EqWorld logo

EqWorld

The World of Mathematical Equations

IPM Logo

Home Page Exact Solutions Methods Software Education For Authors Math Forums

Information > Mathematical Books > Handbook of Integral Equations, Second Edition > Index

     Handbook of Integral Equations, Second Edition    

A. D. Polyanin and A. V. Manzhirov

Handbook of Integral Equations
Second Edition, Updated, Revised and Extended

Publisher: Chapman & Hall/CRC Press
Publication Date: 14 February 2008
Number of Pages: 1144

Summary Preface Features Contents Index References

Index

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  Y  Z

A

  • Abel equation
  • — first kind, 10
  • — generalized, 519, 527
  • — Abel equation, generalized, first kind, 531
  • — Abel equation, generalized, second kind, 141, 548
  • — Abel equation, second kind, 138
  • Abel problem, 520
  • Abel type two-dimensional equation, 15
  • absolutely continuous function, 529
  • abstract Hilbert space, 873
  • Airy equation, 1023
  • Airy function, 1023
  • — asymptotic expansions, 1023
  • — definition, 1023
  • — first kind, 1023
  • — power series, 1023
  • — second kind, 1023
  • algebraic equations
  • — linear, infinite system, 858, 861, 864, 868, 971
  • — linear, infinite system, symmetric matrix, 850, 853
  • alternating sums of powers of natural numbers, 920
  • alternative, Fredholm, 637, 638, 643
  • —  alternative, Fredholm, symmetric equations, 643
  • alternative Fourier transform, 512
  • amplitude, 1039
  • analysis, functional, 1055
  • analytic continuation theorem, 595, 714
  • application of integral equations to differential equations, 875
  • approach, Carleman–Vekua, 778
  • approximate methods
  • — nonlinear equations, constant integration limits, 826
  • — nonlinear equations, variable integration limit, 811
  • approximate solution, 688, 693
  • approximate values of eigenvalues, Hilbert–Schmidt kernel, 845
  • approximating a kernel, 687
  • approximation
  • — characteristic values, 646
  • — eigenfunctions, Hilbert–Schmidt operator, 868, 872
  • — eigenvalues, Hilbert–Schmidt operator, 868, 872
  • — kernel, 687
  • — Lanczos, 798
  • — method, successive, 566, 579, 632, 633, 811, 826, 876
  • — solution, 854
  • arbitrary functions, 111, 191, 278, 357, 406, 410, 413, 437, 444, 456
  • arbitrary parameters, 408, 411, 433, 453
  • arbitrary powers, 12, 139, 223, 317, 939, 977
  • arccosine, 176, 344
  • arccotangent, 178, 347
  • arcsine, 177, 345
  • arctangent, 178, 346
  • argument, complicated, 227, 346, 254
  • Arutyunyan equation, 198
  • associated Legendre functions, 107, 271, 1031, 1032, 1033
  • — first kind, 1032
  • — general case, 1032
  • — integer indices, real argument, 1031
  • — modified, 1033
  • — second kind, 1032
  • asymmetric form
  • — Fourier cosine transform, 514
  • — Fourier sine transform, 515
  • — Fourier transform, 512
  • asymptotic expansions, 509, 1017, 1022–1024, 1035
  • — Airy functions, 1023
  • — Bessel functions, 1017
  • — modified Bessel functions, 1022
  • — parabolic cylinder functions, 1035
  • — Tricomi confluent hypergeometric functions, 1024
  • asymptotic methods, 618
  • — equations with logarithmic singularity, 618
  • auxiliary conditions, 843, 845, 851, 856, 862, 869, 870
  • auxiliary equation, 546, 550, 551, 527
  • — application, 527
  • — first kind, 550
  • — second kind, 551
  • auxiliary integral conditions, 841–843
  • auxiliary results, 784
  • axioms for addition, vectors, 1065
  • axioms for addition and multiplication by scalars, vectors, 1065
  • axis, real, 575, 713
  • — Holder condition, axis, real, Holder condition, 575
  • — Sokhotski–Plemelj formulas, 713

B

  • Banach space, 1062, 1065, 1067
  • base, Napierian, 906
  • base of Napierian logarithm, 905
  • base of natural logarithm, 905, 906
  • basis
  • — abstract space, 844, 863
  • — Euclidean space, 857, 869
  • — Hilbert space, 857, 867, 869
  • — Hilbert space, special, 869
  • — orthonormal, 855, 856
  • Bateman method, 689
  • — general scheme, 689
  • — special cases, 690
  • Bernoulli numbers, 1008
  • Bernoulli polynomials, 1052
  • Bessel's formula, 1018
  • Bessel equation, 1016
  • — modified, 1021
  • Bessel function, 88, 187, 264, 269, 353, 958, 1016
  • — asymptotic expansions, 1017
  • — definitions, 1016
  • — first kind, 261, 297, 1016
  • — integral representations, 1017
  • — modified, 97, 189, 269, 355, 1021
  • — modified, first kind, 266, 1021
  • — modified, second kind, 266, 1021
  • — orthogonality properties, 1019
  • — second kind, 264, 299, 1016
  • — third kind, 1020
  • — zeros, 1019
  • beta function, 1012, 1014
  • — incomplete, 1014, 1015
  • bifurcation point, nonlinear integral equations, 834, 835
  • bilinear series, 640
  • — iterated kernels, 642
  • binomial coefficients, 909, 920, 1007
  • Boas transform, 250
  • boundary conditions, 887
  • boundary value problem,
  • — first, 895, 896
  • — Hilbert, 742
  • — linear, representation, 892
  • — nth-order differential equations 882
  • — ODEs, 881
  • — ODEs, reduction to Fredholm equations, 881
  • — ODEs, reduction to Volterra equations, 877
  • — Riemann, 595, 714
  • — second, 895, 897
  • — second-order differential equations, 883
  • bounded closed domain, 839
  • bounded set, 866
  • — closed, 842
  • bounded variation function, 1055, 1058
  • — classes, 1056
  • — criteria, 1057
  • — definition, 1055
  • — properties, 1056, 1057
  • Boussinesq equation, 900
  • Bubnov–Galerkin method, 697
  • Buchholz transform, 274
  • Bueckner equation, 801

C

  • C(a, b), space of continuous functions, 1066
  • Cα(0, 1), Holder space, 1066
  • calculation of eigenvalues, 877
  • canonical factorization, 680
  • canonical form, 805–807
  • — Hammerstein equation, 807
  • canonical function, nonhomogeneous Riemann problem, 605
  • Carleman equation, 243, 590
  • Carleman method,
  • — characteristic equations, 761
  • — equation, convolution type, first kind, 606
  • — equation, convolution type, second kind, 660
  • — equation, difference kernels, 610
  • Carleman–Vekua regularization, 778
  • Cauchy criterion, 1067
  • Cauchy integral, 708
  • Cauchy kernel, 707, 757
  • — characteristic equation, 761
  • — complete singular equation, 757
  • — equation on real axis, 743
  • — general singular equation, first kind, 745
  • — generalized, 783
  • — integral equation, 743, 757
  • Cauchy principal value, 709
  • Cauchy problem,
  • — first-order ODEs, 875, 876
  • — ODEs, reduction to integral equations, 875
  • — second-order ODEs, 876
  • — special $n$th-order linear ODE, 876
  • Cauchy residue theorem, 504
  • Cauchy–Schwarz–Bunyakovsky inequality, 501
  • Cauchy type and Fourier integrals, 592
  • Cauchy type integral, 708
  • Cauchy-type kernel, 751, 753
  • characteristic equation, 758, 761
  • — Cauchy kernel, 761
  • — exceptional case, 767
  • — Hilbert kernel, 769
  • — real axis, 765
  • — transposed, 758, 764
  • characteristic operator, 758
  • — transposed, 758
  • characteristic value, 301, 625, 637, 639, 645, 697
  • — approximation, 646
  • — extremal properties, 644
  • — system, 640
  • Chebyshev formula, 535
  • Chebyshev functions, 1049
  • Chebyshev nodes, 748
  • Chebyshev polynomial,
  • — first kind, 109, 1048
  • — second kind, 750, 1049
  • closed-form solution,
  • — case of constant coefficients, 770
  • — general case, 771
  • closed bounded set, 842
  • closed domain, bounded, 839
  • closed kernel, 578
  • coefficient,
  • — binomial, 909, 920, 1007
  • — discontinuous, 739
  • — rational, 601, 723
  • — Riemann problem, 596, 718
  • — undetermined, 692
  • collocation method, 692, 693, 815
  • — hypersingular integral equation, 755
  • collocation points, 693
  • combination,
  • — elementary functions, 73, 255
  • — hyperbolic functions, 39
  • — trigonometric functions, 63, 252
  • compact operator, 842, 843, 1069
  • — self-adjoint, 843
  • — self-adjoint positive, 873
  • — self-adjoint positive definite, 1069
  • compact self-adjoint operator, 843
  • compact self-adjoint positive definite operator, 1069
  • — eigenvalues, 1069
  • compact self-adjoint positive operator, 873
  • compactness of integral operator, sufficient condition, 842
  • compatibility condition, 896, 897
  • complementary error function, 1009, 1025
  • complementary modulus, 1036, 1037
  • complete elliptic integral,
  • — first kind, 1035
  • — second kind, 1035
  • complete equation,
  • — generalized Cauchy kernel, 783
  • — Hilbert kernel, 780
  • complete kernel, 578
  • complete orthonormal system of functions, 844, 855
  • complete singular integral equation, 757, 770, 772
  • — Cauchy kernel, 757
  • — Hilbert kernel, 759, 780
  • — regularization method, 772
  • — solution methods, 757
  • complete space, 1067
  • complete system, 1067
  • complete system of eigenfunctions, 640
  • complex linear space, 1065
  • complicated argument, 227, 246, 254
  • concentration, 890
  • — integral equation, 890
  • — integral equation, numerical method, 891
  • condition,
  • — auxiliary integral, 841–843, 845, 851, 856, 862, 869, 870
  • — boundary, 887
  • — compatibility, 896, 897
  • — Holder, 709, 1066
  • — Holder, real axis, 575
  • — Lipschitz, 709, 1056, 1059
  • — normality, 596
  • — sufficient for compactness of integral operator, 842
  • confluent hypergeometric equation, 1024
  • confluent hypergeometric function, 107, 1024
  • — Kummer, 1024
  • — Tricomi, 1024, 1025
  • — Tricomi, asymptotic expansions, 1024
  • — Tricomi, integral representations, 1024
  • — Whittaker, 1027
  • — Wronskian, 1026
  • conjugate kernels, 582
  • connected domain, 731
  • constant,
  • — Euler, 533, 1013, 1017, 1026
  • — Holder, 709
  • continuation,
  • — continuation, analytic, 714
  • continuity, principle, 714
  • continuous function of real argument,
  • — values in Banach space, 840
  • — values in Hilbert space, 840
  • — values in space of functions square integrable over a closed bounded set, 842
  • — values in space of functions square integrable over a ring-shaped domain, 841
  • — values in space of square integrable functions, 840
  • continuous operator, 1068
  • contour, smooth, 708
  • convergence,
  • — almost everywhere, 1060
  • — mean-square, 501
  • convergent series, 509
  • convolution theorem, 507, 513
  • convolution type, 574, 606, 660, 669
  • coordinate functions, 693, 697
  • cosine, 46, 166, 246, 335, 558, 928
  • — hyperbolic, 22, 154, 238, 327
  • cosine integral, 87, 258, 1011
  • cosine transform, 514
  • cotangent, 62, 175, 252, 343
  • — hyperbolic, 38, 162, 242, 333
  • criterion, Cauchy, 1067
  • Crum transform, 268
  • curves, open, Riemann problem, 734
  • cuspidal point, 708
  • cylinder function, 1016
  • cylindrical function, 1016
  • — definitions, 1016

D

  • De Moivre formulas, 911
  • definite integrals, tables, 951
  • definition,
  • — Cauchy type integral, 708
  • — hyperbolic functions, 913
  • degenerate hypergeometric equation, 1024
  • degenerate kernel, 111, 191, 278, 357, 519, 522, 539, 540–543, 569, 573, 589, 625, 627, 631, 810, 817
  • — general, 523, 628
  • — simplest, 627
  • density, potential, 893
  • derivative,
  • — fractional, definition, 529
  • — fractional, left-sided, 529
  • — fractional, properties, 530
  • — fractional, right-sided, 529
  • — integrable, fractional, 531
  • — logarithmic of gamma function, 1017, 1021
  • — Riemann–Liouville, 529
  • determinant, Fredholm, 636
  • — Fredholm, method, 635
  • difference kernel, 114, 203, 283, 372, 519, 524, 539, 544, 573, 574, 586, 625, 610, 626, 655, 683
  • — entire axis, 655
  • — finite interval, 683
  • — weak singularity, 588
  • differential equation
  • — nth-order, boundary value problems, 882
  • — ordinary, 527, 547, 686, 875, 877
  • — ordinary, linear, 881
  • — second-order, boundary value problems, 883
  • differential equation and Volterra integral equations, 877
  • differentiating, method for integral equations, 820
  • differentiation,
  • — fractional, method, 529
  • — method, 564, 583, 810
  • differentiation formulas, 910, 913, 916, 917
  • diffusion flux, integral equations, 890
  • digamma function, 1013, 1017
  • direct sum of orthogonal subspaces, 845, 863, 869
  • Dirichlet–Mehler integral, 1030
  • Dirichlet problem,
  • — exterior, 896
  • — interior, 895
  • — reduction to integral equations, 895, 896
  • discontinuous coefficient, 739
  • divisor transform, 269
  • Dixon equation, 136
  • domain,
  • — bounded closed, 839
  • — circular, 841
  • — multidimensional, 839
  • — one-dimensional, 839
  • — ring-shaped, 841, 855, 862
  • double layer potential, 893
  • — Gauss formula, 894
  • dual integral equation,
  • — first kind, 295, 575, 610
  • — first kind, exact solutions, 613
  • — reduction to Fredholm equation, 615
  • — second kind, 627
  • — second kind, convolution type, 669

E

  • eigenfunctions, 301, 625, 639, 834, 867
  • — construction, 696, 699
  • — extremal properties, 644
  • — Fredholm equation, second kind, 694
  • — Hilbert–Schmidt kernel, 854, 856, 858, 861, 864, 865
  • — Hilbert–Schmidt operator, 871
  • — kernel, 844
  • — linear operator, 1068
  • — nonlinear equation, 834
  • — nonlinear operator, 834
  • — system, 640
  • — system, complete, 640
  • — system, incomplete, 640
  • eigenvalues, 301, 625, 834
  • — calculation, 877
  • — compact self-adjoint positive definite operator, 1069
  • — Hilbert–Schmidt kernel, 854, 856, 858, 861, 864, 865
  • — Hilbert–Schmidt operator, 871
  • — kernel, 844
  • — linear operator, 1068
  • — matrix, 845, 848, 856, 859, 861, 868, 872
  • — operator, 867
  • — positive, 648
  • — self-adjoint operator, 1069
  • eigenvectors of matrix, orthonormal, 845, 848, 856, 859, 868, 872
  • eigenvectors of self-adjoint operator, 1069
  • electrostatic problem, Roben, 897
  • elementary functions, 73, 255, 257, 348, 905
  • — combinations, 179
  • — properties, 905
  • elements,
  • — linearly dependent, 1065
  • — linearly independent, 843, 1065
  • elliptic function, 1038
  • — Jacobi, 1039
  • — Weierstrass, 1042
  • elliptic integral, 1035, 1036
  • — complete, 1035
  • — complete, first kind, 1035
  • — complete, second kind, 1035
  • — first kind, 1037
  • — incomplete, 1037
  • — second kind, 1037
  • — third kind, 1037
  • elliptic modulus, 1037
  • elliptic theta functions, 1043
  • entire axis, equation, 574, 586, 587, 626, 655
  • equation,
  • — Abel, first kind, 10
  • — Abel, generalized, 519, 527
  • — Abel, generalized, first kind, 531
  • — Abel, generalized, second kind, 141, 548
  • — Abel, second kind, 138
  • — Abel type, first kind, 15
  • — Abel type, two-dimensional, 15
  • — Airy, 1023
  • — Arutyunyan, 198
  • — auxiliary, 546
  • — auxiliary, application, 527
  • — auxiliary, first kind, 550
  • — auxiliary, second kind, 551
  • — Bessel, 1016
  • — Bessel, modified, 1021
  • — Boussinesq, 900
  • — Bueckner, 801
  • — Carleman, 243, 590
  • — Cauchy kernel, complete, 757
  • — Cauchy kernel, first kind, 707
  • — Cauchy kernel, first kind, real axis, 743
  • — Cauchy kernel, general of first kind, 745
  • — Cauchy kernel, simplest of first kind, 707, 743
  • — Cauchy kernel, simplest of first kind, real axis, 743
  • — characteristic, 758, 761
  • — characteristic, Cauchy kernel, 761
  • — characteristic, exceptional case, 767
  • — characteristic, Hilbert kernel, 769
  • — characteristic, real axis, 765
  • — characteristic, transposed, 758, 764
  • — compact self-adjoint and positive definite operator, 843
  • — complete, generalized Cauchy kernels, 783
  • — complete, Hilbert kernel, 780
  • — complete singular, 757, 770, 772
  • — complete singular, Cauchy kernel, 757
  • — complete singular, regularization method, 772
  • — confluent hypergeometric, 1024
  • — contain arbitrary functions, 410, 413
  • — contain arbitrary parameters, 408, 411
  • — contain modulus, 278, 583
  • — contain unknown function of complicated argument, 227, 254
  • — convolution type, first kind, 574
  • — convolution type, first kind, Carleman method, 606
  • — convolution type, second kind, 626, 655, 657
  • — convolution type, second kind, Carleman method, 660
  • — degenerate kernel, 111, 191, 278, 357, 522, 540–543
  • — degenerate kernel, nonlinear, method of differentiation, 810
  • — difference kernel, 114, 203, 283, 372, 524, 544, 574, 586, 626, 685
  • — difference kernel, Carleman method, 610
  • — difference kernel, entire axis, 655
  • — difference kernel, finite interval, 683, 685
  • — difference kernel, weak singularity, 588
  • — differential, 875, 877
  • — differential, $n$th-order, boundary value problems, 882
  • — differential, ordinary, 527, 547, 686
  • — differential, ordinary, linear, 881
  • — differential, second-order, boundary value problems, 883
  • — diffusion flux, 890
  • — Dixon, 136
  • — dual, first kind, 295, 575, 610
  • — dual, first kind, exact solutions, 613
  • — dual, reduction to Fredholm equation, 615
  • — dual, second kind, 627
  • — dual, second kind, convolution type, 669
  • — eigenfunctions, Fredholm equation, second kind, 694
  • — elasticity, 621
  • — entire axis, 574, 586, 587, 626, 655
  • — exact methods, 588–592
  • — exact solutions, 3–500
  • — exponential nonlinearity, 411, 467
  • — finite interval, 683, 685
  • — finite interval, first kind, 744
  • — first kind, 3, 519, 591, 624
  • — first kind, reduction to equations of second kind, 591
  • — first kind, weak singularity, 574
  • — Fredholm, degenerate kernel, second kind, 627
  • — Fredholm, first kind, 573, 623
  • — Fredholm, second kind, 625, 685, 698, 701
  • — Fredholm, second kind, system, 701
  • — Fredholm, second kind on contour, 759
  • — Fredholm, spectrum, 760
  • — Fredholm, symmetric kernel, second kind, 639
  • — Fredholm and dual equations, 615
  • — Fredholm and Green's function, 881
  • — function of complicated argument, 246
  • — Gaussian hypergeometric, 1028
  • — Gelfand–Levitan–Marchenko, 900
  • — Gelfand–Levitan–Marchenko type, 898
  • — general degenerate kernel, 523
  • — generalized Abel, 519, 527
  • — generalized Abel, first kind, 531
  • — generalized Abel, second kind, 141, 548
  • — generalized Cauchy kernel, complete, 783
  • — generalized Schlomilch, equation, generalized Schl\"omilch, 254
  • — Hammerstein, canonical form, 807
  • — Hammerstein, first kind, 807
  • — Hammerstein, second kind, 807
  • — Hammerstein, second kind, degenerate kernel, 817
  • — Hammerstein type, 807
  • — Hilbert kernel, complete, 759, 780
  • — Hilbert kernel, first kind, 707, 746
  • — Hilbert kernel, general of first kind, 708, 747
  • — Hilbert kernel, simplest of first kind, 707, 746
  • — Hilbert kernel, simplest of first kind, complete, 759
  • — Hilbert–Plessner, 255
  • — homogeneous, 301, 502, 539, 625, 627, 637, 708, 751
  • — hyperbolic nonlinearity, 414, 468
  • — hypergeometric, 1028
  • — hypergeometric, confluent, 1024
  • — hypergeometric, degenerate, 1024
  • — hypersingular, Cauchy-type kernel, first kind, 751
  • — hypersingular, Cauchy-type kernel, general of first kind, 751
  • — hypersingular, Cauchy-type kernel, simplest of first kind, 231, 751, 753
  • — hypersingular, collocation method, 755
  • — hypersingular, Hilbert-type kernel, first kind, 751
  • — hypersingular, Hilbert-type kernel, general of first kind, 751
  • — hypersingular, Hilbert-type kernel, simplest of first kind, 255, 754
  • — hypersingular, numerical methods, 754
  • — infinite integration limit, first kind, 537
  • — infinite limits of integration, second kind, 702
  • — Kadomtsev–Petviashvili, 901
  • — kernel contains arbitrary functions, 111, 191, 278, 357
  • — kernel contains arbitrary powers, 12
  • — kernel contains combinations of elementary functions, 73, 179, 255, 348
  • — kernel contains combinations of various functions, 565
  • — kernel contains exponential functions, 15, 144, 231, 320
  • — kernel contains higher-order polynomials in arguments, 6
  • — kernel contains hyperbolic functions, 22, 154, 238, 327
  • — kernel contains inverse trigonometric functions, 66, 176, 344
  • — kernel contains logarithmic functions, 42, 45, 164, 242, 334
  • — kernel contains power-law functions, 4, 45, 127, 217, 301
  • — kernel contains rational functions, 7
  • — kernel contains special functions, 86, 187, 258, 353
  • — kernel contains square roots, 9
  • — kernel contains sum of exponential functions, 564
  • — kernel contains sum of hyperbolic functions, 564
  • — kernel contains sum of trigonometric functions, 564
  • — kernel contains trigonometric functions, 46, 166, 246, 335
  • — kernel cubic in arguments, 5
  • — kernel linear in arguments, 4
  • — kernel quadratic in arguments, 4
  • — Korteweg–de Vries, 899
  • — Korteweg–de Vries, modified, 900
  • — Krein's method, 588
  • — Lalesco–Picard, 323
  • — Laplace, 893
  • — Laplace, potentials, properties, 892
  • — Laplace, potentials, types, 892
  • — Legendre, 1032
  • — linear, constant integration limits, 502
  • — linear, constant integration limits, first kind, 217, 502, 573
  • — linear, constant integration limits, second kind, 301, 502, 625
  • — linear, first kind, 502
  • — linear, operator methods, 549
  • — linear, second kind, 502
  • — linear, solution methods, 519, 539, 573, 625
  • — linear, structure of solutions, 502
  • — linear, variable integration limit, first kind, 3, 502
  • — linear, variable integration limit, second kind, 127, 502
  • — linear and nonlinear PDEs, 898
  • — logarithmic nonlinearity, 419, 472
  • — logarithmic singularity, 618
  • — logarithmic singularity, asymptotic methods, 618
  • — Mathieu, 1045
  • — Mathieu, modified, 1046
  • — method of differentiating, 564, 583, 820
  • — mixed multidimensional, bounded set, projection method, 866
  • — mixed multidimensional, closed bounded set, 842
  • — mixed multidimensional, Fredholm operator, 842
  • — mixed multidimensional, Hilbert–Schmidt operator, 869
  • — mixed multidimensional, integral operators of Volterra and Hilbert–Schmidt types, 866
  • — mixed multidimensional, integral operators of Volterra and Schmidt types, 866
  • — mixed multidimensional, methods of solving, 839–874
  • — mixed multidimensional, Schmidt operator, 843
  • — mixed multidimensional, Schmidt operator, equivalent form, 843
  • — mixed multidimensional, symmetric Fredholm kernel, 842
  • — mixed operator, 866, 869
  • — mixed operator, auxiliary conditions, 869
  • — mixed two-dimensional, circular domain, 841
  • — mixed two-dimensional, finite interval, 840
  • — mixed two-dimensional, finite interval, methods of solving, 843–854
  • — mixed two-dimensional, Hilbert–Schmidt kernel and auxiliary conditions, finite interval, 845
  • — mixed two-dimensional, Hilbert–Schmidt kernel and auxiliary conditions, ring-shaped domain, 856
  • — mixed two-dimensional, Hilbert–Schmidt kernel and given right-hand side, finite interval, 843
  • — mixed two-dimensional, Hilbert–Schmidt kernel and given right-hand side, ring-shaped domain, 855
  • — mixed two-dimensional, ring-shaped domain, 841
  • — mixed two-dimensional, ring-shaped domain, methods of solving, 855–866
  • — mixed two-dimensional, Schmidt kernel, 841
  • — mixed two-dimensional, Schmidt kernel, equivalent form, 842
  • — mixed two-dimensional, Schmidt kernel and auxiliary conditions, ring-shaped domain, 862
  • — mixed two-dimensional, Schmidt kernel and given right-hand side, finite interval, 848
  • — modified Bessel, 1021
  • — modified Korteweg–de Vries, 900
  • — modified Mathieu, 1046
  • — Nekrasov, 836
  • — nonhomogeneous, 502, 539, 627, 708, 751
  • — nonhomogeneous, positive solutions, 649
  • — nonhomogeneous, solution, 642
  • — nonlinear, 805, 807, 834, 899
  • — nonlinear, bifurcation points, 834, 835
  • — nonlinear, constant integration limits, 806, 829
  • — nonlinear, constant integration limits, approximate methods, 826
  • — nonlinear, constant integration limits, exact methods, 817
  • — nonlinear, constant integration limits, first kind, 433
  • — nonlinear, constant integration limits, numerical methods, 826
  • — nonlinear, constant integration limits, second kind, 453
  • — nonlinear, degenerate kernels, 817
  • — nonlinear, eigenfunctions, 834
  • — nonlinear, existence theorems, 830
  • — nonlinear, uniqueness theorems, 830
  • — nonlinear, variable integration limit, 805
  • — nonlinear, variable integration limit, approximate methods, 811
  • — nonlinear, variable integration limit, exact methods, 809
  • — nonlinear, variable integration limit, first kind, 393
  • — nonlinear, variable integration limit, numerical methods, 811
  • — nonlinear, variable integration limit, second kind, 403
  • — nonlinear, Volterra, 805
  • — nonlinear, with parameter, local solutions, 835
  • — nonlinearity, general form, 399, 425, 447, 477
  • — nonnegative kernel, 648
  • — nonsymmetric kernel, first kind, 580
  • — one-sided, first kind, 574
  • — one-sided, second kind, 626
  • — operator, general projection problem, 873
  • — operator, mixed, 866, 869
  • — operator, mixed with auxiliary conditions, 869
  • — operator, quadratic, 552
  • — operator, solution, 553
  • — ordinary differential, 527, 547, 686
  • — parameter, 625
  • — Picard–Goursat, 134
  • — Poisson, 894
  • — power-law nonlinearity, 408, 464
  • — power-law nonlinearity that contains arbitrary functions, 444
  • — quadratic nonlinearity, 819
  • — quadratic nonlinearity that contains arbitrary functions, 397, 406, 437, 456
  • — quadratic nonlinearity that contains arbitrary parameters, 393, 403, 433, 453
  • — quadratic operator, 552
  • — reducible to symmetric equation, 647
  • — renewal, 203
  • — right-hand side, 519, 539, 573, 625
  • — right-hand side, special, 555
  • — Schlomilch, 254, 452, 825
  • — Schlomilch, generalized, 254
  • — Schmidt integral operator, 843
  • — Schmidt kernel, 843, 859, 863
  • — Schmidt kernel and auxiliary conditions, finite interval, 851
  • — Schmidt kernel and auxiliary conditions, ring-shaped domain, 862
  • — Schmidt kernel and given right-hand side, finite interval, 848
  • — Schmidt kernel and given right-hand side, ring-shaped domain, 859
  • — Schmidt operator, 869
  • — second kind, 591
  • — second kind, operator method, 654
  • — semiaxis, 574, 587, 626, 657
  • — simplest hypersingular, Cauchy-type kernel, first kind, 231, 753
  • — simplest hypersingular, Hilbert-type kernel, first kind, 255, 754
  • — single kernel, first kind, 574, 626
  • — singular, 228, 255, 319, 344, 707
  • — singular, Bueckner type, 801
  • — singular, complete, 757, 770, 772
  • — singular, first kind, 707, 743
  • — singular, generalized kernel, 792
  • — singular, numerical solution, 799
  • — singular, transposed, 758
  • — singular, two-dimensional, 231
  • — skew-symmetric, 647
  • — solution methods, 501–901
  • — special right-hand side, 555
  • — surface concentration, 890
  • — surface concentration, numerical method, 891
  • — symmetric, 639, 647
  • — symmetric, Fredholm alternative, 643
  • — symmetric kernel, 639
  • — symmetric kernel, first kind, 577
  • — system, 701
  • — transposed, 573, 575, 625, 627, 637
  • — transposed of characteristic equation, 764
  • — Tricomi, 319, 769, 769
  • — Tricomi–Gellerstedt, 320
  • — trigonometric nonlinearity, 420, 473
  • — truncated first kind, 549
  • — two kernels, first kind, 574, 607
  • — two kernels, second kind, 626, 664
  • — Urysohn, 806, 832
  • — Urysohn, first kind, 806, 829
  • — Urysohn, first kind, special, method, 821
  • — Urysohn, second kind, 806
  • — Urysohn, second kind, degenerate kernel, 818
  • — Urysohn, second kind, special, method, 822
  • — Urysohn type, 806
  • — variable integration limit, 3
  • — variable lower integration limit, first kind, 537
  • — variable lower integration limit, second kind, 570
  • — Volterra, 549, 805, 877
  • — Volterra, first kind, 519, 524, 565
  • — Volterra, first kind, connection with Volterra equations of second kind, 524
  • — Volterra, first kind, existence of solution, 519
  • — Volterra, first kind, Hammerstein form, 806
  • — Volterra, first kind, problems, 520
  • — Volterra, first kind, uniqueness of solution, 519
  • — Volterra, first kind, Urysohn form, 805, 815
  • — Volterra, Hammerstein form, 806
  • — Volterra, nonlinear, 805
  • — Volterra, quadratic nonlinearity, 809
  • — Volterra, reduction to Wiener–Hopf equation, 528
  • — Volterra, second kind, 524, 539, 565
  • — Volterra, second kind, connection with Volterra equations of first kind, 524
  • — Volterra, second kind, Hammerstein form, 816
  • — Volterra, second kind, sequence, 855
  • — Volterra, second kind, sequence of independent, 853, 865, 872
  • — Volterra, second kind, Urysohn form, 805
  • — Volterra, sequence, 844, 850, 862
  • — Volterra, sequence of independent, 847, 858
  • — Volterra, Urysohn form, 805, 811, 814, 816
  • — weak singularity, 519
  • — weak singularity, first kind, 532, 574
  • — weak singularity, second kind, 625
  • — weakly singular kernel, 532
  • — Whittaker, 1027
  • — Wiener–Hopf, 574, 626, 679
  • — Wiener–Hopf, first kind, 285, 574, 538, 606
  • — Wiener–Hopf, Krein's method, 679
  • — Wiener–Hopf, second kind, 373, 547, 571, 626, 660, 679
  • — Wiener–Hopf, second kind, exceptional case, 678
  • — Wiener–Hopf, second kind, homogeneous, 672
  • — Wiener–Hopf, second kind, index, 661
  • — Wiener–Hopf, second kind, nonhomogeneous, 677
  • — Wiener–Hopf, second kind, solution, 681
  • — Wiener–Hopf, Volterra equation, 528
  • equidistant surface, method, 891
  • equilibrium potential, 897
  • equivalent regularization, problem, 776
  • Erdelyi–Kober operators, 532
  • error function, 86, 258, 549, 1009, 1024
  • — complementary, 1009, 1025
  • estimates for spectral radius, 649
  • Euclidean space, 845, 857, 863, 869, 1067
  • — basis, 857, 869
  • Euler constant, 533, 1013, 1017, 1026
  • Euler formula, 911, 1013
  • Euler numbers, 1008
  • Euler polynomials, 1053
  • exceptional case,
  • — characteristic equation, 767
  • — regularization, 779
  • — Riemann problem, 605, 727
  • — Wiener–Hopf equation, second kind, 678
  • existence theorems, 875
  • — nonlinear equations, 830
  • — Stieltjes integral, 1058
  • expansion, asymptotic, 509
  • —  Airy functions, 1023
  • —  Bessel functions, 1017
  • —  modified Bessel functions, 1022
  • —  parabolic cylinder functions, 1034
  • —  Tricomi confluent hypergeometric functions, 1024
  • expansion in power series, 910, 913, 916, 918
  • exponent, growth, 505
  • exponential form, 555
  • exponential function, 15, 73, 77, 78, 144, 151, 179–181, 231, 234, 236, 257, 320, 326, 348, 349, 419, 564, 905, 940, 954, 963, 978, 984, 990, 998, 1002
  • — properties, 905
  • exponential integral, 86, 258, 1009, 1010, 1025
  • exponential nonlinearity, 411, 467
  • exponents, singularity, 787, 789
  • expressions with,
  • — arbitrary powers, 977
  • — exponential functions, 963, 978, 984, 990, 998, 1002
  • — hyperbolic functions, 964, 979, 985, 991
  • — logarithmic functions, 965, 980, 985, 992, 999, 1002
  • — power-law functions, 963, 983, 989, 998, 1001
  • — rational functions, 971
  • — special functions, 967, 981, 987, 993, 1000, 1004
  • — square roots, 975
  • — trigonometric functions, 966, 981, 986, 992, 999, 1003
  • exterior Dirichlet problem, 896
  • — reduction to integral equations, 896
  • exterior Neumann problem, 897
  • — reduction to integral equations, 896

F

  • factorization, 597, 674, 676, 677, 679, 720, 723
  • — canonical, 680
  • factorization problem, 676, 679
  • Feller potential, 226
  • Feller transform, 226
  • field of scalars, 1065
  • finite functional sums, 922
  • finite interval, 683, 840, 843
  • — equation, 683, 685
  • — integrals, 951, 956
  • — mixed equations, 840
  • finite numerical sums, 919
  • finite sums, 919
  • finitely many singular points, 507
  • first-order ODEs, 875, 876
  • first boundary value problem, 895, 896
  • Fischer–Riesz, theorem, 1062
  • flow,
  • — fluid, 888
  • — nonisothermal in plane channel, 884
  • fluid flow, 888
  • flux, diffusion integral equations, 890
  • form
  • — canonical, 805–807
  • — canonical of Hammerstein equation, 807
  • — equivalent of mixed multidimensional equation with Schmidt operator, 843
  • — equivalent of mixed two-dimensional equation with Schmidt kernel, 842
  • — exponential, 555
  • — Hammerstein, for Volterra equation, 806
  • — Hammerstein, for Volterra equation of first kind, 806
  • — Hammerstein, for Volterra equation of second kind, 816
  • — polynomial, 553
  • — quadratic, 644
  • — Urysohn, for Volterra equation, 805, 811, 814, 816
  • — Urysohn, for Volterra equation of first kind, 805, 815
  • — Urysohn, for Volterra equation of second kind, 805
  • form of infinite products, representation, 910, 916
  • formula
  • — Bessel's, 1018
  • — Chebyshev, 535
  • — Euler, 1013
  • — Fourier inversion, 512
  • — Gauss, 535
  • — Gauss, for double layer potential, 894
  • — Gauss, for volume potential, 894
  • — Green's, 895
  • — Hilbert inversion, 746
  • — Hopf–Fock, 683
  • — Kontorovich–Lebedev inversion, 516
  • — Meijer inversion, 516
  • — Poincare–Bertrand, 714
  • — Poisson's, 1018
  • — Post–Widder, 510
  • — quadrature, 534, 815
  • — Sokhotski–Plemelj, 713, 785
  • — Stirling, 1013
  • formulas
  • — addition, 909, 915
  • — calculation, 504
  • — De Moivre, 911
  • — differentiation, 910, 913, 916, 917
  • — Euler, 911
  • — integration, 910, 913, 916, 918
  • — quadrature, 534, 793
  • — reduction, 907, 939, 947
  • — Sokhotski–Plemelj, for real axis, 713
  • Fourier cosine transform, 514, 518
  • — asymmetric form, 514
  • — Parseval's relation, 514
  • — tables, 983
  • Fourier integral,
  • — left, 594
  • — one-sided, 593, 594
  • — relationships with Cauchy type integral, 592
  • — right, 594
  • Fourier inversion formula, 512
  • Fourier sine transform, 514, 518
  • — asymmetric form, 515
  • — Parseval's relation, 515
  • — tables, 989
  • Fourier transform, 235, 511, 512, 518, 658
  • — alternative, 512
  • — asymmetric form, 512
  • — definition, 512
  • — inverse, 512
  • — inversion formula, 512
  • — properties, 513
  • — rational, 685
  • fractional derivative, 529
  • — definition, 529
  • — integrable, 531
  • — left-sided, 529
  • — properties, 530
  • — right-sided, 529
  • fractional differentiation, method, 529
  • fractional integral,
  • — definition, 529
  • — left-sided, 529
  • — properties, 530
  • — Riemann–Liouville, 529
  • — right-sided, 529
  • fractional integration, 548
  • — by parts, 529
  • — operator, 529
  • — semigroup property, 529
  • fractional order, integral, 529
  • fractional powers, 138
  • fracture mechanics, 791
  • Fredholm alternative, 637, 638
  • — symmetric equations, 643
  • Fredholm determinant, 636
  • — method, 635
  • Fredholm equation, 615, 881
  • — degenerate kernel, second kind, 627
  • — first kind, 573, 623
  • — second kind, 625, 685, 698, 701
  • — second kind, on contour, 759
  • — second kind, system, 701
  • — spectrum, 760
  • — symmetric kernel, second kind, 639
  • Fredholm kernel, 573, 625, 839–841
  • — positive definite, 840
  • — positive definite, symmetric, 866
  • — symmetric definite, 840
  • — symmetric positive, 841
  • — symmetric positive definite, 866
  • Fredholm minor, 636
  • Fredholm operator, 758, 842
  • — symmetric kernel, generalization, 843
  • Fredholm theorems, 637, 702, 777
  • Fresnel cosine integral, 1012
  • — generalized, 1012
  • Fresnel integrals, 87, 258, 1011, 1012
  • — generalized, 1012
  • Fresnel sine integral, 1012
  • — generalized, 1012
  • Fubini theorem, 1064
  • full measure, set, 1060
  • function
  • — absolutely continuous, 529
  • — Airy, 1023
  • — arccosine, 66
  • — arccotangent, 71
  • — arcsine, 68
  • — arctangent, 70
  • — associated Legendre, 107, 271, 1030–1033
  • — associated Legendre, first kind, 1032
  • — associated Legendre, general case, 1032
  • — associated Legendre, integer indices and real argument, 1031
  • — associated Legendre, second kind, 1032
  • — Bessel, 88, 187, 264, 269, 353, 958, 1016
  • — Bessel, asymptotic expansions, 1017
  • — Bessel, definitions, 1016
  • — Bessel, first kind, 261, 297, 1016
  • — Bessel, integral representations, 1017
  • — Bessel, modified, 97, 189, 269, 355, 1021
  • — Bessel, modified, first kind, 266, 1021
  • — Bessel, modified, second kind, 266, 1021
  • — Bessel, orthogonality properties, 1019
  • — Bessel, second kind, 264, 299, 1016
  • — Bessel, third kind, 1020
  • — Bessel, zeros, 1019
  • — beta, 1012, 1014
  • — beta, incomplete, 1014, 1015
  • — canonical of nonhomogeneous Riemann problem, 605
  • — Chebyshev, 1049
  • — complementary error, 1009, 1025
  • — confluent hypergeometric, 107, 1024
  • — confluent hypergeometric, Kummer, 1024
  • — confluent hypergeometric, Tricomi, 1024
  • — confluent hypergeometric, Whittaker, 1027
  • — confluent hypergeometric, Wronskian, 1026
  • — cosine, 46
  • — cotangent, 62
  • — cylinder, 1016
  • — cylindrical, 1016
  • — digamma, 1013, 1017
  • — elementary, 73, 179, 255, 257, 348
  • — elementary, properties, 905
  • — elliptic, 1038
  • — elliptic, Jacobi, 1039
  • — elliptic, Weierstrass, 1042
  • — elliptic theta, 1043
  • — error, 86, 258, 549, 1009, 1024
  • — error, complementary, 1009, 1025
  • — exponential, 15, 73, 77, 78, 144, 151, 179–181, 213, 234, 236, 257, 320, 326, 348, 349, 419, 564, 905, 940, 954, 963, 978, 984, 990, 998, 1002
  • — exponential, properties, 905
  • — gamma, 260, 1012
  • — gamma, incomplete, 88, 260, 1014, 1024, 1025
  • — gamma, logarithmic derivative, 1017, 1021
  • — Gauss hypergeometric, 275, 1028
  • — generalized Riemann zeta, 277
  • — generating, 555, 580
  • — generating, power-law, 557
  • — generating contain cosines, 558
  • — generating contain sines, 558
  • — generating of exponential form, 555
  • — Green's, 881–883
  • — Hankel, 1020
  • — Hankel, first kind, 265
  • — Hankel, second kind, 265
  • — harmonic, 893
  • — Hermite, 1050
  • — hyperbolic, 22, 73, 83, 84, 154, 164, 179, 185, 186, 238, 255, 327, 334, 348, 351, 352, 564, 911, 913, 922, 940, 955, 964, 979, 985, 991
  • — hyperbolic, inverse, 917
  • — hyperbolic, of half argument, 915
  • — hyperbolic, of multiple argument, 915
  • — hypergeometric, 1028
  • — hypergeometric, confluent, 107, 1024
  • — hypergeometric, confluent, Wronskian, 1026
  • — hypergeometric, Gauss, 275, 1028
  • — hypergeometric, Kummer confluent, 272
  • — hypergeometric, Tricomi confluent, 273, 1025
  • — hypergeometric, Whittaker confluent, 274, 1027
  • — incomplete beta, 1014, 1015
  • — incomplete gamma, 88, 260, 1014, 1024, 1025
  • — index, 595
  • — influence, 577, 882
  • — integrable, 501, 502, 1058
  • — integrable, Lebesgue, 1059, 1061
  • — inverse hyperbolic, 917
  • — inverse trigonometric, 66, 176, 344, 911, 948
  • — irrational, 937
  • — Jacobi elliptic, 1039
  • — Jacobi elliptic, connection with Jacobi theta functions, 1044
  • — Jacobi theta, 110, 1043
  • — Jacobi theta, connection with Jacobi elliptic functions, 1044
  • — Jacobi weight, 793
  • — Kummer confluent hypergeometric, 272, 1024
  • — Lebesgue integrable, 1059, 1061
  • — left, 594
  • — Legendre, 270, 1030
  • — Legendre, associated, 107, 271, 1030–1033
  • — Legendre, associated, first kind, 1032
  • — Legendre, associated, second kind, 1032
  • — Legendre, modified associated, 1033
  • — Legendre, spherical of first kind, 299
  • — Legendre, Wronskians, 1034
  • — logarithmic, 42, 45, 77, 83, 85, 164, 165, 180, 185, 187, 242, 244, 255, 256, 334, 335, 349, 351, 353, 905, 943, 955, 965, 980, 985, 992, 999, 1002
  • — logarithmic, properties, 906
  • — MacDonald, 266, 1021
  • — Mathieu, 1045, 1046
  • — Mathieu, modified, 1046
  • — measurable, 1060
  • — modified associated Legendre, 1033
  • — modified Bessel, 97, 189, 269, 355, 1021
  • — modified Bessel, asymptotic expansions, 1022
  • — modified Bessel, definitions, 1021
  • — modified Bessel, first kind, 266, 1021
  • — modified Bessel, integral representations, 1022
  • — modified Bessel, second kind, 266, 1021
  • — modified Mathieu, 1046
  • — multivalued, 711
  • — Neumann, 1016
  • — of complicated argument, 227, 346, 254
  • — one-sided, 594
  • — parabolic cylinder, 276, 1034
  • — parabolic cylinder, asymptotic expansions, 1035
  • — parabolic cylinder, basic formulas, 1034
  • — parabolic cylinder, definitions, 1034
  • — parabolic cylinder, integral representations, 1035
  • — parabolic cylinder, linear relations, 1035
  • — parabolic cylinder, Weber, 1034
  • — power, properties, 905
  • — power-law, 4, 45, 127, 151, 165, 217, 236, 244, 301, 326, 335, 419, 951, 963, 983, 989, 998, 1001
  • — power-law generating, 557
  • — psi, 1012, 1013
  • — rational, 7, 136, 220, 314, 933, 971
  • — rational, inverse transforms, 506
  • — Riemann zeta, generalized, 277
  • — special, 86, 111, 187, 258, 277, 353, 967, 981, 987, 993, 1000, 1004
  • — special, properties, 1007
  • — spherical, Legendre of first kind, 299
  • — square integrable, 501, 502
  • — Struve, 264, 299, 516, 518
  • — summable, 1059, 1061
  • — summable, integral, 1061
  • — tangent, 60
  • — theta, Jacobi, 1043
  • — total variation, 1055
  • — Tricomi confluent hypergeometric, 273, 1024, 1025
  • — Tricomi confluent hypergeometric, asymptotic expansions, 1024
  • — Tricomi confluent hypergeometric, integral representations, 1024
  • — trigonometric, 78, 84, 85, 166, 176, 181, 186, 187, 246, 252, 256, 295, 335, 344, 349, 352, 353, 564, 907, 922, 944, 956, 966, 981, 986, 992, 999, 1003
  • — trigonometric, inverse, 176, 344, 911, 948
  • — trigonometric, of half argument, 909
  • — trigonometric, of multiple arguments, 909
  • — trigonometric, of single argument, relations, 908
  • — trigonometric, powers, 908
  • — Weber, 88
  • — Weber parabolic cylinder, 1034
  • — Weierstrass elliptic, 1042
  • — weight, Jacobi, 793
  • — Whittaker, 1027
  • — Whittaker confluent hypergeometric, 274, 1027
  • function of bounded variation, 1055
  • function of real argument,
  • — values in Banach space, continuous, 840
  • — values in Hilbert space, continuous, 840
  • — values in space of functions square integrable functions, continuous, 841
  • — values in space of functions square integrable over closed bounded set, continuous, 842
  • — values in space of functions square integrable over ring-shaped domain, continuous, 841
  • function of several variables, 839
  • functional analysis, some notions, 1055
  • functional series, infinite, 925
  • functional sums, finite, 922
  • functions
  • — coordinate, 693, 697
  • — measurable, 1060
  • — of bounded variation, 1055, 1058, 1066
  • — orthogonal, 582
  • — power, 905
  • — real-valued, multidimensional, 839
  • — with finitely many singular points, 507
  • fundamental solution, 881

G

  • Galerkin method, 582
  • gamma function, 260, 1012
  • — incomplete, 88, 260, 1014, 1024, 1025
  • — logarithmic derivative, 1017, 1021
  • Gauss formula, 535
  • — for double layer potential, 894
  • — for volume potential, 894
  • Gauss hypergeometric functions, 275, 1028
  • Gauss transform, 237
  • Gaussian hypergeometric equation, 1028
  • Gegenbauer polynomials, 1051
  • Gelfand–Levitan–Marchenko equation, 900
  • general degenerate kernel, 523
  • general equation of first kind with Cauchy kernel, 745
  • general hypersingular equation of first kind with Cauchy-type kernel, finite interval, 751
  • general hypersingular equation of first kind with Hilbert-type kernel, 751
  • general projection problem, 873
  • — special case, 846, 852, 857, 870
  • general scheme,
  • — Bateman method, 689
  • — method of quadratures, 568
  • — quadrature method for Fredholm equations of second kind, 698
  • — solving of dual integral equations, 611
  • — successive approximation method, 566
  • general singular equation of first kind with Hilbert kernel, 708, 747
  • generalization of Fredholm integral operator with symmetric kernel, 843
  • generalized Abel equation, 519, 527
  • — first kind, 531
  • — second kind, 141, 548
  • generalized Cauchy kernel, 783
  • generalized Fresnel cosine integral, 1012
  • generalized Fresnel integral, 1012
  • generalized Fresnel sine integral, 1012
  • generalized Jentzch theorem, 648
  • generalized kernel of integral equation, 783
  • generalized Laguerre polynomials, 1047
  • generalized Liouville theorem, 595, 714
  • generalized Mehler–Fock transform, 271
  • generalized Riemann zeta function, 277
  • generalized Schlomilch equation, 254
  • generating function, 555, 580
  • — containing cosines, 558
  • — containing sines, 558
  • — exponential form, 555
  • — power-law, 557
  • Green's formula, 895
  • Green's function, 881–883
  • growth exponent, 505

H

  • Hammerstein equation, 807, 817, 830
  • — canonical form, 807
  • — degenerate kernel, second kind, 817
  • — first kind, 807
  • — second kind, 807
  • Hammerstein form, Volterra equation, 806
  • — — first kind, 806
  • — — second kind, 816
  • Hankel function, 1020
  • — first kind, 265
  • — second kind, 265
  • Hankel transform, 261, 515, 518
  • — Parseval's relation, 515, 516
  • Hardy transform, 264
  • harmonic function, 893
  • Hartley transform, 252, 518
  • Hermite functions, 1050
  • Hermite interpolation polynomial, 716
  • Hermite polynomial, 108, 1024, 1025, 1050
  • Hilbert boundary value problem, 742
  • Hilbert inversion formula, 746
  • Hilbert kernel, 707, 780
  • — characteristic equation, 769
  • — complete singular equation, 759, 780
  • — equation, 759
  • — equations of first kind, 746
  • Hilbert Plessner equation, 255
  • Hilbert problem, 742
  • Hilbert–Schmidt kernel, 841, 843, 845, 853, 855, 856, 860
  • Hilbert–Schmidt kernel, approximate values of eigenvalues, 845
  • Hilbert–Schmidt kernel, eigenfunctions, 854, 856, 858, 861, 864, 865
  • Hilbert–Schmidt operator, 842, 843, 866, 871
  • — approximation for eigenfunctions, 868, 872
  • — approximation for eigenvalues, 868, 872
  • — eigenfunctions, 871
  • — eigenvalues, 871
  • Hilbert–Schmidt theorem, 641, 1069
  • Hilbert–Schmidt theory, 843
  • Hilbert space, 839, 845, 857, 863, 867, 869, 1067
  • — abstract, 873
  • — basis, 857, 867, 869
  • — linear operators, 1067, 1068
  • — special basis, 869
  • Hilbert transform, 228, 255, 518, 743
  • Hilbert transform on semiaxis, 229
  • Hilbert type kernel, 751, 754
  • Holder condition, 709, 1066
  • Holder condition on real axis, 575
  • Holder constant, 709
  • Holder inequality, 1065
  • Holder space, 1066
  • homogeneous integral equation, 301, 502, 539, 625, 627, 637, 708, 751
  • homogeneous problem, 596, 602, 742
  • homogeneous problem solution, 720
  • homogeneous Wiener–Hopf equation, second kind, 672
  • Hopf–Fock formula, 683
  • hyperbolic cosine, 22, 154, 238, 327
  • hyperbolic cotangent, 38, 162, 242, 333
  • hyperbolic function, 22, 73, 83, 84, 154, 179, 185, 186, 238, 255, 327, 334, 348, 351, 352, 564, 911, 913, 922, 940, 955, 964, 979, 985, 991
  • — combinations, 164
  • — half argument, 915
  • — multiple argument, 915
  • hyperbolic nonlinearity, 414, 468
  • hyperbolic sine, 28, 156, 238, 329
  • hyperbolic tangent, 36, 161, 241, 332
  • hypergeometric equation, 1028
  • — confluent, 1024
  • — degenerate, 1024
  • hypergeometric function, 1028
  • — confluent, 107, 1024
  • — confluent, Kummer, 272, 1024
  • — confluent, Tricomi, 1024, 1025
  • — confluent, Whittaker, 274, 1027
  • — confluent, Wronskian, 1026
  • — Gauss, 275, 1028
  • — Gauss, basic properties, 1028
  • — Kummer confluent, 272, 1024
  • — Tricomi confluent, 273
  • — Whittaker confluent, 274, 1027
  • hypergeometric series, 1028
  • hypersingular equation, 751
  • — Cauchy-type kernel, 751, 753
  • — collocation method, 755
  • — first kind, Cauchy-type kernel on finite interval, 751
  • — first kind, Hilbert-type kernel, 751
  • — Hilbert-type kernel, 751, 754
  • — numerical methods, 754
  • — simplest of first kind, Cauchy-type kernel, 231, 753
  • — simplest of first kind, Hilbert-type kernel, 255, 754
  • hypersingular integral,
  • — definition, 751
  • — in sense of Hadamard principal value, 752

I

  • identities, integral, 895
  • identity operator, 842, 873
  • ill-posed problem, 623
  • — general notions, 623
  • incomplete beta function, 1014, 1015
  • incomplete elliptic integrals, 1036
  • incomplete gamma function, 88, 260, 1014, 1024, 1025
  • incomplete kernel, 578
  • incomplete system of eigenfunctions, 640
  • indefinite integrals, tables, 933
  • independent elements, linearly, 843, 1063
  • index, 603, 661, 664
  • — notion, 716
  • index of function, 595
  • index of Riemann problem, 596, 731
  • index of Wiener–Hopf equation, 661
  • inequality,
  • — Cauchy–Schwarz–Bunyakovsky, 501
  • — Holder, 1063
  • — triangle, 501
  • infinite functional series, 925
  • infinite numerical series, 924
  • infinite products, 910, 916
  • infinite system of linear algebraic equations, 858, 861, 864, 868, 971
  • infinite system of linear algebraic equations with symmetric matrix, 850, 853
  • influence function, 577, 882
  • inner product, 501, 644
  • integrable fractional derivative, 531
  • integrable function, 501, 502, 1056
  • — Lebesgue, 1059
  • integral,
  • — Cauchy, 708
  • — Cauchy type, 708
  • — Cauchy type, relationships with Fourier integral, 592
  • — complete elliptic, 1035
  • — complete elliptic, first kind, 1035
  • — complete elliptic, second kind, 1035
  • — cosine, 87, 258, 1011
  • — definite, tables, 951
  • — Dirichlet–Mehler, 1030
  • — elliptic, 1035, 1036
  • — elliptic, complete, 1035
  • — elliptic, first kind, 1036
  • — elliptic, incomplete, 1036
  • — elliptic, second kind, 1036
  • — elliptic, third kind, 1036
  • — exponential, 86, 258, 1009, 1010, 1025
  • — Fourier, left, 594
  • — Fourier, one-sided, 593, 594
  • — Fourier, relationships with Cauchy type integral, 592
  • — Fourier, right, 594
  • — fractional, definition, 529
  • — fractional, left-sided, 529
  • — fractional, properties, 530
  • — fractional, Riemann–Liouville, 529
  • — fractional, right-sided, 529
  • — fractional order, 529
  • — Fresnel, 87, 258, 1011, 1012
  • — Fresnel, generalized, 1012
  • — Fresnel cosine, 1012
  • — Fresnel cosine, generalized, 1012
  • — Fresnel sine, 1012
  • — Fresnel sine, generalized, 1012
  • — hypersingular, definition, 751
  • — hypersingular, in sense of Hadamard principal value, 752
  • — incomplete elliptic, 1036
  • — indefinite, tables, 933
  • — involving arbitrary powers, 939
  • — involving Bessel functions, 958
  • — involving exponential functions, 940, 954
  • — involving hyperbolic functions, 940, 955
  • — involving inverse trigonometric functions, 948
  • — involving irrational functions, 937
  • — involving logarithmic functions, 943, 955
  • — involving power-law functions, 951
  • — involving rational functions, 933
  • — involving trigonometric functions, 944, 956
  • — Jacobi weight function, 793
  • — Laplace, 1030
  • — Lebesgue, 1057
  • — Lebesgue, definition, 1059
  • — Lebesgue, properties, 1059
  • — left Fourier, 594
  • — logarithmic, 258, 1009, 1010, 1025
  • — Mehler, 299, 615
  • — one-sided Fourier, 593, 594
  • — probability, 1009
  • — Riemann, 1057
  • — Riemann–Liouville fractional, 529
  • — right-sided fractional, 529
  • — right Fourier, 594
  • — sine, 87, 258, 1011
  • — singular, 709
  • — singular, principal value, 709
  • — step-function, 1059
  • — Stieltjes, 1055, 1056
  • — Stieltjes, basic definitions, 1055
  • — Stieltjes, existence theorems, 1056
  • — Stieltjes, properties, 1056
  • — summable function, 1059
  • integral conditions, auxiliary, 841–843
  • integral equation, {\it see\/ equation
  • integral identities, 895
  • integral operator,
  • — compactness, sufficient condition, 842
  • — Fredholm, 842
  • — Fredholm, symmetric kernel, 843
  • — Hilbert–Schmidt, 842, 843, 866
  • — positive definite, 842
  • — positive definite kernel, 843
  • — Schmidt, 843, 866
  • — self-adjoint, 842, 843
  • — spectral radius, 649
  • — symmetric kernel, 843
  • — Volterra, 842
  • integral representations,
  • — Bessel functions, 1017
  • — modified Bessel functions, 1022
  • — parabolic cylinder functions, 1034
  • — Tricomi confluent hypergeometric functions, 1024
  • integral sum, Stieltjes, 1055
  • integral transform, {\it see\/ transform
  • integrand,
  • — contain exponential functions, 419
  • — contain power-law functions, 419
  • — nonlinearity, 414–416, 418, 420, 422–424, 467–470, 472–475
  • integration,
  • — fractional, 548
  • — fractional, by parts, 529
  • — fractional, operator, 529
  • — fractional, semigroup property, 529
  • interior Dirichlet problem, 895
  • — reduction to integral equations, 895
  • interior Neumann problem, 895
  • — reduction to integral equations, 895
  • interpolation nodes, 534
  • interpolation polynomial,
  • — Hermite, 716
  • — Lagrange, 748
  • inverse Fourier transform, 512
  • inverse hyperbolic functions, 917
  • inverse Laplace transforms, tables, 969
  • inverse Mellin transform, 510, 1001
  • inverse transform,
  • — rational functions, 506
  • — representation as asymptotic expansions, 509
  • — representation as convergent series, 509
  • inverse trigonometric function, 66, 176, 344, 911, 948
  • inversion formula,
  • — Hilbert, 746
  • — Kontorovich–Lebedev, 516
  • — Meijer, 516
  • inversion of functions with finitely many singular points, 507
  • investigation of differential equations, 875
  • irrational functions, 937
  • iterated kernel, 566, 632
  • — bilinear series, 642
  • iteration process, 811, 814

J

  • Jacobi elliptic function, 1038
  • — connection with Jacobi theta functions, 1042
  • Jacobi polynomials, 1049
  • Jacobi theta function, 110, 1042
  • — connection with Jacobi elliptic functions, 1042
  • — properties, 1042
  • — relations and formulas, 1042
  • — series representation, 1042
  • Jacobi weight function, 793
  • Jentzch theorem, generalized, 648
  • Jordan lemma, 505
  • jump problem, 596

K

  • K-transform, 518
  • Kadomtsev–Petviashvili equation, 901
  • Kellog's method for finding characteristic values in case of symmetric kernel, 645
  • kernel
  • — approximation, 687
  • — Cauchy, 707, 757
  • — Cauchy, characteristic equation, 761
  • — Cauchy, complete singular integral equation, 757
  • — Cauchy, generalized, 783
  • — Cauchy, integral equations, 757
  • — Cauchy-type, 751, 753
  • — closed, 578
  • — complete, 578
  • — conjugate, 582
  • — containing arbitrary functions, 111, 191, 278, 357
  • — containing arbitrary powers, 12, 139, 223, 317
  • — containing arccosine, 66, 176, 344
  • — containing arccotangent, 71, 178, 347
  • — containing arcsine, 68, 177, 345
  • — containing arctangent, 70, 178, 346
  • — containing associated Legendre functions, 107, 271
  • — containing Bessel functions, 88, 187, 353
  • — containing Bessel functions of first kind, 261, 297
  • — containing Bessel functions of second kind, 264, 299
  • — containing Chebyshev polynomials, 109
  • — containing combination of Bessel and modified Bessel functions, 269
  • — containing combination of Bessel functions, 264
  • — containing combination of elementary functions, 179, 255, 348
  • — containing combination of hyperbolic functions, 39, 164, 334
  • — containing combination of trigonometric functions, 63, 176, 252, 344
  • — containing combination of various functions, 565
  • — containing confluent hypergeometric functions, 107
  • — containing cosine, 46, 166, 246, 335
  • — containing cosine integral, 87
  • — containing cosine integrals, 258
  • — containing cotangent, 62, 175, 252, 343
  • — containing elementary functions, 257
  • — containing error function, 86, 258
  • — containing exponential function, 15, 19, 73, 77, 78, 144, 151, 179–181, 231, 234, 236, 257, 320, 326, 348, 349
  • — containing exponential integral, 86, 258
  • — containing fractional powers, 138
  • — containing Fresnel integral, 87, 258
  • — containing gamma function, 260
  • — containing Gauss hypergeometric function, 275
  • — containing Hermite polynomial, 108
  • — containing higher-order polynomial in arguments, 6, 133, 311
  • — containing hyperbolic cosine, 22, 154, 238, 237
  • — containing hyperbolic cotangent, 38, 162, 242, 333
  • — containing hyperbolic function, 22, 73, 83, 84, 154, 179, 185, 186, 238, 255, 327, 348, 351, 352
  • — containing hyperbolic sine, 28, 156, 238, 329
  • — containing hyperbolic tangent, 36, 161, 241, 332
  • — containing incomplete gamma function, 88, 260
  • — containing integer powers of arguments, 220
  • — containing inverse trigonometric function, 66, 176, 344
  • — containing Jacobi theta functions, 110
  • — containing Kummer confluent hypergeometric function, 272
  • — containing Laguerre polynomial, 110
  • — containing Legendre function, 270
  • — containing Legendre polynomial, 105
  • — containing Legendre spherical function of first kind, 299
  • — containing logarithmic function, 42, 45, 77, 83, 85, 164, 165, 180, 185, 187, 242, 244, 255, 256, 334, 335, 349, 351, 353
  • — containing logarithmic integral, 258
  • — containing modified Bessel function, 97, 189, 355
  • — containing modified Bessel function of first kind, 266
  • — containing modified Bessel function of second kind, 266
  • — containing other special function, 111, 277
  • — containing parabolic cylinder function, 276
  • — containing power-law function, 4, 19, 45, 127, 151, 165, 217, 236, 244, 301, 326, 335
  • — containing rational function, 7, 136, 220, 314
  • — containing sine, 52, 169, 247, 337
  • — containing sine integral, 87, 258
  • — containing special function, 86, 187, 258, 353
  • — containing square roots, 9, 222
  • — containing square roots powers, 138
  • — containing sum of exponential functions, 564
  • — containing sum of hyperbolic functions, 564
  • — containing sum of trigonometric functions, 564
  • — containing tangent, 60, 174, 251, 342
  • — containing Tricomi confluent hypergeometric function, 273
  • — containing trigonometric function, 46, 78, 84, 85, 166, 181, 186, 187, 246, 256, 295, 335, 349, 352, 353
  • — containing Whittaker confluent hypergeometric function, 274
  • — cubic in arguments, 5, 132, 307
  • — degenerate, 111, 191, 278, 357, 519, 522, 539, 540–543, 569, 573, 589, 625, 627, 631, 810, 817
  • — degenerate, general, 523
  • — degenerate, general case, 628
  • — degenerate, simplest, 627
  • — difference, 114, 203, 283, 372, 519, 524, 539, 544, 573, 574, 586, 610, 625, 626, 655, 683
  • — difference, on entire axis, 655
  • — difference, with weak singularity, 588
  • — eigenfunction, 844
  • — eigenvalue, 844
  • — Fredholm, 573, 625, 839–841
  • — Fredholm, positive definite, 840
  • — Fredholm, positive definite, symmetric, 866
  • — Fredholm, symmetric definite, 840, 841
  • — general degenerate, 523
  • — generalized, 783
  • — Hilbert, 707, 780
  • — Hilbert, characteristic equation, 769
  • — Hilbert, complete singular integral equation, 759, 780
  • — Hilbert, integral equations, 759
  • — Hilbert–Schmidt, 841, 843, 845, 853, 855, 856, 860
  • — Hilbert–Schmidt, approximate values of eigenvalues, 845
  • — Hilbert–Schmidt, eigenfunctions, 854, 856, 858, 861, 864, 865
  • — Hilbert–Schmidt, eigenvalues, 854, 856, 858, 864, 865
  • — Hilbert-type, 751, 754
  • — incomplete, 578
  • — iterated, 566, 632
  • — iterated, bilinear series, 642
  • — linear in arguments, 4, 127, 217, 301
  • — logarithmic, 519, 588
  • — nondegenerate, 589, 631
  • — nonnegative, 648
  • — nonsymmetric, 580, 647
  • — of integral equation, 519, 573, 625
  • — of integral transform, 503
  • — orthogonal, 634
  • — oscillation, 651
  • — oscillation, definition, 651
  • — oscillation, theorems, 651
  • — polar, 519, 532, 574, 588
  • — positive definite, 641
  • — quadratic in arguments, 4, 129, 219, 304
  • — resolvent, 844
  • — Schmidt, 582, 841, 848, 851, 859, 860, 862
  • — simplest degenerate, 627
  • — singular, weakly, 532
  • — spectral radius, 649
  • — stochastic, 654
  • — symmetric, 573, 577, 625, 639, 645
  • — symmetric, resolvent, 644
  • — trace, 646
  • — transformation, method, 532
  • — Volterra, 839
  • — weakly singular, 532
  • — with logarithmic singularity, 533
  • — with rational Fourier transforms, 685
  • — with weak singularity, 519, 532, 574, 588, 625
  • Kontorovich–Lebedev inversion formula, 516
  • Kontorovich–Lebedev transform, 267, 516, 518
  • Korteweg–de Vries equation, 899
  • — modified, 900
  • Krein's method, 588, 683
  • — for integral equations, 588
  • — for Wiener–Hopf equations, 679
  • Kummer confluent hypergeometric function, 272, 1024
  • Kummer series, 1024
  • Kummer transformation, 1025

L

  • L2-norm, 501
  • Lagrange interpolation polynomial, 748
  • Laguerre polynomial, 110, 1024, 1045
  • — generalized, 1045
  • Lalesco–Picard equation, 323
  • Lanczos approximation, 798
  • Laplace equation, 893
  • — potentials, properties, 892
  • Laplace integral, 1030
  • Laplace transform, 235, 505, 511, 518, 524, 544, 658, 809
  • — definition, 505
  • — inverse, tables, 969
  • — inversion formula, 505
  • — properties, 507
  • — solution method, 524
  • — tables, 961
  • — two-side, 234, 518
  • Lavrentiev regularization method, 621
  • layer potential, single, 893
  • least squares method, 695
  • — description, 695
  • — normal system, 695
  • Lebedev transform, 269
  • Lebesgue integrable function, 1059
  • Lebesgue integral, 1057
  • — definition, 1059
  • — properties, 1059
  • Lebesgue space Lp(a, b), 1064
  • Lebesgue theorem on dominated convergence, 1060
  • left-sided fractional derivative, 529
  • left-sided fractional integral, 529
  • left Fourier integral, 594
  • left function, 594
  • left regularization, 775
  • — method, 775
  • left regularizer, 703
  • Legendre equation, 1032
  • Legendre functions, 270, 1030
  • — associated, 107, 271, 1030
  • — associated, first kind, 1032
  • — associated, modified, 1033
  • — associated, second kind, 1032
  • — modified associated, 1033
  • — Wronskians, 1034
  • Legendre polynomials, 105, 856, 1030
  • — orthonormal, 844
  • Legendre spherical functions, first kind, 299
  • lemma, Jordan, 505
  • limit theorems, 507
  • linear algebraic equations,
  • — infinite system, 858, 861, 864, 868, 971
  • — infinite system with symmetric matrix, 850, 853
  • linear boundary value problems, representation, 892
  • linear equation, 898
  • — constant integration limits, 502
  • — first kind, 502
  • — first kind, constant integration limits, 217, 573
  • — first kind, variable integration limit, 3
  • — operator methods, 549
  • — second kind, 502
  • — second kind, constant integration limits, 301, 625
  • — second kind, variable integration limit, 127
  • — solution methods, 519, 539, 573, 625
  • — structure of solutions, 502
  • — variable integration limit, 502
  • linear normed spaces, 1063
  • linear operator, 502, 1066
  • — eigenfunction, 1066
  • — eigenvalue, 1066
  • linear operators in Hilbert spaces, 1065, 1066
  • linear ordinary differential equations, 881
  • linear relations of parabolic cylinder functions, 1034
  • linear space, 1063
  • — complex, 1063
  • — real, 1063
  • linear superposition principle, 502
  • linearly dependent elements, 1063
  • linearly independent elements, 843, 1063
  • Liouville theorem, generalized, 714
  • Lipschitz condition, 709, 1054, 1057
  • local solutions of nonlinear integral equation with parameter, 835
  • logarithm,
  • — Napierian, base, 905
  • — natural, base, 905
  • logarithmic derivative of gamma function, 1017, 1021
  • logarithmic function, 42, 45, 77, 83, 85, 164, 165, 180, 185, 187, 242, 244, 255, 256, 334, 335, 349, 351, 353, 905, 943, 955, 965, 980, 985, 992, 999, 1002
  • — properties, 906
  • logarithmic integral, 258, 1009, 1010, 1025
  • logarithmic kernel, 519, 588
  • logarithmic nonlinearity, 419, 472
  • logarithmic singularity, 533, 618
  • — kernel, 533

M

  • MacDonald function, 266, 1021
  • mass transfer to particle in fluid flow complicated by surface reaction, 888
  • Mathieu equation, 1043
  • — modified, 1045
  • Mathieu function, 1043, 1044
  • — modified, 1043, 1045
  • matrix,
  • — eigenvalues, 845, 848, 856, 859, 861, 868, 872
  • — eigenvectors, orthonormal, 845, 848, 856, 859, 868, 872
  • — orthonormal eigenvectors, 845, 848, 856, 859, 868, 872
  • mean-square convergence, 501
  • measurable function, 1058
  • measurable set, 1060
  • — integration, 1061
  • measure,
  • — full, set, 1058
  • — zero, set, 1058
  • measure of set, 1061
  • mechanics, fracture, 791
  • Mehler–Fock transform, 270, 518
  • — generalized, 271
  • Mehler integral, 299, 615
  • Meijer inversion formula, 516
  • Meijer transform, 266, 516, 517
  • Mellin transform, 510, 511, 518, 587, 657, 658
  • — definition, 510
  • — inverse, 510
  • — inverse, tables, 1001
  • — inversion formula, 510
  • — properties, 511
  • — tables, 997
  • method,
  • — approximation, successive, 566
  • — Bateman, 689
  • — Bateman, general scheme, 689
  • — Bateman, special cases, 690
  • — Bubnov–Galerkin, 697
  • — Bubnov–Galerkin, description, 697
  • — Carleman, for characteristic equations, 761
  • — Carleman, for equations of convolution type of first kind, 606
  • — Carleman, for equations with difference kernels, 610
  • — Carleman, for integral equations of convolution type of second kind, 660
  • — collocation, 692, 693, 815
  • — collocation, for solving hypersingular integral equation, 755
  • — exact, 588
  • — Galerkin, 582
  • — Kellog's, for finding characteristic values in case of symmetric kernel, 645
  • — Krein's, 588, 683
  • — Krein's, for integral equations, 588
  • — Krein's, for Wiener–Hopf equations, 679
  • — Multhopp–Kalandiya, 747
  • — Newton–Kantorovich, 813, 814, 827
  • — Newton–Kantorovich, modified, 814, 827
  • — nonlinear equations with constant integration limits, exact, 817
  • — nonlinear equations with variable integration limit, exact, 809
  • — operator, 549, 654
  • — operator, for solving integral equations of second kind, 654
  • — Picard, 876
  • — projection, for solving mixed equations on bounded set, 866
  • — quadrature, 698, 816 829
  • — quadrature, general scheme, 698
  • — regularization, 704
  • — regularization, for complete singular integral equations, 772
  • — regularization, for equations with infinite limits of integration, 702
  • — regularization, Lavrentiev, 621
  • — regularization, Tikhonov, 622, 829
  • — solution, Laplace transform, 524
  • — successive approximation, 566, 811, 826
  • — successive approximation, general scheme, 566
  • — successive approximation, resolvent, 566
  • — Tikhonov regularization, 829
  • — trace, for approximation of characteristic values, 646
  • — Wiener–Hopf, 671
  • — Wiener–Hopf, scheme, 676
  • — Zakharov–Shabat, 898
  • method based on solution of auxiliary equation, 546
  • method for,
  • — solving quadratic operator equations, 552
  • — special Urysohn equations of first kind, 821
  • — special Urysohn equations of second kind, 822
  • method of,
  • — approximating kernel by degenerate one, 687
  • — differentiating, for integral equations, 820, 564, 583
  • — differentiation, 564, 583, 810
  • — differentiation, for nonlinear equations with degenerate kernel, 810
  • — equidistant surface, 891
  • — fractional differentiation, 529
  • — fractional integration, for generalized Abel equation, 548
  • — Fredholm determinants, 635
  • — Fredholm determinants, 635
  • — integral transforms, 586, 655, 809, 819
  • — least squares, 695
  • — least squares, description, 695
  • — least squares, normal system, 695
  • — left regularization, 775
  • — model solutions, 559, 655, 659
  • — model solutions, description, 560
  • — numerical integration of equation for surface concentration, 891
  • — quadratures, 534, 568, 698
  • — quadratures, algorithm based on trapezoidal rule, 536
  • — quadratures, general scheme, 535, 568
  • — quadratures, trapezoidal rule, 568
  • — replacing kernel by degenerate kernel, 687
  • — right regularization, 775
  • — successive approximations, 579, 632, 633, 811, 876
  • — successive approximations, for ODEs, 876
  • — transformation of kernel, 532
  • methods
  • — approximate, for nonlinear equations with constant integration limits, 826
  • — approximate, for nonlinear equations with variable integration limit, 811
  • — asymptotic, 618
  • — asymptotic, for solving equations with logarithmic singularity, 618
  • — exact, for integral equations, 588
  • — exact, for nonlinear equations with constant integration limits, 817
  • — exact, for nonlinear equations with variable integration limit, 809
  • — for solving complete singular integral equations, 757
  • — for solving equations with difference kernels on finite interval, 683
  • — for solving integral equations, 499
  • — for solving linear equations, 519, 539, 573, 625
  • — for solving multidimensional mixed integral equations, 839
  • — for solving nonlinear integral equations, 805
  • — for solving singular integral equations of first kind, 707
  • — integral equations of first kind, 707
  • — numerical, for hypersingular equations, 754
  • — numerical, for nonlinear equations with constant integration limits, 826
  • — numerical, for nonlinear equations with variable integration limit, 811
  • — of solving mixed integral equations on finite interval, 843
  • — of solving mixed integral equations on ring-shaped domain, 855
  • — operator, for solving linear integral equations, 549
  • — regularization, 621
  • minor, Fredholm, 636
  • mixed equation, 839
  • — bounded set, projection method, 866
  • — circular domain, 841
  • — closed bounded set, 842
  • — finite interval, 840
  • — Hilbert–Schmidt kernel, finite interval, 843
  • — Hilbert–Schmidt kernel, ring-shaped domain and given right-hand side, 855
  • — multidimensional, 839
  • — multidimensional, solution methods, 839
  • — on finite interval, methods of solving, 843
  • — on ring-shaped domain, methods of solving, 855
  • — ring-shaped domain, 841
  • — Schmidt kernel and auxiliary conditions on ring-shaped domain, 862
  • — Schmidt Kernel and given right-hand side on interval, 848
  • mixed multidimensional equation,
  • — Fredholm operator, 842
  • — Schmidt operator, 843
  • — Schmidt operator, equivalent form, 843
  • — symmetric Fredholm kernel, 842
  • — Volterra and Hilbert–Schmidt types operators, 866
  • — Volterra and Schmidt types operators, 866
  • mixed operator equation, 866, 869
  • — with given right-hand side, 866
  • mixed operator equations with auxiliary conditions, 869
  • mixed two-dimensional equation, Schmidt kernel, 841
  • — equivalent form, 842
  • model solution,
  • — cosine-shaped right-hand side, 563
  • — exponential right-hand side, 561
  • — power-law right-hand side, 562
  • — sine-shaped right-hand side, 562
  • model solutions, method, 559, 655, 659
  • modified associated Legendre functions, 1033
  • modified Bessel equation, 1021
  • modified Bessel function, 97, 189, 269, 355, 1021
  • — asymptotic expansions, 1022
  • — definitions, 1021
  • — first kind, 266, 1021
  • — integral representations, 1022
  • — second kind, 266, 1021
  • modified Korteweg–de Vries equation, 900
  • modified Mathieu function, 1043, 1045
  • modified Newton–Kantorovich method, 814, 827
  • modulus, 278, 583
  • — complementary, 1036
  • — elliptic, 1036
  • Multhopp–Kalandiya method, 747
  • multidimensional domain, 839
  • — integration, 839
  • multidimensional equation, mixed, 839
  • — Fredholm operator, 842
  • — integral operators of Volterra and Hilbert–Schmidt types, 866
  • — integral operators of Volterra and Schmidt types, 866
  • — Schmidt operator, 843
  • — solution methods, 839
  • — symmetric Fredholm kernel, 842
  • multidimensional real-valued functions, 839
  • multiply connected domain, 731
  • multivalued functions, 711

N

  • Napierian base, 906
  • Napierian logarithms, base, 905
  • natural logarithms, base, 905
  • natural numbers, powers, sums, 919
  • Nekrasov equation, 836
  • Neumann function, 1016
  • Neumann problem,
  • — exterior, reduction to integral equations, 896
  • — interior, 895
  • — interior, reduction to integral equations, 895
  • Neumann series, 567, 633
  • Newton–Kantorovich method, 813, 814, 827
  • — modified, 814, 827
  • nodes,
  • — Chebyshev, 748
  • — interpolation, 534
  • — quadrature, 534
  • nondegenerate kernel, 589, 631
  • nonhomogeneous equation, 502, 539, 627, 708, 751
  • — positive solutions, 649
  • — solution, 642
  • nonhomogeneous problem, 604, 742
  • — solution, 721
  • nonhomogeneous Riemann problem, canonical function, 605
  • nonhomogeneous Wiener–Hopf equation of second kind, 677
  • nonisothermal flow in plane channel, 884
  • nonlinear equation, 807, 834, 899
  • — bifurcation points, 834, 835
  • — constant integration limits, 806, 829
  • — constant integration limits, approximate methods, 826
  • — constant integration limits, exact methods, 817
  • — constant integration limits, numerical methods, 826
  • — degenerate kernel, 817
  • — degenerate kernel, method of differentiation, 810
  • — eigenfunctions, 834
  • — existence theorems, 830
  • — first kind with constant limits of integration, 433
  • — parameter, local solutions, 835
  • — second kind with variable limit of integration, 403
  • — second kind with constant limits of integration, 453
  • — solution methods, 805
  • — uniqueness theorems, 830
  • — variable limit of integration, 805
  • — variable limit of integration, approximate methods, 811
  • — variable limit of integration, exact methods, 809
  • — variable limit of integration, numerical methods, 811
  • nonlinear operator, eigenfunctions, 834
  • nonlinear PDEs, 898
  • nonlinear problem of nonisothermal flow in plane channel, 884
  • nonlinear Volterra integral equation, 805
  • nonlinearity, 414–416, 418, 467–470, 472–475
  • — exponential, 411, 467
  • — general form, 399, 425, 447, 477
  • — hyperbolic, 414, 468
  • — logarithmic, 419, 472
  • — power-law, 408, 444, 464
  • — quadratic, 393, 397, 403, 406, 437, 453, 456
  • — trigonometric, 420, 473
  • nonnegative kernels, 648
  • nonorthogonal polynomials, 1050
  • nonsymmetric kernel, 580, 647
  • norm, 501, 644, 839
  • — operator, 1066
  • normal system of method of least squares, 695
  • normality condition, 596
  • normed space, 1063
  • — linear, 1063
  • notion of almost everywhere, 1058
  • notion of index, 716
  • nth-order differential equations, boundary value problems, 882
  • nth-order linear ODE, 876
  • numbers, 1007
  • — Bernoulli, 1008
  • — Euler, 1008
  • — natural, powers, sums, 919
  • numerical integration, method, 891
  • numerical methods for hypersingular equations, 754
  • numerical methods for nonlinear equations with constant integration limits, 826
  • numerical methods for nonlinear equations with variable limit of integration, 811
  • numerical series, 924
  • — infinite, 924
  • numerical solution, singular equations, 799
  • — generalized kernels, 792
  • numerical sums, 921
  • — finite, 919

O

  • ODE,
  • — first-order, 875, 876
  • — method of successive approximations, 876
  • — nth-order, linear, 876
  • — second-order, 876
  • Olevskii transform, 276
  • one-dimensional domain, 839
  • — integration, 839
  • one-sided equation, 574, 626
  • one-sided Fourier integrals, 593, 594
  • one-sided function, 594
  • open curves, 734
  • — Riemann problem, 734
  • operator
  • — compact, 842, 843, 1067
  • — compact, self-adjoint, 843
  • — compact, self-adjoint positive, 873
  • — compact, self-adjoint positive definite, 1067
  • — compact, self-adjoint positive definite, eigenvalues, 1067
  • — Erdelyi–Kober, 532
  • — Fredholm, 758, 842
  • — Fredholm, symmetric kernel, generalization, 843
  • — Hilbert–Schmidt, 842, 843, 866, 871
  • — Hilbert–Schmidt, approximation for eigenfunctions, 868, 872
  • — Hilbert–Schmidt, approximation for eigenvalues, 868, 872
  • — Hilbert–Schmidt, eigenfunction, 871
  • — Hilbert–Schmidt, eigenvalues, 871
  • — identity, 842, 873
  • — integral, characteristic, 758
  • — integral, characteristic, transposed, 758
  • — integral, compactness, sufficient condition, 842
  • — integral, continuous, 1066
  • — integral, domain, 1066
  • — integral, domain of definition, 1066
  • — integral, eigenvalues, 867
  • — integral, positive definite, 842
  • — integral, self-adjoint, 842, 843, 1067
  • — integral, self-adjoint, eigenvalues, 1067
  • — integral, self-adjoint, eigenvectors, 1067
  • — integral, spectral radius, 649
  • — integral, spectrum, 1066
  • — integral, transposed, 758
  • — integral, transposed characteristic, 758
  • — integral with positive definite kernel, 843
  • — integral with symmetric kernel, 843
  • — linear, 502, 1066
  • — linear, eigenfunction, 1066
  • — linear, eigenvalue, 1066
  • — linear in Hilbert spaces, 1065, 1066
  • — nonlinear, eigenfunctions, 834
  • — norm, 1066
  • — orthogonal projection, 1067
  • — point, continuous, 1066
  • — positive definite, 842, 1067
  • — regular, 758
  • — regularizing, 703
  • — Schmidt, 843, 866
  • — singular, 758
  • — singular, certain properties, 772
  • — Volterra, 842, 873
  • operator equation,
  • — general projection problem, 873
  • — general projection problem, 873
  • — mixed, 866, 869
  • — mixed with auxiliary conditions, 869
  • — quadratic, 552
  • — solution, 553
  • operator method, 549, 654
  • operator method for solving integral equations of second kind, 654
  • operator of fractional integration, 529
  • operator of orthogonal projection, 846, 852, 857, 563, 870
  • order, fractional, integral, 529
  • ordinary differential equations, 527, 547, 686
  • — linear, 881
  • orthogonal function, 582
  • orthogonal kernels, 634
  • orthogonal polynomials, 1045
  • — system, 795
  • orthogonal projection, operator, 846, 852, 857, 563, 870, 1067
  • orthogonal projector, 1067
  • orthogonal subspaces, 873
  • — direct sum, 845, 863, 869
  • orthogonal system, 1065
  • orthogonal vectors, 1065
  • orthogonality properties of Bessel functions, 1019
  • orthonormal basis, 855, 856
  • orthonormal eigenvectors of matrix, 845, 848, 856, 859, 868, 872
  • orthonormal Legendre polynomials, 844
  • orthonormal system, 1065
  • — complete, 844, 855
  • oscillation kernel, 651
  • — definition, 651
  • — theorems, 651

P

  • Paley–Wiener transform, 260
  • parabolic cylinder function, 276, 1034
  • — asymptotic expansions, 1034
  • — basic formulas, 1034
  • — definitions, 1034
  • — integral representations, 1034
  • — linear relations, 1034
  • — Weber, 1034
  • parameter of integral equation, 625
  • parameters, arbitrary, 408, 411, 433, 453
  • Parseval's relation,
  • — Fourier cosine transform, 514
  • — Fourier sine transform, 515
  • — Hankel transform, 515, 516
  • particular solutions of PDEs, 887
  • PDEs, nonlinear, 898
  • PDEs with boundary conditions,
  • — third kind, 887
  • — third kind, reduction to integral equations, 887
  • permutator, 654
  • Picard–Goursat equation, 134
  • Picard method, 876
  • Pochhammer symbol, 1007
  • Poincare–Bertrand formula, 714
  • point
  • — bifurcation, 835
  • — bifurcation of nonlinear integral equations, 834, 835
  • — collocation, 693
  • — cuspidal, 708
  • — regular, 1066
  • — singular, 507
  • point operator, continuous, 1066
  • Poisson's formula, 1018
  • Poisson equation, 894
  • polar kernel, 519, 532, 574, 588
  • polynomial
  • — Bernoulli, 1050
  • — Chebyshev, 109, 1047
  • — Chebyshev, second kind, 750
  • — Euler, 1051
  • — Gegenbauer, 1050
  • — generalized Laguerre, 1045
  • — Hermite, 108, 1024, 1025, 1048
  • — higher-order in arguments, 6, 133, 311
  • — interpolation, Hermite, 716
  • — interpolation, Lagrange, 748
  • — Jacobi, 1049
  • — Lagrange interpolation, 748
  • — Laguerre, 110, 1024, 1045
  • — Laguerre, generalized, 1045
  • — Legendre, 105, 856, 1030
  • — Legendre, orthonormal, 844
  • — nonorthogonal, 1050
  • — orthogonal, 1045
  • — orthogonal, system, 795
  • — orthonormal Legendre, 844
  • — ultraspherical, 1050
  • polynomial form, 553
  • positive definite Fredholm kernel, 840
  • — symmetric, 866
  • positive definite integral operator, 842
  • positive definite kernel, 641
  • positive definite operator, 1067
  • positive eigenvalue, 648
  • positive Fredholm kernel, symmetric, 841
  • positive solutions of nonhomogeneous integral equation, 649
  • Post–Widder formula, 510
  • potential,
  • — density, 893
  • — double layer, 893
  • — double layer, Gauss formula, 894
  • — equilibrium, 897
  • — Feller, 226
  • — Laplace equation, 892
  • — Laplace equation, properties, 892
  • — layer, single, 893
  • — Riesz, 226
  • — Roben, 897
  • — single layer, 893
  • — volume, 893
  • — volume, Gauss formula, 894
  • power-law functions, 4, 45, 127, 151, 165, 217, 236, 244, 301, 326, 335, 419, 951, 963, 983, 989, 998, 1001
  • power-law generating function, 557
  • power-law nonlinearity, 408, 464
  • power-law nonlinearity that contain arbitrary functions, 444
  • power function, 905
  • — properties, 905
  • power series, 925
  • — expansion, 910, 913, 916, 918
  • power series in parameter, 632
  • power series of Airy functions, 1023
  • powers, arbitrary, 139, 223, 317, 939, 977
  • powers, fractional, 138
  • powers of natural numbers, sums, 919
  • principal value,
  • — curvilinear integral, 712
  • — singular curvilinear integral, 712
  • — singular integral, 709
  • principle
  • — linear superposition, 502
  • principle of argument, 714
  • principle of continuity, 714
  • probability integral, 1009
  • problem
  • — Abel, 520
  • — boundary value, first, 895, 896
  • — boundary value, for nth-order differential equations, 882
  • — boundary value, for ODEs, 877, 881
  • — boundary value, for second-order differential equations, 883
  • — boundary value, linear, representation, 892
  • — boundary value, Riemann, 595
  • — boundary value, second, 895, 897
  • — Cauchy, for ODEs, reduction to integral equations, 875
  • — Cauchy, for second-order ODEs, 876
  • — Cauchy, for special nth-order linear ODE, 876
  • — Dirichlet, exterior, reduction to integral equations, 896
  • — Dirichlet, interior, 895
  • — Dirichlet, interior, reduction to integral equations, 895
  • — electrostatic, Roben, 897
  • — factorization, 676, 679
  • — general projection, 873
  • — general projection, for operator equation, 873
  • — general projection, special case, 846, 852, 857, 870
  • — Hilbert, 742
  • — Hilbert, boundary value, 742
  • — homogeneous, 596, 602, 742
  • — homogeneous, solution, 720
  • — ill-posed, 623, 624
  • — ill-posed, general notions, 623
  • — interior Dirichlet, 895
  • — interior Dirichlet, reduction to integral equations, 895
  • — interior Neumann, 895
  • — interior Neumann, reduction to integral equations, 895
  • — jump, 596
  • — linear boundary value, representation, 892
  • — Neumann, exterior, reduction to integral equations, 896
  • — Neumann, interior, 895
  • — Neumann, interior, reduction to integral equations, 895
  • — nonhomogeneous, 604, 742
  • — nonhomogeneous, solution, 721
  • — nonhomogeneous Riemann, canonical function, 605
  • — nonlinear of nonisothermal flow in plane channel, 884
  • — projection, general, for operator equation, 873
  • — projection, general, special case, 846, 852, 857, 870
  • — Riemann, 596, 685, 714
  • — Riemann, boundary value, 595
  • — Riemann, coefficient, 596, 718
  • — Riemann, discontinuous coefficient, 739
  • — Riemann, exceptional cases, 727
  • — Riemann, for half-plane, 725
  • — Riemann, for open curves, 734
  • — Riemann, for real axis, 592
  • — Riemann, general case, 741
  • — Riemann, index, 596, 731
  • — Riemann, multiply connected domain, 731
  • — Riemann, nonhomogeneous, canonical function, 605
  • — Riemann, open curves, 734
  • — Riemann, right-hand side, 596, 718
  • — Riemann, statement, 718
  • — Riemann, with discontinuous coefficient, 739
  • — Riemann, with rational coefficients, 723
  • — Roben electrostatic, 897
  • — second boundary value, 895, 897
  • — tautochrone, 520
  • — well-posed, 623
  • problem of equivalent regularization, 776
  • problem with rational coefficients, 601
  • process, iteration, 811, 814
  • product
  • — infinite, 910, 916
  • — inner, 501, 644
  • — scalar, 839
  • progressions, 919, 924
  • projection, orthogonal, operator, 846, 852, 857, 563, 870
  • projection method for solving mixed equations on bounded set, 866
  • projection problem
  • — general, for operator equation, 873
  • — general, special case, 846, 852, 857, 870
  • projector, orthogonal, 1067
  • properties
  • — basic of Gauss hypergeometric functions, 1028
  • — certain of singular operators, 772
  • — orthogonality of Bessel functions, 1019
  • property, semigroup of fractional integration, 529
  • psi function, 1012, 1013

Q

  • quadratic form, 644
  • quadratic nonlinearity, 393, 397, 403, 406
  • — containing arbitrary functions, 437, 456
  • — containing arbitrary parameters, 433, 453
  • quadrature formula, 534, 793, 815
  • quadrature method, 698, 816, 829
  • — general scheme, 698
  • quadrature nodes, 534
  • quadratures, method, 534, 568, 698
  • — algorithm based on trapezoidal rule, 536
  • — general scheme, 535

R

  • radius,
  • — estimates, 649
  • — of integral operator, 649
  • — of kernel, 649
  • rational coefficients, 601, 723
  • rational Fourier transforms, 685
  • rational functions, 7, 136, 220, 314, 933, 971
  • — inverse transforms, 506
  • reaction, surface, 888
  • real-valued functions, multidimensional, classes, 839
  • real axis
  • — Holder condition, 575
  • — Sokhotski–Plemelj formulas, 713
  • real linear space, 1063
  • rectangle rule, 534
  • recurrent relations, 636
  • reduction formulas, 907, 939, 947
  • regular operator, 758
  • regular points, 1066
  • regular value, 301, 625, 637
  • regularization, 774
  • — Carleman–Vekua, 778
  • — equivalent, problem, 776
  • — left, 775
  • — left, method, 775
  • — right, 776
  • — right, method, 775
  • regularization in exceptional cases, 779
  • regularization method, 621, 704
  • — complete singular integral equations, 772
  • — equations with infinite limits of integration, 702
  • — Lavrentiev, 621
  • — Tikhonov, 622, 829
  • regularizer, 774
  • — left, 703
  • — right, 704
  • regularizing operators, 703
  • relation,
  • — linear of parabolic cylinder functions, 1034
  • — Parseval's, Fourier cosine transform, 514
  • — Parseval's, Fourier sine transform, 515
  • — Parseval's, Hankel transform, 515, 516
  • recurrent, 636
  • relations between Mellin, Laplace, and Fourier transforms, 511
  • remainder, 534
  • renewal equation, 203
  • representation,
  • — Bessel functions, 1017
  • — form of infinite products, 910, 916
  • — Gauss hypergeometric functions, 1028
  • — inverse transforms as asymptotic expansions, 509
  • — inverse transforms as convergent series, 509
  • — modified Bessel functions, 1022
  • — parabolic cylinder functions, 1034
  • — series of Jacobi theta functions, 1042
  • — Tricomi confluent hypergeometric functions, 1024
  • residual, 692
  • residue theorem, Cauchy, 504
  • residues, 504
  • resolvent, 539, 567, 626, 633, 635
  • — construction, 633
  • — kernel, 844
  • — symmetric kernel, 644
  • results, auxiliary, 784
  • Riemann boundary value problem, 595, 714
  • Riemann integral, 1057
  • Riemann–Liouville derivatives, 529
  • Riemann–Liouville fractional integrals, 529
  • Riemann problem, 596, 685, 714
  • — coefficient, 596, 718
  • — exceptional cases, 727
  • — for half-plane, 725
  • — for multiply connected domain, 731
  • — for open curves, 734
  • — for real axis, 592
  • — general case, 741
  • — index, 596, 731
  • — nonhomogeneous, canonical function, 605
  • — right-hand side, 596, 718
  • — statement, 718
  • — with discontinuous coefficient, 739
  • — with rational coefficients, 723
  • Riemann zeta function, generalized, 277
  • Riesz potential, 226
  • Riesz Schauder theory, Riesz–Schauder theory, 843
  • Riesz transform, 226
  • right-hand side, 757
  • — equation, 519, 573, 625
  • — integral equation, 539
  • — Riemann problem, 596, 718
  • — special, 555
  • right-sided fractional derivative, 529
  • right-sided fractional integral, 529
  • right Fourier integral, 594
  • right function, 594
  • right regularization, 776
  • — method, 775
  • right regularizer, 704
  • ring-shaped domain, 841, 855, 862
  • Roben electrostatic problem, 897
  • Roben potential, 897
  • roots, square, 138, 222, 975
  • rule
  • — rectangle, 534
  • — Simpson's, 534
  • — trapezoidal, 534, 568

S

  • scalar, 1063
  • scalar product, 839
  • scalars, field, 1063
  • scheme,
  • — general, Bateman method, 689
  • — general, method of quadratures, 568
  • — general, successive approximation method, 566
  • Schlomilch equation, 254, 452, 825
  • Schlomilch equation, generalized, 254
  • Schmidt integral operator, 843, 866
  • Schmidt kernel, 582, 841, 848, 851, 859, 860, 862
  • Schmidt operator, 866
  • second-order differential equations, boundary value problems, 883
  • second-order ODEs, 876
  • second boundary value problem, 895, 897
  • segment, finite, equation, 683, 685
  • self-adjoint operator, 842, 843, 1067
  • — eigenvalues, 1067
  • — eigenvectors, 1067
  • semiaxis,
  • — equation, 574, 587, 626, 657
  • — Hilbert transform, 229
  • semigroup property of fractional integration, 529
  • sequence of independent Volterra equations, 847, 858
  • sequence of independent Volterra equations of second kind, 853, 865, 872
  • sequence of Volterra equations, 844, 850, 862
  • sequence of Volterra equations of second kind, 855
  • series,
  • — bilinear, 640
  • — bilinear, iterated kernels, 642
  • — convergent, 509
  • — functional, infinite, 925
  • — hypergeometric, 1028
  • — infinite, 919
  • — infinite functional, 925
  • — infinite numerical, 924
  • — Kummer, 1024
  • — Neumann, 567, 633
  • — numerical, 924
  • — numerical, infinite, 924
  • — power, 913, 925
  • — power, expansion, 910, 916, 918
  • — power in parameter, 632
  • — power of Airy functions, 1023
  • — trigonometric, in one variable, involving cosine, 928
  • — trigonometric, in one variable, involving sine, 927
  • — trigonometric, in two variables, 930
  • series representation of Jacobi theta functions, 1042
  • set, 866
  • — bounded, closed, 842
  • — closed bounded, 842
  • — measurable, 1060
  • — measure, 1061
  • set of full measure, 1058
  • set of zero measure, 1058
  • sets, measurable, 1060
  • — measurable, integration, 1061
  • — zero measure, 1058
  • several variables, function, 839
  • side, right-hand
  • — of equation, 519, 573, 625
  • — of integral equation, 539
  • — of Riemann problem, 596
  • — of Riemann problem, 718
  • — special, 555
  • simple hypersingular equation of first kind with Cauchy-type kernel, 231
  • simple hypersingular equation of first kind with Hilbert-type kernel, 255
  • simplest degenerate kernel, 627
  • simplest equation with Cauchy kernel, 743
  • simplest hypersingular equation for first kind with Hilbert-type kernel, 754
  • simplest singular equation of first kind with Hilbert kernel, 707, 746
  • Simpson's rule, 534
  • sine, 52, 169, 247, 337, 558, 927
  • — hyperbolic, 28, 156, 238, 329
  • sine integral, 87, 258, 1011
  • sine transform, Fourier, Parseval's relation, 515
  • single layer potential, 893
  • singular curvilinear integral, principal value, 712
  • — 228, 255, 319, 344
  • — Bueckner type, 801
  • — Cauchy kernel, complete, 757
  • — Cauchy kernel, first kind, 707
  • — complete, 757, 770, 772
  • — first kind, 743
  • — generalized kernels, 792
  • — generalized kernels, direct numerical solution, 792
  • — Hilbert kernel, 759
  • — Hilbert kernel, complete, 759, 780
  • — numerical solution, 799
  • — simplest of first kind with Hilbert kernel, 707, 746
  • — transposed, 758
  • — two-dimensional, 231
  • singular equations of first kind, 707
  • singular integral, 709
  • — principal value, 709, 712
  • singular kernel, weakly, 532
  • singular operator, 758
  • singular operators, certain properties, 772
  • singular points, 507
  • singularities, solutions, 783
  • singularity
  • — logarithmic, 533, 618
  • — logarithmic, kernel, 533
  • — weak, 574, 588, 625
  • — weak, kernel, 519, 532, 574, 588, 625
  • singularity exponents, 787, 789
  • skew-symmetric integral equation, 647
  • smooth contour, 708
  • Sokhotski–Plemelj formula, 713, 785
  • Sokhotski–Plemelj formulas for real axis, 713
  • solution
  • — approximate, 688, 693
  • — approximation, 854
  • — convolution representation, 526
  • — direct numerical of singular integral equations with generalized kernels, 792
  • — exact of simple hypersingular equation with Cauchy-type kernel, 753
  • — exact of simple hypersingular equation with Hilbert-type kernel, 754
  • — fundamental, 881
  • — homogeneous problem, 720
  • — integral equations, exact, 1–500
  • — model, cosine-shaped right-hand side, 563
  • — model, exponential right-hand side, 561
  • — model, power-law right-hand side, 562
  • — model, sine-shaped right-hand side, 562
  • — nonhomogeneous problem, 721
  • — numerical, of singular integral equations, 799
  • — simple hypersingular equation with Cauchy-type kernel, exact, 753
  • — simple hypersingular equation with Hilbert-type kernel, exact, 754
  • — stable, 623
  • — trivial, 502
  • solution method, Laplace transform, 524
  • solution method based on Laplace transform, 544
  • solution of auxiliary equation, method, 546
  • solution of generalized Abel equation, 531
  • solution of operator equations of polynomial form, 553
  • solutions
  • — closed-form, case of constant coefficients, 770
  • — closed-form, general case, 771
  • — fundamental, 881
  • — local of nonlinear integral equation with parameter, 835
  • — model, method, 559, 655, 659
  • — particular of PDEs, 887
  • — positive of nonhomogeneous integral equation, 649
  • solutions of dual integral equations, general scheme, 611
  • solutions of nonlinear PDEs, representation in terms of solutions of linear integral equations, 898
  • solutions singularities, 783
  • solving linear equations, methods, 519, 539
  • solving quadratic operator equations, 552
  • Sonine transform, 114
  • space
  • — Banach, 1065
  • — basis, 844, 863
  • — complete, 1065
  • — complex linear, 1063
  • — Euclidean, 845, 857, 863, 869, 1065
  • — Euclidean, basis, 857, 869
  • — Hilbert, 839, 845, 857, 863, 867, 869, 1065
  • — Hilbert, abstract, 873
  • — Hilbert, basis, 857, 867, 869
  • — Hilbert, linear operators, 1065, 1066
  • — Hilbert, special basis, 869
  • — Holder, 1064
  • — Lebesgue, 1064
  • — linear, 1063
  • — linear, complex, 1063
  • — linear, normed, 1063
  • — linear, real, 1063
  • — normed, 1063
  • — normed linear, 1063
  • — real linear, 1063
  • — vector, 1063
  • space of continuous functions, 1064
  • space of functions of bounded variation, 1064
  • special basis of Hilbert space, 869
  • special case of general projection problem, 846, 852, 857, 870
  • special functions, 86, 111, 187, 258, 277, 353, 967, 981, 987, 993, 1000, 1004
  • special right-hand side, 555
  • special Urysohn equations of first kind, method, 821
  • special Urysohn equations of second kind, method, 822
  • spectral radius, estimates, 649
  • spectral radius of integral operator, 649
  • spectral radius of kernel, 649
  • spectrum of Fredholm integral equation, 760
  • spectrum of operator, 1066
  • spherical functions, Legendre of first kind, 299
  • square integrable function, 501, 502
  • square root, 9, 138, 222, 975
  • stable solution, 623
  • statement of Riemann problem, 718
  • step-function, 1058
  • — integral, 1059
  • Stieltjes integral, 1055, 1056
  • — basic definitions, 1055
  • — existence theorems, 1056
  • — properties, 1056
  • Stieltjes integral sum, 1055
  • Stieltjes transform, 221
  • Stirling formula, 1013
  • stochastic kernel, 654
  • structure of solutions to linear integral equations, 502
  • Struve function, 264, 299, 516, 518
  • subspace, 1063
  • — orthogonal, 873
  • — orthogonal, direct sum, 845, 863, 869
  • successive approximation method, 566, 579, 632, 633, 811, 826, 876
  • — for ODEs, 876
  • — general scheme, 566
  • — resolvent, 566
  • sufficient condition for compactness of integral operator, 842
  • sum
  • — contain binomial coefficients, 920
  • — contain integers, 920
  • — finite, 919
  • — finite functional, 922
  • — finite numerical, 919
  • — functional, finite, 922
  • — integral, Stieltjes, 1055
  • — involving hyperbolic functions, 922
  • — involving trigonometric functions, 922
  • — numerical, 921
  • — numerical, finite, 919
  • — of exponential functions, 564
  • — of hyperbolic functions, 564
  • — of orthogonal subspaces, direct, 845, 863, 869
  • — of powers of natural numbers, 919, 920
  • — of powers of natural numbers, alternating, 920
  • — of trigonometric functions, 564
  • — Stieltjes integral, 1055
  • summable function, 1059
  • — integral, 1059
  • superposition principle, linear, 502
  • surface, equidistant, method, 891
  • surface concentration,
  • — equation, method of numerical integration, 891
  • — integral equation, 890
  • surface reaction, 888
  • symbol, Pochhammer, 1007
  • symbols, 1007
  • symmetric definite Fredholm kernel, 840
  • symmetric equation, 639, 647
  • — Fredholm alternative, 643
  • symmetric kernel, 573, 577, 625, 639, 645
  • — resolvent, 644
  • symmetric positive definite Fredholm kernel, 866
  • symmetric positive Fredholm kernel, 841
  • system
  • — complete, 1065
  • — complete orthonormal, 855
  • — Fredholm integral equations of second kind, 701
  • — infinite of linear algebraic equations, 858, 861, 864, 868, 971
  • — infinite of linear algebraic equations with symmetric matrix, 850, 853
  • — normal of method of least squares, 695
  • — orthogonal, 1065
  • — orthonormal, 1065
  • — orthonormal, complete, 855
  • — Volterra integral equations, 549
  • system of characteristic values, 640
  • system of eigenfunctions, 640
  • — complete, 640
  • — incomplete, 640
  • system of equations, 701
  • — reduction to single equation, 701
  • system of Fredholm equations of second kind, 701
  • system of functions,
  • — complete orthonormal, 844
  • — orthonormal, complete, 844
  • system of orthogonal polynomials, 795

T

  • tables of definite integrals, 951
  • tables of Fourier cosine transforms, 983
  • tables of Fourier sine transforms, 989
  • tables of indefinite integrals, 933
  • tables of inverse Laplace transforms, 969
  • tables of inverse Mellin transforms, 1001
  • tables of Laplace transforms, 961
  • tables of Mellin transforms, 997
  • tangent, 60, 174, 251, 342
  • — hyperbolic, 36, 161, 241, 332
  • tautochrone problem, 520
  • terms of potentials, 892
  • theorem
  • — analytic continuation, 595, 714
  • — Cauchy residue, 504
  • — convolution, 507, 513
  • — existence, 875
  • — existence, for nonlinear equations, 830
  • — existence, for Stieltjes integral, 1056
  • — Fischer–Riesz, 1060
  • — Fredholm, 637, 702, 777
  • — Fubini, 1062
  • — generalized Jentzch, 648
  • — generalized Liouville, 595, 714
  • — Hilbert–Schmidt, 641, 1067
  • — Jentzch, generalized, 648
  • — Lebesgue on dominated convergence, 1060
  • — limit, 507
  • — residue, Cauchy, 504
  • — uniqueness, 875
  • — uniqueness, for nonlinear equations, 830
  • theory,
  • — Hilbert–Schmidt, 843
  • — Riesz–Schauder, 843
  • theta functions, Jacobi, 110, 1042
  • Tikhonov regularization method, 622, 829
  • total variation of function, 1053
  • trace method for approximation of characteristic values, 646
  • trace of kernel, 646
  • transform
  • — alternative Fourier, 512
  • — Boas, 250
  • — Bochner, 263, 518
  • — Buchholz, 274
  • — cosine, Fourier, Parseval's relation, 514
  • — Crum, 268
  • — divisor, 269
  • — Feller, 226
  • — Fourier, 235, 511, 512, 518, 658
  • — Fourier, alternative, 512
  • — Fourier, asymmetric form, 512
  • — Fourier, definition, 512
  • — Fourier, inverse, 512
  • — Fourier, inversion formula, 512
  • — Fourier, properties, 513
  • — Fourier, rational, 685
  • — Fourier cosine, 514, 518
  • — Fourier cosine, asymmetric form, 514
  • — Fourier cosine, Parseval's relation, 514
  • — Fourier cosine, tables, 983
  • — Fourier sine, 514, 518
  • — Fourier sine, asymmetric form, 515
  • — Fourier sine, Parseval's relation, 515
  • — Fourier sine, tables, 989
  • — Gauss, 237
  • — generalized Mehler–Fock, 271
  • — Hankel, 261, 515, 518
  • — Hankel, Parseval's relation, 515, 516
  • — Hardy, 264
  • — Hartley, 252, 518
  • — Hilbert, 228, 255, 518, 743
  • — Hilbert, on semiaxis, 229
  • — integral, 503, 515
  • — integral, kernel, 503
  • — integral, method, 586, 655, 809, 819
  • — integral, table, 517
  • — inverse, 503
  • — inverse, representation as asymptotic expansions, 509
  • — inverse, representation as convergent series, 509
  • — inverse Fourier, 512
  • — inverse Laplace, tables, 969
  • — inverse Mellin, 510
  • — inverse Mellin, tables, 1001
  • — inverse of rational functions, 506
  • — kernel, 503, 586, 655, 809, 819
  • — Kontorovich–Lebedev, 267, 516, 518
  • — Laplace, 235, 505, 511, 518, 524, 544, 658, 809
  • — Laplace, definition, 505
  • — Laplace, inverse, tables, 969
  • — Laplace, inversion formula, 505
  • — Laplace, properties, 507
  • — Laplace, solution method, 524
  • — Laplace, tables, 961
  • — Laplace, two-side, 234, 518
  • — Lebedev, 269
  • — Mehler–Fock, 270, 518
  • — Mehler–Fock, generalized, 271
  • — Meijer, 516, 517
  • — Mellin, 510, 511, 518, 587, 657, 658
  • — Mellin, definition, 510
  • — Mellin, inverse, 510
  • — Mellin, inverse, tables, 1001
  • — Mellin, inversion formula, 510
  • — Mellin, properties, 511
  • — Mellin, tables, 997
  • — Olevskii, 276
  • — Paley–Wiener, 260
  • — rational Fourier, 685
  • — Riesz, 226
  • — sine, Fourier, Parseval's relation, 515
  • — Sonine, 114
  • — Stieltjes, 221
  • — table, 517
  • — two-side Laplace, 234, 518
  • — Weber, 265, 518
  • — Weierstrass, 237, 518
  • transformation, Kummer, 1025
  • transformation of kernel, method, 532
  • transposed characteristic equation, 758
  • transposed characteristic operator, 758
  • transposed equation, 573, 575, 625, 627, 637
  • transposed equation of characteristic equation, 764
  • transposed operator, 758
  • transposed singular equation, 758
  • trapezoidal rule, 534, 568
  • triangle inequality, 501
  • Tricomi confluent hypergeometric function, 273, 1024, 1025
  • — asymptotic expansions, 1024
  • — integral representations, 1024
  • Tricomi equation, 319, 769
  • Tricomi–Gellerstedt equation, 320
  • trigonometric functions, 46, 78, 84, 85, 166, 181, 186, 187, 246, 252, 256, 295, 335, 344, 349, 352, 353, 564, 907, 922, 944, 956, 966, 981, 986, 992, 999, 1003
  • — addition, 908
  • — combinations, 176
  • — inverse, 176, 344, 911, 948
  • — inverse, addition, 912
  • — inverse, relations, 912
  • — inverse, subtraction, 912
  • — of half argument, 909
  • — of multiple arguments, 909
  • — of single argument, relations, 908
  • — powers, 908
  • — products, 908
  • — relationship, 916
  • — subtraction, 908
  • — sum, 564
  • trigonometric nonlinearity, 420, 473
  • trigonometric series
  • — in one variable, involving cosine, 928
  • — in one variable, involving sine, 927
  • — in two variables, 930
  • trivial solution, 502
  • two-dimensional equation of Abel type, 15
  • two-dimensional integral equation, mixed with Schmidt kernel, 841
  • two-dimensional singular equation, 231
  • two-side Laplace transform, 234, 518
  • type, convolution, 574, 606, 660, 669

U

  • ultraspherical polynomials, 1050
  • undetermined coefficients, 692
  • uniqueness theorems, 875
  • uniqueness theorems for nonlinear equations, 830
  • unknown function of complicated argument, 227, 246, 254
  • Urysohn equation, 806, 832
  • — first kind, 806, 829
  • — second kind, 806
  • — second kind with degenerate kernel, 818
  • — special of first kind, method, 821
  • — special of second kind, method, 822
  • Urysohn form
  • — Volterra equation, 805, 811, 814, 816
  • — Volterra equation, first kind, 805, 815
  • — Volterra equation, second kind, 805

V

  • value
  • — approximate of eigenvalues of Hilbert–Schmidt kernel, 845
  • — Cauchy principal, 709
  • — characteristic, 301, 625, 637, 639, 645, 697
  • — characteristic, approximation, 646
  • — characteristic, extremal properties, 644
  • — characteristic, system, 640
  • — in Banach space, continuous function of real argument, 840
  • — in Hilbert space, continuous function of real argument, 840
  • — in space of functions square integrable over closed bounded set, continuous function of real argument, 842
  • — in space of functions square integrable over ring-shaped domain, continuous function of real argument, 841
  • — in space of square integrable functions, continuous function of real argument, 840
  • — regular, 301, 625, 637
  • variable integration limit, 3, 805, 809, 811
  • variable limit of integration, 3, 805, 809, 811
  • variable lower integration limit, 537, 570
  • variable lower limit of integration, 537, 570
  • variables, several, function, 839
  • variation, total, of function, 1053
  • variation function, bounded, 1056
  • vector, 1063
  • — axioms for addition, 1063
  • — axioms relating addition of vectors with their multiplication by scalars, 1063
  • — orthogonal, 1065
  • vector space, 1063
  • Volterra equation, 549, 805, 877
  • — first kind, 519, 524, 565
  • — first kind, connection with Volterra equations of second kind, 524
  • — first kind, existence of solution, 519
  • — first kind, in Hammerstein form, 806
  • — first kind, in Urysohn form, 805, 815
  • — first kind, problems, 520
  • — first kind, uniqueness of solution, 519
  • — Hammerstein form, 806
  • — nonlinear, 805
  • — quadratic nonlinearity, 809
  • — reduction to Wiener–Hopf equation, 528
  • — second kind, 524, 539, 565
  • — second kind, connection with Volterra equations of first kind, 524
  • — second kind, in Urysohn form, 805
  • — second kind, of Hammerstein form, 816
  • — second kind, reduction to Volterra equations of first kind, 565
  • — second kind, sequence, 855
  • — second kind, sequence of independent, 853, 865, 872
  • — sequence, 844, 850, 862
  • — sequence of independent, 847, 858
  • — systems, 549
  • — Urysohn form, 805, 811, 814, 816
  • Volterra integral operator, 842
  • Volterra kernel, 839
  • Volterra operator, 873
  • volume potential, 893
  • — Gauss formula, 894

W

  • weak singularity, 574, 588, 625
  • — kernel, 519, 532, 574, 588, 625
  • weakly singular kernel, 532
  • Weber function, 88
  • Weber parabolic cylinder function, 1034
  • Weber transform, 265, 518
  • Weierstrass elliptic function, 1041
  • Weierstrass function, 1041
  • Weierstrass transform, 237, 518
  • weight function, Jacobi, 793
  • well-posed problem, 623
  • Whittaker confluent hypergeometric function, 274, 1027
  • Whittaker equation, 1027
  • Wiener–Hopf equation, 574, 626, 679
  • — first kind, 285, 538, 574, 606
  • — Krein's method, 679
  • — second kind, 373, 547, 571, 626, 660, 679
  • — second kind, exceptional case, 678
  • — second kind, homogeneous, 672
  • — second kind, index, 661
  • — second kind, nonhomogeneous, 677
  • — second kind, solution, 681
  • — Volterra equation, 528
  • Wiener–Hopf method, 671
  • — scheme, 676
  • Wronskian, confluent hypergeometric function, 1026
  • Wronskian, Legendre function, 1034

Y

  • Y-transform, 264, 516, 518

Z

  • Zakharov–Shabat method, 898
  • zero measure, set, 1058
  • zeros of Bessel functions, 1019

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2008 Andrei D. Polyanin