EqWorld logo

EqWorld

The World of Mathematical Equations

IPM Logo

Home Page Exact Solutions Methods Software Education For Authors Math Forums

Mathematical Books > Handbook of Mathematics for Engineers and Scientists > Contents > 18. Special Functions and Their Properties

Handbook of Mathematics for Engineers and Scientists

A. D. Polyanin and A. V. Manzhirov,
Handbook of Mathematics for Engineers and Scientists,
Chapman & Hall/CRC Press, 2006

To book contents

18. Special Functions and Their Properties

  • 18.1. Some Coefficients, Symbols, and Numbers
    • 18.1.1. Binomial Coefficients
    • 18.1.2. Pochhammer Symbol
    • 18.1.3. Bernoulli Numbers
    • 18.1.4. Euler Numbers
  • 18.2. Error Functions. Exponential and Logarithmic Integrals
    • 18.2.1. Error Function and Complementary Error Function
    • 18.2.2. Exponential Integral
    • 18.2.3. Logarithmic Integral
  • 18.3. Sine Integral and Cosine Integral. Fresnel Integrals
    • 18.3.1. Sine Integral
    • 18.3.2. Cosine Integral
    • 18.3.3. Fresnel Integrals
  • 18.4. Gamma Function, Psi Function, and Beta Function
    • 18.4.1. Gamma Function
    • 18.4.2. Psi Function (Digamma Function)
    • 18.4.3. Beta Function
  • 18.5. Incomplete Gamma and Beta Functions
    • 18.5.1. Incomplete Gamma Function
    • 18.5.2. Incomplete Beta Function
  • 18.6. Bessel Functions (Cylindrical Functions)
    • 18.6.1. Definitions and Basic Formulas
    • 18.6.2. Integral Representations and Asymptotic Expansions
    • 18.6.3. Zeros and Orthogonality Properties of Bessel Functions
    • 18.6.4. Hankel Functions (Bessel Functions of the Third Kind)
  • 18.7. Modified Bessel Functions
    • 18.7.1. Definitions. Basic Formulas
    • 18.7.2. Integral Representations and Asymptotic Expansions
  • 18.8. Airy Functions
    • 18.8.1. Definition and Basic Formulas
    • 18.8.2. Power Series and Asymptotic Expansions
  • 18.9. Degenerate Hypergeometric Functions (Kummer Functions)
    • 18.9.1. Definitions and Basic Formulas
    • 18.9.2. Integral Representations and Asymptotic Expansions
    • 18.9.3. Whittaker Functions
  • 18.10. Hypergeometric Functions
    • 18.10.1. Various Representations of the Hypergeometric Function
    • 18.10.2. Basic Properties
  • 18.11. Legendre Polynomials, Legendre Functions, and Associated Legendre Functions
    • 18.11.1. Legendre Polynomials and Legendre Functions
    • 18.11.2. Associated Legendre Functions with Integer Indices and Real Argument
    • 18.11.3. Associated Legendre Functions. General Case
  • 18.12. Parabolic Cylinder Functions
    • 18.12.1. Definitions. Basic Formulas
    • 18.12.2. Integral Representations, Asymptotic Expansions, and Linear Relations
  • 18.13. Elliptic Integrals
    • 18.13.1. Complete Elliptic Integrals
    • 18.13.2. Incomplete Elliptic Integrals (Elliptic Integrals)
  • 18.14. Elliptic Functions
    • 18.14.1. Jacobi Elliptic Functions
    • 18.14.2. Weierstrass Elliptic Function
  • 18.15. Jacobi Theta Functions
    • 18.15.1. Series Representation of the Jacobi Theta Functions. Simplest Properties
    • 18.15.2. Various Relations and Formulas. Connection with Jacobi Elliptic Functions
  • 18.16. Mathieu Functions and Modified Mathieu Functions
    • 18.16.1. Mathieu Functions
    • 18.16.2. Modified Mathieu Functions
  • 18.17. Orthogonal Polynomials
    • 18.17.1. Laguerre Polynomials and Generalized Laguerre Polynomials
    • 18.17.2. Chebyshev Polynomials and Functions
    • 18.17.3. Hermite Polynomials
    • 18.17.4. Jacobi Polynomials and Gegenbauer Polynomials
  • 18.18. Nonorthogonal Polynomials
    • 18.18.1. Bernoulli Polynomials
    • 18.18.2. Euler Polynomials
  • References for Chapter 18

To book contents


The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2004-2017 Andrei D. Polyanin