|
EqWorld
The World of Mathematical Equations |
|
Information >
Mathematical Books >
Handbook of Nonlinear Partial Differential Equations, Second Edition > References
|
|
|
|
Handbook of Nonlinear Partial Differential Equations Second Edition, Updated, Revised and Extended
Publisher: Chapman & Hall/CRC Press, Boca Raton-London-New York
Year of Publication: 2012
Number of Pages: 1912
|
References
- Abbot, T. N. J. and Walters, K., Rheometrical
flow systems. Part 2. Theory for the orthogonal rheometer,
including an exact solution of the Navier–Stokes equations,
Fluid Mech., Vol. 40, pp. 205–213, 1970.
- Abel, M. L. and Braselton, J. P., Maple by
Example, 3rd ed., AP Professional, Boston, MA, 2005.
- Ablowitz, M. J. and Clarkson, P. A.,
Solitons, Nonlinear Evolution Equations and Inverse
Scattering, Cambridge Univ. Press, Cambridge, 1991.
- Ablowitz, M. J., Kaup, D. J., Newell, A. C.,
and Segur, H., The inverse scattering transform–Fourier
analysis for nonlinear problems, Stud. Appl. Math.,
Vol. 53, pp. 249–315, 1974.
- Ablowitz, M. J., Ramany, A., and Segur, H., A
connection between nonlinear evolution equations and ordinary
differential equations of P-type, J. Math. Phys.,
Vol. 21, pp. 715–721, 1980.
- Ablowitz, M. J. and Segur, H., Solitons and the
Inverse Scattering Transform, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, 1981.
- Ablowitz, M. J. and Zeppetella, A., Explicit
solutions of Fisher's equation for a special wave speed, Bull.
Math. Biology, Vol. 41, pp. 835–840, 1979.
- Abramenko, A. A., Lagno, V. I., and Samoilenko, A. M.,
Group classification of nonlinear evolutionary equations. I.
Invariance under semisimple groups of local transformations
[in Russian], Diff. Uravneniya, Vol. 38,
No. 3, pp. 365–372, 2002.
- Abramenko, A. A., Lagno, V. I., and Samoilenko, A. M.,
Group classification of nonlinear evolutionary equations. II.
Invariance under solvable groups of local transformations
[in Russian], Diff. Uravneniya, Vol. 38,
No. 4, pp. 482–489, 2002.
- Abramowitz, M. and Stegun, I. A. Handbook of
Mathematical Functions with Formulas, Graphs and Mathematical
Tables, National Bureau of Standards Applied Mathematics,
Washington, 1964.
- Aczel, J., Functional Equations: History,
Applications and Theory, Kluwer Academic, Dordrecht, 2002.
- Aczel, J., Lectures on Functional Equations and
Their Applications, Dover Publications, New York, 2006.
- Aczel, J. and Dhombres, J., Functional Equations
in Several Variables, Cambridge University Press, Cambridge,
1989.
- Adler, V., Shabat, A. B., and Yamilov, R. I., Symmetry
approach to the integrability problems, Theor. Math. Phys.,
Vol. 125, No. 3, pp. 1603–1661, 2000.
- Agrawal, H. L., A new exact solution of the equations
of viscous motion with axial symmetry, Quart. J. Mech.
Appl. Math., Vol. 10, pp. 42–44, 1957.
- Akhatov, I. Sh., Gazizov, R. K., and Ibragimov, N. H.,
Nonlocal symmetries. Heuristic approach [in Russian], In:
Itogi Nauki i Tekhniki, Ser. Sovremennye Problemy Matematiki,
Noveishie Dostizheniya, Vol. 34, VINITI, Moscow, 1989
(English translation in J. Soviet Math.,
Vol. 55(1), p. 1401, 1991).
- Akhmediev, N. N. and Ankiewicz, A., Solitons.
Nonlinear Pulses and Beams, Chapman & Hall, London, 1997.
- Akritas, A. G., Elements of Computer Algebra
with Applications, Wiley, New York, 1989.
- Akulenko, L. D., Georgievskii, D. V., and Kumakshev, S.
A., Solutions of the Jeffery–Hamel problem regularly
extendable in the Reynolds number, Fluid Dynamics,
Vol. 39, No. 1, pp. 12–28, 2004.
- Akulenko, L. D. and Kumakshev, S. A., Multimode
bifurcation of the flow of a viscous fluid in a plane diffuser,
Doklady Physics, Vol. 49, No. 12,
pp. 620–624, 2004.
- Akulenko, L. D., Kumakshev, S. A., and Nesterov, S. V.,
Effective numerical–analytical solution of isoperimetric
variational problems of mechanics by an accelerated convergence
method, J. Appl. Math. Mech. (PMM),
Vol. 66, No. 5, pp. 693–708, 2002.
- Amerov, T. K., On conditional invariance of nonlinear
heat equation, In: Theoretical and Algebraic Analysis of
Equations of Mathematical Physics, Inst. of Mathematics, Kiev,
pp. 12–14, 1990.
- Ames, W. F., Nonlinear Partial Differential
Equations in Engineering, Vol. 1, Academic Press, New
York, 1967.
- Ames, W. F., Nonlinear Partial Differential
Equations in Engineering, Vol. 2, Academic Press, New
York, 1972.
- Ames, W. F., Lohner, J. R., and Adams E., Group properties of
utt = [f(u)ux]x,
Int. J. Nonlinear
Mech., Vol. 16, No. 5–6, p. 439, 1981.
- Anderson, R. L. and Ibragimov, N. H.,
Lie–Backlund Transformations in Applications,
Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, 1979.
- Andreev, V. K., Stability of Unsteady Motions
of a Fluid with a Free Boundary [in Russian], Nauka,
Novosibirsk, 1992.
- Andreev, V. K., Kaptsov, O. V., Pukhnachov, V. V., and
Rodionov, A. A., Applications of Group-Theoretical Methods
in Hydrodynamics, Kluwer, Dordrecht, 1998.
- Andreyanov, B. P., Vanishing viscosity method and an
explicit solution of the Riemann problem with the scalar
conservation law, Moscow Univ. Math. Bulletin, No. 1,
pp. 3–8, 1999.
- Annin, B. D., One exact solution of an axisymmetric
problem of ideal plasticity, Zhurnal Prikladnoi Mekhaniki i
Tekhnicheskoi Fiziki [in Russian], Vol. 2, p. 171,
1973.
- Annin, B. D., Modern Models of Plastic Bodies
[in Russian], Novosibirsk State University, Novosibirsk, 1975.
- Annin, B. D., Bytev, V. O., and Senashov, S. I.,
Group Properties of Equations of Elasticity and Plasticity
[in Russian], Nauka, Novosibirsk, 1985.
- Aoki, H., Higher-order calculation of finite periodic
standing waves by means of the computer, J. Phys. Soc.
Jpn., Vol. 49, pp. 1598–1606, 1980.
- Appell, P., Traite de Mecanique Rationnelle, T.
1: Statique. Dinamyque du Point (Ed. 6),
Gauthier-Villars, Paris, 1953.
- Aristov, S. N., An exact solution to the
point-source problem, Doklady Physics, Vol. 40,
No. 7, pp. 346–348, 1995.
- Aristov, S. N., Three-dimensional conical viscous
incompressible fluid flows, Fluid Dynamics, Vol. 33,
No. 6, pp. 929–932, 1998.
- Aristov, S. N., Exact periodic and localized
solutions of the equation
ht =Δ lnh,
J. Appl.
Mech. & Tech. Phys., Vol. 40, No. 1,
pp. 16–19, 1999.
- Aristov, S. N., A stationary cylindrical vortex in
a viscous fluid, Doklady Physics, Vol. 46, No. 4,
pp. 251–253, 2001.
- Aristov, S. N. and Gitman, I. M., Viscous flow
between two moving parallel disks: exact solutions and stability
analysis, J. Fluid Mech., Vol. 464,
pp. 209–215, 2002.
- Aristov, S. N. and Knyazev, D. V., New exact solution
of the problem of rotationally symmetric Couette–Poiseuille
flow, J. Appl. Mech. Tech. Phys., Vol. 48,
No. 5, pp. 680–685, 2007.
- Aristov, S. N. and Knyazev, D. V., Localized helically
symmetric flows of an ideal fluid, J. Appl. Mech. Tech.
Phys., Vol. 51, No. 6, pp. 815–818,
2010.
- Aristov, S. N., Knyazev, D. V., and Polyanin, A. D.,
Exact solutions of the Navier–Stokes equations with the
linear dependence of velocity components of two space variables,
Theor. Foundations of Chemical Engineering, Vol. 43,
No. 5, pp. 642–662, 2009.
- Aristov, S. N. and Polyanin, A. D., Exact
solutions of unsteady three-dimensional Navier–Stokes
equations, Doklady Physics, Vol. 54, No. 7,
pp. 316–321, 2009.
- Aristov, S. N. and Polyanin, A. D., New classes of
exact solutions and some transformations of the
Navier–Stokes equations, Russian J. of Math. Physics,
Vol. 17, No. 1, pp. 1–18, 2010.
- Aristov, S. N. and Pukhnachev, V. V., On the
equations of axisymmetric motion of a viscous incompressible
fluid, Doklady Physics, Vol. 49, No. 2,
pp. 112–115, 2004.
- Arnold, V. I., Mathematical Methods of Classical
Mechanics, Springer-Verlag, New York, 1980.
- Arnold, V. I., Arnold's Problems [in
Russian], Fazis, Moscow, 2000 [English Edition, Springer, 2005].
- Arrigo, D., Broadbridge, P., and Hill, J. M.,
Nonclassical symmetry solutions and the methods of
Bluman–Cole and Clarkson–Kruskal,
J. Math. Phys., Vol. 34,
pp. 4692–4703, 1993.
- Ashwell, D. G., Quart. J. Mech. Appl.
Math., Vol. 10, p. 169, 1957.
- Astafiev, V. I., Radayev, Yu. N., and Stepanova, L. V.,
Nonlinear Fracture Mechanics [in Russian], Samarsky
University Publ., Samara, 2001.
- Babich, V. M., Kapilevich, M. B., Mikhlin,
S. G., et al., Linear Equations of Mathematical
Physics [in Russian], Nauka, Moscow, 1964.
- Bahder, T. B., Mathematica for Scientists and
Engineers, Addison-Wesley, Redwood City, CA, 1995.
- Baidulov, V. G., Nonlinear dynamics of internal waves
within the framework of a one-dimensional model, Doklady
Physics, Vol. 55, No. 6, pp. 302–307,
2010.
- Baikov, V. A., Approximate group analysis of nonlinear
models of continuum mechanics, Ph.D. thesis [in Russian],
Keldysh Institute of Applied Mathematics, Moscow, 1990.
- Baikov, V. A., Gazizov, R. K., and Ibragimov, N.
H., Perturbation methods in group analysis [in Russian],
in: Contemporary Problems of Mathematics, Vol. 34
(Itogi Nauki i Tekhniki, VINITI AN USSR), Moscow,
pp. 85–147, 1989.
- Bakirova, M. I., Dimova, S. N., Dorodnitsyn, V. A.,
Kurdyumov, S. P., Samarskii, A. A., and Svirshchevskii, S. R.,
Invariant solutions of heat equation describing the directed
propagation of combustion and spiral waves in nonlinear medium
[in Russian], Dokl. Acad. Nauk USSR, Vol. 299,
No. 2, pp. 346–350, 1988.
- Barannyk, T., Symmetry and exact solutions for systems
of nonlinear reaction-diffusion equations, Proc. of Inst. of
Mathematics of NAS of Ukraine, Vol. 43, Part 1, pp.
80–85, 2002.
- Barannyk, T. A. and Nikitin, A. G., Solitary wave
solutions for heat equations, Proc. of Inst. of Mathematics of
NAS of Ukraine, Vol. 50, Part 1,
pp. 34–39, 2004.
- Barbashev, B. M. and Chernikov, N. A., Solution
and quantization of a nonlinear two-dimensional Born–Infeld
type model [in Russian], Zhurn. Eksper. i Teor.
Fiziki, Vol. 50, No. 5, pp. 1296–1308,
1966.
- Bardi, M. and Dolcetta, I. C., Optimal Control and
Viscosity Solutions of Hamilton–Jacobi–Bellman
Equations, Birkhauser, Boston, 1998.
- Barenblatt, G. I., On nonsteady motions of gas and
fluid in porous medium, Appl. Math. and Mech.
(PMM), Vol. 16, No. 1, pp. 67–78,
1952.
- Barenblatt, G. I., Dimensional Analysis, Gordon
Breach, New York, 1989.
- Barenblatt, G. I. and Chernyi, G. G., On
moment relations on surface of discontinuity in dissipative
media, J. Appl. Math. Mech. (PMM), Vol. 27,
No. 5, pp. 1205–1218, 1963.
- Barenblatt, G. I., Entov, V. M., and Ryzhik, V. M.,
Theory of Fluid Flows Through Natural Rocks, Kluwer,
Dordrecht, 1991.
- Barenblatt, G. I. and Zel'dovich, Ya. B., On
dipole-type solutions in problems of nonstationary filtration of
gas under polytropic regime [in Russian], Prikl. Math. Mech.
(PMM), Vol. 21, pp. 718–720, 1957.
- Barenblatt, G. I. and Zel'dovich, Ya. B., Self-similar
solutions as intermediate asymptotics, Annual Rev. of
Fluid Mech., Vol. 4, pp. 285–312, 1972.
- Barron, E. N. and Jensen, R., Generalized viscosity
solutions for Hamilton–Jacobi equations with time-measurable
Hamiltonians, J. Different. Equations, Vol. 68,
No. 1, pp. 10–21, 1987.
- Batchelor, G. K., Note on class of solutions of the
Navier–Stokes equations representing steady
rotationally-symmetric flow, Quart. J. Mech. Appl.
Math., Vol. 4, pp. 29–41, 1951.
- Batchelor, G. K., An Introduction of Fluid
Dynamics, Cambridge Univ. Press, Cambridge, 1970.
- Baumann, G., Symmetry Analysis of Differential
Equations with Mathematica, Springer-Verlag, New York, 2000.
- Beals, R., Sattinger, D. H., and Szmigielski, J.,
Inverse scattering solutions of the Hunter–Saxton equation,
Applicable Analysis, Vol. 78, No. 3–4,
pp. 255–269, 2001.
- Becker, E., Laminar film flow on a cylindrical surface,
J. Fluid Mech., Vol. 74, pp. 297–315,
1976.
- Bedrikovetsky, P. G., Mathematical Theory of Oil and
Gas Recovery, Kluwer, Dordrecht, 1993.
- Bedrikovetsky P. Systems of First-Order Equations
Describing Convective Mass Transfer with Volume Reaction, In:
Handbook of Mathematics for Engineers and Scientists (by
Polyanin A. D., Manzhirov A. V.),
pp. 779–780. Boca Raton–London: Chapman Hall/CRC
Press, 2007.
- Bedrikovetsky, P. G. and Chumak, M.L., Exact solutions
for two-phase multicomponent flow in porous media
[in Russian], Doklady AN USSR, Vol. 322,
No. 4, pp. 668–673, 1992.
- Bedrikovetsky, P. G. and Chumak, M.L., Riemann problem
for two-phase four and more component displacement (ideal
mixtures), Proc. 3rd European Conference on the Mathematics in
Oil Recovery, Delft, Holland, pp. 139–148,
1992.
- Bekir, A., Application of the G'/G-expansion method
for nonlinear evolution equations, Phys. Lett. A,
Vol. 372, pp. 3400–3406, 2008.
- Bellamy-Knights, P. G., Unsteady multicellular viscous
vortices, J. Fluid Mech., Vol. 50,
pp. 1–16, 1971.
- Bellman, R., Dynamic Programming, Princeton
Univ. Press, Pricenton, NJ, 1957.
- Belokolos, E. D., General formulae for solutions of
initial and boundary value problems for sine-Gordon equation,
Theor. Math. Phys., 1995, Vol. 103, No. 3,
pp. 613–620.
- Belokolos, E. D., Bobenko, A. I., Enol'skii, V. Z., Its, A.
R., and Matveev, V. B., Algebro-Geometric Approach to
Nonlinear Integrable Equations, Springer, Berlin, 1994.
- Belotserkovskii, O. M. and Oparin, A. M., Numerical
Experiment in Turbulence [in Russian], Nauka, Moscow,
2000.
- Benjamin, T. B., Bona, J. L., and Mahony, J. J., Model
equation for long waves in nonlinear dispersive systems,
Philos. Trans. Roy. Soc. London, Vol. 272A,
pp. 47–78, 1972.
- Benton, E. R. and Platzman, G. W., A table of solutions
of the one-dimensional Burgers equation, Quart. Appl.
Math., Vol. 30, pp. 195–212, 1972.
- Berezkin, E. N., Lectures on Theoretical
Mechanics [in Russian], Izd-vo Moskovskogo Universiteta,
Moscow, 1968.
- Berker, R., Integration des equations du mouvement
d'un fluide visqueux incompressible, In: Encyclopedia of
Physics, Vol. VIII/2 (Ed. S. Flugge),
pp. 1–384, Springer-Verlag, Berlin, 1963.
- Berker, R., A new solution of the Navier–Stokes
equations for the motion of a fluid contained between parallel
plates rotating about the same axis, Arch. Mech. Stosow,
Vol. 31, No. 2, pp. 265–280, 1979.
- Berker, R., An exact solution of the
Navier–Stokes equation: the vortex with curvilinear axis,
Int. J. Eng. Sci., Vol. 20, No. 2,
pp. 217–230, 1982.
- Berman, A. S., Laminar flow in channels with porous
walls, J. Appl. Physics, Vol. 24, No. 9,
pp. 1232–1235, 1953.
- Berman, A. S., Effects of porous boundaries on the flow
of fluids in systems with various geometries, Proc. 2nd Int.
Conf. on Peaceful Uses of Atomic Energy, Vol. 4, Geneva:
UN, pp. 353–358, 1958.
- Berman, V. S., Group properties of a hyperbolic
system of two differential equations encountered in the theory of
mass transfer, Fluid Dynamics, Vol. 16, No. 3,
pp. 367–373, 1981.
- Berman, V. S. and Danilov, Yu. A., On group
properties of the generalized Landau–Ginzburg solution
[in Russian], Doklady AN USSR, Vol. 258,
No. 1, pp. 67–70, 1981.
- Berman, V. S., Galin, L. A., and Churmaev, O. M.,
Analysis of a simple model of a bubble-liquid reactor, Fluid
Dynamics, Vol. 14, No. 5, pp. 740–747,
1979.
- Bertozzi, A. L. and Pugh, M., The lubrication
approximations for thin viscous films: regularity and long time
behaviour of weak solutions, Commun. Pure Appl. Math.,
Vol. 49, pp. 85–123, 1996.
- Bertsch, M., Kersner, R., and Peletier, L. A.,
Positivity versus localization in degenerate diffusion equations,
Nonlinear Analys., Theory, Meth. and Appl., Vol. 9,
No. 9, pp. 987–1008, 1985.
- Bespalov, V. I. and Pasmannik, G. A., Nonlinear
Optics and Adaptive Laser Systems [in Russian], Nauka, Moscow,
1986.
- Beutler, R., Positon solutions of the sine-Gordon
equation, J. Math. Phys., Vol. 34,
pp. 3098–3109, 1993.
- Bickley, W., The plane jet, Phil. Mag.,
Ser. 7, Vol. 23, pp. 727–731, 1939.
- Bikbaev, R. F., Shock waves in the modified
Korteweg–de Vries–Burgers equation,
J. Nonlinear Sci., Vol. 5, pp. 1–10,
1995.
- Bird, R. B. and Curtiss, C. F., Tangential
Newtonian flow in annuli. 1. Unsteady state velocity profiles,
Chem. Eng. Sci., Vol. 11, No. 2,
pp. 108–113, 1959.
- Birkhoff, G., Hydrodynamics, Princeton
University Press, Princeton, NJ, 1950.
- Blasius, H., Crenzschichten in Flussigkeiten mit
Kleiner Reibung, Zeitschr. fur Math. und Phys.,
Bd. 56, Ht. 1, S. 1–37, 1908.
- Bluman, G. W. and Cole, J. D., The general
similarity solution of the heat equation, J. Math.
Mech., Vol. 18, pp. 1025–1042, 1969.
- Bluman, G. W. and Cole, J. D., Similarity
Methods for Differential Equations, Springer-Verlag, New York,
1974.
- Bluman, G. W. and Kumei, S., On the remarkable
nonlinear diffusion equation
[a (u+b)-2ux]x−
ut=0,
J. Math. Phys., Vol. 21, No. 5,
pp. 1019–1023, 1980.
- Bluman, G. W. and Kumei, S., Symmetries and
Differential Equations, Springer-Verlag, New York, 1989.
- Blyth, M. G. and Hall, P., Oscillatory flow near a
stagnation point, SIAM J. Appl. Math., Vol. 63,
pp. 1604–1614, 2003.
- Blyth, M. G., Hall, P., and Parageorgiu, D. T.,
Chaotic flows in pulsating cylindrical tubes: a class of exact
Navier–Stokes solutions, J. Fluid Mech.,
Vol. 481, pp. 187–213, 2003.
- Bodewadt, U. T., Die Drehstromung uber festem Grunde,
ZAMM, Vol. 20, pp. 241–253, 1940.
- Bodonyi, R. J. and Stewartson, K., The unsteady
laminar boundary layer on a rotating disk in a counter-rotating
fluid, J. Fluid Mech., Vol. 79,
pp. 669–688, 1977.
- Bogdanov, L. V. and Zakharov, V. E., The Boussinesq
equation revisited, Phys. D., Vol. 165,
pp. 137–162, 2002.
- Bogoyavlenskij, O. I., Exact solutions to the
Navier–Stokes equations, Comptes Rendus Math. Acad. Sci.
Soc. R. Canada, Vol. 24, No. 4,
pp. 138–143, 2002.
- Bogoyavlenskij, O. I., Exact solutions to the
Navier–Stokes equations equations and viscous MHD equations,
Phys. Letters A, Vol. 307, No. 5–6,
pp. 281–286, 2003.
- Boisvert, R. E., Ames, W. F., and Srivastava, U. N.,
Group properties and new solutions of Navier–Stokes
equations, J. Eng. Math., Vol. 17,
pp. 203–221, 1983.
- Boldea, C.-R., A generalization for peakon's solitary
wave and Camassa–Holm equation, General Math.,
Vol. 5, No. 1–4, pp. 33–42, 1995.
- Boltyanskii, V. G. and Vilenkin, N. Ya., Symmetry in
Algebra, 2nd ed. [in Russian], Nauka, Moscow, 2002.
- Bona, J. L. and Schonbek, M. E., Travelling-wave
solutions to the Korteweg–de Vries–Burgers equation,
Proc. Roy. Soc. Edinburgh, Sect. A, Vol. 101,
pp. 207–226, 1985.
- Born, M. and Infeld, L., Foundations of a new field
theory, Proc. Roy. Soc. London, Ser. A, Vol. 144,
No. 5, pp. 425–451, 1934.
- Boussinesq, J., Sur l'influence des frottements dans
les mouvements regulieres des fluides, J. Math. Pure
Appl., Vol. 33, pp. 377–438, 1868.
- Boussinesq, J., Theorie generale des mouvements
qui sont propages dans un canal rectangulaire horizontal,
Comptes Rendus Acad. Sci., Paris, Vol. 73,
pp. 256–260, 1971.
- Boussinesq, J., Theorie des ondes et des remous qui
se propagent le long dune canal rectangulaire horizontal, et
communiquant au liquide contenu dans ce canal des vitesses
sensiblement pareilles de la surface au fond, J. Math.
Pures Appl., Ser. 2, Vol. 17, pp. 55–108,
1872.
- Boussinesq, J., Recherches theorique sur
lecoulement des nappes deau infiltrees dans le sol et sur le
debit des sources, J. Math. Pures Appl.,
Vol. 10, No. 1, pp. 5–78, 1904.
- Bowen, W. R. and Williams, P. M., Finite
difference solution of the 2-dimensional Poisson–Boltzmann
equation for spheres in confined geometries,
Colloids and Surfaces A: Physicochem. and Eng.
Aspects,
Vol. 204, pp. 103–115, 2002.
- Brady, J. F. and Acrivos, A., Steady flow in a channel
or tube with an accelerating surface velocity. An exact solution
to the Navier–Stokes equations with reverse flow,
J. Fluid Mech., Vol. 112, pp. 127–150,
1981.
- Brady, J. F. and Durlofsky, L., On rotating disk flow,
J. Fluid Mech., Vol. 175, pp. 363–394,
1987.
- Bratus', A. S. and Volosov, K. A., Exact
solutions of the Hamilton–Jacobi–Bellman equation for
problems of optimal correction with an integral constraint on the
total control resource [in Russian], Doklady RAN,
Vol. 385, No. 3, pp. 319–322, 2002.
- Brennen, C. E., Fundamentals of Multiphase Flow,
Cambridge Univ. Press, 2005
- Bressan, A., Hyperbolic Systems of Conservation
Laws: The One-Dimensional Cauchy Problem, Oxford University
Press, 2000.
- Bressan, A. and Constantin, A., Global solutions of the
Hunter–Saxton equation, SIAM J. Math. Anal.,
Vol. 37, No. 3, 996–1026, 2005.
- Bressan, A. and Constantin, A., Global conservative
solutions of the Camassa–Holm equation, Arch. Ration.
Mech. Anal., Vol. 183, No. 2,
pp. 215–239, 2007\,a.
- Bressan, A. and Constantin, A., Global dissipative
solutions of the Camassa–Holm equation, Anal. Appl.,
Vol.5, pp. 1–27, 2007\,b.
- Bretherton, F. P., The motion of long bubbles in tubes,
J. Fluid Mech., Vol. 10, No. 2,
pp. 166–168, 1962.
- Bridgman, P. W., Dimensional Analysis, Yale
Univ. Press, New Haven, 1931.
- Broman, G. I. and Rudenko, O. V., Submerged Landau jet:
exact solutions, their meaning and application,
Physics-Uspekhi, Vol. 53, No. 1,
pp. 91–98, 2010.
- Bryant, P. J. and Stiassnie M., Different forms
for nonlinear standing waves in deep water, J. Fluid
Mech., Vol. 272, pp. 135–156, 1994.
- Buchnev, A. A., A Lie group admitted by the ideal
incompressible fluid equations [in Russian], In: Dinamika
Sploshnoi Sredy, No. 7, Inst. gidrodinamiki AN USSR,
Novosibirsk, pp. 212–214, 1971.
- Buckley, S. E. and Leverett, M. C.,
Mechanisms of oil displacement in sands, Trans. AIME,
Vol. 142, pp. 107–116, 1942.
- Bullough, R. K., Solitons, In: Interaction of
Radiation and Condensed Matter, Vol. 1,
IAEA–SMR–20/51 (International Atomic Energy Agency,
Vienna), pp. 381–469, 1977.
- Bullough, R. K., Solitons, Phys. Bull.,
February, pp. 78–82, 1978.
- Bullough, R. K. and Caudrey, P. J. (Eds.),
Solitons, Springer-Verlag, Berlin, 1980.
- Burde, G. I., On the motion of fluid near a stretching
circular cylinder, J. Appl. Math. Mech.
(PMM), Vol. 53, pp. 271–273, 1989.
- Burde, G. I., The construction of special explicit
solutions of the boundary-layer equations. Steady flows, Quart.
J. Mech. Appl. Math., Vol. 47, No. 2,
pp. 247–260, 1994.
- Burde, G. I., The construction of special explicit
solutions of the boundary-layer equations. Unsteady flows,
Quart. J. Mech. Appl. Math., Vol. 48, No. 4,
pp. 611–633, 1995.
- Burde, G. I., New similarity reductions of the
steady-state boundary-layer equations, J. Phys. A: Math.
Gen., Vol. 29, No. 8, pp. 1665–1683,
1996.
- Burde, G. I., Potential symmetries of the nonlinear
wave equation
utt = (uux)x
and related exact and
approximate solutions, J. Phys. A., Vol. 34,
pp. 5355–5371, 2001.
- Burgan, J. R., Munier, A., Feix, M. R., and Fijalkow,
E., Homology and the nonlinear heat diffusion equation,
SIAM J. Appl. Math., Vol. 44, No. 1,
pp. 11–18, 1984.
- Burgers, J. M., A mathematical model illustrating the
theory of turbulence, Adv. Appl. Mech., Vol. 1,
pp. 171–199, 1948.
- Burt, P. B., Exact, multiple soliton solutions of the
double sine-Gordon equation, Proc. Roy. Soc. London,
Ser. A, Vol. 359, pp. 479–495, 1978.
- Bytev, V. O., Nonsteady motion of a rotating ring of
viscous incompressible fluid with free boundary, J. Appl.
Mech. Tech. Phys., No. 3, p. 83, 1970.
- Bytev, V. O., Group properties of the
Navier–Stokes equations [in Russian], Numerical Methods
in Continuum Mechanics (Novosibirsk), Vol. 3, No. 3,
pp. 13–17, 1972.
- Bytev, V. O., Invariant solutions of the
Navier–Stokes equations, J. Appl. Mech. Tech.
Phys., No. 6, p. 56, 1972.
- Calmet, J. and van Hulzen, J. A., Computer
Algebra Systems. Computer Algebra: Symbolic and Algebraic
Computations, Springer, New York, 2nd ed., 1983.
- Calogero, F., A solvable nonlinear wave equation,
Stud. Appl. Math., Vol. 70, No. 3,
pp. 189–199, 1984.
- Calogero, F., Universality and integrability of the
nonlinear evolution PDEs describing N-wave interactions,
J. Math. Phys., Vol. 30, No. 1,
pp. 28–40, 1989.
- Calogero, F. and Degasperis, A., Nonlinear evolution
equations solvable by the inverse spectral transform. I, Nuovo
Cimento B, Vol. 32, pp. 201–242, 1976.
- Calogero, F. and Degasperis, A., Spectral Transform
and Solitons:
Tolls to Solve and Investigate Nonlinear Evolution Equations,
North-Holland Publishing Company, Amsterdam, 1982.
- Camassa, R. and Holm, D. D., An integrable shallow
water equation with peaked solitons, Phys. Rev. Letter,
Vol. 71, No. 11, pp. 1661–1664, 1993.
- Camassa, R., Holm, D. D., and Hyman, J. M., A new
integrable shallow water equation, Adv. Appl. Mech.,
Vol. 31, pp. 1–33, 1994.
- Camassa, R. and Zenchuk, A. I., On the initial value
problem for a completely integrable shallow water equation,
Phys. Letters A, Vol. 281, pp. 26–33, 2001.
- Cantwell, B. J., Similarity transformations for the
two-dimensional, unsteady, stream function equation,
J. Fluid Mech., Vol. 85, No. 2,
pp. 257–271, 1978.
- Cantwell, B. J., Introduction to Symmetry
Analysis, Cambridge Univ. Press, Cambridge, 2002.
- Cariello, F. and Tabor, M., Painleve expansions for
nonintegrable evolution equations, Physica D, Vol. 39,
No. 1, pp. 77–94, 1989.
- Carnie, S. L., Chan, D. Y. C., and Stankovich,
J., Computation of forces between spherical colloidal
particles: nonlinear Poisson–Boltzmann theory,
J. Colloid Interface Sci., Vol. 165,
pp. 116–128, 1994.
- Carslaw, H. S. and Jaeger, J. C., Conduction of Heat
in Solids, Clarendon Press, Oxford, 1984.
- Castillo, E. and Ruiz-Cobo, M. R., Functional
Equations and Modelling in Science and Engineering, Marcel
Dekker, New York, 1992.
- Castillo, E. and Ruiz-Cobo, R., Functional Equations
in Applied Sciences, Elsevier, New York, 2005.
- Cavalcante, J. A. and Tenenblat, K., Conservation
laws for nonlinear evolution equations, J. Math.
Physics, Vol. 29, No. 4, pp. 1044–1049,
1988.
- Chadan, K., Colton, D., Paivarinta, L., and Rundell,
W., An Introduction to Inverse Scattering and Inverse
Spectral Problems, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, 1997.
- Chaplygin, S. A., Gas jets, Uchenye Zapiski
Imper. Univ., Otdel. Fiz.-Mat., Vol. 21,
pp. 1–121, 1904; GITTL, Moscow–Leningrad, 1949;
Tech. Memos. Nat. Adv. Comm. Aeronaut., No. 1063, 112 pp.,
1944.
- Char, B. W., Geddes, K. O., Gonnet, G. H.,
Monagan, M. B., and Watt, S. M., Maple Reference
Manual, Waterloo Maple Publishing, Waterloo, Ontario, Canada,
1990.
- Cheb-Terrab, E. S. and von Bulow, K., A
computational approach for the analytical solving of partial
differential equations, Computer Physics Communications,
Vol. 90, pp. 102–116, 1995.
- Cheng, E. H. W., Ozisik, M. N., and
Williams III, J. C., Nonsteady three-dimensional
stagnation-point flow, J. Appl. Mech., Vol. 38,
pp. 282–287, 1971.
- Cherniha, R. M., Conditional symmetries for
systems of PDEs: new definitions and their application for
reaction–diffusion systems, J. Phys. A: Math.
Theor., Vol. 43 (405207), p. 13, 2010.
- Cherniha, R. M. and Davydovych, V., Conditional
symmetries and exact solutions of the diffuse Lotka–Volterra
system, arXiv: 1012.5747v1 [math-ph], 2010.
- Cherniha, R. M. and Dutka, V. A., Diffusive
Lotka–Volterra system: Lie symmetries and exact and
numerical solutions, Ukrainian Math. J., Vol. 56,
No. 10, pp. 1665–1675, 2004.
- Cherniha, R. M. and King, J. R., Lie symmetries of
nonlinear multidimensional reaction-diffusion systems: I,
J. Phys. A: Math. Gen., Vol. 33,
pp. 267–282, 7839–7841, 2000.
- Cherniha, R. M. and King, J. R., Lie symmetries of
nonlinear multidimensional reaction-diffusion systems: II,
J. Phys. A: Math. Gen., Vol. 36,
pp. 405–425, 2003.
- Cherniha, R. M. and Myroniuk, L., New exact
solutions of a nonlinear cross-diffusion system J. Phys.
A: Math. Theor., Vol. 41 (395204), 2008.
- Chernousko, F. L., Self-similar solutions of the
Bellman equation for optimal correction of random disturbances,
Appl. Math. and Mech. (PMM), Vol. 35,
No. 2, pp. 291–300, 1971.
- Chernousko, F. L. and Kolmanovskii, V. B., Optimal
Control with Random Disturbances [in Russian], Nauka,
Moscow, 1978.
- Chernyi, G. G., Gas Dynamics
[in Russian], Nauka, Moscow, 1988.
- Chipot, M. (Ed.), Handbook of Differential
Equations. Stationary Partial Differential Equations, Vols 4 and
5, Elsevier, Amsterdam, 2007 and 2008.
- Chipot, M. and Quittner, P. (Eds.), Handbook of
Differential Equations. Stationary Partial Differential Equations,
Vols 1–3, Elsevier, Amsterdam, 2004–2006.
- Chou, T., Symmetries and a hierarchy of the general KdV
equation, J. Phys. A, Vol. 20,
pp. 359–366, 1987.
- Chowdhury, A. R., Painleve Analysis and Its
Applications, Chapman Hall/CRC Press, Boca Raton, 2000.
- Chun, C., Soliton and periodic solutions for the
fifth-order KdV equation with the Exp-function method, Physics
Letters A, Vol. 372, No. 16,
pp. 2760–2766, 2008.
- Cicogna, G., ``Weak'' symmetries and adopted variables
for differential equations, Int. J. Geometric Meth. Modern
Phys., Vol. 1, No. 1–2, pp. 23–31,
2004.
- Citti, G., Pascucci, A., and Polidoro S., On the
regularity of solutions to a nonlinear ultraparabolic equation
arising in mathematical finance, Differential Integral
Equations, Vol. 14, No. 6, pp. 701–738,
2001.
- Clarkson, P. A., Painleve analysis of the damped,
driven nonlinear Schrodinger equation, Proc. Roy. Soc.
Edinburgh, Vol. 109A, No. 1, pp. 109–126,
1988.
- Clarkson, P. A., Nonclassical symmetry reductions for
the Boussinesq equation, Chaos, Solitons and Fractals,
Vol. 5, pp. 2261–2301, 1995.
- Clarkson, P. A., Fokas, A. S., and Ablowitz, M. J.,
Hodograph transformations on linearizable partial differential
equations, SIAM J. Appl. Math., Vol. 49,
pp. 1188–1209, 1989.
- Clarkson, P. A. and Hood, S., Nonclassical symmetry
reductions and exact solutions of the Zabolotskaya–Khokhlov
equation, Eur. J. Appl. Math., Vol. 3,
pp. 381–415, 1992.
- Clarkson, P. A. and Kruskal, M. D., New similarity
reductions of the Boussinesq equation, J. Math. Phys.,
Vol. 30, No. 10, pp. 2201–2213, 1989.
- Clarkson, P. A., Ludlow, D. K., and Priestley,
T. J., The classical, direct and nonclassical methods for
symmetry reductions of nonlinear partial differential equations,
Methods and Applications of Analysis, Vol. 4,
No. 2, pp. 173–195, 1997.
- Clarkson, P. A. and Mansfield, E. L., Symmetry
reductions and exact solutions of a class of nonlinear heat
equations, Physica D, Vol. 70, No. 3,
pp. 250–288, 1994.
- Clarkson, P. A., McLeod, J. B., Olver, P. J., and Ramani,
R., Integrability of Klein–Gordon equations, SIAM
J. Math. Anal., Vol. 17, pp. 798–802,
1986.
- Clarkson, P. A. and Priestley, T. J., On a shallow
water wave system, Stud. Appl. Math., Vol. 101,
pp. 389–432, 1998.
- Clarkson, P. A. and Winternitz, P., Nonclassical
symmetry reductions for the Kadomtsev–Petviashvili equation,
Physica D, Vol. 49, pp. 257–272, 1991.
- Cochran, W. G., The flow due to a rotating disc,
Proc. Cambridge Philos. Soc., Vol. 30,
pp. 365–375, 1934.
- Coclite, G. M. and Karlsen, K. H., On the
well-posedness of the Degasperis–Procesi equation,
J. Funct. Anal., Vol. 233, No. 1,
pp. 60–91, 2006.
- Cohen, B. J., Krommes, J. A., Tang, W. M.,
and Rosenbluth, M. N., Nonlinear saturation of the
dissipative trapped-ion mode by mode coupling, Nuclear
Fusion, Vol. 16, No. 6, pp. 971–992,
1976.
- Cole, J. D., On a quasi-linear parabolic equation
occurring in aerodynamics, Quart. Appl. Math., Vol. 9,
No. 3, pp. 225–236, 1951.
- Cole, J. D. and Cook, L. P., Transonic
Aerodynamics, North-Holland, Amsterdam, 1986.
- Concus, P., Standing capillary-gravity waves of finite
amplitude, J. Fluid Mech., Vol. 14,
pp. 568–576, 1962.
- Constantin, A. and Escher, J., Wave breaking for
nonlinear nonlocal shallow water equations, Acta Math.,
Vol. 181, No. 2, pp. 229–243, 1998.
- Constantin, A., Gerdjikov, V. S., and Ivanov, R. I.,
Inverse scattering transform for the Camassa–Holm equation,
Inverse Problems, Vol. 22, No. 6,
pp. 2197–2207, 2006.
- Conte, R., Invariant Painleve analysis for partial
differential equations, Phys. Lett., Ser. A,
Vol. 140, No. 7–8, pp. 383–390, 1989.
- Conte, R. (Ed.), The Painleve Property. One
Century Later, Springer-Verlag, New York, 1999.
- Conte, R., Exact solutions of nonlinear partial
differential equations by singularity analysis, Lect. Notes
Phys., Vol. 632, pp. 1–83, 2003.
- Conte, R. and Musette, M., Painleve analysis and
Backlund transformation in the Kuramoto–Sivashinsky
equation, J. Phys. A, Vol. 22,
pp. 169–177, 1989.
- Conte, R. and Musette, M., Linearity inside
nonlinearity: Exact solutions to the complex Ginzburg–Landau
equation, Physica D, Vol. 69, No. 1,
pp. 1–17, 1993.
- Conte, R. and Musette, M., The Painleve
Handbook, Springer, 2008.
- Corless, R. M., Essential Maple, Springer,
Berlin, 1995.
- Couette, M., Etudes sur le frottement des liquides,
Ann. Chim. Phys., Vol. 21, No. 6,
pp. 433–510, 1890.
- Courant, R., Partial Differential Equations,
InterScience, New York, 1962.
- Courant, R. and Friedrichs, R., Supersonic Flow and
Shock Waves, Springer-Verlag, New York, 1985.
- Courant, R. and Hilbert, D., Methods of Mathematical
Physics, Vol. 2, Wiley–Interscience Publ., New
York, 1989.
- Cox, S. M., Nonaxisymmetric flow between an air table
and a floating disk, Phys. Fluids, Vol. 14,
pp. 1540–1543, 2002.
- Crabtree, F. L., Kuchemann, D., and Sowerby, L., In:
Laminar Boundary Layers (Ed. L. Rosenhead), Oxford
University Press, Oxford, 1963.
- Craik, A., The stability of unbounded two- and
three-dimensional flows subject to body forces: some exact
solutions, J. Fluid Mech., Vol. 198,
pp. 275–292, 1989.
- Crandall, M. G., Evans, L. C., and Lions, P.-L., Some
properties of viscosity solutions of Hamilton–Jacobi
equations, Trans. Amer. Math. Soc., Vol. 283,
No. 2, pp. 487–502, 1984.
- Crandall, M. G., Ishii, H., and Lions, P.-L., User's
guide to viscosity solutions of second order partial differential
equations, Bull. Amer. Math. Soc., Vol. 27,
No. 1, pp. 1–67, 1992.
- Crandall, M. G. and Lions, P.-L., Viscosity solutions
of Hamilton–Jacobi equations, Trans. Amer. Math.
Soc., Vol. 277, No. 1, pp. 1–42, 1983.
- Crane, L. J., Flow past a stretching plate, Z.
Angew. Math. Phys. (ZAMP), Vol. 21,
pp. 645–647, 1970.
- Crank, J., The Mathematics of Diffusion,
Clarendon Press, Oxford, 1975.
- Crank, J. and Nicolson, P., A practical method for
numerical evaluation of solutions of partial
differential equations of the heat-conduction type,
Proc. Camb. Philos. Soc., Vol. 43,
pp. 50–67, 1947.
- Crudeli, U., Sui moti di un liquido viscoso (omogeno)
simmetrici rispetto ad un asse, Atti Reale Accad. Naz. dei
Lincei. Rendiconti, Ser. 6, Vol. 5, No. 7,
pp. 500–504, 1927.
- Crudeli, U., Una nuova categoria di moti stazionary dei
liquidi (pesanty) viscosi entro tubi cilindrici (rotondi)
verticali, Atti Reale Accad. Naz. dei Lincei. Rendiconti,
Ser. 6, Vol. 5, No. 10, pp. 783–789,
1927.
- Crudeli, U., Sopra una categoria di moti stazionary dei
liquidi (pesanty) viscosi entro tubi cilindrici (rotondi)
verticali, Atti Reale Accad. Naz. dei Lincei. Rendiconti,
Ser. 6, Vol. 6, No. 10, pp. 397–401,
1927.
- Cunning, G. M., Davis, A. M. J., and Weidman, P. D.,
Radial stagnation flow on a rotating circular cylinder with
uniform transpiration, J. Eng. Math., Vol. 33,
pp. 113–128, 1998.
- Czerwik, S., Functional Equations and Inequalities
in Several Variables, World Scientific Publ., Singapore,
2002.
- Dafermos, C. M., Hyperbolic Systems of Conservation
Laws, In: Systems of Non-Linear Partial Differential
Equations, (Eds. D. Reidel and J. S. Ball),
Kluwer, Dordrecht, pp. 24-70, 1983.
- Dafermos, C. M., Hyperbolic Conservation Laws in
Continuum Physics, Springer-Verlag, Berlin, 2000.
- Dafermos, C. M. and Feireisl, E. (Eds.), Handbook of
Differential Equations. Evolutionary Equations, Vols
1–3, Elsevier, Amsterdam, 2004–2006.
- Dafermos, C. M. and Pokorny M. (Eds.), Handbook of
Differential Equations. Evolutionary Equations, Vols 4 and 5,
Elsevier, Amsterdam, 2008 and 2009.
- Danberg, J. E. and Fansler, K. S., A nonsimilar
moving-wall boundary-layer problem, Q. Appl. Math.,
Vol. 33, pp. 305–309, 1976.
- Danilov, V. G. and Subochev, P. Yu., Wave
solutions of semilinear parabolic equations, Theor. Math. Phys.,
Vol. 89, No. 1, pp. 1029–1045, 1991.
- Danilov, V. G., Maslov V. P., and Volosov,
K. A., Mathematical Modelling of Heat and Mass
Transfer Processes, Kluwer, Dordrecht, 1995.
- Dankwerts, P. V., Gas–Liquid Reactions,
McGraw-Hill, New York, 1970.
- Daroczy, Z. and Pales, Z. (Eds.), Functional
Equations\dash Results and Advances, Kluwer Academic,
Dordrecht, 2002.
- Dauenhauer, E. C. and Majdalani, J., Exact
self-similarity solution of the Navier–Stokes equations for
a porous channel with orthogonally moving walls, Phys.
Fluids, Vol. 15, pp. 1485–1495, 2003.
- Dauxois, T. and Peyrard, M., Physics of
Solitons, Cambridge University Press, Cambridge, 2006.
- Davenport, J. H., Siret, Y. and Tournier, E.,
Computer Algebra Systems and Algorithms for Algebraic
Computation, Academic Press, London, 1993.
- Davey, A., Boundary-layer flow at a saddle point of
attachment, J. Fluid Mech., Vol. 10,
pp. 593–610, 1961.
- Davey, A. and Schofield, D., Three-dimensional flow
near a two-dimensional stagnation point, J. Fluid
Mech., Vol. 28, pp. 149–151, 1967.
- Debler, W. R. and Montgomery, R. D., Flow
over an oscillating plate with suction or with an intermediate
film: two exact solutions of the Navier–Stokes equations,
J. Appl. Math., Vol. 38, pp. 262–265,
1971.
- Debnath, L., Nonlinear Partial Differential
Equations for Scientists and Engineers, Birkhauser, Boston,
MA, 2nd ed., 2005.
- Degasperis, A., Holm, D. D., and Hone, A. N. W., A new
integrable equation with peakon solutions, Theor. Math.
Phys., Vol. 33, No. 2, pp. 1463–1474,
2002.
- Degasperis, A. and Procesi, M., Asymptotic
integrability, In: Symmetry and Perturbation Theory (Eds.
A. Degasperis and G. Gaeta), World Scientific, NJ, pp.
23–37, 1999.
- Dehghan, M. and Shokri, A., Numerical solution of the
nonlinear Klein–Gordon equation using radial basis
functions, J. Comp. Appl. Math., Vol. 230,
No. 2, pp. 400–410, 2009.
- Devi, C. D. S., Takhar, H. S., and Nath,
G., Unsteady, three-dimensional, boundary-layer flow due to a
stretching surface, Int. J. Heat Mass Transfer,
Vol. 29, pp. 1996–1999, 1986.
- Dey, B., Compacton solutions for a class of two
parameter generalized odd-order Korteweg–de Vries equations,
Phys. Rev. E, Vol. 57, pp. 4733-4738, 1998.
- Dickey, L. A., Soliton Equations and Hamilton
Systems, World Scientific, Singapore, 1991.
- Dobrokhotov, S. Yu. and Tirozzi, B., Localized
solutions of one-dimensional non-linear shallow-water equations
with velocity
c = x1/2,
Rus. Math. Surveys,
Vol. 65, No. 1, pp. 177–179, 2010.
- Dobryshman, E. M., On some singularities of fields of
pressure and wind in equatorial region. Report on the conference
on common atmospheric circulation, Moscow, 1964.
- Dodd, R. K. and Bullough, R. K., Polynomial conserved
densities for the sine-Gordon equations, Proc. Roy. Soc.
London, Ser. A, Vol. 352, pp. 481–503,
1977.
- Dodd, R. K., Eilbeck, J. C., Gibbon, J. D., and Morris, H.
C., Solitons and Nonlinear Wave Equations, Academic
Press, London, 1982.
- Dolidze, D. E., On some cases of rotation of a
viscous incompressible fluid, Izvestiya AN SSSR. Otdelenie
tekhn. nauk [in Russian], No. 2, pp. 197–208,
1937.
- Dommelen, L. L. van and Shen, S. F., The spontaneous
generation of the singularity in a separating laminar boundary
layer, J. Comput. Phys., Vol. 38,
pp. 125–140, 1980.
- Dorfman, I. Ya., The Krichever–Novikov equation
and local symplectic structures, Sov. Math. Dokl.,
Vol. 38, pp. 340–343, 1989.
- Dorfman, I. Ya., Dirac Structures and Integrability
of Nonlinear Evolution Equations, Wiley, Chichester, 1993.
- Dorodnitsyn, V. A., Group Properties and
Invariant Solutions of Nonlinear Heat Equations with a Source or
Sink [in Russian], Preprint No. 74, Keldysh
Institute of Applied Mathematics, Academy of Sciences, USSR,
Moscow, 1979.
- Dorodnitsyn, V. A., On invariant solutions of the
nonlinear heat equation with a source [in Russian], Zhurn.
vychisl. matem. i matem. fiziki, Vol. 22, No. 6,
pp. 1393–1400, 1982.
- Dorodnitsyn, V. A. and Elenin, G. G. Symmetry
in Solutions of Equations of Mathematical Physics [in
Russian], Znanie (No. 4), Moscow, 1984.
- Dorodnitsyn, V. A., Knyazeva, I. V., and
Svirshchevskii, S. R., Group properties of the heat
equation with a source in two and three dimensions
[in Russian], Diff. Uravneniya, Vol. 19,
No. 7, pp. 1215–1223, 1983.
- Dorodnitsyn, V. A. and
Svirshchevskii, S. R., On Lie–Backlund
Groups Admitted by the Heat Equation with a Source
[in Russian], Preprint No. 101, Keldysh Institute of
Applied Mathematics, Academy of Sciences, USSR, Moscow, 1983.
- Dorrepaal, J. M., An exact solution of the
Navier–Stokes equation which describes non-orthogonal
stagnation point flow in two dimensions, J. Fluid
Mech., Vol. 163, pp. 141–147, 1986.
- Doyle, Ph. W., Separation of variables for scalar
evolution equations in one space dimension,
J. Phys. A: Math. Gen., Vol. 29,
pp. 7581–7595, 1996.
- Doyle, Ph. W. and Vassiliou, P. J., Separation of
variables for the 1-dimensional non-linear diffusion equation,
Int. J. Non-Linear Mech., Vol. 33, No. 2,
pp. 315–326, 1998.
- Drazin, P. G. and Johnson, R. S., Solitons: An
Introduction, Cambridge Univ. Press, Cambridge, 1989 and 1996.
- Drazin, P. G. and Riley, N., The
Navier–Stokes Equations: A Classification of Flows and Exact
Solutions, Cambridge Univ. Press, Cambridge, 2006.
- Dresner, L., Similarity Solutions of Nonlinear
Partial Differential Equations, Pitman, Boston, 1983.
- Dryuma, V. S., On an analytic solution of the
two-dimensional Korteweg–de Vries equation
[in Russian], Pis'ma v ZhETF, Vol. 19,
No. 7, pp. 753–757, 1974.
- Dryuma, V. S., On initial values problem in theory of
the second order ODE's, pp. 109–116, In: Proc.
Workshop on Nonlinearity, Integrability, and All That: Twenty
Years after NEEDS'79, (Eds. M. Boiti, L. Martina,
F. Pempinelli, B. Prinari, and G. Soliani), World
Scientific, Singapore, 2000.
- Dryuma, V. S., On solutions of Heavenly equations and
their generalizations, arXiv:gr-qc–0611001v1, 2006.
- Dryuma, V. S., On spaces related to the
Navier–Stokes equations, Buletinul Academiei de Stiinte a
Republicii Moldova. Matematica, Vol. 64, No. 3,
pp. 107–110, 2010.
- Dubinskii, Yu. A., Analytic Pseudo-Differential
Operators and Their Applications, Kluwer, Dordrecht, 1991.
- Dubrovin, B. A., Geometry of 2D Topological
Field Theories, Lect. Notes in Math., Vol. 1620,
pp. 120–348, Springer-Verlag, Berlin, 1996.
- Dubrovin, B. A. and Novikov, S. P., Hamiltonian
formalism of hydrodynamic-type systems. The averaging method for
field-theoretic systems, Doklady AN SSSR, Vol. 270,
No. 4, pp. 781–785, 1983.
- Dubrovin, B. A. and Novikov, S. P., Hydrodynamics
of weakly deformed soliton grids. Differential geometry and
Hamiltonian theory, Uspekhi mat. nauk, Vol. 44,
No. 6, pp. 29–98, 1989.
- Duffy, B. R. and Parkes, E. J., Travelling solitary
wave solutions to a seventh-order generalized KdV equation,
Phys. Lett. A, Vol. 214, 271–272, 1996.
- Edwards, M. P., Classical symmetry reductions of
nonlinear diffusion-convection equations, Phys. Letters A,
Vol. 190, pp. 149–154, 1994.
- Eglit, E. E. and Hodges, D. H. (Eds.),
Continuum Mechanics via Problems and Exercises,
Vol. 1, World Scientific, Singapore, 1996.
- Ekman, V. W., On the influence of the Earth's rotation
on ocean currents, Arkiv. Mat. Astron. Fys., Vol. 2,
pp. 1–52, 1905.
- Emech, Y. P. and Taranov, V. B., Group properties and
invariant solutions of electric field equations at nonlinear Ohm
law [in Russian], Zhurnal Prikladnoi Mekhaniki i
Tekhnicheskoi Fiziki, No. 3, pp. 28–36, 1972.
- Enneper, A., Uber asymptotische Linien, Nachr.
Konigl. Gesellsch. d. Wissenschaften Gottingen,
p. 493–511, 1870.
- Erbas, B. and Yusufoglu, E., Exp-function
method for constructing exact solutions of
Sharma–Tasso–Olver equation. Chaos, Solitons and
Fractals, Vol. 41, No. 5, pp. 2326–2330,
2009.
- Ershov, L. V., Ivlev, D. D., and Romanov, A. V., On
generalization of Prandtl solution for compression of plastic
layer, In: Modern Problems of Aviation and Mechanics [in
Russian], Moscow, p. 137, 1982.
- Escher, J., Liu, Y., and Yin, Z., Global weak solutions
and blow-up structure for the Degasperis–Procesi equation,
J. Funct. Anal., Vol. 241, No. 2,
pp. 457–485, 2006.
- Escher, J., Liu, Y., and Yin, Z., Shock waves and
blow-up phenomena for the periodic Degasperis–Procesi
equation, Indiana Univ. Math. J., Vol. 56,
No. 1, pp. 87–117, 2007.
- Estevez, P. G., Non-classical symmetry and the
singular manifold: the Burgers and the Burgers–Huxley
equation, J. Phys. A: Math. Gen., Vol. 27,
pp. 2113–2127, 1994.
- Estevez, P. G. and Gordoa, P. R., Painleve analysis
of the generalized Burgers–Huxley equation, J. Phys.
A: Math. Gen., Vol. 23, p. 4831, 1990.
- Estevez, P. G., Qu, C. Z., and Zhang, S. L.,
Separation of variables of a generalized porous medium equation
with nonlinear source, J. Math. Anal. Appl.,
Vol. 275, pp. 44–59, 2002.
- Euler, N., Gandarias, M. L., Euler, M., and Lindblom,
O., Auto-hodograph transformations for a hierarchy of
nonlinear evolution equations, J. Math. Anal. Appl.,
Vol. 257, No. 1, pp. 21–28, 2001.
- Faber, T. E., Fluid Dynamics for
Physicists, Cambridge Univ. Press, Cambridge, 1995.
- Faddeev, L. D. (Ed.), Mathematical Physics:
Encyclopedia [in Russian], Bol'shaya Rossiiskaya
Entsiklopediya, Moscow, 1998.
- Faddeev, L. D. and Takhtajan, L. A., Hamiltonian
Methods in the Theory of Solitons, Springer-Verlag, Berlin,
1987.
- Falkner, V. M. and Skan, S. W., Some approximate
solutions of the boundary layer equations, Phil. Mag.,
Vol. 12, pp. 865–896, 1931.
- Fal'kovich, A. I., Group invariant solutions of
atmospheric circulation model for the equatorial region,
Izvestiya Akad. Nauk USSR, Fizika atmosfery i okeana,
Vol. 4, p. 579, 1968.
- Farlow, S. J., Partial Differential Equations for
Scientists and Engineers, John Wiley Sons, New York, 1982.
- Feng, Z., Exact solutions to the
Burgers–Korteweg–de Vries equation, J. Phys.
Soc. Japan, Vol. 71, pp. 1–4, 2002.
- Feng, Z., On traveling wave solutions to modified
Burgers–Korteweg–de Vries equation, Phys. Lett.
A, Vol. 318, pp. 522–525, 2003.
- Feng, Z., An exact solution to the Korteweg–de
Vries–Burgers equation, Appl. Math. Lett.,
Vol. 18, 733–737, 2005.
- Feng, Z., On travelling wave solutions of the
Burgers–Korteweg–de Vries equation,
Nonlinearity, Vol. 20, 343–356, 2007.
- Ferapontov, E. V. and Pavlov, M. V., Hydrodynamic
reductions of the heavenly equation, arXiv:nlin/0301048v1
[nlin.SI], 2003.
- Ferapontov, E. V. and Tsarev, S. P., Equations of
hydrodynamic type, arising in gas chromatography. Riemann
invariants and exact solutions, Mat. Model., Vol. 3,
No. 2, pp. 82–91, 1991.
- Filenberger, G., Solitons. Mathematical Method for
Physicists, Springer-Verlag, Berlin, 1981.
- Filippov, Yu. G., Application of the group invariant
method for the solution of the problem on determining
nonhomogeneous ocean flows, Meteorologia i Hidrologia,
Vol. 9, p. 53, 1968.
- Fisher, R. A., The wave of advance of advantageous
genes, Annals of Eugenics, 1937, Vol. 7,
pp. 355–369.
- Fleming, W. H. and Soner, H. M., Controlled Markov
Processes and Viscosity Solutions, Springer-Verlag, New York,
1993.
- Fokas, A. S. and Anderson, R. L., Group theoretical
nature of Backlund transformations, Lett. Math. Phys.,
Vol. 3, p. 117, 1979.
- Fokas, A. S. and Fuchssteiner, B., Backlund
transformations for hereditary symmetries, Nonlinear Anal.,
Vol. 5, pp. 423–432, 1981.
- Fokas, A. S. and Yortsos, Y. C., On the exactly
solvable equation
st =[(βs+γ)-2sx]x
+α(βs+γ)-2sx
occurring in two-phase flow in
porous media, SIAM J. Appl. Math., Vol. 42,
pp. 318–332, 1982.
- Forsyth, A. R., Theory of Differential Equations,
Part IV, Vol. VI, Partial Differential Equations,
Cambridge Univ. Press, Cambridge, 1906. Reprinted: New York, Dover
Publ., 1959.
- Foursov, M. F. and Vorob'ev, E. M., Solutions of the
nonlinear wave equation
utt = (uux)x
invariant under
conditional symmetries, J. Phys. A, Vol. 29,
pp. 6363–6373, 1996.
- Frank-Kamenetskii, D. A., Diffusion and Heat
Transfer in Chemical Kinetics [in Russian], Nauka,
Moscow, 1987.
- Fu, Z., Liu, S., and Liu, Sh., New kinds of solutions
to Gardner equation, Chaos, Solitons, and Fractals,
Vol. 20, pp. 301–309, 2004.
- Fuchssteiner, B., Some tricks from symmetry-toolbox for
nonlinear equation: generalizations of the Camassa–Holm
equation, Phys. D, Vol. 95, pp. 229–243,
1996.
- Fujita, H., The exact pattern of a
concentration-dependent diffusion in a semi-infinite medium,
Part II, Textile Res., Vol. 22, p. 823,
1952.
- Fushchich, W. I., A new method of investigating the
group properties of the equations of mathematical physics,
Soviet Phys. Dokl., Vol. 24, No. 6,
pp. 437–439, 1979.
- Fushchich, W. I. and Cherniha, R. M., The Galilean
relativistic principle and nonlinear partial differential
equations, J. Phys. A., Vol. 18,
pp. 3491–3503, 1985.
- Fushchich, W. I., Serov, N. I., and Ahmerov, T. K., On
the conditional symmetry of the generalized KdV equation, Rep.
Ukr. Acad. Sci., A 12, 1991.
- Fushchich, W. I., Shtelen, W. M., and Serov, N. I.,
Symmetry Analysis and Exact Solutions of the Equations of
Mathematical Physics, Kluwer, Dordrecht, 1993.
- Fushchich, W. I., Shtelen, W. M., and Slavutsky, S. L.,
Reduction and exact solutions of the Navier–Stokes
equations, J. Phys. A: Math. Gen., Vol. 24,
pp. 971–984, 1991.
- Gaeta, G., Nonlinear Symmetries and Nonlinear
Equations, Kluwer, Dordrecht, 1994.
- Gagnon, L. and Winternitz P., Lie symmetries of a
generalized nonlinear Schrodinger equation. I. The symmetry
group and its subgroups, J. Phys. A, Vol. 24,
p. 1493, 1988.
- Gagnon, L. and Winternitz P., Lie symmetries of a
generalized nonlinear Schrodinger equation. II. Exact solutions,
J. Phys. A, Vol. 22, p. 469, 1989.
- Gagnon, L. and Winternitz, P., Symmetry classes of
variable coefficient nonlinear Schrodinger equations,
J. Phys. A, Vol. 26, pp. 7061–7076,
1993.
- Galaktionov, V. A., On new exact blow-up solutions for
nonlinear heat conduction equations with source and applications,
Differential and Integral Equations, Vol. 3,
No. 5, pp. 863–874, 1990.
- Galaktionov, V. A., Quasilinear heat equations with
first-order sign-invariants and new explicit solutions,
Nonlinear Analys., Theory, Meth. and Applications,
Vol. 23, pp. 1595–1621, 1994.
- Galaktionov, V. A., Invariant subspaces and new
explicit solutions to evolution equations with quadratic
nonlinearities, Proc. Roy. Soc. Edinburgh, Sect. A,
Vol. 125, No. 2, pp. 225–246, 1995.
- Galaktionov, V. A., Ordered invariant sets for
nonlinear evolution equations of KdV-type, Comput. Math. Math.
Phys., Vol. 39, No. 9, pp. 1499–1505,
1999.
- Galaktionov, V. A., Dorodnitsyn, V. A., Elenin,
G. G., Kurdyumov, S. P., and Samarskii, A. A.,
Quasilinear heat conduction equation with source: blow-up,
localization, symmetry, exact solutions, asymptotics, structures,
In: Modern Mathematical Problems. New Achievements
[in Russian], Vol. 28, pp. 95–206, Moscow,
VINITI AN USSR, 1986 (English translation: Plenum Press, New York,
1987).
- Galaktionov, V. A. and Posashkov, S. A., On new exact
solutions of parabolic equations with quadratic nonlinearities,
Zh. Vych. Matem. i Mat. Fiziki [in Russian],
Vol. 29, No. 4, pp. 497–506, 1989.
- Galaktionov, V. A. and Posashkov, S. A., Exact
solutions and invariant subspace for nonlinear gradient-diffusion
equations, Zh. Vych. Matem. i Mat. Fiziki
[in Russian], Vol. 34, No. 3,
pp. 374–383, 1994.
- Galaktionov, V. A., Posashkov, S. A., and Svirshchevskii,
S. R., On invariant sets and explicit solutions of nonlinear
evolution equations with quadratic nonlinearities, Differential
and Integral Equations, Vol. 8, No. 8,
pp. 1997–2024, 1995.
- Galaktionov, V. A., Posashkov, S. A., and Svirshchevskii,
S. R., Generalized separation of variables for differential
equations with polynomial right-hand sides, Dif. Uravneniya
[in Russian], Vol. 31, No. 2,
pp. 253–261, 1995.
- Galaktionov, V. A. and Svirshchevskii, S. R., Exact
Solutions and Invariant Subspaces of Nonlinear Partial
Differential Equations in Mechanics and Physics, Chapman
Hall/CRC Press, Boca Raton, 2006.
- Galaktionov, V. A. and Vazques, J. L., Blow-up for
a class of solutions with free boundaries for the
Navier–Stokes equations, Adv. Diff. Eq., Vol. 4,
pp. 297–321, 1999.
- Ganji, Z. Z., Ganji, D. D., and Bararnia, H.,
Approximate general and explicit solutions of nonlinear BBMB
equations by Exp-function method, Applied Mathematical
Modeling, Vol. 33, No. 4, pp. 1836–1841,
2009.
- Ganzha, E. I., An analogue of the Moutard
transformation for the Goursat equation
θxy=
2(λθxθy)1/2,
Theor. Math. Phys., Vol. 122, No. 1, pp. 35–45,
2000.
- Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura,
R. M., Method for solving the Korteweg–de Vries
equation, Phys. Rev. Lett., Vol. 19, No. 19,
pp. 1095–1097, 1967.
- Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura,
R. M., Korteweg–de Vries equation and generalizations.
VI: Methods for exact solution, Comm. Pure Appl. Math.,
Vol. 27, pp. 97–133, 1974.
- Geddes, K. O., Czapor, S. R., and Labahn, G.,
Algorithms for Computer Algebra, Kluwer Academic
Publishers, Boston, MA, 1992.
- Gelfand, I. M., Some problems of the theory of
quasi-linear equations, Uspekhi Matem. Nauk,
Vol. 14, No. 2, pp. 87–158, 1959 [Amer.
Math. Soc. Translation, Series 2,
pp. 295–381, 1963].
- Gelfand, I. M. and Levitan B. M., On the
determination of a differential equation from its spectral
function, Izv. Akad. Nauk USSR, Ser. Math., Vol. 15,
No. 4, pp. 309–360, 1951 [Amer. Math. Soc.
Translations, Vol. 1, pp. 253–304, 1956].
- Geng, X. and Cao, C., Explicit solutions of the
2+1-dimensional breaking soliton equation, Chaos, Solitons and
Fractals, Vol. 22, pp. 683–691, 2004.
- Gennes, P. G., Wetting: statics and dynamics,
Rev. Mod. Phys., Vol. 57, pp. 827–863,
1985.
- Gennes, P. G. and Prost, J., The Physics of
Liquid Crystals, 2nd ed., Oxford University Press, 1994.
- Gesztesy, F. and Weikard, R., Elliptic
algebro-geometric solutions of the KdV and AKNS
hierarchies–an analytic approach, Bull. AMS,
Vol. 35, No. 4, pp. 271–317, 1998.
- Getz, C. and Helmstedt, J., Graphics with
Mathematica: Fractals, Julia Sets, Patterns and Natural Forms,
Elsevier Science Technology Book, Amsterdam, Boston, 2004.
- Gibbon, J. D., Fokas, A. S., and Doering,
C. R., Dynamically stretched vortices as solutions of the
3D Navier–Stokes equations, Physica D, Vol. 132,
pp. 497–510, 1999.
- Gibbons, J. and Tsarev, S. P., Conformal maps and
reduction of the Benney equations, Phys. Letters A,
Vol. 258, No. 4–6, pp. 263–271, 1999.
- Gilbarg, G. and Trudinger, N. S., Elliptic
Partial Differential Equations of Second Order,
Springer-Verlag, Berlin, 2001.
- Glassey, R. T., Hunter, J. K., and Zheng, Y.,
Singularities and oscillations in a nonlinear variational wave
equation, In: Singularities and Oscillations (Eds.
J. Ranch and M. Taylor), Springer-Verlag, New York,
1997.
- Godlewski, E. and Raviart, P.-A., Numerical
Approximations of Hyperbolic Systems of Conservation Laws,
Springer-Verlag, New York, 1996.
- Godreche, C. and Manneville, P. (Eds.),
Hydrodynamics and Nonlinear Instabilities, Cambridge Univ.
Press, 1998.
- Goldshtik, M. A., A paradoxial solution of the
Navier–Stokes equations [in Russian], Prik. Mat.
Mekh., Vol. 24, pp. 610–621, 1960.
- Goldshtik, M. A., Viscous flow paradoxes, Annual
Rev. of Fluid Mech., Vol. 22,
pp. 441–472, 1990.
- Goldshtik, M. A. and Shtern, V. N., Hydrodynamic
Stability and Turbulence [in Russian], Nauka, Novosibirsk,
1977.
- Goldshtik, M. A. and Shtern, V. N., Loss of symmetry in
viscous flow from a linear source, Fluid Dyn.,
Vol. 24, pp. 151–199, 1989.
- Goldshtik, M. A. and Shtern, V. N., Collapse in conical
viscous flows, J. Fluid Mech., Vol. 218,
pp. 483–508, 1990.
- Golovko, V., Kersten, P., Krasil'shchik, I., and
Verbovetsky, A., On integrability of the Camassa–Holm
equation and its invariants: a geometrical approach, Acta Appl.
Math., Vol. 101, No. 1–3,
pp. 59–83, 2008.
- Golubev, V. V., Lectures on Analytic Theory of
Differential Equations [in Russian], GITTL, Moscow,
1950.
- Gomes, C. A., Special forms of the fifth-order KdV
equation with new periodic and soliton solutions, Appl. Math.
Comput., Vol. 189, No. 2, pp. 1066–1077,
2007.
- Gorodtsov, V. A., Heat transfer and turbulent diffusion
in one-dimensional hydrodynamics without pressure, Appl. Math.
and Mech. (PMM), Vol. 62, No. 6,
pp. 1021–1028, 1998.
- Gorodtsov, V. A., The effect of a local increase in
impurity concentration in one-dimensional hydrodynamics, Appl.
Math. and Mech. (PMM), Vol. 64, No. 4,
pp. 593–600, 2000.
- Gortler, H., Verdrangungswirkung der laminaren
Grenzschichten und Druck widerstand, Ing. Arch.,
Vol. 14, pp. 286–305, 1944.
- Goursat, M. E., Lecons sur l'integration des
equations aux derivees partielles du second order a deux
variables independantes, T. 1 , Librairie scientifique
A. Hermann, Paris, 1896.
- Goursat, M. E., Lecons sur l'integration des
equations aux derivees partielles du second order a deux
variables independantes, T. 2 , Librairie scientifique
A. Hermann, Paris, 1898.
- Goursat, E., A Course of Mathematical Analysis. Vol
3. Part 1 [Russian translation], Gostekhizdat, Moscow, 1933.
- Grad, H. and Rubin, H., Hydromagnetic equilibria and
force-free fields, Proceedings of the 2nd UN Conf. on the
Peaceful Uses of Atomic Energy, Geneva, Vol. 31,
p. 190, 1958.
- Graetz, L., Z. Math. Physik, Bd. 25,
S. 316, 375, 1880.
- Grauel, A., Sinh-Gordon equation, Painleve property
and Backlund transformation, Physica A,
Vol. 132, pp. 557–568, 1985.
- Grauel, A. and Steeb, W.-H., Similarity solutions of
the Euler equations and the Navier–Stokes equations in two
space dimensions, Int. J. Theor. Phys.,
Vol. 24, pp. 255–265, 1985.
- Gray, J. W., Mastering Mathematica: Programming
Methods and Applications, Academic Press, San Diego, 1994.
- Gray, T. and Glynn, J., Exploring Mathematics with
Mathematica: Dialogs Concerning Computers and Mathematics,
Addison-Wesley, Reading, MA, 1991.
- Grebenev, V. N. and Oberlack, M., A geometric
interpretation of the second-order structure function arising in
turbulence, Math. Phys. Anal. Geom., Vol. 12,
pp. 1–18, 2009.
- Green, E., Evans, B., and Johnson, J., Exploring
Calculus with Mathematica, Wiley, New York, 1994.
- Greenhill, A. G., London Math. Soc. Proc.,
Vol. 13, p. 43, 1881.
- Greenspan, H. P., On the motion of a small viscous
droplet that wets a surface, J. Fluid Mech.,
Vol. 84, pp. 125–143, 1978.
- Griffiths, G. W. and Schiesser, W. E., Traveling
Wave Analysis of Partial Differential Equations: Numerical and
Analytical Methods with Matlab and Maple, Academic Press,
2011.
- Gromak, V. I., Painleve Differential Equations in
the Complex Plane, Walter de Gruyter, Berlin, 2002.
- Gromak, V. I. and Lukashevich, N. A., Analytical
Properties of Solutions of Painleve Equations
[in Russian], Universitetskoe, Minsk, 1990.
- Gromak, V. I. and Zinchenko A. S., To the theory of
higher-order Paileve equations, Diff. uravneniya,
Vol. 40, No. 5, pp. 582–589, 2004.
- Grosch, C. E. and Salwen, H., Oscillating stagnation
point flow, Proc. Roy. Soc. London, Ser. A,
Vol. 384, pp. 175–190, 1982.
- Grosheva, M. V. and Efimov, G. B., On Systems
of Symbolic Computations [in Russian], In: Applied
Program Packages. Analytic Transformations, pp. 30–38.
Nauka, Moscow, 1988.
- Grundland, A. M. and Infeld, E., A family of non-linear
Klein-Gordon equations and their solutions, J. Math.
Phys., Vol. 33, pp. 2498–2503, 1992.
- Guderley, K. G., The Theory of Transonic Flow,
Pergamon, Oxford, 1962.
- Guil, F. and Ma nas, M., Loop algebras and the
Krichever–Novikov equation, Phys. Lett. A,
Vol. 153, pp. 90–94, 1991.
- Gupalo, Yu. P., Polyanin, A. D., and Ryazantsev,
Yu. S., Mass and Heat Transfer of Reacting Particles
with the Flow [in Russian], Nauka, Moscow, 1985.
- Gutierres, C. E., The Monge–Ampere
Equation, Birkhauser, Boston, 2001.
- Gutman, L. N., On structure of breezes, Dokl.
TIP, Vol. 1, No. 3, 1947.
- Haantjes, A., On X n-1-forming sets of
eigenvectors, Indagationes Mathematicae, Vol. 17,
No. 2, pp. 158–162, 1955.
- Hagen, G., Uber die Bewegung des Wasser in engen
zylindrischen Rohren, Pogg. Ann., Vol. 46,
pp. 423–442, 1839.
- Hall, P., Balakurmar, P. and Papageorgiu, D., On a
class of unsteady three-dimensional Navier–Stokes solutions
relevant to rotating disk flows: threshold amplitudes and
finite-time singularities, J. Fluid Mech.,
Vol. 238, pp. 297–323, 1992.
- Hamdi, S., Enright, W. H., Schiesser, W. E., and Gottlieb,
J. J., Exact solutions of the generalized equal width wave
equation, Math. Comp. in Simulation, 2003.
- Hamel, G., Spiralformige Bewegungen zaher
Flssigkeiten, Jahresbericht der Deutschen Math.-Ver.,
Vol. 25, pp. 34–60, 1916. Translated as NACA Tech.
Memo., No. 1342 (1953).
- Hamza, E. A. and MacDonald, D. A., A similar
flow between two rotating disks, Quart. Appl. Math.,
Vol. 41, pp. 495–511, 1984.
- Hannah, D. M., Forced flow against a rotating
disc, Rep. Mem. Aero. Res. Council, London No. 2772,
1947.
- Hanyga, A., Mathematical Theory of Nonlinear
Elasticity, PWN, Warszawa, 1985.
- Happel, J. and Brenner, H., Low Reynolds Number
Hydrodynamics, Prentice-Hall, Englewood Cliffs, 1965.
- Harries, D., Solving the Poisson–Boltzmann
equation for two parallel cylinders, Langmuir,
Vol. 14, pp. 3149–3152, 1998.
- Harris, S. E., Conservation laws for a nonlinear wave
equation, Nonlinearity, Vol. 9,
pp. 187–208, 1996.
- Hartree, D. R., On an equation occurring in Falkner and
Skan's approximate treatment of the equations of the boundary
layer, Proc. Cambr. Phil. Soc., Vol. 33,
pp. 223–239, 1937.
- Hasimoto, H., Note on Rayleigh's problem for a circular
cylinder with uniform suction and related unsteady flow problem,
J. Phys. Soc. Jpn., Vol. 11,
pp. 611–612, 1956.
- Hasimoto, H., Boundary layer growth on a flat plate
with suction or injection, J. Phys. Soc. Jpn.,
Vol. 12, pp. 68–72, 1957.
- Hatton, L., Stagnation point flow in a vortex core,
Tellus, Vol. 27, pp. 269–280, 1975.
- He, J. H. and Abdou, M. A., New periodic
solutions for nonlinear evolution equation using Exp-method,
Chaos, Solitons and Fractals, Vol. 34,
pp. 1421–1429, 2007.
- He, J. H. and Wu, X. H., Exp-function method
for nonlinear wave equations, Chaos, Solitons and Fractals,
Vol. 30, No. 3, pp. 700–708, 2006.
- Heck, A., Introduction to Maple, Springer, New
York, 3rd ed., 2003.
- Heredero, R. H., Shabat, A. B., and Sokolov,
V. V., A new class of linearizable equations,
J. Phys. A: Math. Gen., Vol. 36,
pp. L605–L614, 2003.
- Hereman, W., Review of symbolic software for the
computation of Lie symmetries of differential equations,
Euromath Bull., Vol. 1, pp. 45–82, 1994.
- Hereman, W. and Nuseir, A., Symbolic software to
construct exact solutions of nonlinear partial differential
equations, Math. Comp. Simulation, Vol. 43,
pp. 361–378, 1980.
- Hereman, W. and Zhaung, W., Symbolic software for
solution theory, Acta Appl. Math. Phys. Lett. A,
Vol. 76, pp. 13–27, 1997.
- Hewitt, R. E., Duck, P. W., and Foster, M. R., Steady
boundary-layer solutions for a swirling stratified fluid in a
rotating cone, J. Fluid Mech., Vol. 384,
pp. 339–374, 1999.
- Hewitt, R. E., Duck, P. W., and Stow, S. R., Continua
of states in boundary-layer flows, J. Fluid Mech.,
Vol. 468, pp. 121–152, 2002.
- Hiemenz, K., Die Grenzschicht an einem in den
gleichformigen Flussigkeitsstrom eingetauchten geraden
Kreiszylinder, Dinglers Polytech. J., Vol. 326,
pp. 321–324, 344–348, 357–362,
372–374, 407–410, 1911.
- Hietarinta, J., A search for bilinear equations passing
Hirota's three-soliton condition. I. KdV-type bilinear equations,
J. Math. Phys., Vol. 28, No. 8,
pp. 1732–1742, 1987.
- Hietarinta, J., A search for bilinear equations passing
Hirota's three-soliton condition. II. mKdV-type bilinear
equations, J. Math. Phys., Vol. 28, No. 9,
pp. 2094–2101, 1987.
- Hietarinta, J., A search for bilinear equations passing
Hirota's three-soliton condition. III. Sine–Gordon-type
bilinear equations, J. Math. Phys., Vol. 28,
No. 11, pp. 2586–2592, 1987.
- Higham, N. J., Functions of Matrices. Theory
and Computation, SIAM, Philadelphia, 2008.
- Hill, J. M., Solution of Differential Equations by
Means of One-Parameter Groups, Pitman, Marshfield, Mass.,
1982.
- Hill, J. M., Differential Equations and Groups
Methods for Scientists and Engineers, CRC Press, Boca Raton,
1992.
- Hill, M. J. M., On a spherical vortex, Philos.
Trans. Roy. Soc. London, Ser. A, Vol. 185,
pp. 213–245, 1894.
- Hill, R., A variational principle of maximal plastic
work in classical plasticity, Quart. J. Mech. Appl. Math.,
Vol. 1, pp. 18–28, 1948.
- Hinch, E. J. and Lemaitre, J., The effect of
viscosity on the height of disks floating above an air table,
J. Fluid Mech., Vol. 273, pp. 313–322,
1994.
- Hirota, R., Exact solution of the Korteweg–de
Vries equation for multiple collisions of solutions, Phys. Rev.
Lett., Vol. 27, p. 1192, 1971.
- Hirota, R., Exact solution of the Korteweg–de
Vries equation for multiple collisions of solutions,
J. Phys. Soc. Japan, Vol. 33, No. 3,
p. 1455, 1972.
- Hirota, R., Exact envelope-soliton solutions of a
nonlinear wave equation, J. Math. Phys., Vol. 14,
pp. 805–809, 1973.
- Hirota, R., Exact N-soliton solution of the wave
equation of long waves in shallow water and in nonlinear lattice,
J. Math. Phys., Vol. 14, pp. 810–814,
1973.
- Hirota, R., Direct methods in soliton theory,
pp. 157–176, In: Solitons (Eds. R. K.
Bullough and P. J. Caudrey), Springer-Verlag, Berlin, 1980.
- Hirota, R., Soliton solutions of a coupled
Korteweg–de Vries equation, Phys. Letters A,
Vol. 85, No. 8/9, pp. 407–408, 1981.
- Hirota, R., The Direct Method in Soliton Theory,
Cambridge University Press, Cambridge, 2004.
- Hirota, R. and Satsuma, J., Nonlinear evolution
equations generated from the Backlund transformation for the
Boussinesq equation, Progr. Theor. Phys., Vol. 57,
pp. 797–807, 1977.
- Hocking, L. M., An example of boundary layer
formation, AIAA J., Vol. 1, pp. 1222–1223,
1963.
- Hoenselaers, C., Solutions of the hyperbolic
sine–Gordon equations, Int. J. Theor. Phys.,
Vol. 46, 1096–1099, 2007.
- Hoffman, A. L., A single fluid model for shock
formation in MHD shock tubes, J. Plasma Phys.,
Vol. 1, pp. 193–207, 1967.
- Holodniok, M., Kubicek M., and Hlavacek V., Computation
of the flow between two rotating coaxial disk: multiplicity of
steady-state solutions, J. Fluid Mech., Vol. 108,
pp. 227–240, 1981.
- Homann, F., Der Einfluss grosser Zahigkeit bei der
Stromung um den Zylinder und um die Kugel, Z. Angew. Math.
Mech. (ZAMM), Vol. 16, pp. 153–164,
1936.
- Hopf, E., Generalized solutions of nonlinear equations
of first order, J. Math. Mech., Vol. 14,
pp. 951–973, 1965.
- Hopf, E., The partial differential equation
ut + uuxx = auxx,
Comm. Pure and Appl. Math.,
Vol. 3, pp. 201–230, 1950.
- Howarth, L., On calculation of the steady flow in the
boundary layer near the surface of a cylinder in a stream, Rep.
ARC, p. 1632, 1934.
- Howarth, L., The boundary layer in three-dimensional
flow. Part II: The flow near a stagnation point, Philos.
Mag., Vol. 42, No. 7, pp. 127–140, 1951.
- Hui, W. H., Exact solutions of the unsteady
two-dimensional Navier–Stokes equations, Z. Angew. Math.
Phys., Vol. 38, pp. 689–702, 1987.
- Hunter, J. K. and Saxton, R., Dynamics of director
fields, SIAM J. Appl. Math., Vol. 51, No. 6,
pp. 1498–1521, 1991.
- Hunter, J. K. and Zheng, Y., On a completely integrable
nonlinear hyperbolic variational equation, Physica D,
Vol. 79, No. 2–4, pp. 361–386, 1994.
- Hunter, J. K. and Zheng, Y., On a nonlinear hyperbolic
variational equation. I. Global existence of weak solutions,
Arch. Rational Mech. Anal., Vol. 129, No. 4,
pp. 305–353, 1995.
- Hunter, J. K. and Zheng, Y., On a nonlinear hyperbolic
variational equation. II. The zero-viscosity and dispersion
limits, Arch. Rational Mech. Anal., Vol. 129,
No. 4, pp. 355–383, 1995.
- Hydon, P. E., Symmetry Methods for Differential
Equations: A Beginner's Guide, Cambridge Univ. Press,
Cambridge, 2000.
- Ibragimov, N. H., Classification of invariant solutions
of equations of two-dimensional gas motion. Zh. Prikl. Mekh.
Tekh. Fiz., Vol. 4, p. 19, 1966.
- Ibragimov, N. H., Group Properties of Some
Differential Equations [in Russian], Nauka (Siberian Branch),
Novosibirsk, 1967.
- Ibragimov, N. H., Transformation Groups Applied in
Mathematical Physics, D. Reidel Publ., Dordrecht, 1985.
- Ibragimov, N. H., Elementary Lie Group Analysis and
Ordinary Differential Equations, John Wiley, Chichester, 1999.
- Ibragimov, N. H. (Ed.), CRC Handbook of Lie
Group Analysis of Differential Equations, Vol. 1, Symmetries,
Exact Solutions and Conservation Laws, CRC Press, Boca Raton,
1994.
- Ibragimov, N. H. (Ed.), CRC Handbook of Lie
Group Analysis of Differential Equations, Vol. 2,
Applications in Engineering and Physical Sciences, CRC Press,
Boca Raton, 1995.
- Ignatovich, N. V., Invariant-irreducible, partially
invariant solutions of steady-state boundary layer equations
[in Russian], Mat. Zametki, Vol. 53, No. 1,
pp. 140–143, 1993.
- Il'ushin, A. A., Continuous Mechanics [in
Russian], Moscow Univ., Moscow, 1978.
- Infeld, E. and Rowlands, G., Nonlinear Waves,
Solitons and Chaos, Cambridge University Press, Cambridge,
2000.
- Irmay, S. and Zuzovsky, M., Exact solutions of the
Navier–Stokes equations in two-way flows, Isr. J.
Technol., Vol. 8, pp. 307–315, 1970.
- Ishii, H., Representation of solutions of
Hamilton–Jacobi equations, Nonlinear Anal. Theory, Meth.
and Appl., Vol. 12, No. 2, pp. 121–146,
1988.
- Ito, M., An extension of nonlinear evolution equations
of the KdV (mKdV) type of higher orders, J. Phys. Soc.
Japan, Vol. 49, pp. 771–778, 1980.
- Its, A. R. and Novokshenov, V. Yu., The
Isomonodromic Deformation Method in the Theory of Painleve
Equations, Springer-Verlag, Berlin, 1986.
- Ivanov, R., On the integrability of a class of
nonlinear dispersive wave equations, J. Nonlin. Math.
Phys., Vol. 12, No. 4, pp. 462–468, 2005.
- Ivanov, R., Water waves and integrability, Phil.
Trans. Roy. Soc. A, Vol. 365 (1858),
pp. 2267–2280, 2007.
- Ivanova, N. M., Exact solutions of
diffusion-convection equations, Dynamics of PDEs,
Vol. 5, No. 2, pp. 139–171, 2008.
- Ivanova, N. M. and Sophocleous, C., On the group
classification of variable coefficient nonlinear
diffusion–convection equations, J. Comp. and Appl.
Math., Vol. 197, pp. 322–344, 2006.
- Ivlev, D. D., A class of solutions for general
equations of ideal plasticity, Izvestiya AN S.S.S.R., Otdelenie
Tekhnich. Nauk [in Russian], Vol. 11, p. 107, 1958.
- Ivlev, D. D., Theory of Ideal Plasticity [in
Russian], Nauka, Moscow, 1966.
- Jacobs, D., McKinney, B., and Shearer, M., Travelling
wave solutions of the modified Korteweg–de
Vries–Burgers equation, J. Dif. Equations,
Vol. 116, pp. 448–467, 1995.
- Janke, E., Emde, F., and Losch, F., Tafeln Hoherer
Funktionen, Teubner Verlogsgesellschaft, Stuttgart, 1960.
- Jarai, A., Regularity Properties of Functional
Equations in Several Variables, Springer-Verlag, New York,
2005.
- Jeffrey, A., Quasilinear Hyperbolic Systems and
Shock Waves, Pitman, London, 1976.
- Jeffrey, A. and Xu, S., Exact solutions to the
Korteweg–de Vries–Burgers equation, Wave
Motion, Vol. 11, pp. 559–564, 1989.
- Jeffery, G. B., The two-dimensional steady motion of a
viscous fluid, Phil. Mag. Ser. 6, Vol. 9,
pp. 455–465, 1915.
- Jimbo, M., Kruskal, M. D., and Miwa, T., Painleve
test for the self-dual Yang–Mills equation, Phys.
Lett., Ser. A, Vol. 92, No. 2,
pp. 59–60, 1982.
- John, F., Partial Differential Equations,
Springer-Verlag, New York, 1982.
- Johnson, R. S., On the inverse scattering transform,
the cylindrical Korteweg–de Vries equation and similarity
solutions, Phys. Lett., Ser. A, Vol. 72,
No. 2, p. 197, 1979.
- Johnson, R. S., Camassa–Holm, Korteweg–de
Vries and related models for water waves, J. Fluid
Mech., Vol. 455, pp. 63–82, 2002.
- Johnson, R. S., The classical problem of water waves: a
reservoir of integrable and nearly-integrable equations,
J. Nonlinear Math. Phys., Vol. 10
(Suppl. 1), pp. 72–92, 2003.
- Kadomtsev, B. B. and Petviashvili, V. I., On the
stability of solitary waves in a weak dispersion medium [in
Russian], Doklady AN USSR, Vol. 192, No. 4,
pp. 753–756, 1970.
- Kaliappan, P., An exact solution for travelling waves
of
ut=Duxx+u−uk,
Physica D, Vol. 11,
pp. 368–374, 1984.
- Kambe, T., A class of exact solutions of
two-dimensional viscous flow, J. Phys. Soc. Jpn.,
Vol. 52, pp. 834–841, 1983.
- Kamke, E., Differentialgleichungen:
Losungsmethoden und Losungen, II, Partielle
Differentialgleichungen Erster Ordnung fur eine gesuchte
Funktion, Akad. Verlagsgesellschaft Geest Portig, Leipzig,
1965.
- Kamke, E., Differentialgleichungen:
Losungsmethoden und Losungen, I, Gewohnliche
Differentialgleichungen, B. G. Teubner, Leipzig, 1977.
- Kaptsov, O. V., Steady-state vortex structures in ideal
fluid, Zhur. eksperim. i teor. fiziki, Vol. 98,
No. 2, pp. 532–541, 1990.
- Kaptsov, O. V., Invariant sets of evolution equations,
Nonlin. Anal., Vol. 19, pp. 753–761, 1992.
- Kaptsov, O. V., Determining equations and differential
constraints, Nonlinear Math. Phys., Vol. 2,
No. 3-4, pp. 283–291, 1995.
- Kaptsov, O. V., Construction of exact solutions of
systems of diffusion equations, Mat. Model., Vol. 7,
pp. 107–115, 1995.
- Kaptsov, O. V., Linear determining equations for
differential constraints, Sbornik: Mathematics,
Vol. 189, pp. 1839–1854, 1998.
- Kaptsov, O. V., Construction of exact solutions to the
Boussinesq equation [in Russian], Zhurnal Prikladnoi
Mekhaniki i Tekhnicheskoi Fiziki, Vol. 39, No. 3,
pp. 74–78, 1998.
- Kaptsov, O. V., Integration Methods for Partial
Differential Equations [in Russian], Fizmatlit, Moscow, 2009.
- Kaptsov, O. V. and Shan'ko, Yu. V., Multiparameter
solutions of the Tzitzeica equation [in Russian], Diff.
Uravneniya, Vol. 35, No. 12,
pp. 1660–1668, 1999.
- Kaptsov, O. V. and Verevkin, I. V., Differential
constraints and exact solutions of nonlinear diffusion equations,
J. Phys. A: Math. Gen., Vol. 36,
1401–1414, 2003.
- Kara, A. N. and Mahomed, F. M., A basis of conservation
laws for partial differential equations, Nonlinear Math.
Phys., Vol. 9, pp. 60–72, 2002.
- von Karman, T., Encyklopedie der mathematischen
Wissenschaften, Vol. 4, p. 349, 1910.
- von Karman, T., Uber laminare und turbulente
Reibung, Z. Angew. Math. Mech. (ZAMM),
Vol. 1, pp. 233–252, 1921.
- von Karman, T. and Howarth, L., On the
statistical theory of isotropic turbulence, Proc. Roy.
Soc., Vol. A164, pp. 192–215, 1938.
- Katkov, V. L., Group invariant solutions for equations
of breezes and monsoons, Meteorologia i hidrologia,
Vol. 10, p. 11, 1964.
- Katkov, V. L., Exact solutions of certain convection
problems, Prikladn. Matematika i Mekhanika (PMM), 32,
No. 3, p. 489, 1968.
- Kaup, D., A higher-order water wave equation and the
method for solving it, Prog. Theor. Phys., Vol. 54,
pp. 396–408, 1975.
- Kawahara, T., Oscillatory solitary waves in dispersive
media, J. Phys. Soc. Japan, Vol. 33, No. 1,
pp. 260–264, 1972.
- Kawahara, T. and Tanaka, M., Interactions of traveling
fronts: an exact solution of a nonlinear diffusion equations,
Moscow Univ. Math. Bull., Vol. 33, p. 311, 1983.
- Keller, H. B. and Szeto, R. K. H.,
Calculation of flows between rotating disks. In Computing
Methods in Applied Sciences and Engineering (Eds.
R. Glowinski and J. L. Lions), North Holland, Amsterdam,
pp. 51–61, 1980.
- Kelly, R. E., The flow of a viscous fluid past a
wall of infinite extent with time-dependent suction, Quart.
J. Mech. Appl. Math., Vol. 18,
pp. 287–298, 1965.
- Kersner, R., On the behaviour of temperature fronts in
media with non-linear heat conductivity under absorption, Acta
Math. Academy of Sciences, Hung., Vol. 32,
pp. 35–41, 1978.
- Kersner, R., Some properties of generalized solutions
of quasilinear degenerate parabolic equations, Acta Math.
Academy of Sciences, Hung., Vol. 32, No. 3–4,
pp. 301–330, 1978.
- Kevorkian, J., and Cole, J. D., Perturbation Methods
in Applied Mathematics, Springer-Verlag, New York, 1981.
- Khabirov, S. V., Lie pseudogroups of transformations on
the plane and their differential invariants [in Russian], In:
Modelling in Mechanics, SO AN USSR, Novosibirsk,
Vol. 4 (21), No. 6, pp. 151–160,
1990.
- Khabirov, S. V., Nonisentropic one-dimensional gas
motions obtained with the help of the contact group of the
nonhomogeneous Monge–Ampere equation [in Russian],
Mat. Sbornik, Vol. 181, No. 12,
pp. 1607–1622, 1990.
- Khabirov, S. V., Application of contact transformations
of the nonhomogeneous Monge–Ampere equation in
one-dimensional gas dynamics [in Russian], Dokl. Acad.
Nauk USSR, Vol. 310, No. 2, p. 333–336,
1990.
- King, J. R., Mathematical analysis of a model for
substitutional diffusion, Proc. Roy. Soc. London,
Ser. A, Vol. 430, pp. 377–404,
1990.
- King, J. R., Some non-local transformations between
nonlinear diffusion equations, J. Phys. A: Math. Gen.,
Vol. 23, pp. 5441–5464, 1990.
- King, J. R., Exact similarity solutions to some
nonlinear diffusion equations, J. Phys. A: Math. Gen.,
Vol. 23, pp. 3681–3697, 1990.
- King, J. R., Exact results for the nonlinear diffusion
equations
ut = ( u−4/3ux)x
and
ut = ( u−2/3ux)x,
J. Phys. A: Math.
Gen., Vol. 24, pp. 5721–5745, 1991.
- King, J. R., Local transformations between some
nonlinear diffusion equations, J. Aust. Math. Soc. B,
Vol. 33, pp. 321–349, 1992.
- King, J. R., Some non-self-similar solutions to a
nonlinear diffusion equations, J. Phys. A: Math. Gen.,
Vol. 25, pp. 4861–4868, 1992.
- King, J. R., Exact multidimensional solutions to some
nonlinear diffusion equations, Quart. J. Mech. Appl.
Math., Vol. 46, No. 3, pp. 419–436, 1993.
- Kiryakov, P. P., Senashov, S. I., and Yakhno,
A. N., Application of Symmetries and Conservation Laws
to the Solution of Differential Equations, Izd-vo SO RAN,
Novosibirsk, 2001.
- Kivshar, Y., Compactons in discrete lattices,
Nonlinear Coherent. Struct. Phys. Biol., Vol. 329,
pp. 255–258, 1994.
- Klimov, D. M., Baydulov, V. G., and Gorodtsov, V. A.,
The Kovalevskaya–Painleve test of the shallow water
equations with the use of the Maple package, Doklady
Mathematics, Vol. 63, No. 1, pp. 118–122,
2001.
- Klimov, D. M. and Zhuravlev, V. Ph., Group-Theoretic
Methods in Mechanics and Applied Mathematics, Taylor Francis,
London, 2002.
- Kochin, N. E., Kibel', I. A., and Roze, N. V.,
Theoretical Fluid Mechanics [in Russian], Fizmatgiz,
Moscow, 1963. English translation: Interscience Publishers, New
York, 1964.
- Kodama, Y., A method for solving the dispersionless KP
hierarchy and its exact solutions, Phys. Lett. A,
Vol. 129, No. 4, pp. 223–226, 1988.
- Kodama, Y. and Gibbons, J., A method for solving the
dispersionless KP hierarchy and its exact solutions, II, Phys.
Lett. A, Vol. 135, No. 3,
pp. 167–170, 1989.
- Kolmogorov, A. N., Petrovskii, I. G., and Piskunov,
I. S., Investigation of the diffusion equation with
increasing substance amount and application to a biological
problem [in Russian], Byulleten' MGU, Sektsiya A,
Vol. 1, No. 6, pp. 1–25, 1937.
- Konopelchenko, B. G., Nonlinear Integrable
Equations, Springer, New York, 1987.
- Korepin, V. E., Bogoliubov, N. N., and Izergin A. G.,
Quantum Inverse Scattering Method and Correlation
Functions, Cambridge Univ. Press, Cambridge, 1993.
- Korn, G. A. and Korn, T. M., Mathematical Handbook
for Scientists and Engineers, McGraw-Hill Book Comp., New
York, 1961.
- Korteweg, D. J. and Vries, G., On the change of
form of long waves advancing in a rectangular canal, and on a new
type of long stationary waves, Phil. Mag., Vol. 39,
pp. 422–443, 1895.
- Kosovtsov, Yu. N., The decomposition method and
Maple procedure for finding first integrals of nonlinear PDEs of
any order with any number of independent variables, 2007,
arXiv: 0704.0072v1 [math-ph], 2007.
- Kosovtsov, Yu. N., The general solutions of some
nonlinear second-order PDEs. I. Two independent variables,
constant parameters [online], arXiv.org: 0801.4081v1, 2008.
- Kosovtsov, Yu. N., Plebanski first heavenly
equation [online], EqArchive, 2008
(http://eqworld. ipmnet.ru/eqarchive/view.php?id=290).
- Kosovtsov, Yu. N., Plebanski second heavenly
equation [online], EqArchive, 2008
(http://eqworld. ipmnet.ru/eqarchive/view.php?id=334).
- Koterov, V. N., Shmyglevskii, Yu. D., and Shcheprov, A.
V., A survey of analytical studies of steady viscous
incompressible flows (2000–2004), Comp. Math. Math.
Phys., Vol. 45, No. 5, pp. 867–888, 2005.
- Kovasznay, L. I. J., Laminar flow behind a
two-dimensional grid, Proc. Cambridge Philos. Soc.,
Vol. 44, pp. 58–62, 1948.
- Kozlov, V. F., Some exact solutions for the nonlinear
equation of advection of density in Ocean, Izvestiya Akad. Nauk
USSR, Fizika Atmosfery i Okeana, Vol. 2, p. 1205,
1966.
- Kozlov, V. V., Symmetries, Topology and
Resonances in Hamiltonian Mechanics [in Russian],
Izd-vo Udmurtskogo Gos. Universiteta, Izhevsk, 1995.
- Kreiss, H. O. and Parter, S. V., On the
swirling flow between rotating coaxial disks: existence and
nonuniqueness, Commun. Pure Appl. Math., Vol. 36,
pp. 55–84, 1983.
- Kreyszig, E., Maple Computer Guide for Advanced
Engineering Mathematics, Wiley, New York, 8th ed., 2000.
- Krichever, I. M., Analogue of D'Alembert's formula for
main field equations and the sine-Gordon equation, Doklady AN
USSR, Vol. 253, No. 2, pp. 288–292, 1980.
- Krichever, I. M. and Novikov, S. P., Holomorphic
bundles over Riemannian surfaces and the
Kadomtsev–Petviashvili (KP) equation, Funkts. Analiz i
ego Prilozh., Vol. 12, No. 4, pp. 41–52,
1978.
- Krichever, I. M. and Novikov, S. P., Holomorphic
bundles over algebraic curves and nonlinear equations, Russ.
Math. Surv., Vol. 35, pp. 53–79, 1980.
- Kruglikov, B., Symmetry approaches for reductions of
PDEs, differential constraints and Lagrange–Charpit method,
Acta Appl. Math., Vol. 101,
pp. 145–161, 2008.
- Kruskal, M. D., Miura, R. M., Gardner,
C. S., and Zabusky, N. J., Korteweg–de Vries
equation and generalizations. V. Uniqueness and nonexistence of
polynomial conservation laws, J. Math. Phys.,
Vol. 11, pp. 952–960, 1970.
- Kruzhkov, S. N., Generalized solutions of nonlinear
first order equations with several variables [in Russian],
Mat. Sbornik, Vol. 70, pp. 394–415, 1966.
- Kruzhkov, S. N., Generalized solutions of
Hamilton–Jacobi equations of the eikonal type
[in Russian], Mat. Sbornik, Vol. 27,
pp. 406–446, 1975.
- Kucharczyk, P., Teoria Grup Liego w Zaslosowaniu do
Rowman Rozniczkowych Czastkowych, IPPT Polish Academy of
Sciences, Warsaw, 1967.
- Kuczma, M., An Introduction to the Theory of
Functional Equations and Inequalities, Polish Scientific
Publishers, Warsaw, 1985.
- Kudryashov, N. A., Exact soliton solutions of the
generalized evolution equation of wave dynamics, J. Appl.
Math. and Mech., Vol. 52, No. 3,
pp. 360–365, 1988.
- Kudryashov, N. A., Exact solutions of an Nth-order
equation with a Burgers–Korteweg–de Vries type
nonlinearity [in Russian], Mat. Modelirovanie,
Vol. 1, No. 6, pp. 57–65, 1989.
- Kudryashov, N. A., Exact solutions of nonlinear
wave equations arising in mechanics, Appl. Math. and
Mech. (PMM), Vol. 54, No. 3,
pp. 450–453, 1990.
- Kudryashov, N. A., Exact solutions of the
generalized Kuramoto–Sivashinsky equation, Phys.
Lett. A, Vol. 147, No. 5–6,
pp. 287–291, 1990.
- Kudryashov, N. A., On types of nonlinear
nonintegrable solutions with exact solutions, Phys.
Lett. A, Vol. 155, No. 4–5,
pp. 269–275, 1991.
- Kudryashov, N. A., On exact solutions of families of
Fisher equations, Theor. Math. Phys., Vol. 94,
No. 2, pp. 211–218, 1993.
- Kudryashov, N. A., Symmetry of algebraic and
differential equations. Soros Educational Journal [in
Russian], No. 9, pp. 104–110, 1998.
- Kudryashov, N. A., Nonlinear differential equations
with exact solutions expressed via the Weierstrass function,
Zeitschrift fur Naturforschung, Vol. 59,
pp. 443–454, 2004.
- Kudryashov, N. A., Analytical Theory of Nonlinear
Differential Equations [in Russian], Institut kompjuternyh
issledovanii, Moscow–Izhevsk, 2004.
- Kudryashov, N. A., Simplest equation method to look for
exact solutions of nonlinear differential equations, Chaos,
Solitons and Fractals, Vol. 24, No. 5,
pp. 1217–1231, 2005.
- Kudryashov, N. A., On "new travelling wave solutions"
of the KdV and the KdV–Burgers equations, Commun.
Nonlinear Sci. and Numer. Simulation, Vol. 14,
No. 5, pp. 1891–1900, 2009.
- Kudryashov, N. A., Seven common errors in finding exact
solutions of nonlinear differential equations, Commun.
Nonlinear Sci. and Numer. Simulation, Vol. 14,
No. 9–10, pp. 3507–3529, 2009.
- Kudryashov, N. A., Comment on: "A novel approach for
solving the Fisher equation using Exp-function method" [Phys.
Lett. A, Vol. 372 pp. 3836–3840, 2008], Physics
Letters A, Vol. 373, No. 12–13,
pp. 1196–1197, 2009.
- Kudryashov, N. A., A note on new exact solutions for
the Kawahara equation using Exp-function method, J. Comp.
Appl. Math., Vol. 234, No. 12,
pp. 3511–3512, 2010.
- Kudryashov, N. A., A note on the G'/G-expansion method,
Appl. Math. Comp., Vol. 217, No. 4,
pp. 1755–1758, 2010.
- Kudryashov, N. A., A new note on exact complex
travelling wave solutions for (2+1)-dimensional B-type
Kadomtsev–Petviashvili equation, Appl. Math. Comp.,
Vol. 217, No. 5, pp. 2282–2284,
2010.
- Kudryashov, N. A., Methods of Nonlinear Mathematical
Physics [in Russian], Izd. Dom Intellekt, Dolgoprudnyi,
2010.
- Kudryashov, N. A., On completely integrability systems
of differential equations, Commun. Nonlinear Sci. and Numer.
Simulation, Vol. 16, No. 6,
pp. 2414–2420, 2011.
- Kudryashov, N. A., Redundant exact solutions of
nonlinear differential equations, Commun. Nonlinear Sci. and
Numer. Simulations, Vol. 16, No. 9,
pp. 3451–3456, 2011.
- Kudryashov, N. A. and Loguinova, N. B., Extended
simplest equation method for nonlinear differential equations,
Applied Mathematics and Computation, Vol. 205,
No. 1, pp. 396-402, 2008.
- Kudryashov, N. A. and Loguinova, N. B., Be careful
with the Exp-function method, Commun. Nonlinear Sci. and Numer.
Simulation, Vol. 14, No. 5,
pp. 1881–1890, 2009.
- Kudryashov, N. A., Ryabov, P. N., and Sinelshchikov, D.
I., A note on "New kink-shaped solutions and periodic wave
solutions for the (2+1)-dimensional sine–Gordon
equation," Appl. Math. Comp., Vol. 216, No. 8,
pp. 2479–2481, 2010.
- Kudryashov, N. A., Ryabov, P. N., and Sinelshchikov, D.
I., Comment on: ``Application of the (G'/G) method for the
complex KdV equation'' [Zhang, H., Commun. Nonlinear Sci. Numer.
Simulation, Vol. 15, pp. 1700–1704, 2010],
Commun. Nonlinear Sci. Numer. Simulation, Vol. 16,
No. 1, pp. 596–598, 2011.
- Kudryashov, N. A. and Sinelshchikov, D. I., A note on
"Abundant new exact solutions for the (3+1)-dimensional
Jimbo–Miwa equation," J. Math. Anal. Appl.,
Vol. 371, No. 1, pp. 393–396, 2010.
- Kudryashov, N. A. and Soukharev, M. B., Exact solutions
of a non-linear fifth-order equation for describing waves on
water, Appl. Math. and Mech. (PMM),
Vol. 65, No. 5, pp. 855–865, 2001.
- Kudryashov, N. A. and Soukharev, M. B., Popular ansatz
methods and solitary waves solutions of the
Kuramoto–Sivashinsky equation, Regular and Chaotic
Dynamics, Vol. 14, No. 3, pp. 407–419,
2009.
- Kudryashov, N. A. and Soukharev, M. B., Comment on:
"Multi soliton solution, rational solution of the
Boussinesq–Burgers equations," Commun. Nonlinear Sci.
and Numer. Simulation, Vol. 15, No. 7,
pp. 1765–1767, 2010.
- Kulikovskii, A. G., Properties of shock adiabats
in the neighbourhood of Jouguet points, Fluid Dynamics,
Vol. 14, No. 2, pp. 317-320, 1979.
- Kulikovskii, A. G. and Sveshnikova, E. I.,
Nonlinear Waves in Elastic Media, CRC Press, Boca Raton,
1995.
- Kulikovskii, A. G., Pogorelov, N. V., and Semenov, A.
Yu., Mathematical Aspects of Numerical Solution of
Hyperbolic Systems, Chapman Hall/CRC Press, Boca Raton, 2001.
- Kumar, S. N. and Panigrahi, P. K., Compacton-like
solutions for KdV and other nonlinear equations, REVTEX electr.
manusct., 23 April 1999.
- Kupershmidt, B. A., A super KdV equation: An
integrable system, Phys. Letters, Vol. 102 A,
pp. 212–215, 1984.
- Kuramoto, Y. and Tsuzuki, T., On the formation of
dissipative structures in reaction-diffusion systems, Progr.
Theor. Phys., Vol. 54, No. 3,
pp. 687–699, 1975.
- Kuramoto, Y. and Tsuzuki, T., Persistent propagation of
concentration waves in dissipative media from thermal equilibrium,
Progr. Theor. Phys., Vol. 55, No. 2,
pp. 356–369, 1976.
- Kuranishi, M., Lectures on Involutive Systems on
Partial Differential Equations, Publ. Soc. Math., Sao Paulo,
1967.
- Kurenskii, M. G., Differential Equations. Book Two:
Partial Differential Equations [in Russian], Izd-vo
Artilleriiskoi Akad. RKKA, Leningrad, 1934.
- Kuznetsov, N. N., Some mathematical problems of
chromatography, Vychisl. Metody i Progr. [in Russian],
Moscow State Univ., Vol. 6, pp. 242–258, 1967.
- Lagerstrom, P. A., Laminar Flow Theory,
Princeton Univ. Press, Princeton, NJ, 1996 [Originally published
in Theory of Laminar Flows (Ed. F. K. Moore),
Princeton Univ. Press, Princeton, NJ, 1964].
- Lagerstrom, P. A. and Cole, J. D., Examples
illustrating expansion procedures for the Navier–Stokes
equations, J. Rat. Mech. Anal., Vol. 4,
pp. 817–882, 1955.
- Lagno, V. I. and Stognii, V. I., Symmetric
reduction of a nonlinear Kolmogorov-type equation and group
classification of one of its generalizations, In: Some Topical
Problems of Modern Mathematics and Mathematical Education (Ed.
V. F. Zaitsev) [in Russian], Saint-Petersburg,
pp. 42–44, 2010.
- Lai, C.-Y., Rajagopal, K. R., and Szeri, A. Z.,
Asymmetric flow between parallel rotating disks, J. Fluid
Mech., Vol. 446, pp. 203–225, 1984.
- Lake, L. W., Enhanced Oil Recovery, Prentice
Hall, Eaglewood Cliffs, N.J., 1989.
- Lamb, G. L., Analytical descriptions of ultrashort
optical pulse propagation in a resonant medium, Rev. Mod.
Phys., Vol. 43, pp. 99–124, 1971.
- Lamb, G. L., Backlund transformations for certain
nonlinear evolution equations, J. Math. Phys.,
Vol. 15, pp. 2157–2165, 1974.
- Lamb, G. L., Elements of Soliton Theory,
Wiley, New York, 1980.
- Lamb, H., Hydrodynamics, Dover Publ., New York,
1945.
- Lambossy, P., Oscillations forcees dun liquide
incompressible et visqueux dans un tube rigide et horizontal.
Calcul de la force de frottement, Helv. Phys. Acta,
Vol. 25, pp. 371–386, 1952.
- Lan, H. and Wang, K., Exact solutions for some
nonlinear equations, Phys. Lett., Vol. 139,
No. 7–8, pp. 369–372, 1989.
- Lance, G. N. and Rogers, M. H., The axially
symmetric flow of a viscous fluid between two infinite rotating
disks, Proc. Roy. Soc. London, Ser. A, Vol. 266,
pp. 109–121, 1962.
- Landau, L. D., Dokl. Acad. Nauk USSR,
Vol. 43, p. 286, 1944.
- Landau, L. D. and Lifshitz, E. M., Fluid
Mechanics, 3rd ed. [in Russian], Nauka, Moscow, 1986; 2nd
English ed., Pergamon Press, Oxford, 1987.
- Lapidus, L. and Pinder, G. F., Numerical
Solution of Partial Differential Equations in Science and
Engineering, Wiley-Interscience, New York, 1999.
- Lapko, B. V., Invariant solutions of three-dimensional
nonstationary gas motion, Zh. Prikl. Mekh. Tekh. Fiz.,
No. 1, p. 45, 1978.
- Larsson, S. and Thomee, V., Partial Differential
Equations with Numerical Methods, Springer, New York, 2008.
- Lavrent'ev, M. A. and Shabat, B. V.,
Methods of the Theory of Functions of a Complex Variable
[in Russian], Nauka, Moscow, 1973.
- Lavrent'eva, O. M., Flow of a viscous fluid in a
layer on a rotating fluid, J. Appl. Mech. Tech. Phys.,
No. 5, pp. 41–48, 1989.
- Lawrence, C. J., Kuang, Y., and Weinbaum, S., The
inertial draining of a thin fluid layer between parallel plates
with a constant normal force. Part 2. Boundary layer and exact
numerical solutions, J. Fluid Mech., Vol. 156,
pp. 479–494, 1985.
- Lax, P. D., Weak solutions of nonlinear hyperbolic
equations and their numerical computation, Communs. Pure and
Appl. Math., Vol. 7, pp. 159–193, 1954.
- Lax, P. D., Integrals of nonlinear equations of
evolution and solitary waves, Comm. Pure Appl. Math.,
Vol. 21, No. 5, pp. 467–490, 1968.
- Lax, P. D., Periodic solutions of the KdV equation,
Comm. Pure Appl. Math., Vol. 28,
pp. 144–188, 1975.
- Lax, P. D., Hyperbolic Systems of Conservation Laws
and the Mathematical Theory of Shock Waves [reprint from the
classical paper of 1957], Society of Industrial Applied
Mathematics, Philadelphia, 1997.
- Lee, H. J. and Schiesser, W. E., Ordinary
and Partial Differential Equation Routines in C, C++, Fortran,
Java, Maple, and MATLAB, Chapman Hall/CRC Press, Boca Raton,
2004.
- Lei, H. C., Group splitting and linearization mapping
of a solvable nonlinear wave equation, Int. J. Non-Linear
Mechanics, Vol. 33, pp. 461–471, 1998.
- Lei, H. C., Study of a hodograph transformation and its
applications, J. Chinese Inst. Engineers,
Vol. 25, No. 6, pp. 77–714, 2002.
- Lei, H. C. and Chang, H. W., A list of hodograph
transformations and exactly linearizable systems, Int. J.
Non-Linear Mechanics, Vol. 31, pp. 117–127,
1996.
- Lenells, J., Traveling wave solutions of the
Camassa–Holm equation, J. Dif. Equations,
Vol. 217, No. 2, pp. 393–430, 2005.
- Lenells, J., Traveling wave solutions of the
Degasperis–Procesi equation, J. Math. Anal.
Appl., Vol. 306, No. 1, pp. 72–82,
2005.
- Lenells, J., The Hunter–Saxton equation describes
the geodesic flow on a sphere, J. Geom. Phys.,
Vol. 57, No. 10, pp. 2049–2064, 2007.
- Lenskii, E. V., On the group properties of the
equation of motion of a nonlinear viscoplastic medium, Vestnik
MGU, Ser. 1 (Math. i Meh.),
pp. 116–125, 1966.
- Leo, M., Leo, R. A., Soliani, G., Solombrino, L., and
Martina, L., Lie–Backlund symmetries for the Harry Dym
equation, Phys. Rev. D., Vol. 27, No. 6,
pp. 1406–1408, 1983.
- LeVeque, R. J., Numerical Methods for
Conservation Laws, Birkhauser, Boston, 1992.
- LeVeque, R. J., Finite Volume Methods for Hyperbolic
Problems, Cambridge University Press, Cambridge, 2002.
- LeVeque, R. J., Finite Difference Methods for
Ordinary and Partial Differential Equations: Steady-State and
Time-Dependent Problems, SIAM, Philadelphia, 2007.
- Levi, D., Petrera, M., and Scimiterna, C., The lattice
Schwarzian KdV equation and its symmetries, J. Phys. A:
Math. Theor., Vol. 40, pp. 12753–12761, 2007.
- Levi, D. and Winternitz, P., Nonclassical symmetry
reduction: example of the Boussinesq equation, J. Phys.
A, Vol. 22, pp. 2915–2924, 1989.
- Levitan, B. M., Sturm–Liouville Inverse
Problems [in Russian], Nauka, Moscow, 1984.
- Lewin, J., Differential Games, Springer-Verlag,
Berlin, 1994.
- Libby, P. A., Heat and mass transfer at a general
three-dimensional stagnation point with large rates of injection,
AIAA J., Vol. 5, pp. 507–517, 1967.
- Libby, P. A., Wall shear at a three-dimensional
stagnation point with a moving wall, AIAA J., Vol. 14,
pp. 1273–1279, 1974.
- Libby, P. A., Laminar flow at a three-dimensional
stagnation point with large rates of injection, AIAA J.,
Vol. 12, pp. 408–409, 1976.
- Liebbrandt, G., New exact solutions of the classical
sine-Gordon equation in 2+1 and 3+1 dimensions, Phys. Rev.
Lett., Vol. 41, pp. 435–438, 1978.
- Lighthill, J., Waves in Fluids, Cambridge
Univer. Press, Cambridge, 1978.
- Lin, C. C., Note on a class of exact solutions in
magneto-hydrodynamics, Arch. Rational Mech. Anal.,
Vol. 1, pp. 391–395, 1958.
- Lin, C. C., Reissner, E., and Tsien, H. S., On
two-dimensional non-steady motion of a slender body in a
compressible fluid, J. Math. Phys., Vol. 27,
No. 3, p. 220, 1948.
- Lin, S. P. and Tobak, M., Reversed flow above a
plate with suction, AIAA J., Vol. 24,
pp. 334–335, 1986.
- Lindsay, R. B., J. L. R. d'Alembert,
Investigation of the curve formed by a vibrating string, In:
Acoustics: Historical and Philosophical Development,
Dowden, Hutchinson Ross, Stroudsburgh, PA, 1973.
- Lineikin, P. S., Hydrodynamical models of
nonhomogeneous ocean, Okeanologia, Vol. 3,
p. 369, 1963.
- Lions, P.-L., Generalized Solutions of
Hamilton–Jacobi Equations, Pitman, Boston, 1982.
- Lions, P.-L. and Souganidis, P. E., Differential
games, optimal control and directional derivatives of viscosity
solutions of Bellman's and Isaacs' solutions, SIAM J. Control
and Optimization, Vol. 23, No. 4, 1985.
- Liouville, J., Sur l'equation aux differences
partielles:
(log λ)uv+αλ=0,
J. Math., Vol. 18, pp. 71–72, 1853.
- Litvinenko, Yu. E., A similarity reduction of the
Grad–Shafranov equation, Phys. Plasmas, Vol. 17,
074502, 2010 (doi:10.1063/1.3456519).
- Liu, T. P., The Riemann problem for general 2x2 system
of conservation laws, Trans. Amer. Math. Soc.,
Vol. 199, pp. 89–112, 1974.
- Lloyd, S. P., The infinitesimal group of the
Navier–Stokes equations, Acta Mech., Vol. 38,
pp. 85–98, 1981.
- Logan, D. J., Nonlinear Partial Differential
Equations, John Wiley Sons Inc., New York, 1994.
- Loitsyanskiy, L. G., Mechanics of Liquids and
Gases, Begell House, New York, 1996.
- Long, R. R., Vortex motion in a viscous fluid,
J. Meteotol., Vol. 15, pp. 108–112,
1958.
- Long, R. R., A vortex in an infinite viscous
fluid, J. Fluid Mech., Vol. 11,
pp. 611–624, 1961.
- Lonngren, K. and Scott, A. (Eds.), Solitons in
Action, Academic Press, New York, 1978.
- Loubet, E., About the explicit characterization of
Hamiltonians of the Camassa–Holm hierarchy,
J. Nonlinear Math. Phys., Vol. 12, No. 1,
pp. 135–143, 2005.
- Ludford, C. S., Generalized Riemann invariants,
Pacif. J. Math., Vol. 5, pp. 441–450, 1955.
- Ludlow, D. K., Clarkson, P. A., and Bassom,
A. P., Nonclassical symmetry reductions of the
two-dimensional incompressible Navier–Stokes equations,
Studies in Applied Mathematics, Vol. 103,
pp. 183–240, 1999.
- Ludlow, D. K., Clarkson, P. A., and Bassom,
A. P., New similarity solutions of the unsteady
incompressible boundary-layer equations, Quart. J. Mech.
and Appl. Math., Vol. 53,
pp. 175–206, 2000.
- Lundmark, H., Formation and dynamics of shock waves in
the Degasperis–Procesi equation, J. Nonlinear
Sci., Vol. 17, No. 3, pp. 169–198, 2007.
- Lundmark, H. and Szmigielski, J., Multi-peakon
solutions of the Degasperis–Procesi equation, Inverse
Problems, Vol. 19, No. 6, pp. 1241–1245,
2003.
- Lykov, A. V., Theory of Heat Conduction
[in Russian], Vysshaya Shkola, Moscow, 1967.
- Lynch, S., Dynamical Systems with Applications using
Maple, Birkhauser, Boston, MA, 2nd ed., 2009.
- Ma, P. K. H. and Hui, W. H.,
Similarity solutions of the two-dimensional unsteady
boundary-layer equations J. Fluid Mech.,
Vol. 216, pp. 537–559, 1990.
- Ma, W.-X., Travelling wave solutions to a seventh order
generalized KdV equation, Phys. Lett. A, Vol. 180,
221–224, 1993.
- Ma, W.-X. and You, Y., Solving the Korteweg–de
Vries equation by its bilinear form: Wronskian solutions,
Trans. Amer. Math. Soc., Vol. 357,
pp. 1753–1778, 2005.
- Macias, A., Cervantes-Cota, J. L., and Lammerzahl, C.
(Eds.), Exact Solutions and Scalar Fields in Gravity,
Springer, 2001.
- Maeder, R. E., Programming in Mathematica,
Addison-Wesley, Reading, MA, 3rd ed., 1996.
- Malfliet, W., Solitary wave solutions of nonlinear wave
equations, Am. J. Phys., Vol. 60, No. 7,
pp. 650–654, 1992.
- Malfliet, W. and Hereman, W., The tanh method: exact
solutions of nonlinear evolution and wave equations, Phys
Scripta, Vol. 54, pp. 563–568, 1996.
- Mamontov, E. V., To the theory of unsteady
transonic flows [in Russian], Doklady AN USSR,
Vol. 185, No. 3, pp. 538–540, 1969.
- Mansfield, E. H., Quart. J. Mech. Appl.
Math., Vol. 8, p. 338, 1955.
- Mansfield, E. L., The nonclassical group analysis
of the heat equation, J. Math. Anal. Appl.,
Vol. 231, pp. 526–542, 1999.
- Marchenko, A. V., Long waves in shallow liquid
under ice cover, Appl. Math. and Mech. (PMM),
Vol. 52, No. 2, pp. 180–183, 1988.
- Marchenko, V. A., Sturm–Liouville
Operators and Applications, Birkhauser, Basel, 1986.
- Marino, K., Ankiewicz, A., and Akhmediev, N., Exact
soliton solutions of the one-dimensional complex
Swift–Hohenberg equation, Physica D, Vol. 176,
pp. 44–66, 2003.
- Markeev, A. P., Theoretical Mechanics
[in Russian], Nauka, Moscow, 1990.
- Martin, M. N., The propagation of a plane shock into a
quiet atmosphere, Canad. J. Math., Vol. 3,
pp. 165–187, 1953.
- Mart\'inez, A. L. and Shabat, A. B., Towards
a theory of differential constraints of a hydrodynamic hierarchy,
J. Nonlin. Math. Phys., Vol. 10,
pp. 229–242, 2003.
- Martinson, L. K., Plane problem of convective heat
transfer in a nonlinear medium, Appl. Math. and Mech.
(PMM), Vol. 44, No. 1, pp. 128–131,
1980.
- Martinson, L. K. and Pavlov, K. B., To the
question of space localization of thermal perturbations in
nonlinear heat conduction theory [in Russian], Zhurn.
Vychisl. Matem. i Matem. Fiziki, Vol. 12, No. 4,
pp. 1048–1054, 1972.
- Matsuno, Y., Exact solutions for the nonlinear
Klein–Gordon and Liouville equations in four-dimensional
Euclidean space, J. Math. Physics, Vol. 28,
No. 10, pp. 2317–2322, 1987.
- Matsuno, Y., The N-soliton solution of the
Degasperis–Procesi equation, Inverse Problems,
Vol. 21, No. 6, pp. 2085–2101, 2005.
- McKean, H. P., The Liouville correspondence between the
Korteweg–de Vries and the Camassa–Holm hierarchies,
Comm. Pure Appl. Math., Vol. 56, No. 7,
998–1015, 2003.
- McLeod, J. B., The existence of axially symmetric
flow above a rotating disk, Proc. Roy. Soc. London, Ser. A,
Vol. 324, pp. 391–414, 1971.
- McLeod, J. B. and Parter, S. V., On the flow
between two counter-rotating infinite plane disks, Arch. Rat.
Mech. Anal., Vol. 42, pp. 385–327, 1974.
- Meade, D. B., May, S. J. M., Cheung, C-K.,
and Keough, G. E., Getting Statrted with Maple,
Wiley, Hoboken, NJ, 3rd ed., 2009.
- Meirmanov, A. M., Pukhnachov, V. V., and Shmarev, S.
I., Evolution Equations and Lagrangian Coordinates,
Walter de Gruyter, Berlin, 1997.
- Meleshko, S. V., Differential constraints and
one-parameter Lie–Backlund groups, Sov. Math.
Dokl., Vol. 28, pp. 37–41, 1983.
- Meleshko, S. V., A particular class of partially
invariant solutions of the Navier–Stokes equations,
Nonlinear Dynamics, Vol. 36. No. 1,
pp. 47–68, 2004.
- Meleshko, S. V., Methods for Constructing Exact
Solutions of Partial Differential Equations, Springer-Verlag,
New York, 2005.
- Meleshko, S. V. and Pukhnachov, V. V., A class of
partially invariant solutions of Navier–Stokes equations,
J. Appl. Mech. Tech. Phys., Vol. 40, No. 2,
pp. 24–33, 1999.
- Melikyan, A. A., Singular characteristics of the first
order PDEs, Doklady Mathematics, Vol. 54, No. 3,
pp. 831–834, 1996.
- Melikyan, A. A., Generalized Characteristics of
First Order PDE's: Applications in Optimal Control and
Differential Games, Birkhauser, Boston, 1998.
- Melor, G. L., Chapple, P. J., and Stokes,
V. K., On the flow between a rotating and a stationary
disk, Fluid Mech., Vol. 31, pp. 95–112,
1968.
- Mel'nikov, V. K., Structure of equations solvable by
the inverse scattering transform for the Schrodinger operator,
Theor. Math. Phys., Vol. 134, No. 1,
pp. 94–106, 2003.
- Menshikh, O. F., On group properties on nonlinear
partial differential equations whose solutions are all
functionally invariant, Vestnik Samarskogo Gos.
Universiteta [in Russian], No. 4 (34), pp. 20–30,
2004.
- Menshikov, V. M., Solutions of two-dimentional
gasdynamics equations of the simple wave type, Zh. Prikl. Mekh.
Tekh. Fiz., Vol. 3, p. 129, 1969.
- Merchant, G. I. and Davis, S. H., Modulated
stagnation-point flow and steady streaming, J. Fluid
Mech., Vol. 198, pp. 543–555, 1989.
- Meshcheryakova, E. Yu., New steady and self-similar
solutions of the Euler equations, J. Appl. Mech. Tech.
Phys., Vol. 44, pp. 455–460, 2003.
- Mikhailov, A. V., On the integrability of the
two-dimensional generalization of Tod's chain
[in Russian], Pis'ma v ZhETF, Vol. 30,
No. 7, pp. 443–448, 1979.
- Mikhailov, A. V., Shabat, A. B., and Sokolov, V. V.,
The symmetry approach to classification of integrable equations,
In: What is Integrability? (Ed.
V. E. Zakharov), pp. 115–184,
Springer-Verlag, 1991.
- Miller, W. (Jr.) and Rubel, L. A., Functional
separation of variables for Laplace equations in two dimensions,
J. Phys. A, Vol. 26,
pp. 1901–1913, 1993.
- Millsaps, K. and Pohlhausen, K., Thermal distributions
in Jeffery–Hamel flows between nonparallel plane walls,
J. Aerosp. Sci., Vol. 20, pp. 187–196,
1953.
- Mironov, A. N., Construction of a exact solution
to one quasilinear partial differential equation with three
independent variables, In: Some Topical Problems of Modern
Mathematics and Mathematical Education (Ed.
V. F. Zaitsev) [in Russian], Saint-Petersburg,
pp. 66–68, 2010.
- Miura, R. M., Korteweg–de Vries equation and
generalizations. I. A remarkable explicit nonlinear
transformation, J. Math. Phys., Vol. 9,
No. 8, pp. 1202–1204, 1968.
- Miura, R. M., In: Nonlinear waves (Eds.
S. Leibovich and A. R. Seebass), Cornell Univ.
Press, Ithaca London, 1974.
- Miura, R. M. (Ed.), Backlund Transformations,
Lecture Notes in Math., Vol. 515, Springer-Verlag,
Berlin, 1976.
- Miura, R. M., Gardner, C. S., and Kruskal,
M. D., Korteweg–de Vries equation and
generalizations. II. Existence of conservation laws and constants
of motion, J. Math. Phys., Vol. 9,
pp. 1204–1209, 1968.
- Miwa, T., Jimbo, M., and Date, E., Solitons.
Differential Equations, Symmetries and Infinite-Dimensional
Algebras, Cambridge Univ. Press, Cambridge, 2000.
- Moffat, H. K., The interaction of skewed vortex
pairs: a model for blow-up of the Navier–Stokes equations,
J. Fluid Mech., Vol. 409, pp. 51–68,
2000.
- Moore, R. L., Exact non-linear forced periodic
solutions of the Navier–Stokes equations, Physica D,
Vol. 52, pp. 179–190, 1991.
- Morton, K. W. and Mayers, D. F., Numerical
Solution of Partial Differential Equations: An Introduction,
Cambridge University Press, Cambridge, 1995.
- Muller, W., Zum Problem der Anlanfstromung einer
Flussigkeit im geraden Rohr mit Kreisring- und Kreisquerschnitt,
Zs. Angew Math. Mech. (ZAMM), Bd. 16,
Ht. 4, S. 227–238, 1936.
- Munier, A., Burgan, J. R., Gutierres, J., Fijalkow, E.,
and Feix M. R., Group transformations and the
nonlinear heat diffusion equation, SIAM J. Appl.
Math., Vol. 40, No. 2, pp. 191–207, 1981.
- Murphy, G. M., Ordinary Differential Equations and
Their Solutions, D. Van Nostrand, New York, 1960.
- Murray, J. D., Mathematical Biology,
Springer-Verlag, Berlin, 1993.
- Musette, M., Painleve analysis for nonlinear partial
differential equations, pp. 1–48, In: The Painleve
Property, One Century Later (Ed. R. Conte), CRM Series
in Math. Phys, Springer-Verlag, Berlin, 1998.
- Musette, M. and Conte, R., Algorithmic method for
deriving Lax pairs from the invariant Painleve analysis of
nonlinear partial differential equations, J. Math.
Phys., Vol. 32, No. 6, pp. 1450–1457,
1991.
- Musette, M. and Conte, R., The two-singular-manifold
method: Modified Korteweg–de Vries and the sine-Gordon
equations, Phys. A, Math. Gen., Vol. 27, No. 11,
pp. 3895–3913, 1994.
- Nariboli, G.A., Self-similar solutions of some
nonlinear equations, Appl. Sci. Res., Vol. 22,
pp. 449–461, 1970.
- Navier, C.-L.-M.-H., Memoire sur les lois du
mouvement des fluids (1822), Mem. Acad. Sci. Inst. France,
Vol. 6, No. 2, pp. 389–440, 1827.
- Nayfeh, A. H., Perturbation Methods, John Wiley
Sons, New York, 1973.
- Nechepurenko, M. I., Iterations of Real Functions
and Functional Equations [in Russian], Institute of
Computational Mathematics and Mathematical Geophysics,
Novosibirsk, 1997.
- Nerney, S., Schmahl, E. J., and Musielak Z. E.,
Analytic solutions of the vector Burgers' equation, Quart.
Appl. Math., Vol. LIV, No. 1, pp. 63–71,
1996.
- Nesterov, S. V., Examples of nonlinear
Klein–Gordon equations solvable in terms of elementary
functions [in Russian], pp. 68–70, In: Applied
Issues of Mathematics, Mosk. Energeticheskii Institut, Moscow,
1978.
- Newell, A. C., Solitons in Mathematics and
Physics, Soc. Indus. Appl. Math. (SIAM), Arizona, 1985.
- Newman, W. I., Some exact solutions to a nonlinear
diffusion problem in population genetics and combustion,
J. Theor. Biol., Vol. 85, pp. 325–334,
1980.
- Neyzi, F., Nutku, Y., and Sheftel, M. B.,
Multi-Hamiltonian structure of Plebanski's second heavenly
equation, J. Phys. A: Math. Gen., Vol. 38,
No. 39, pp. 8473–8485, 2005.
- Nigmatulin, R. I., Dynamics of Multiphase
Media, Part I [in Russian], Nauka, Moscow, 1987.
- Nijenhuis, A., X n-1-forming sets of
eigenvectors, Indagationes Mathematicae, Vol. 13,
No. 2, pp. 200–212, 1951.
- Nikitin, A. G., Group classification of systems of
non-linear reaction-diffusion equations with general diffusion
matrix. II. Generalized Turing systems, J. Math. Anal.
Appl., Vol. 332, No. 1, pp. 666–690, 2007.
- Nikitin, A. G. and Wiltshire, R. J., Systems of
reaction-diffusion equations and their symmetry properties,
J. Math. Phys., Vol. 42, No. 4, pp.
1667–1688, 2001.
- Nimmo, J. J. C. and Crighton, D. J., Backlund
transformations for nonlinear parabolic equations: the general
results. Proc. Royal Soc. London A, 1982,
Vol. 384, pp. 381–401.
- Nishitani, T. and Tajiri, M., On similarity solutions
of the Boussinesq equation, Phys. Lett. A, Vol. 89,
pp. 379–380, 1982.
- Novikov, S. P., A periodic problem for the
Korteweg–de Vries equation [in Russian], Funkts.
Analiz i ego Prilozh., Vol. 8, No. 3,
pp. 54–66, 1974.
- Novikov, S. P., Manakov, S. V., Pitaevskii,
L. B., and Zakharov, V. E., Theory of Solitons.
The Inverse Scattering Method, Plenum Press, New York, 1984.
- Nucci, M. C. and Clarkson, P. A., The nonclassical
method is more general than the direct method for symmetry
reductions. An example of the Fitzhugh–Nagumo equation,
Phys. Lett. A, Vol. 164, pp. 49–56, 1992.
- Oberlack, M. and Peters, N., Closure of the two-point
correlation equation as a basis for Reynolds stress models,
Appl. Sci. Res., Vol. 55, pp. 533–538,
1993.
- O'Brien, V., Steady spheroidal vortices – more
exact solutions to the Navier–Stokes equations, Quart.
Appl. Math., Vol. 19, pp. 163–168, 1961.
- Ockendon, H., An asymptotic solution for steady flow
above an infinite rotating disk with suction, Quart.
J. Mech. Appl. Math., Vol. 25,
pp. 291–301, 1972.
- Okamura, M., Resonant standing waves on water of
uniform depth, J. Phys. Soc. Jpn., Vol. 66,
pp. 3801–3808, 1997.
- Oleinik, O. A., On Cauchy's problem for nonlinear
equations in the class of discontinuous functions
[in Russian], Doklady AN USSR, Vol. 95,
No. 3, pp. 451–454, 1954.
- Oleinik, O. A., Discontinuous solutions of nonlinear
differential equations, Uspekhi Matem. Nauk,
Vol. 12, No. 3, pp. 3–73, 1957 [Amer.
Math. Soc. Translation, Series 2, Vol. 26,
pp. 95–172, 1963].
- Oleinik, O. A., On uniqueness and stability of a
general solution of Cauchy's problem of quasilinear equations
[in Russian], Uspekhi Matem. Nauk, Vol. 14,
No. 2, pp. 159–164, 1959.
- Oleinik, O. A. and Samokhin, V. N., Mathematical
Models in Boundary Layer Theory, Chapman Hall/CRC Press, Boca
Raton, 1999.
- Olver, P. J., Euler operators and conservation laws of
the BBM equation, Math. Proc. Camb. Phil. Soc.,
Vol. 85, pp. 143–160, 1979.
- Olver, P. J., Hamilton and non-Hamilton models for
water waves, Lecture Notes in Physics, Springer-Verlag, New
York, No. 195, pp. 273–290, 1984.
- Olver, P. J., Application of Lie Groups to
Differential Equations, Springer-Verlag, New York, 1986 and
1993.
- Olver, P. J., Direct reduction and differential
constraints, Proc. Roy. Soc. London, Ser. A,
Vol. 444, pp. 509–523, 1994.
- Olver, P. J., Equivalence, Invariants, and
Symmetry, Cambridge Univ. Press, Cambridge, 1995.
- Olver, P. J., Classical Invariant Theory,
Cambridge Univ. Press, Cambridge, 1999.
- Olver, P. J. and Rosenau, P., The construction of
special solutions to partial differential equations,
Phys. Letters A, Vol. 114,
pp. 107–112, 1986.
- Olver, P. J. and Rosenau, P., Group-invariant solutions
of differential equations, SIAM J. Appl. Math.,
Vol. 47, No. 2, pp. 263–278, 1987.
- Olver P. J., and Vorob'ev E. M., Nonclassical and
conditional symmetries, In: CRC Handbook of Lie Group Analysis
of Differential Equations, Vol. 3 (Ed. N. H.
Ibragimov), CRC Press, Boca Raton, 1996, pp. 291–328.
- Ono, H., Algebraic soliton of the modified
Korteweg–de Vries' equation, J. Soc. Japan,
Vol. 41, pp. 1817–1818, 1976.
- Oron, A. and Rosenau, P., Some symmetries of nonlinear
heat and wave equations, Phys. Letters A, Vol. 118,
pp. 172–176, 1986.
- Oseen, C. W., Uber Wirbelbewegung in einer
reibenden Flussigkeit, Ark. Mat. Astron. Fys.,
Vol. 7, pp. 14–26, 1911.
- Ovsiannikov, L. V., New solution of hydrodynamics
equations, Doklady Acad. Nauk USSR, Vol. 111,
No. 1, p. 47, 1956.
- Ovsiannikov, L. V., Group properties of nonlinear
heat equations [in Russian], Doklady Acad. Nauk USSR,
Vol. 125, No. 3, pp. 492–495, 1959.
- Ovsiannikov, L. V., Group Properties of
Differential Equations [in Russian], Izd-vo SO AN USSR,
Novosibirsk, 1962 (English translation by G. Bluman, 1967).
- Ovsiannikov, L. V., Lectures on Fundamentals of
Gas Dynamics [in Russian], Nauka, Moscow, 1981.
- Ovsiannikov, L. V., Group Analysis of
Differential Equations, Academic Press, New York, 1982.
- Oztekin, A., Seymour, B. R., and Varley, E., Pump
flow solutions of the Navier–Stokes equations, Stud.
Appl. Math., Vol. 107, pp. 1–41, 2001.
- Palais, R. S., The symmetries of solitons,
Bull. AMS, Vol. 34, No. 4,
pp. 339–403, 1997.
- Paneli, D. and Gutfinger, C., Fluid Mechanics,
Cambridge Univ. Press, Cambridge, 1997.
- Parker, A., On the Camassa–Holm equation and a
direct method of solution. I. Bilinear form and solitary waves,
Proc. Roy. Soc. Lond. Ser. A, Vol. 460,
pp. 2929–2957, 2004.
- Parker, A., On the Camassa–Holm equation and a
direct method of solution. II. Soliton solutions, Proc. R. Soc.
Lond. Ser. A, Vol. 461, pp. 3611–3632,
2005.
- Parker, A., On the Camassa–Holm equation and a
direct method of solution. III. N-soliton solutions, Proc. Roy.
Soc. Lond. Ser. A, Vol. 461, pp. 3893–3911,
2005.
- Parker, A., A factorization procedure for solving the
Camassa–Holm equation, Inverse Problems,
Vol. 22, No. 2, pp. 599–609, 2006.
- Parkes, E. J., Explicit solutions of the reduced
Ostrovsky equation, Chaos, Solitons and Fractals,
Vol. 31, pp. 602–610, 2007.
- Parkes, E. J., Observations on the tanh-coth
expansion method for finding solutions to nonlinear evolution
equations, Appl. Math. Comp., Vol. 217, No. 4,
pp. 1749–1754, 2010.
- Parkes, E. J. and Duffy, B. R., An automated
tanh-function method for finding solitary wave solutions to
non-linear evolution equations, Comput. Phys. Commun.,
Vol. 98, pp. 288–300, 1996.
- Pascucci A., Kolmogorov equations in physics and in
finance, In: Progress in Nonlinear Differential Equations and
Their Applications, Birkhauser, Vol. 63,
pp. 313–324, 2005.
- Pascucci, A. and Polidoro, S., On the Cauchy problem
for a non linear Kolmogorov equation, SIAM J. Math. Anal.,
Vol. 35, No. 3, pp. 579–595, 2003.
- Pattle, R. E., Diffusion from an instantaneous point
source with a concentration-dependent coefficient,
J. Mech. Appl. Math., Vol. 12,
pp. 407–409, 1959.
- Paul, R. and Pillow, A. F., Conically similar
viscous flows, Parts 2 and 3, Fluid Mech., Vol. 155,
pp. 343–358 and 359–379, 1985.
- Pavlov, M. V., The Calogero equation and
Liouville-type equations, Theor. Math. Phys.,
Vol. 128, No. 1, pp. 927–932, 2001.
- Pavlov, M. V., Integrability of hydrodynamic-type
Egorov systems, Theor. Math. Phys., Vol. 150,
No. 2, pp. 263–284, 2007.
- Pavlovskii, Yu. N., Investigation of some
invariant solutions to the boundary layer equations
[in Russian], Zhurn. Vychisl. Mat. i Mat. Fiziki,
Vol. 1, No. 2, pp. 280–294, 1961.
- Pearson, C. E., Numerical solutions for the
time-dependent viscous flow between two rotating coaxial disks,
J. Fluid Mech., Vol. 21, pp. 623–633,
1965.
- Pelyukh, G. P. and Sharkovskii, O. M., Introduction
to the Theory of Functional Equations [in Russian], Naukova
Dumka, Kiev, 1974.
- Pen'kovskii, V. I., One-dimensional problem of the
solution and leaching of salts at high values of the peclet
number, J. Appl. Mech. Tech. Physics, Vol 10,
No. 2, pp. 327–331, 1969.
- Penney, W. G. and Price, A. T., Finite
periodic stationary gravity waves in a perfect liquid,
Part 2, Phil. Trans. R. Soc. Lond. A, Vol 224,
pp. 254–284, 1952.
- Peregrine, D. N., Calculations of the development of an
undular bore, J. Fluid Mech., Vol. 25,
p. 321, 1966.
- Pernik, A. D., Cavitation Problems [in Russian],
Sudostroenie, Leningrad, 1966.
- Perring, J. K. and Skyrme, T. R., A model unified field
equation, Nuclear Physics, Vol. 31,
pp. 550–555, 1962.
- Petrovskii, I. G., Lectures on the Theory of
Ordinary Differential Equations [in Russian], Nauka,
Moscow, 1970.
- Philip, J. R., General method of exact solution of
the concentration-dependent diffusion equation, Australian
J. Physics, Vol. 13, No. 1,
pp. 13–20, 1960.
- Pike, R. and Sabatier, P. (Eds.), Scattering:
Scattering and Inverse Scattering in Pure and Applied Science,
Vols. 1 and 2, Academic Press, San Diego, 2002.
- Pillow, A. F. and Paul, R., Conically similar
viscous flows. Part 1. Basic conservation principles and
characterization of axial causes in swirl-free flow, Fluid
Mech., Vol. 155, pp. 327–341, 1985.
- Plebanski, J. F., Some solutions of complex Einstein
equations, J. Math. Phys., Vol. 16,
pp. 2395–2402, 1975.
- Plesset, M. S. and Prosperetti, A., Bubble dynamics and
cavitation, Annual Rev. of Fluid Mech., Vol. 9,
pp. 145–185, 1977.
- Poincare, H., Sur les equations aux derives
partielles de la physique mathematique,
Amer. J. Math., Vol. 12, pp. 221–294, 1890.
- Poiseuille, J. L. M., Recherches experimenteles sur
le mouvement des liquides dans les tubes de tres petits
diametres, Comptes Rendus Acad. Sci., Paris,
Vol. 11, pp. 961–967, pp. 1041–1048,
1840 Vol. 12, pp. 112–115, 1841.
- Pokhozhaev, S. I., On an L. V. Ovsiannikov's problem
[in Russian], Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi
Fiziki, No. 2, pp. 5–10, 1989.
- Polubarinova–Kochina, P. Ya., Theory of
Groundwater Movement [in Russian], Nauka, Moscow, 1977 [see
also English translation, Princeton Univ. Press, 1962].
- Polyanin, A. D., On the integration of nonlinear
unsteady convective heat/mass exchange equations
[in Russian], Doklady AN USSR, Vol. 251,
No. 4, pp. 817–820, 1980.
- Polyanin, A. D., Method for solution of some
non-linear boundary value problems of a non-stationary
diffusion-controlled (thermal) boundary layer, Int.
J. Heat Mass Transfer, Vol. 25, No. 4,
pp. 471–485, 1982.
- Polyanin, A. D., Partial separation of variables in
unsteady problems of mechanics and mathematical physics,
Doklady Physics, Vol. 45, No. 12,
pp. 680–684, 2000.
- Polyanin, A. D., Exact solutions and transformations of
the equations of a stationary laminar boundary layer, Theor.
Foundations of Chemical Engineering, Vol. 35, No. 4,
pp. 319–328, 2001.
- Polyanin, A. D., Transformations and exact solutions
containing arbitrary functions for boundary-layer equations,
Doklady Physics, Vol. 46, No. 7,
pp. 526–531, 2001.
- Polyanin, A. D., Exact solutions to the
Navier–Stokes equations with generalized separation of
variables, Doklady Physics, Vol. 46, No. 10,
pp. 726–731, 2001.
- Polyanin, A. D., Handbook of Linear Partial
Differential Equations for Engineers and Scientists, Chapman
Hall/CRC Press, Boca Raton, 2002.
- Polyanin, A. D., Nonclassical (noninvariant)
traveling-wave solutions and self-similar solutions, Doklady
Mathematics, Vol. 70, No. 2, pp. 790–793,
2004.
- Polyanin, A. D., Exact solutions of nonlinear sets of
equations of the theory of heat and mass transfer in reactive
media and mathematical biology, Theor. Foundations of Chemical
Engineering, Vol. 38, No. 6, pp. 622–635,
2004.
- Polyanin, A. D., Systems of Partial Differential
Equations [online], EqWorld – The World of
Mathematical Equations, 2004
(see: http://eqworld.ipmnet.ru/en/solutions/syspde.htm).
- Polyanin, A. D., Exact solutions of nonlinear systems
of diffusion equations for reacting media and mathematical
biology, Doklady Mathematics, Vol. 71, No. 1,
pp. 148–154, 2005.
- Polyanin, A. D., New classes of exact solutions to
general nonlinear equations and systems of equations in
mathematical physics, Doklady Mathematics, Vol. 421,
No. 6, pp. 744–748, 2008.
- Polyanin, A. D., On the nonlinear instability of the
solutions of hydrodynamic-type systems, JETP Letters,
Vol. 90, No. 3, pp. 217–221, 2009.
- Polyanin, A. D., Exact solutions of the nonlinear
instability of the solutions of the Navier–Stokes equations:
Formulas for constructing exact solutions, Theor. Foundations
of Chemical Engineering, Vol. 43, No. 6,
pp. 881–888, 2009.
- Polyanin, A. D., Von Mises- and Crocco-type
transformations: order reduction of nonlinear equations,
RF-pairs and Backlund transformations,
Doklady Mathematics, Vol. 81, No. 1,
pp. 160–165, 2010.
- Polyanin, A. D. and Aristov, S. N., Systems
of hydrodynamic type equations: exact solutions, transformations,
and nonlinear stability, Doklady Physics, Vol. 54,
No. 9, pp. 429–434, 2009.
- Polyanin, A. D. and Dilman, V. V., Methods
of Modeling Equations and Analogies in Chemical Engineering,
CRC Press – Begell House, Boca Raton, 1994.
- Polyanin, A. D., Kutepov, A. M., Vyazmin, A. V., and
Kazenin, D. A., Hydrodynamics, Mass and Heat Transfer in
Chemical Engineering, Taylor Francis, London, 2002.
- Polyanin, A. D. and Manzhirov, A. V., Handbook
of Mathematics for Engineers and Scientists, Chapman
Hall/CRC Press, Boca Raton, 2007.
- Polyanin A. D., Vyazmin A. V., Zhurov A. I., and Kazenin D.
A., Handbook of Exact Solutions of Heat and Mass Transfer
Equations [in Russian], Faktorial, Moscow, 1998.
- Polyanin, A. D. and Vyazmina, E. A., New classes of
exact solutions to general nonlinear heat (diffusion) equations,
Doklady Mathematics, Vol. 72, No. 2,
pp. 798–801, 2005.
- Polyanin, A. D. and Vyazmina, E. A., New classes of
exact solutions to nonlinear systems of reaction-diffusion
equations, Doklady Mathematics, Vol. 74, No. 1,
pp. 597–602, 2006.
- Polyanin, A. D., Vyazmina, E. A., and Bedrikovetskii, P.
G., New classes of exact solutions to nonlinear sets of
equations in the theory of filtration and convective mass
transfer, Theor. Foundations of Chemical Engineering,
Vol. 41, No. 5, pp. 556–564, 2007.
- Polyanin, A. D. and Zaitsev, V. F., Equations of an
unsteady-state laminar boundary layer: general transformations and
exact solutions, Theor. Foundations of Chemical
Engineering, Vol. 35, No. 6, pp. 529–539,
2001.
- Polyanin, A. D. and Zaitsev, V. F., Handbook of
Nonlinear Mathematical Physics Equations [in Russian],
Fizmatlit, Moscow, 2002.
- Polyanin, A. D. and Zaitsev, V. F.,
Handbook of Exact Solutions for Ordinary Differential
Equations, 2nd ed., Chapman Hall/CRC Press, Boca Raton, 2003.
- Polyanin, A. D. and Zaitsev, V. F., Handbook of
Nonlinear Partial Differential Equations, 1st ed., Chapman
Hall/CRC Press, Boca Raton, 2004.
- Polyanin, A. D., Zaitsev, V. F., and Moussiaux,
A., Handbook of First Order Partial Differential
Equations, Taylor Francis, London, 2002.
- Polyanin, A. D., Zaitsev, V. F., and Zhurov,
A. I., Methods for the Solution of Nonlinear Equations
of Mathematical Physics and Mechanics [in Russian],
Fizmatlit, Moscow, 2005.
- Polyanin, A. D. and Zhurov, A. I., Exact
solutions to nonlinear equations of mechanics and mathematical
physics, Doklady Physics, Vol. 43, No. 6,
pp. 381–385, 1998.
- Polyanin, A. D. and Zhurov, A. I., The generalized and
functional separation of variables in mathematical physics and
mechanics, Doklady Mathematics, Vol. 65, No. 1,
pp. 129–134, 2002.
- Polyanin, A. D. and Zhurov, A. I., Methods of
generalized and functional separation of variables in the
hydrodynamic and heat- and mass- transfer equations, Theor.
Foundations of Chemical Engineering, Vol. 36, No. 3,
pp. 201–213, 2002.
- Polyanin, A. D. and Zhurov, A. I., The von Mises
transformation: order reduction and construction of Backlund
transformations and new integrable equations [online],
EqWorld – The World of Mathematical Equations,
2009 (see: http://eqworld.ipmnet.ru/en/methods/methods-pde/mises/mises-transformation.htm);
see also arXiv:0907.0586v2 [math-ph].
- Polyanin, A. D. and Zhurov, A. I., The Crocco
transformation: order reduction and construction of Backlund
transformations and new integrable equations [online],
EqWorld – The World of Mathematical Equations,
2009 (see: http://eqworld.ipmnet.ru/en/methods/methods-pde/crocco-transformation.pdf);
see also arXiv:0907.3170v1 [nlin.SI].
- Polyanin, A. D., Zhurov, A. I., and Vyazmin, A. V.,
Generalized separation of variables in nonlinear heat and mass
transfer equations, J. Non-Equilibrium Thermodynamics,
Vol. 25, No. 3/4, pp. 251–267,
2000.
- Polyanin, A. D., Zhurov, A. I., and Vyazmina, E. A.,
Exact solutions to nonlinear equations and systems of equations of
general form in mathematical physics, AIP Conference
Proceedings, Vol. 1067, pp. 64–86, 2008.
- Pomeau, Y., Ramani, A., and Grammaticos, B., Structural
stability of the Korteweg–de Vries solitons under a singular
perturbation, Physica D, Vol. 31, No. 1,
127–134, 1988.
- Pommaret, J. F., Systems in Partial Differential
Equations and Lie Pseudogroups, Math. and its Appl.,
Vol. 14, New York, 1978.
- Pontryagin, L. S., Boltyansky, V. G., Gamkrelidze, R.
V., and Mishchenko, E. F., Mathematical Theory of
Optimal Processes, Wiley-Interscience, New York, 1962.
- Popovich, R. O. and Ivanova, N. M., New
results on group classification of nonlinear diffusion.convection
equations, J. Phys. A: Math. Gen., Vol. 37,
pp. 7547–7565, 2004.
- Popovich, R. O. and Ivanova, N. M., Potential
equivalence transformations for nonlinear diffusion.convection
equations, J. Phys. A: Math. Gen., Vol. 38,
pp. 3145–3155, 2005.
- Popovich, R. O., Vaneeva, O. O., and Ivanova,
N. M., Potential nonclassical symmetries and solutions of
fast diffusion equation, Phys. Letters A, Vol. 362,
pp. 166–173, 2007.
- Popovich, R. O., Vaneeva, O. O., More common
errors in finding exact solutions of nonlinear differential
equations, Commun. Nonlinear Sci. Numer. Simul.,
Vol. 15, pp. 3887–3899, 2010.
- Prager, S., Spiral flow in a stationary porous pipe,
Phys. Fluids, Vol. 7, pp. 907–908, 1964.
- Prager, V., Three-dimensional flow in homogeneous
contract, Mekhanika [in Russian], Sbornik perevodov i
obzorov inostr. lit., Vol. 3, p. 23, 1958.
- Prosperetti, A., A generalization of the
Rayleigh–Plesset equation of bubble dynamics, Phys.
Fluids, Vol. 25, No. 3, pp. 409–410,
1982.
- Proudman, J., Note on the motion of viscous liquids in
channels, Philos. Mag., Vol. 28,
pp. 30–36, 760, 1914.
- Proudman, J. and Johnson, K., Boundary-layer growth
near a rear stagnation point, J. Fluid Mech.,
Vol. 12, pp. 161–168, 1962.
- Proudman, I. and Pearson, J. R. A.,
Expansions at small Reynolds number for the flow past a sphere and
circular cylinder, J. Fluid Mech., Vol. 2,
No. 3, pp. 237–262, 1957.
- Pucci, E. and Saccomandi, G., Contact transformation
and solution by reduction of partial differential equations,
J. Phys. A: Math Gen., Vol. 27,
pp. 177–184, 1994.
- Pucci, E. and Saccomandi, G., Evolution equations,
invariant surface conditions and functional separation of
variables, Physica D, Vol. 139, pp. 28–47,
2000.
- Pukhnachov, V. V., Group properties of the
Navier–Stokes equations in the plane case, J. Appl.
Math. Tech. Phys., No. 1, pp. 83–90, 1960.
- Pukhnachov, V. V., A plane steady-state flow of a
viscous incompressible fluid with rectilinear free boundaries, In:
Numerical Methods in Continuum Mechanics [in Russian],
Novosibirsk, Vol. 2, No. 4, pp. 67–75, 1971.
- Pukhnachov, V. V., Invariant solutions of the
Navier–Stokes equations describing flows with free
boundaries, Doklady AN SSSR [in Russian], Vol. 202,
No. 2, pp. 302–305, 1972.
- Pukhnachov, V. V., Exact multidimensional solutions of
the nonlinear diffusion equation, J. Appl. Mech. Tech.
Phys., Vol. 36, No. 2, pp. 169–176, 1995.
- Pukhnachov, V. V., Nonstationary viscous flows with a
cylindrical free surface, In: Topics in Nonlinear Analysis. The
Herbert Amann Anniversary Volume, Birkhauser, Basel,
pp. 655–677, 1998.
- Pukhnachov, V. V., On the problem of viscous strip
deformation with a free boundary, Comptes Rendus Acad. Sci.,
Paris, Vol. 328, Ser. 1, pp. 357–362,
1999.
- Pukhnachov, V. V., Symmetries in the
Navier–Stokes Equations [in Russian], Uspekhi
Mekhaniki, Vol. 4, No. 1, pp. 6–76, 2006.
- Putkaradze, V. and Dimon, P., Nonuniform
two-dimensional flow from a source, Phys. Fluids,
Vol. 12, pp. 66–70, 2000.
- Qin, M., Mei, F., and Fan, G., New explicit solutions
of the Burgers equation, Nonlinear Dyn., Vol. 48,
pp. 91–96, 2007.
- Quispel, J. R. W., Nijhoff, F. W., and Capel, H. W.,
Linearization of the Boussinesq equation and the modified
Boussinesq equation, Phys. Lett. A, Vol. 91,
pp. 143–145, 1982.
- Radayev, Yu. N., Limiting state of a neck of arbitrary
shape in a rigid-plastic solid, Mechanics of Solids,
Vol. 23, No. 6, pp. 62–68, 1988.
- Rajappa, N. R., Nonsteady plane stagnation point
flow with hard blowing, Z. Angew. Math. Mech.
(ZAMM), Vol. 59, pp. 471–473, 1979.
- Rao, A. R. and Kasiviswanathan, S. R., On
exact solutions of the unsteady Navier–Stokes equations
–- the vortex with instantaneous curvilinear axis, Int.
J. Eng. Sci., Vol. 25, pp. 337–349, 1987.
- Rassias, T. M., Functional Equations and
Inequalities, Kluwer Academic, Dordrecht, 2000.
- Rayleigh, Lord, On the motion of solid bodies through
viscous liquids, Philos. Mag., Vol. 21,
pp. 697–711, 1911.
- Rayleigh, Lord, Deep water waves, progressive or
stationary, to the third order of approximation, Phil. Trans.
R. Soc. Lond. A, Vol. 91, pp. 345–353,
1915.
- Remoissenet, M., Waves Called Solitons, 3rd ed.,
Springer-Verlag, Heidelberg, 1999.
- Reyes, E. G., Geometric integrability of the
Camassa–Holm equation, Lett. Math. Phys.,
Vol. 59, No. 2, pp. 117–131, 2002.
- Rhee, H., Aris, R., and Amundson, N. R., On the theory
of multicomponent chromatography, Phil. Trans. Royal Soc.,
Ser. A., Vol. 267, pp. 419–455, 1970.
- Rhee, H., Aris, R., and Amundson, N. R., First Order
Partial Differential Equations, Vol. I, Prentice Hall,
Englewood Cliffs, 1986.
- Rhee, H., Aris, R., and Amundson, N. R., First Order
Partial Differential Equations, Vol. II, Prentice Hall,
Englewood Cliffs, 1989.
- Riabouchinsky, D., Quelques considerations sur les
mouvements plans rotationnels dun liquide, Comptes Rendus
Acad. Sci., Paris, Vol. 179, pp. 1133–1136,
1924.
- Richards, D., Advanced Mathematical Methods with
Maple, Cambridge University Press, Cambridge, 2002.
- Riley, N. and Vasantha, R., An unsteady
stagnation-point flow, Quart. J. Mech. Appl. Math.,
Vol. 42, pp. 511–521, 1988.
- Robins, A. J. and Howarth, J. A.,
Boundary-layer development at a two-dimensional rear stagnation
point, Fluid Mech., Vol. 56, pp. 161–171,
1972.
- Robinson, A. R. and Welander, P., Thermal circulation
on a rotating sphere with application to the oceanic thermocline,
J. Marine Res., Vol. 21, No. 1, p. 25,
1963.
- Rogers, M. H. and Lance, G. N., The rotationally
symmetric flow of a viscous fluid in the presence of an infinite
rotating disk, J. Fluid Mech., Vol. 7,
pp. 617–631, 1960.
- Rogers, C. and Ames, W. F., Nonlinear Boundary Value
Problems in Science and Engineering, Academic Press, New York,
1989.
- Rogers, C., and Ruggeri, T., A reciprocal Backlund
transformation: application to a nonlinear hyperbolic model in
heat conduction, Lett. Nuovo Cimento, Vol. 44,
p. 289, 1985.
- Rogers, C., and Shadwick W. F., Backlund
Transformations and Their Applications, Academic Press, New York,
1982.
- Romanovskii, Yu. M., Stepanova, N. V., and Chernavskii, D.
S., Mathematical Biophysics [in Russian], Nauka,
Moscow, 1984.
- Rosen, G., Dilatation covariance and exact solutions in
local relativistic field theories, Phys. Rev.,
Vol. 183, pp. 1186–1191, 1969.
- Rosen, G., Method for the exact solution of a nonlinear
diffusion, Phys. Rev. Letters, Vol. 49, No. 25,
pp. 1844–1846, 1982.
- Rosenau, P., Nonlinear dispersion and compact
structures, Phys. Rev. Letters, Vol. 73, No. 13,
pp. 1737–1741, 1994.
- Rosenau, P., Compact and noncompact dispersive
patterns, Phys. Letters A., Vol. 275, No. 3,
pp. 193–203, 2000.
- Rosenau, P. and Hyman, J. M., Compactons, solitons
with finite wavelength, Phys. Rev. Letters, Vol. 70,
No. 5, pp. 564–567, 1993.
- Rosenau, P. and Levy, D., Compactons in a class of
nonlinearly quintic equations, Phys. Letters A.,
Vol. 252, pp. 297–306, 1999.
- Rosenhead, L., The steady two-dimensional radial flow
of viscous fluid between two inclined plane walls, Proc. Roy.
Soc. London, Ser. A, Vol. 175,
pp. 436–467, 1940.
- Ross, C. C., Differential Equations: An
Introduction with Mathematica, Springer, New York, 1995.
- Rott, N., Unsteady viscous flow in the vicinity of a
stagnation point, Quart. Appl. Math., Vol. 13,
No. 4, pp. 444–451, 1956.
- Rott, N., On the viscous core of a line vortex, Z.
Angew. Math. Phys., Vol. 9, pp. 543–553, 1958.
- Rosenhead, L., Laminar Boundary Layers, Dover
Publ., New York, 1988.
- Rozendorn, E. R., Some classes of particular solutions
to the equation
zxxzyy−zxy2+
a grad z=0
and their
application to meteorological problems [in Russian],
Vestnik Moskovskogo Universiteta, Ser. 1
(Mat. i Meh.), No. 2, pp. 56–58, 1984.
- Rozhdestvenskii, B. L. and Yanenko, N. N., Systems
of Quasilinear Equations and Their Applications to Gas
Dynamics, American Mathematical Society, Providence, RI,
1983.
- Rudenko, O. V. and Soluyan, S. I.,
Theoretical Foundations of Nonlinear Acoustics
[in Russian], Nauka, Moscow, 1975.
- Rudenko, O. V. and Robsman, V. A., Equation
of nonlinear waves in scattering medium [in Russian],
Doklady RAN, Vol. 384, No. 6,
pp. 735–759, 2002.
- Rudykh, G. A. and Semenov, E. I., On new
exact solutions of a one-dimensional nonlinear diffusion equation
with a source (sink) [in Russian], Zhurn. Vychisl. Matem.
i Matem. Fiziki, Vol. 38, No. 6,
pp. 971–977, 1998.
- Rudykh, G. A. and Semenov, E. I.,
Non-self-similar solutions of a many-dimensional nonlinear
diffusion equation [in Russian], Mat. Zametki,
Vol. 67, No. 2, pp. 250–256, 2000.
- Rumer, Yu. B., A problem on a submerged jet [in
Russian], Appl. Math. and Mech. (PMM),
Vol. 16, No. 2, pp. 255–256, 1952.
- Ryzhov, O. S. and Khristianovich, S. A., On
nonlinear reflection of weak shock waves, J. Appl. Math.
Mech., Vol. 22, pp. 826–843, 1958.
- Ryzhov, O. S. and Shefter, G. M., On unsteady
gas flows in Laval nozzles, Soviet Physics Dokl.,
Vol. 4, pp. 939–942, 1958.
- Sabitov, I. Kh., On solutions of the equation
Δ u = f(x,y)ecu
in some special cases [in Russian],
Mat. Sbornik, Vol. 192, No. 6,
pp. 89–104, 2001.
- Saccomandi, G., A remarkable class of non-classical
symmetries of the steady two-dimensional boundary-layer equations,
J. Physics A: Math. Gen., Vol. 37,
pp. 7005–7017, 2004.
- Safin, S. S. and Sharipov, R. A., Backlund
autotransformation for the equation
uxt=eu−e−2u,
Theor. Math. Phys., Vol. 95, No. 1,
pp. 462–470, 1993.
- Saied, E. A. and Abd El-Rahman, R. G., On the porous
medium equation with modified Fourier's low: symmetries and
integrability. Journal of the Physical Society of Japan,
Vol. 68, No. 2, pp. 360–368, 1999.
- Sakiadis, B. C., Boundary-layer behavior on
continuous solid surfaces. 2. Boundary layer on a continuous
flat surface, AIChE J., Vol. 7, No. 2,
pp. 221–225, 1961.
- Salas, A. H., Some solutions for a type of generalized
Sawada–Kotera equation, Appl. Math. Comput.,
Vol. 196, No. 2, pp. 812–817, 2008\.
- Salas, A. H., Exact solutions for the general fifth KdV
equation by the exp function method, Appl. Math. Comput.,
Vol. 205, No. 1, pp. 291–297, 2008.
- Salas, A. H. and Gomes, C. A., Computing exact
solutions for some fifth KdV equations with forcing term, Appl.
Math. Comput., Vol. 204, No. 1,
pp. 257–260, 2008.
- Samarskii, A. A., Galaktionov, V. A., Kurdyumov, S. P., and
Mikhailov, A. P., Blow-up in Problems for Quasilinear
Parabolic Equations, Walter de Gruyter, Berlin, 1995.
- Samarskii, A. A. and Sobol', I. M., Examples of a
numerical investigation of temperature waves, Zh. Vychisl. Mat.
i Mat. Fiz., Vol. 3, No. 4, pp. 702–719,
1963.
- Sattinger, D. H. and Weaver, O. L., Lie Groups and
Algebras with Applications to Physics, Geometry, and
Mechanics, Springer-Verlag, New York, 1986.
- Saucez, P., Vande Wouwer, A., Schiesser, W. E., and
Zegeling, P., Method of lines study of nonlinear dispersive
waves, J. Comp. Appl. Math., 2003.
- Sawada, K. and Kotera, T., A method for finding
N-soliton solutions for the KdV equation and KdV-like equations,
Prog. Theor. Phys., Vol. 51, pp. 1355–1367,
1974.
- Schamel, H., A modified Korteweg–de Vries
equation for ion acoustic waves due to resonant electrons,
J. Plasma Phys., Vol. 9, pp. 377–387,
1973.
- Schiesser, W. E., Computational Mathematics in
Engineering and Applied Science: ODEs, DAEs, and PDEs, CRC
Press, Boca Raton, 1994.
- Schiesser, W. E. and Griffiths, G. W., A
Compendium of Partial Differential Equation Models: Method of
Lines Analysis with Matlab, Cambridge University Press,
Cambridge, 2009.
- Schlichting, H., Boundary Layer Theory,
McGraw-Hill, New York, 1981.
- Schofield, D. and Davey, A., Dual solutions of the
boundary-layer equations at a point of attachment,
J. Fluid Mech., Vol. 30, pp. 809–811,
1967.
- Scott, A. C., The application of Backlund transforms
to physical problems, In: Backlund Transformations (Ed.
R. M. Miura), pp. 80–105, Springer-Verlag, Berlin,
1975.
- Scott, A. C., Chu, F. Y., and McLaughlin D. W., The
soliton: a new concept in applied science, Proc. IEEE,
Vol. 61, pp. 1443–1483, 1973.
- Sedov, L. I., Mechanics of Continuous Media,
Vol. 1 [in Russian], Nauka, Moscow, 1973.
- Sedov, L. I., Mechanics of Continuous Media,
Vol. 2 [in Russian], Nauka, Moscow, 1984.
- Sedov, L. I., Plane Problems of Hydrodynamics and
Airdynamics [in Russian], Nauka, Moscow, 1980.
- Sedov, L. I., Similarity and Dimensional
Methods in Mechanics, CRC Press, Boca Raton, 1993.
- Seeger, A., Donth, H., and Kochendorfer, A., Theorie
der Versetzungen in eindimensionalen Atomreihen. III.
Versetzungen, Eigenbewegungen und ihre Wechselwirkung, Z.
Phys., Vol. 134, pp. 173–193, 1953.
- Seeger, A. and Wesolowski, Z., Standing-wave solutions
of the Enneper (sine-Gordon) equation, Int. J. Eng. Sci.,
Vol. 19, pp. 1535–1549, 1981.
- Sekerzh-Zenkovich, Y. I., On the theory of
standing waves of finite amplitude, Doklady Akad. Nauk.
USSR, Vol. 58, pp. 551–554, 1947.
- Serre, D., Systemes de Lois de Conservation, Tome
I et II, Diderot, Paris, 1996.
- Serrin, J., The swirling vortex, Philos. Trans. Roy.
Soc. London, Ser. A, Vol. 271,
pp. 325–360, 1972.
- Sexl, T., Uber den von E. G. Richardson
entdeckten `Annulareffekt,' Z. Phys., Vol. 61,
pp. 349–362, 1930.
- Shafranov, V. D., Plasma equilibrium in a magnetic
field, Reviews of Plasma Physics, Vol. 2, p. 103,
1966.
- Shan'ko, Yu. V., Some classes of plane steady-state
flows of stratified fluids, Vichislitel'nye Tekhnologii [in
Russian], Vol. 6, No. 5, pp. 106–117, 2001.
- Shcheprov, A. V., An example of an outer flow of a
viscous compressible fluid past a sphere for an arbitrary Reynolds
number, Doklady AN, Vol. 395, No. 4,
pp. 485–485, 2004.
- Shercliff, J. A., Simple rotational flows,
J. Fluid Mech., Vol. 82, No. 4,
pp. 687–703, 1977.
- Shigesada, N., Kawasaki, K., and Teramoto, E., Spatial
segregation of interacting species, J. Theor. Biol.,
Vol. 79, pp. 83–99, 1979.
- Shingareva, I. K., Investigation of Standing
Surface Waves in a Fluid of Finite Depth by Computer Algebra
Methods. PhD thesis [in Russian] Institute for Problems in
Mechanics, Russian Academy of Sciences, Moscow, 1995.
- Shingareva, I. K. and Lizarraga-Celaya, C.,
High-order Asymptotic Solutions to Free Standing Water Waves by
Computer Algebra, In: Proc. Maple Summer Workshop,
pp. 1–28, University of Waterloo, Waterloo, Ontario,
Canada, 2004.
- Shingareva, I. K. and Lizarraga-Celaya, C., On
frequency-amplitude dependences for surface and internal standing
waves, J. Comp. Appl. Math., Vol. 200,
pp. 459–470, 2007.
- Shingareva, I. K. and Lizarraga-Celaya, C.,
Maple and Mathematica. A Problem Solving Approach for
Mathematics, 2nd ed., Springer, Wien–New York, 2009.
- Shingareva, I. K., Lizarraga-Celaya, C., and Ochoa
Ruiz, A. D., Maple y Ondas Estacionarias. Problemas y
Soluciones, Editorial Unison, Universidad de Sonora,
Hermosillo, Mexico, 2006.
- Shkadov, V. Ya., Solitary waves in a layer of
viscous liquid, Fluid Dynamics, Vol. 12, No. 1,
pp. 52–55, 1977.
- Shmyglevskii, Yu. D., Analytical Investigation of
Liquid and Gas Dynamics [in Russian], Editorial URSS, Moscow,
1999.
- Shmyglevskii, Yu. D., and Shcheprov, A. V., Exact
representation of certain axisymmetric vortex elements in a
viscous incompressible fluid, Doklady Physics,
Vol. 48, No. 12, pp. 685–687, 2003.
- Shulman, Z. P. and Berkovskii, B. M.,
Boundary Layer in Non-Newtonian Fluids [in Russian],
Nauka i Tehnika, Minsk, 1966.
- Siddiqui, A. M., Kaloni, P. N., and Chandna, O.
P., Hodograph transformation methods in non-Newtonian fluids,
J. Eng. Math., Vol. 19, pp. 203–216,
1985.
- Sidorov, A. F., Two classes of solutions of the fluid
and gas mechanics equations and their connection to traveling wave
theory, J. Appl. Mech. Tech. Phys., Vol. 30,
No. 2, pp. 197–203, 1989.
- Sidorov, A. F., Shapeev, V. P., and Yanenko,
N. N., Method of Differential Constraints and its
Applications in Gas Dynamics [in Russian], Nauka,
Novosibirsk, 1984.
- Sivashinsky, G. I., Instabilities, pattern
formation and turbulence in flames, Annual Rev. of Fluid
Mech., Vol. 15, pp. 179–199, 1983.
- Skalak, F. M. and Wang, C. Y., Pulsatile flow
in a tube with wall injection and suction, Appl. Sci. Res.,
Vol. 33, pp. 269–307, 1977.
- Skalak, F. M. and Wang, C. Y., On the
unsteady squeezing of a viscous fluid from a tube,
J. Aust. Math. Soc. B, Vol. 21,
pp. 65–74, 1979.
- Skeel, R. D. and Berzins, M., A method for the
spatial discretization of parabolic equations in one space
variable, SIAM Journal on Scientific and Statistical
Computing,
Vol. 11, pp. 1–32, 1990.
- Slezkin, N. A., On an exact solution of the equations
of viscous flow [in Russian], Uchenye Zapiski Mosk. Gos.
Univ., Rec. Moscow State Univ., Vol. 2, No. 11,
pp. 89–90, 1934. See also Appl. Math. and
Mech. (PMM), Vol. 18, p. 764, 1954.
- Slezkin, N. A., Dynamics of Viscous
Incompressible Fluid [in Russian], Gostekhizdat, Moscow,
1955.
- Small, C. G., Functional Equations and How to Solve
Them, Springer-Verlag, Berlin, 2007.
- Smital, J. and Dravecky, J., On Functions and
Functional Equations, Adam Hilger, Bristol-Philadelphia,
1988.
- Smith, S. H., Eccentric rotating flows: exact
unsteady solutions of the Navier–Stokes equations, Z.
Angew. Math. Phys., Vol. 38, pp. 573–579,
1987.
- Smoller, J., Shock Waves and Reaction-Diffusion
Equations, Springer-Verlag, New York, 1994.
- Smyth, N. F. and Hill, J. M., High-order
nonlinear diffusion, IMA J. Appl. Math., Vol. 40,
pp. 73–86, 1988.
- Sokolov, V. V. and Zhiber, A. V., On the Darboux
integrable hyperbolic equations, Phys. Lett. A,
Vol. 208, pp. 303–308, 1995.
- Sokolovskii, V. V., Theory of Plasticity [in
Russian], Vysshaja Shkola, Moscow, 1969.
- Soliman, A. A., Exact solutions of the KdV-Burgers
equation by Exp-function method, Chaos, Solitons and Fractals,
Vol. 41, No. 2, pp. 1034–1039, 2009.
- Sophocleous, C., Potential symmetries of nonlinear
diffusion-convection equations, J. Phys. A: Math.
Gen., Vol. 29, pp. 6951–6959, 1996.
- Sophocleous, C., Potential symmetries of inhomogeneous
nonlinear diffusion equations, Bull. Austral. Math. Soc.,
Vol. 61, pp. 507–521, 2000.
- Sophocleous, C., Classification of potential symmetries
of generalized inhomogeneous nonlinear diffusion equations,
Physica A, Vol. 320, pp. 169–183, 2003.
- Sparenberg, J. F., On the stream function in low
Reynolds number flow for general curvilinear coordinates, In:
Mathematical Approaches in Hydrodynamics (Ed.
T. Miloh), SIAM, Philadelphia, pp. 461–472, 1991.
- Squire, H. B., The round laminar jet, Quart. J.
Mech. Appl. Math., Vol. 4, pp. 321–329, 1951.
- Squire, H. B., Some viscous flow problems I. Jet
emerging from a hole in a plane wall, Philos. Mag.,
Vol. 43, pp. 942–945, 1952.
- Squire, H. B., Radial jets, 50 Jahre
Grenzschichtforschung (Ed. H. Gortler and
W. Tollmien), Vieweg, Braunschweig, pp. 47–54,
1955.
- Starov, V. M., On the spreading of the droplets of
non-volatile liquids over the solid surface, Colloid J. of
the USSR, Vol. 45, No. 6, pp. 1009–1015,
1983.
- Steeb, W.-H. and Euler, N., Nonlinear Evolution
Equations and Painleve Test, World Scientific, Singapore,
1988.
- Stein, C. F., Quantities which define conically
self-similar free-vortex solutions to the Navier–Stokes
equations uniquely, Fluid Mech., Vol. 438,
pp. 159–181, 2001.
- Stephani, H., Differential Equations: Their
Solutions Using Symmetries, Cambridge Univ. Press, Cambridge,
1989.
- Steuerwald, R., Uber ennepersche Flachen und
Backlundsche Transformation, Abh. Bayer. Akad. Wiss.
(Muench.), Vol. 40, pp. 1–105, 1936.
- Stewartson, K., On the flow between two rotating
coaxial disks, Proc. Cambridge Philos. Soc., Vol. 49,
pp. 333–341, 1953.
- Stokes, G. G., On the theories of the internal friction
of fluids in motion, and of the equilibrium and motion of elastic
solids, Trans. Cambridge Philos. Soc., Vol. 8,
pp. 287–305, 1845.
- Stokes, G. G., Report on recent researches in
hydrodynamics, Rep. Br. Assoc., pp. 1–20, 1846.
See also Math. Phys. Papers, Vol. 1,
pp. 75–12, 1880.
- Stokes, G. G., On the effect of the internal friction
of fluid on the motion of pendulums, Trans. Cambridge Philos.
Soc., Vol. 9, pp. 8–106, 1851.
- Storm, M. L., Heat conduction in simple metals,
J. Appl. Phys., Vol. 22, p. 940, 1951.
- Strampp, W., Backlund transformations for diffusion
equations, Physica D, No. 6, p. 113, 1982.
- Strikwerda, L., Finite Difference Schemes and
Partial Differential Equations, 2nd ed., SIAM, Philadelphia,
2004.
- Stuart, J. T., On the effects of uniform suction on the
steady flow due to a rotating disk, Quart. J. Mech. Appl.
Math., Vol. 7, pp. 446–457, 1954.
- Stuart, J. T., A solution of the Navier–Stokes
and energy equations illustrating the response of skin friction
and temperature of an infinite plate thermometer to fluctuations
in the stream velocity, Proc. Roy. Soc. London, Ser. A,
Vol. 231, pp. 116–130, 1955.
- Stuart, J. T., Double boundary layers in oscillating
viscous flows, J. Fluid Mech., Vol. 24,
pp. 673–687, 1966.
- Stuart, J. T., A simpler corner flow with suction,
Q. J. Mech. Appl. Math., Vol. 19,
pp. 217–220, 1966.
- Stuart, J. T., The viscous flow near a stagnation point
when the external flow has uniform vorticity, J. Aerosp.
Sci., Vol. 26, pp. 124–125, 1959.
- Subbotin, A. I., Minimax and Viscosity Solutions of
Hamilton–Jacobi Equations [in Russian], Nauka, Moscow, 1991.
- Subbotin, A. I., Generalized Solutions of First
Order PDEs: the Dynamical Optimization Perspective,
Birkhauser, Boston, 1995.
- Sukhinin, S. V., Group properties and conservation laws
of the transonic gas flow equation [in Russian], In:
Dynamics of Continuous Media, No. 36, p. 130,
1978.
- Sulem, C. and Sulem, P.-L., The Nonlinear
Schrodinger Equation. Self-Focusing and Wave Collapse,
Springer-Verlag, New York, 1999.
- Sullivan, R. D., A two-cell vortex solution of the
Navier–Stokes equations, J. Aerosp. Sci.,
Vol. 26, pp. 767–768, 1959.
- Suslov, G. K., Theoretical Mechanics
[in Russian], Gostekhizdat, Moscow, 1946.
- Svinolupov, S. I., Second-order evolution equations
possessing symmetries, Rus. Math. Surv., Vol. 40,
pp. 263–264, 1985.
- Svirshchevskii, S. R., Group Properties of the
Hyperbolic System of Heat Transfer [in Russian],
Preprint 20, Keldysh Institute of Applied Mathematics,
Academy of Sciences, USSR, Moscow, 1986.
- Svirshchevskii, S. R., Group Properties of the Heat
Equation Accounting for the Heat-Flux Relaxation
[in Russian], Preprint 105, Keldysh Institute of Applied
Mathematics, Academy of Sciences, USSR, Moscow, 1988.
- Svirshchevskii, S. R., Lie–Backlund symmetries
of linear ODEs and generalized separation of variables in
nonlinear equations, Phys. Lett. A, Vol. 199,
pp. 344–348, 1995.
- Svirshchevskii, S. R., Invariant linear subspaces and
exact solutions of nonlinear evolutions equations, Nonlinear
Math. Phys., Vol. 3, No. 1–2,
pp. 164–169, 1996.
- Szymanski, P., Quelques solutions exactes des
equaions de l'hydrodynamique du fluide visqueux dans le cas dun
tube cylindrique, J. Math. Pures Appl., Vol. 11,
No. 9, pp. 67–107, 1932.
- Tabor, M., Integrability in Nonlinear Dynamics: An
Introduction, Wiley–Interscience Publ., New York, 1989.
- Tadjbakhsh, I. and Keller, J. B., Standing surface
waves of finite amplitude, J. Fluid Mech.,
Vol. 8, pp. 442–451, 1960.
- Tam, K. K., A note on the asymptotic solution of the
flow between two oppositely rotating infinite plane disks, SIAM
J. Appl. Math., Vol. 17, pp. 1305–1310, 1969.
- Tamada, K., Two-dimensional stagnation point flow
impinging obliquely on a plane wall, J. Phys. Soc.
Jap., Vol. 46, pp. 310–311, 1979.
- Taras'ev, A. M., On an irregular differential game,
Appl. Math. and Mech. (PMM), Vol. 49,
No. 4, pp. 682–684, 1985.
- Taylor, G. I., On the decay of vortices in a
viscous fluid, Philos. Mag., Vol. 46,
pp. 671–674, 1923.
- Taylor, G. I., The formation of a blast wave by a
very intense explosion. I. Theoretical discussion, Proc.
Roy. Soc. A, Vol. 201, pp. 159–174, 1950.
- Taylor, M. E., Partial Differential Equations
III. Nonlinear Equations, Springer-Verlag, New York, 1996.
- Temam, R., Navier–Stokes Equations,
North-Holland Publ. Comp., Amsterdam–New York, 1979.
- Terrill, R. M., An exact solution for flow in a porous
pipe, Z. Angew. Math. Phys. (ZAMP), Vol. 33,
pp. 547–552, 1982.
- Terrill, R. M. and Cornish, J. P., Radial flow of a
viscous, incompressible fluid between two stationary uniformly
porous discs, Z. Angew. Math. Phys. (ZAMP),
Vol. 24, pp. 676–688, 1973.
- Terrill, R. M. and Shrestha, G. M., Laminar flow
through parallel and uniformly porous walls of different
permeability, Z. Angew. Math. Phys. (ZAMP),
Vol. 16, pp. 470–482, 1965.
- Terrill, R. M. and Thomas, P. W., On laminar flow
through a uniformly porous pipe, Appl. Sci. Res.,
Vol. 21, pp. 37–67, 1969.
- Terrill, R. M. and Thomas, P. W., Spiral flow in a
porous pipe, Phys. Fluids, Vol. 16,
pp. 356–359, 1973.
- Thomas, J. W., Numerical Partial Differential
Equations: Finite Difference Methods, Springer, New York,
1995.
- Thorpe, J. F., Further investigation of squeezing
flow between parallel plates, Dev. Theor. Appl. Mech.,
Vol. 3, pp. 635–648, 1967.
- Tikhonov, A. N. and Samarskii, A. A.,
Equations of Mathematical Physics, Dover Publ., New York,
1990.
- Timoshenko, S. and Woinowsky-Krieger, S., Theory of
Plates and Shells, 2nd ed., McGraw-Hill, New York, 1959.
- Ting, A. S., Cheb, H. H., and Lee,
Y. C., Exact solutions of a nonlinear boundary value
problem: the vortices of the two-dimensional sinh-Poisson
equation, Physica D, pp. 37–66, 1987.
- Titov, S. S., A method of finite-dimensional rings
for solving nonlinear equations of mathematical physics
[in Russian], In: Aerodynamics (Ed.
T. P. Ivanova), Saratov Univ., Saratov,
pp. 104–110, 1988.
- Titov, S. S. and Ustinov, V. A.,
Investigation of polynomial solutions to the equations of motion
of gases through porous media with integer isentropic exponent
[in Russian], In: Approximate Methods of Solution of
Boundary Value Problems in Solid Mechanics, AN USSR, Ural.
Otd-nie Inst. Matematiki i Mekhaniki, pp. 64–70, 1985.
- Toda, M., Studies of a nonlinear lattice, Phys.
Rep., Vol. 8, pp. 1–125, 1975.
- Tomotika, S. and Tamada, K., Studies on two-dimensional
transonic flows of compressible fluid, Part 1, Quart.
Appl. Math., Vol. 7, p. 381, 1950.
- Topper, J. and Kawahara, T., Approximate equations for
long nonlinear waves on a viscous fluid, J. Phys. Soc.
Japan, Vol. 44, No. 2, pp. 663–666, 1978.
- Trkal, V., A remark on the hydrodynamics of viscous
fluids [in Czech], Cas. Pst. Mat, Fys., Vol. 48,
pp. 302–311, 1919.
- Tsarev, S. P., On Poisson brackets and one-dimensional
Hamiltonian systems of hydrodynamic type, Soviet Math.
Doklady, Vol. 31, No. 3, pp. 488–491,
1985.
- Tsarev, S. P., Semi-Hamiltonian formalism for diagonal
systems of hydrodynamic type and integrability of chromatography
and electrophoresis equations, In: Modern Group Analysis:
Lie–Backlund Groups and Quasilinear Systems, Preprint
106, LIIAN, pp. 30–35, 1989.
- Tsarev, S. P., Geometry of Hamiltonian systems of
hydrodynamic type. The generalised hodograph method,
Mathematics in the USSR, Izvestiya, Vol. 377,
No. 2, pp. 397–419, 1991.
- Tsarev, S. P., On Darboux integrable nonlinear partial
differential equations, Proc. Steklov Institute of
Mathematics, Vol. 225, pp. 372–381, 1999.
- Tsarev, S. P., Integrability of equations of
hydrodynamic type: from the end of the 19th to the end of the 20th
century, In: Integrability: the Seiberg–Witten and
Whitham Equations (Eds. H. W. Braden and
I. M. Krichever), Gordon Breach, Amsterdam,
pp. 251–265, 2000.
- Tsyfra, I., Non-local ansatze for nonlinear heat and
wave equations, J. Phys. A: Math. Gen., Vol. 30,
pp. 2251–2262, 1997.
- Tsyfra, I., Messina, A., Napoli, A., and Tretynyk, V.,
On application of non-point and discrete symmetries for reduction
of the evolution-type equations, In: Proc. of the Fifth Intern.
Conf. Symmetry of Nonlinear Mathematical Physics, Proc. Inst.
of Mathematics, Kyiv, Vol. 50, Pt. 1,
pp. 271–276, 2004.
- Tychynin, V. and Rasin, O., Nonlocal symmetries and
generation of solutions for the inhomogeneous Burgers equation,
In: Proc. of the Fifth Intern. Conf. Symmetry of Nonlinear
Mathematical Physics, Proc. Inst. of Mathematics, Kyiv,
Vol. 50, Pt. 1, pp. 277–281, 2004.
- Tychynin, V., Petrova, O., and Tertyshnyk, O., Nonlocal
symmetries and generation of solutions for partial differential
equations, SIGMA, Vol. 3 (019), 12 pages, 2007.
- Tzitzeica, G., Sur une nouvelle classe de surfaces,
Comptes Rendus Acad. Sci., Paris, Vol. 150,
pp. 955–956, 1910.
- Uchida, S., The pulsating viscous flow superposed on
the steady laminar motion of incompressible fluid in a circular
pipe, Z. Angew. Math. Mech. (ZAMM), Vol. 7,
pp. 403–421, 1956.
- Uchida, S. and Aoki, H., Unsteady flows in a
semi-infinite contracting or expanding pipe, J. Fluid
Mech., Vol. 82, pp. 371–387, 1977.
- Vakhnenko, V. O. and Parkes, E. J., Periodic and
solitary-wave solutions of the Degasperis–Procesi equation,
Chaos, Solitons and Fractals, Vol. 20, No. 5,
pp. 1059–1073, 2004.
- Van Dyke, M. D., Perturbation Methods in Fluid
Mechanics, Parabolic Press, Stanford, CA, 1975.
- Vekua, I. N., Remarks on the properties of solutions to
equation
Δ u = −Ke2u
[in Russian], Sib. Matem.
Zhurn., Vol. 1, No. 3, pp. 331–342, 1960.
- Vereshchagina, L. I., Group fibering of the spatial
unsteady boundary layer equations [in Russian], Vestnik
LGU, Vol. 13, No. 3, pp. 82–86, 1973.
- Vinogradov, A. M., Local symmetries and conservation
laws, Acta Appl. Math., Vol. 2, No. 7,
pp. 21–78, 1984.
- Vinogradov, A. M. and Krasil'shchik, I. S. (Eds.),
Symmetries and Conservation Laws of Mathematical Physics
Equations [in Russian], Faktorial, Moscow, 1997.
- Vinogradov, A. M., Krasil'shchik, I. S., and Lychagin, V.
V., Geometry of Jet Spaces and Nonlinear Partial
Differential Equations, Gordon Breach, 1984.
- Vinogradov, A. M., Krasil'shchik, I. S., and Lychagin, V.
V., Introduction to Geometry of Nonlinear Differential
Equations [in Russian], Nauka, Moscow, 1986.
- Vinokurov, V. A. and Nurgalieva, I. G., Research of
nonlinear equation of adiabatic motion of an ideal gas,
p. 53, In: Nonclassical Equations of Mathematical
Physics (Ed. V. N. Vragov), Novosibirsk, 1985.
- Voinov, O. V., Dynamics of a viscous liquid
wetting a solid via Van der Waals forces, J. Appl.
Mechanics and Tech. Physics, Vol. 35, No. 6,
pp. 875–890, 1994.
- Volosov, K. A., A Method of Analysis for
Evolution Systems with Distributed Parameters, DSc Thesis,
Moscow, 2007.
- Vorob'ev, E. M., Ignatovich N. V., and Semenova E.
O., Invariant and partially invariant solutions of boundary
value problems [in Russian], Doklady AN USSR,
Vol. 306, No. 4, pp. 836–840, 1989.
- Vvedensky, D. D., Partial Differential
Equations with Mathematica, Addison-Wesley, Wokingham, 1993.
- Vyazmina, E. A. and Polyanin, A. D., New classes of
exact solutions to general nonlinear diffusion-kinetic equations,
Theor. Foundations of Chemical Engineering, Vol. 40,
No. 6, pp. 555–563, 2006.
- Wachmann, C., A mathematical theory for the
displacement of oil and water by alcohol, Soc. Petroleum Eng.
J., Vol. 4, pp. 250–266, 1964.
- Wadati, M., The exact solution of the modified
Korteweg–de Vries equation, J. Phys. Soc. Japan,
Vol. 32, pp. 1681–1687, 1972.
- Wadati, M., The modified Korteweg–de Vries
equation, J. Phys. Soc. Japan, Vol. 34,
pp. 1289–1296, 1973.
- Wadati, M. and Sawada, K., New representation of the
soliton solution for the Korteweg–de Vries equation,
J. Phys. Soc. Japan, Vol. 48, No. 1,
pp. 312–318, 1980.
- Wadati, M. and Sawada, K., Application of the trace
method to the modified Korteweg–de Vries equation,
J. Phys. Soc. Japan, Vol. 48, No. 1,
pp. 319–326, 1980.
- Wang, C. Y., On a class of exact solutions of the
Navier–Stokes equations, J. Appl. Mech.,
Vol. 33, pp. 696–698, 1966.
- Wang, C. Y., Pulsative flow in a porous channel,
J. Appl. Mech., Vol. 38, pp. 553–555,
1971.
- Wang, C. Y., Axisymmetric stagnation flow towards a
moving plate, Am. Inst. Chem. Eng. J., Vol. 19,
pp. 1080–1081, 1973.
- Wang, C. Y., Axisymmetric stagnation flow on a
cylinder, Q. Appl. Math., Vol. 32,
pp. 207–213, 1974.
- Wang, C. Y., The squeezing of a fluid between two
plates, J. Appl. Mech., Vol. 43,
pp. 579–582, 1976.
- Wang, C. Y., The three-dimensional flow due to a
stretching flat surface, Phys. Fluids, Vol. 27,
pp. 1915–1917, 1984.
- Wang, C. Y., Stagnation flow on the surface of a
quiescent fluid – an exact solution of the
Navier–Stokes equations, Quart. Appl. Math.,
Vol. 43, pp. 215–223, 1985.
- Wang, C. Y., Exact solutions of the unsteady
Navier–Stokes equations, Appl. Mech. Rev.,
Vol. 42, No. 11, pp. 269–282, 1989.
- Wang, C. Y., Exact solutions for the
Navier–Stokes equations – the generalized Beltrami
flows, review and extension, Acta Mech., Vol. 81,
pp. 69–74, 1990.
- Wang, C. Y., Exact solutions for the steady-state
Navier–Stokes equations, Annual Rev. of Fluid
Mech., Vol. 23, pp. 159–177, 1991.
- Wang, C. Y. and Watson, L. T., Squeezing of a viscous
fluid between elliptic plates, Appl. Sci. Res.,
Vol. 35, pp. 195–207, 1979.
- Wang, C. Y., Watson, L. T., and Alexander, K. A.,
Spinning of a liquid film from an accelerating disk, IMA J.
Appl. Math., Vol. 46, pp. 201–210, 1991.
- Warsi, Z. U. A., Fluid Dynamics, CRC
Press, Boca Raton, 1993.
- Waters, S. L., Solute uptake through the walls of
a pulsating channel, J. Fluid Mech., Vol. 433,
pp. 193–208, 2001.
- Watson, J., A solution of the Navier–Stokes
equations illustrating the response of a laminar boundary layer to
a given change in the external stream velocity, Quart. J. Mech.
Appl. Math., Vol. 11, pp. 302–325, 1958.
- Watson, L. T. and Wang C. Y., Deceleration of a
rotating disc in a viscous fluid, Phys. Fluids,
Vol. 22, No. 12, pp. 2267–2269, 1979.
- Watson, E., Boundary-layer growth, Proc. Roy. Soc.
London, Ser. A, Vol. 231, pp. 104–116,
1955.
- Wazwaz, A. M., General compactons solutions for
the focusing branch of the nonlinear dispersive K(n, n)
equations in higher dimensional spaces, Appl. Math.
Comput., Vol. 133, No. 2/3, pp. 213–227,
2002.
- Wazwaz, A. M., General solutions with solitary
patterns for the defocusing branch of the nonlinear dispersive
K(n, n) equations in higher dimensional spaces, Appl. Math.
Comput., Vol. 133, No. 2/3, pp. 229–244,
2002.
- Wazwaz, A. M., Peakons, kinks, compactons and
solitary patterns solutions for a family of Camassa–Holm
equations by using new hyperbolic schemes, Appl. Math.
Comput., Vol. 182, No. 1, pp. 412–424,
2006.
- Wazwaz, A. M., Kinks and solitons solutions for
the generalized KdV equation with two power nonlinearities,
Appl. Math. Comput., Vol. 183, No. 2,
1181–1189, 2006.
- Wazwaz, A. M., New solitons and kink solutions for
the Gardner equation, Commun. Nonlin. Science Numer.
Simul., Vol. 12, No. 8, 1395–1404, 2007.
- Wazwaz, A. M., The KdV equation, In: Handbook
of Differential Equations, Evolutionary Equations, Vol. 4
(Eds. C. M. Dafermos and M. Pokorny), Elsevier,
Amsterdam, 2008.
- Wazwaz, A. M. and Mehanna, M. S., A variety of
exact travelling wave solutions for the (2+1)-dimensional
Boiti–Leon–Pempinelli equation, Appl. Math.
Comp., Vol. 217, pp. 1484–1490, 2010.
- Webb, G., Sorensen, M. P., Brio, M., Zakharian, A. R., and
Moloney, J. V., Variational principles, Lie point symmetries,
and similarity solutions of the vector Maxwell equations in
non-linear optics, Phys. D., Vol. 191,
pp. 49–80, 2004.
- Weidman, P. D., New solutions for laminar boundary
layers with cross flow, Z. Angew. Math. Phys.,
Vol. 48, No. 2, pp. 341–356, 1997.
- Weidman, P. D. and Putkaradze, V., Axisymmetric
stagnation flow obliquely impinging on a circular cylinder,
Eur. J. Mech. B, Fluids, Vol. 22,
pp. 123–131, 2003.
- Weidman, P. D. and Putkaradze, V., Erratum:
`Axisymmetric stagnation flow obliquely impinging on a circular
cylinder,' Eur. J. Mech. B, Fluids, Vol. 24,
pp. 788–790, 2005.
- Weinbaum, S. and O'Brien, V., Exact Navier–Stokes
solutions including swirl and cross flow, Phys. Fluids,
Vol. 10, pp. 1438–1447, 1967.
- Weinbaum, S., Lawrence, C. J., and Kuang, Y., The
inertial draining of a thin fluid layer between parallel plates
with a constant normal force. Part 1. Analytical solutions;
inviscid and small but finite-Reynolds-number limits,
J. Fluid Mech., Vol. 156, pp. 463–477, 1985.
- Weiss, J., The Painleve property for partial
differential equations. II: Backlund transformation, Lax pairs,
and the Schwarzian derivative, J. Math. Phys.,
Vol. 24, No. 6, pp. 1405–1413, 1983.
- Weiss, J., The sine-Gordon equations: complete and
partial integrability, J. Math. Phys., Vol. 25,
pp. 2226–2235, 1984.
- Weiss, J., The Painleve property and Backlund
transformations for the sequence of Boussinesq equations,
J. Math. Phys., Vol. 26, pp. 258–269,
1985.
- Weiss, J., Backlund transformations and the
Painleve property, J. Math. Phys., Vol. 27,
No. 5, pp. 1293–1305, 1986.
- Weiss, J., Tabor, M., and Carnevalle, G., The
Painleve property for partial differential equations,
J. Math. Phys., Vol. 24, No. 3,
pp. 522–526, 1983.
- Wester, M. J., Computer Algebra Systems: A
Practical Guide, Wiley, Chichester, 1999.
- White, F. M., Laminar flow in a uniformly porous tube,
J. Appl. Mech., Vol. 29, pp. 201–204,
1962.
- Whitham, G. B., The Navier–Stokes equations of
motion, In: Laminar Boundary Layers (Ed.
L. Rosenhead), Clarendon Press, London,
pp. 114–162, 1963.
- Whitham, G. B., Non-linear dispersive waves, Proc.
Roy. Soc. London, Ser. A, Vol. 283,
pp. 238–261, 1965.
- Whitham, G. B., Linear and Nonlinear Waves,
Wiley, New York, 1974.
- Wilson, G., On the quasi-Hamiltonian formalism of the
KdV equation, Phys. Letters A, Vol. 132,
pp. 445–450, 1988.
- Wolfram, S., A New Kind of Science, Wolfram
Media, Champaign, IL, 2002.
- Wolfram, S., The Mathematica Book, 5th ed.,
Wolfram Media, Champaign, IL, 2003.
- Womersley, J. R., Method for the calculation of
velocity, rate of flow and viscous drag in arteries when the
pressure gradient is known, J. Physiol.,
Vol. 127, pp. 553–563, 1955.
- Womersley, J. R., Oscillatory motion of a viscous
liquid in a thin-walled elastic tube: I. The linear approximation
for long waves, Philos. Mag., Vol. 46, No. 7,
pp. 199–221, 1955.
- Yanenko, N. N., The compatibility theory and
methods of integration of systems of nonlinear partial
differential equations, In: Proceedings of All-Union Math.
Congress, Vol. 2, pp. 613–621, Nauka,
Leningrad, 1964.
- Yang, K. T., Unsteady laminar boundary layers in a
incompressible stagnation flow, J. Appl. Mech.,
Vol. 25, pp. 421–427, 1958.
- Yao, Y., New type of exact solutions of nonlinear
evolution equations via the new Sine-Poisson equation expansion
method, Chaos, Solitons and Fractals, Vol. 26,
pp. 1081–1086, 2005.
- Yatseev, V. I., On one class of exact solutions to the
equations of motion of a viscous fluid [in Russian], Zh. Eksp.
Teor. Fiz., Vol. 20, No. 11,
pp. 1031–1034, 1950.
- Yih, C.-S., Stratified Flows, Academic Press,
New York, 1980.
- Yih, C.-S.,Wu, F., Garg, A. K., and Leibovich, S.,
Conical vortices: a class of exact solutions of the
Navier–Stokes equations, Phys. Fluids, Vol. 25,
pp. 2147–2158, 1982.
- Yin, Z., On the Cauchy problem for an integrable
equation with peakon solutions, Illinois J. Math.,
Vol. 47, No. 3, pp. 649–666, 2003.
- Yin, Z., Global solutions to a new integrable equation
with peakons, Indiana Univ. Math. J., Vol. 53,
No. 4, pp. 1189–1209, 2004.
- Yonga, X., Zhang, Z., and Chen, Y., Backlund
transformation, nonlinear superposition formula and solutions of
the Calogero equation. Phys. Let. A., Vol. 372,
pp. 6273–6279, 2008.
- Yu, S.-J., Toda, K., and Fukuyama, T., N-soliton
solutions to a (2+1)-dimensional integrable equation,
J. Phys. A., Vol. 31, pp. 10181–10186,
1998.
- Yung, C. M., Verburg, K., and Baveye, P., Group
classifications and symmetry reductions of the nonlinear
diffusion-convection equation $u_t=(D(u)u_x)_x-K'(u)u_x$, Int.
J. Non-Linear Mech., Vol. 29, pp. 273–278,
1994.
- Zababakhin, E. I., Filling of bubbles in a viscous
fluid, J. Appl. Mech. Tech. Phys., No. 6,
p. 1129, 1960.
- Zabusky, N. J., Exact solution for the vibrations of a
nonlinear continuous model string, J. Math. Phys.,
Vol. 3, pp. 1028–1039, 1962.
- Zaitsev, V. F. and Polyanin, A. D., Dynamics
of spherical bubbles in non-Newtonian liquids, Theor. Found.
Chem. Eng., Vol. 26, No. 2, pp. 185–190,
1992.
- Zaitsev, V. F. and Polyanin, A. D.,
Handbook on Nonlinear Differential Equations: Applications in
Mechanics, Exact Solutions [in Russian],
Fizmatlit\,/\,Nauka, Moscow, 1993.
- Zaitsev, V. F. and Polyanin, A. D.,
Discrete-Group Methods for Integrating Equations of Nonlinear
Mechanics, CRC Press, Boca Raton, 1994.
- Zaitsev, V. F. and Polyanin, A. D.,
Handbook of Partial Differential Equations: Exact Solutions
[in Russian], Mezhdunarodnaya Programma Obrazovaniya, Moscow,
1996.
- Zaitsev, V. F. and Polyanin, A. D., Exact solutions and
transformations of nonlinear heat and wave equations, Doklady
Mathematics, Vol. 64, No. 3, pp. 416–420,
2001.
- Zaitsev, V. F. and Polyanin, A. D.,
Handbook of First-Order PDEs [in Russian], Fizmatlit,
Moscow, 2003.
- Zakharov, V. E., On the stochastization of
one-dimensional chains of nonlinear oscillators [in Russian],
Zhurn. Eksper. i Teor. Fiziki, Vol. 65,
pp. 219–225, 1973.
- Zakharov, V. E. and Faddeev, L. D., The
Korteweg–de Vries equation: a completely integrable
Hamiltonian system, Funct. Anal. Appl., Vol. 5,
pp. 280–287, 1971.
- Zakharov, V. E. and Shabat, A. B., Exact theory of
two-dimensional self-focusing and one-dimensional self-modulation
of waves in nonlinear media, Soviet Physics JETP,
Vol. 34, pp. 62–69, 1972.
- Zakharov, V. E. and Shabat, A. B., A scheme for the
integration of nonlinear evolutionary equations of mathematical
physics by the inverse scattering method [in Russian],
Funkts. Analiz i ego Prilozh., Vol. 8, No. 3,
pp. 43–53, 1974.
- Zakharov, V. E., Takhtajan, L. A., and Faddeev, L. D.,
Complete description of solutions of the sin-Gordon
equation [in Russian], Doklady AN USSR, Vol. 219,
No. 6, pp. 1334–1337, 1973.
- Zandbergen, P. J., New solutions of the Karman
problem for rotating flows, Lecture Notes in Mathematics,
Springer-Verlag, Berlin, Vol. 771, pp. 563–581,
1980.
- Zandbergen, P. J. and Dijkstra, D., Non-unique
solutions of the Navier–Stokes equations for the Karman
swirling flow, J. Eng. Math., Vol. 11,
pp. 167–188, 1977.
- Zandbergen, P. J. and Dijkstra, D., Von Karman
swirling flow, Annual Rev. of Fluid Mech.,
Vol. 19, pp. 465–491, 1987.
- Zauderer, E., Partial Differential Equations of
Applied Mathematics, John Wiley Sons, New York, 1983.
- Zayko, Y. N. and Nefedov, I. S., New class of solutions
of the Korteweg–de Vries–Burgers equation, Appl.
Math. Lett., Vol. 14, pp. 115–121, 2001.
- Zel'dovitch, B. Ya., Pilipetzky, N. F., and Shkunov, V.
V., Wave Front Reversal [in Russian], Nauka, Moscow,
1985 [English translation: Principles of Phase
Conjugation, Springer-Verlag, New York, 1985].
- Zel'dovich, Ya. B. and Kompaneets, A. S., On
the theory of propagation of heat with the heat conductivity
depending upon the temperature, pp. 61–71, In:
Collection in Honor of the Seventieth Birthday of Academician
A. F. Ioffe [in Russian], Izdat. Akad. Nauk
USSR, Moscow, 1950.
- Zel'dovich, Ya. B. and Raiser, Yu. P.,
Physics of Shock Waves and High Temperature Hydrodynamics
Phenomena, Vols. 1 and 2, Academic Press, New York,
1966 and 1967.
- Zel'dovich, Ya. B. and Raizer, Yu. P., Elements
of Gas Dynamics and the Classical Theory of Shock Waves,
Academic Press, New York, 1968.
- Zel'dovich, Ya. B., Barenblatt, G. I., Librovich, V. B.,
and Makhviladze, G. M., The Mathematical Theory of
Combustion and Explosion, Consultants Bureau, Division of
Plenum Press, New York, 1985.
- Zhang, L., The extended tanh method and the
exp-function method to solve a kind of nonlinear heat equation,
Math. Prob. Engng., Vol. 2010, 2010.
doi:10.1155/2010/935873.
- Zhang, L., Explicit traveling wave solutions of five
kinds of nonlinear evolution equations, J. Math. Anal.
Appl., Vol. 379, pp. 91–124, 2011.
- Zhdanov, R. Z., Separation of variables in the
non-linear wave equation, J. Phys. A,
Vol. 27, pp. L291–L297, 1994.
- Zhdanov, R. Z., On relation between potential and
contact symmetries of evolution equations, J. Math.
Phys., 2009, Vol. 50, 053522 (DOI:10.1063/1.3138147).
- Zhdanov, R. Z., Nonlocal symmetries of evolution
equations, Nonlinear Dyn., 2010 (DOI:10.1007–s11071-009-9604-y).
- Zhdanov, R. Z. and Lahno, V. I., Conditional symmetry
of a porous medium equation, Physica D, Vol. 122,
pp. 178–186, 1998.
- Zhiber, A. V. and Sokolov, V. V., Exact integrable
Liouville type hyperbolic equations [in Russian], Uspekhi
Mat. Nauk, Vol. 56, No. 1, pp. 64–104,
2001.
- Zhiber, A. V., Sokolov, V. V., and Startsev, S.
Ya., On Darboux-integrable nonlinear hyperbolic equations
[in Russian], Doklady RAN, Vol. 343, No. 6,
pp. 746–748, 1995.
- Zhu, G. C. and Chen, H. H., Symmetries and
integrability of the cylindrical Korteweg–de Vries equation,
J. Math. Phys., Vol. 27, No. 1,
pp. 100–103, 1986.
- Zhukov, M. Yu. and Yudovich, V. I.,
Mathematical theory of isotachophoresis, Doklady AN SSSR,
Vol. 267, No. 2, pp. 334–338, 1982.
- Zhuravlev, V. M., Exact solutions of the nonlinear
diffusion equation
ut = Δ ln u+λu
in a
two-dimensional coordinate space, Theor. Math. Phys.,
Vol. 124, No. 2, pp. 1082–1093, 2000.
- Zimmerman, R. L. and Olness, F., Mathematica
for Physicists, Addison-Wesley, Reading, MA, 1995.
- Zmitrenko, N. V., Kurdyumov, S. P., and Mikhailov,
A. P., Theory of blow-up regimes in compressible media
[in Russian], In: Contemporary Problems of
Mathematics, Vol. 28 (Itogi Nauki i Tekhniki, VINITI AN
USSR), Moscow, pp. 3–94, 1987.
- Zmitrenko, N. V., Kurdyumov, S. P., Mikhailov,
A. P., and Samarskii A. A., Appearance of
Structures in Nonlinear Media and Transient Thermodynamics of
Blow-up Regimes [in Russian], Preprint No. 74,
Keldysh Institute of Applied Mathematics, Academy of Sciences,
USSR, Moscow, 1976.
- Zwillinger, D., Handbook of Differential
Equations, Academic Press, San Diego, 1989 and 1998.
|
The EqWorld website presents extensive information on solutions to
various classes of ordinary differential equations, partial differential
equations, integral equations, functional equations, and other mathematical
equations.
Copyright © 2012 Andrei D. Polyanin
|