|
EqWorld
The World of Mathematical Equations |
|
|
Auxiliary Sections > Special Functions
Special Functions
-
Airy and Related Functions, Frank W. J. Olver: from
Digital Library of Mathematical Functions
-
Bessel Functions, from Wikipedia: the Free Encyclopedia
-
Bessel Function of the First Kind, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Bessel Function of the Second Kind, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Beta Function, from Wikipedia: the Free Encyclopedia
-
Complete Elliptic Integral of the First Kind, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Complete Elliptic Integral of the Second Kind, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Confluent (Degenerate) Hypergeometric Function of the First Kind, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Confluent (Degenerate) Hypergeometric Function of the Second Kind, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Elliptic Integral of the First Kind, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Elliptic Integral of the Second Kind, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Elliptic Integral of the Third Kind, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Error Function, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Gamma Function, from Wikipedia: the Free Encyclopedia
-
Hypergeometric Function, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Incomplete Gamma Function, from Wikipedia: the Free Encyclopedia
-
Modified Bessel Function of the First Kind, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Modified Bessel Function of the Second Kind, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Parabolic Cylinder Function, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
-
Whittaker Function, Eric W. Weisstein: from MathWorld—A Wolfram Web Resource
Orthogonal Polynomials
|
|
|
The EqWorld website presents extensive information on solutions to
various classes of ordinary differential equations, partial differential
equations, integral equations, functional equations, and other mathematical
equations.
Copyright © 2004-2017 Andrei D. Polyanin
|