kernel, 519, 532, 574, 588, 625
- singularity exponents, 787, 789
- skew-symmetric integral equation, 647
- smooth contour, 708
- Sokhotski–Plemelj formula, 713, 785
- Sokhotski–Plemelj formulas for real axis, 713
- solution
- — approximate, 688, 693
- — approximation, 854
- — convolution representation, 526
- — direct numerical of singular integral equations with generalized kernels, 792
- — exact of simple hypersingular equation with Cauchy-type kernel, 753
- — exact of simple hypersingular equation with Hilbert-type kernel, 754
- — fundamental, 881
- — homogeneous problem, 720
- — integral equations, exact, 1–500
- — model, cosine-shaped right-hand side, 563
- — model, exponential right-hand side, 561
- — model, power-law right-hand side, 562
- — model, sine-shaped right-hand side, 562
- — nonhomogeneous problem, 721
- — numerical, of singular integral equations, 799
- — simple hypersingular equation with Cauchy-type kernel, exact, 753
- — simple hypersingular equation with Hilbert-type kernel, exact, 754
- — stable, 623
- — trivial, 502
- solution method, Laplace transform, 524
- solution method based on Laplace transform, 544
- solution of auxiliary equation, method, 546
- solution of generalized Abel equation, 531
- solution of operator equations of polynomial form, 553
- solutions
- — closed-form, case of constant coefficients, 770
- — closed-form, general case, 771
- — fundamental, 881
- — local of nonlinear integral equation with parameter, 835
- — model, method, 559, 655, 659
- — particular of PDEs, 887
- — positive of nonhomogeneous integral equation, 649
- solutions of dual integral equations, general scheme, 611
- solutions of nonlinear PDEs, representation in terms of solutions of linear integral equations, 898
- solutions singularities, 783
- solving linear equations, methods, 519, 539
- solving quadratic operator equations, 552
- Sonine transform, 114
- space
- — Banach, 1065
- — basis, 844, 863
- — complete, 1065
- — complex linear, 1063
- — Euclidean, 845, 857, 863, 869, 1065
- — Euclidean, basis, 857, 869
- — Hilbert, 839, 845, 857, 863, 867, 869, 1065
- — Hilbert, abstract, 873
- — Hilbert, basis, 857, 867, 869
- — Hilbert, linear operators, 1065, 1066
- — Hilbert, special basis, 869
- — Holder, 1064
- — Lebesgue, 1064
- — linear, 1063
- — linear, complex, 1063
- — linear, normed, 1063
- — linear, real, 1063
- — normed, 1063
- — normed linear, 1063
- — real linear, 1063
- — vector, 1063
- space of continuous functions, 1064
- space of functions of bounded variation, 1064
- special basis of Hilbert space, 869
- special case of general projection problem, 846, 852, 857, 870
- special functions, 86, 111, 187, 258, 277, 353, 967, 981, 987, 993, 1000, 1004
- special right-hand side, 555
- special Urysohn equations of first kind, method, 821
- special Urysohn equations of second kind, method, 822
- spectral radius, estimates, 649
- spectral radius of integral operator, 649
- spectral radius of kernel, 649
- spectrum of Fredholm integral equation, 760
- spectrum of operator, 1066
- spherical functions, Legendre of first kind, 299
- square integrable function, 501, 502
- square root, 9, 138, 222, 975
- stable solution, 623
- statement of Riemann problem, 718
- step-function, 1058
- — integral, 1059
- Stieltjes integral, 1055, 1056
- — basic definitions, 1055
- — existence theorems, 1056
- — properties, 1056
- Stieltjes integral sum, 1055
- Stieltjes transform, 221
- Stirling formula, 1013
- stochastic kernel, 654
- structure of solutions to linear integral equations, 502
- Struve function, 264, 299, 516, 518
- subspace, 1063
- — orthogonal, 873
- — orthogonal, direct sum, 845, 863, 869
- successive approximation method, 566, 579, 632, 633, 811, 826, 876
- — for ODEs, 876
- — general scheme, 566
- — resolvent, 566
- sufficient condition for compactness of integral operator, 842
- sum
- — contain binomial coefficients, 920
- — contain integers, 920
- — finite, 919
- — finite functional, 922
- — finite numerical, 919
- — functional, finite, 922
- — integral, Stieltjes, 1055
- — involving hyperbolic functions, 922
- — involving trigonometric functions, 922
- — numerical, 921
- — numerical, finite, 919
- — of exponential functions, 564
- — of hyperbolic functions, 564
- — of orthogonal subspaces, direct, 845, 863, 869
- — of powers of natural numbers, 919, 920
- — of powers of natural numbers, alternating, 920
- — of trigonometric functions, 564
- — Stieltjes integral, 1055
- summable function, 1059
- — integral, 1059
- superposition principle, linear, 502
- surface, equidistant, method, 891
- surface concentration,
- — equation, method of numerical integration, 891
- — integral equation, 890
- surface reaction, 888
- symbol, Pochhammer, 1007
- symbols, 1007
- symmetric definite Fredholm kernel, 840
- symmetric equation, 639, 647
- — Fredholm alternative, 643
- symmetric kernel, 573, 577, 625, 639, 645
- — resolvent, 644
- symmetric positive definite Fredholm kernel, 866
- symmetric positive Fredholm kernel, 841
- system
- — complete, 1065
- — complete orthonormal, 855
- — Fredholm integral equations of second kind, 701
- — infinite of linear algebraic equations, 858, 861, 864, 868, 971
- — infinite of linear algebraic equations with symmetric matrix, 850, 853
- — normal of method of least squares, 695
- — orthogonal, 1065
- — orthonormal, 1065
- — orthonormal, complete, 855
- — Volterra integral equations, 549
- system of characteristic values, 640
- system of eigenfunctions, 640
- — complete, 640
- — incomplete, 640
- system of equations, 701
- — reduction to single equation, 701
- system of Fredholm equations of second kind, 701
- system of functions,
- — complete orthonormal, 844
- — orthonormal, complete, 844
- system of orthogonal polynomials, 795
T
- tables of definite integrals, 951
- tables of Fourier cosine transforms, 983
- tables of Fourier sine transforms, 989
- tables of indefinite integrals, 933
- tables of inverse Laplace transforms, 969
- tables of inverse Mellin transforms, 1001
- tables of Laplace transforms, 961
- tables of Mellin transforms, 997
- tangent, 60, 174, 251, 342
- — hyperbolic, 36, 161, 241, 332
- tautochrone problem, 520
- terms of potentials, 892
- theorem
- — analytic continuation, 595, 714
- — Cauchy residue, 504
- — convolution, 507, 513
- — existence, 875
- — existence, for nonlinear equations, 830
- — existence, for Stieltjes integral, 1056
- — Fischer–Riesz, 1060
- — Fredholm, 637, 702, 777
- — Fubini, 1062
- — generalized Jentzch, 648
- — generalized Liouville, 595, 714
- — Hilbert–Schmidt, 641, 1067
- — Jentzch, generalized, 648
- — Lebesgue on dominated convergence, 1060
- — limit, 507
- — residue, Cauchy, 504
- — uniqueness, 875
- — uniqueness, for nonlinear equations, 830
- theory,
- — Hilbert–Schmidt, 843
- — Riesz–Schauder, 843
- theta functions, Jacobi, 110, 1042
- Tikhonov regularization method, 622, 829
- total variation of function, 1053
- trace method for approximation of characteristic values, 646
- trace of kernel, 646
- transform
- — alternative Fourier, 512
- — Boas, 250
- — Bochner, 263, 518
- — Buchholz, 274
- — cosine, Fourier, Parseval's relation, 514
- — Crum, 268
- — divisor, 269
- — Feller, 226
- — Fourier, 235, 511, 512, 518, 658
- — Fourier, alternative, 512
- — Fourier, asymmetric form, 512
- — Fourier, definition, 512
- — Fourier, inverse, 512
- — Fourier, inversion formula, 512
- — Fourier, properties, 513
- — Fourier, rational, 685
- — Fourier cosine, 514, 518
- — Fourier cosine, asymmetric form, 514
- — Fourier cosine, Parseval's relation, 514
- — Fourier cosine, tables, 983
- — Fourier sine, 514, 518
- — Fourier sine, asymmetric form, 515
- — Fourier sine, Parseval's relation, 515
- — Fourier sine, tables, 989
- — Gauss, 237
- — generalized Mehler–Fock, 271
- — Hankel, 261, 515, 518
- — Hankel, Parseval's relation, 515, 516
- — Hardy, 264
- — Hartley, 252, 518
- — Hilbert, 228, 255, 518, 743
- — Hilbert, on semiaxis, 229
- — integral, 503, 515
- — integral, kernel, 503
- — integral, method, 586, 655, 809, 819
- — integral, table, 517
- — inverse, 503
- — inverse, representation as asymptotic expansions, 509
- — inverse, representation as convergent series, 509
- — inverse Fourier, 512
- — inverse Laplace, tables, 969
- — inverse Mellin, 510
- — inverse Mellin, tables, 1001
- — inverse of rational functions, 506
- — kernel, 503, 586, 655, 809, 819
- — Kontorovich–Lebedev, 267, 516, 518
- — Laplace, 235, 505, 511, 518, 524, 544, 658, 809
- — Laplace, definition, 505
- — Laplace, inverse, tables, 969
- — Laplace, inversion formula, 505
- — Laplace, properties, 507
- — Laplace, solution method, 524
- — Laplace, tables, 961
- — Laplace, two-side, 234, 518
- — Lebedev, 269
- — Mehler–Fock, 270, 518
- — Mehler–Fock, generalized, 271
- — Meijer, 516, 517
- — Mellin, 510, 511, 518, 587, 657, 658
- — Mellin, definition, 510
- — Mellin, inverse, 510
- — Mellin, inverse, tables, 1001
- — Mellin, inversion formula, 510
- — Mellin, properties, 511
- — Mellin, tables, 997
- — Olevskii, 276
- — Paley–Wiener, 260
- — rational Fourier, 685
- — Riesz, 226
- — sine, Fourier, Parseval's relation, 515
- — Sonine, 114
- — Stieltjes, 221
- — table, 517
- — two-side Laplace, 234, 518
- — Weber, 265, 518
- — Weierstrass, 237, 518
- transformation, Kummer, 1025
- transformation of kernel, method, 532
- transposed characteristic equation, 758
- transposed characteristic operator, 758
- transposed equation, 573, 575, 625, 627, 637
- transposed equation of characteristic equation, 764
- transposed operator, 758
- transposed singular equation, 758
- trapezoidal rule, 534, 568
- triangle inequality, 501
- Tricomi confluent hypergeometric function, 273, 1024, 1025
- — asymptotic expansions, 1024
- — integral representations, 1024
- Tricomi equation, 319, 769
- Tricomi–Gellerstedt equation, 320
- trigonometric functions, 46, 78, 84, 85, 166, 181, 186, 187, 246, 252, 256, 295, 335, 344, 349, 352, 353, 564, 907, 922, 944, 956, 966, 981, 986, 992, 999, 1003
- — addition, 908
- — combinations, 176
- — inverse, 176, 344, 911, 948
- — inverse, addition, 912
- — inverse, relations, 912
- — inverse, subtraction, 912
- — of half argument, 909
- — of multiple arguments, 909
- — of single argument, relations, 908
- — powers, 908
- — products, 908
- — relationship, 916
- — subtraction, 908
- — sum, 564
- trigonometric nonlinearity, 420, 473
- trigonometric series
- — in one variable, involving cosine, 928
- — in one variable, involving sine, 927
- — in two variables, 930
- trivial solution, 502
- two-dimensional equation of Abel type, 15
- two-dimensional integral equation, mixed with Schmidt kernel, 841
- two-dimensional singular equation, 231
- two-side Laplace transform, 234, 518
- type, convolution, 574, 606, 660, 669
U
- ultraspherical polynomials, 1050
- undetermined coefficients, 692
- uniqueness theorems, 875
- uniqueness theorems for nonlinear equations, 830
- unknown function of complicated argument, 227, 246, 254
- Urysohn equation, 806, 832
- — first kind, 806, 829
- — second kind, 806
- — second kind with degenerate kernel, 818
- — special of first kind, method, 821
- — special of second kind, method, 822
- Urysohn form
- — Volterra equation, 805, 811, 814, 816
- — Volterra equation, first kind, 805, 815
- — Volterra equation, second kind, 805
V
- value
- — approximate of eigenvalues of Hilbert–Schmidt kernel, 845
- — Cauchy principal, 709
- — characteristic, 301, 625, 637, 639, 645, 697
- — characteristic, approximation, 646
- — characteristic, extremal properties, 644
- — characteristic, system, 640
- — in Banach space, continuous function of real argument, 840
- — in Hilbert space, continuous function of real argument, 840
- — in space of functions square integrable over closed bounded set, continuous function of real argument, 842
- — in space of functions square integrable over ring-shaped domain, continuous function of real argument, 841
- — in space of square integrable functions, continuous function of real argument, 840
- — regular, 301, 625, 637
- variable integration limit, 3, 805, 809, 811
- variable limit of integration, 3, 805, 809, 811
- variable lower integration limit, 537, 570
- variable lower limit of integration, 537, 570
- variables, several, function, 839
- variation, total, of function, 1053
- variation function, bounded, 1056
- vector, 1063
- — axioms for addition, 1063
- — axioms relating addition of vectors with their multiplication by scalars, 1063
- — orthogonal, 1065
- vector space, 1063
- Volterra equation, 549, 805, 877
- — first kind, 519, 524, 565
- — first kind, connection with Volterra equations of second kind, 524
- — first kind, existence of solution, 519
- — first kind, in Hammerstein form, 806
- — first kind, in Urysohn form, 805, 815
- — first kind, problems, 520
- — first kind, uniqueness of solution, 519
- — Hammerstein form, 806
- — nonlinear, 805
- — quadratic nonlinearity, 809
- — reduction to Wiener–Hopf equation, 528
- — second kind, 524, 539, 565
- — second kind, connection with Volterra equations of first kind, 524
- — second kind, in Urysohn form, 805
- — second kind, of Hammerstein form, 816
- — second kind, reduction to Volterra equations of first kind, 565
- — second kind, sequence, 855
- — second kind, sequence of independent, 853, 865, 872
- — sequence, 844, 850, 862
- — sequence of independent, 847, 858
- — systems, 549
- — Urysohn form, 805, 811, 814, 816
- Volterra integral operator, 842
- Volterra kernel, 839
- Volterra operator, 873
- volume potential, 893
- — Gauss formula, 894
W
- weak singularity, 574, 588, 625
- — kernel, 519, 532, 574, 588, 625
- weakly singular kernel, 532
- Weber function, 88
- Weber parabolic cylinder function, 1034
- Weber transform, 265, 518
- Weierstrass elliptic function, 1041
- Weierstrass function, 1041
- Weierstrass transform, 237, 518
- weight function, Jacobi, 793
- well-posed problem, 623
- Whittaker confluent hypergeometric function, 274, 1027
- Whittaker equation, 1027
- Wiener–Hopf equation, 574, 626, 679
- — first kind, 285, 538, 574, 606
- — Krein's method, 679
- — second kind, 373, 547, 571, 626, 660, 679
- — second kind, exceptional case, 678
- — second kind, homogeneous, 672
- — second kind, index, 661
- — second kind, nonhomogeneous, 677
- — second kind, solution, 681
- — Volterra equation, 528
- Wiener–Hopf method, 671
- — scheme, 676
- Wronskian, confluent hypergeometric function, 1026
- Wronskian, Legendre function, 1034
Y
- Y-transform, 264, 516, 518
Z
- Zakharov–Shabat method, 898
- zero measure, set, 1058
- zeros of Bessel functions, 1019
|
The EqWorld website presents extensive information on solutions to
various classes of ordinary differential equations, partial differential
equations, integral equations, functional equations, and other mathematical
equations.
Copyright © 2008 Andrei D. Polyanin
|