|
EqWorld
The World of Mathematical Equations |
|
Exact Solutions >
Ordinary Differential Equations >
First-Order Ordinary Differential Equations
PDF version of this page
1. First-Order Ordinary Differential Equations
-
y′ =
f(y).
Autonomous equation.
-
y′ =
f(x)g(y).
Separable equation.
-
g(x)y′ =
f1(x)y +
f0(x).
Linear equation.
-
g(x)y′ =
f1(x)y +
fn(x)yn.
Bernoulli equation.
-
y′ =
f(y/x).
Homogeneous equation
-
y′ = ay2 +
bxn.
Special Riccati equation.
-
y′ = y2 +
f(x)y −
a2 − af(x).
Riccati equation, special case 1.
-
y′ =
f(x)y2 +
ay − ab −
b2f(x).
Riccati equation, special case 2.
-
y′ = y2 +
xf(x)y +
f(x).
Riccati equation, special case 3.
-
y′ =
f(x)y2 −
axnf(x)y + anxn−1.
Riccati equation, special case 4.
-
y′ =
f(x)y2 +
anxn−1 −
a2x2nf(x).
Riccati equation, special case 5.
-
y′ =
−(n + 1)xny2 +
xn+1f(x)y −
f(x).
Riccati equation, special case 6.
-
xy′ =
f(x)y2 +
ny + ax2nf(x).
Riccati equation, special case 7.
-
xy′ =
x2nf(x)y2 +
[axnf(x) −
n]y +
bf(x).
Riccati equation, special case 8.
-
y′ =
f(x)y2 +
g(x)y −
a2f(x) −
ag(x).
Riccati equation, special case 9.
-
y′ =
f(x)y2 +
g(x)y +
anxn−1 −
a2x2nf(x) −
axng(x).
Riccati equation, special case 10.
-
y′ =
aeλxy2 +
aeλxf(x)y +
λf(x).
Riccati equation, special case 11.
-
y′ =
f(x)y2 −
aeλxf(x)y +
aλeλx.
Riccati equation, special case 12.
-
y′ =
f(x)y2 +
aλeλx −
a2e2λxf(x).
Riccati equation, special case 13.
-
y′ =
f(x)y2 +
λy + ae2λxf(x).
Riccati equation, special case 14.
-
y′ =
y2 −
f2(x) +
f′(x).
Riccati equation, special case 15.
-
y′ =
f(x)y2 −
f(x)g(x)y +
g′(x).
Riccati equation, special case 16.
-
y′ =
f(x)y2 +
g(x)y +
h(x).
General Riccati equation.
-
yy′ =
y + f(x).
Abel equation of the second kind in the canonical form.
-
yy′ =
f(x)y + g(x).
Abel equation of the second kind.
-
yy′ =
f(x)y2 +
g(x)y +
h(x).
Abel equation of the second kind.
-
y′ =
f(ax + by + c).
-
y′ =
f(y +
axn + b) −
anxn−1.
-
y′ =
(y/x)f(xnym).
Generalized homogeneous equation.
-
y′ =
−(n/m)(y/x) +
ykf(x)g(xnym).
-
y′ =
f((ax +
by + c)/(αx + βy +
γ)).
-
y′ =
xn−1y1−mf(axn +
bym).
-
[xnf(y) +
xg(y)]y′ =
h(y).
-
x[f(xnym) +
mxkg(xnym)]y′ =
y[h(xnym) −
nxkg(xnym)].
-
x[f(xnym) +
mykg(xnym)]y′ =
y[h(xnym) −
nykg(xnym)].
-
x[sf(xnym) −
mg(xkys)]y′ =
y[ng(xkys) −
kf(xnym)].
-
[f(y) +
amxnym−1]y′ +
g(x) +
anxn−1ym = 0.
-
y′ =
e−λxf(eλxy).
-
y′ =
eλyf(eλyx).
-
y′ =
yf(eαxym).
-
y′ =
x−1f(xneαy).
-
y′ =
f(x)eλy +
g(x).
-
y′ =
−nx−1 +
f(x)g(xney).
-
y′ =
−(α/m)y +
ykf(x)g(eαxym).
-
y′ =
eαx−βyf(aeαx +
beβy).
-
[eαxf(y) +
aβ]y′ +
eβyg(x) + aα = 0.
-
x[f(xneαy) +
αyg(xneαy)]y′ =
h(xneαy) −
nyg(xneαy).
-
[f(eαxym) +
mxg(eαxym)]y′ =
y[h(eαxym) −
αxg(eαxym)].
The EqWorld website presents extensive information on solutions to
various classes of
ordinary differential equations,
partial differential equations,
integral equations,
functional equations,
and other mathematical
equations.
Copyright © 2004-2017 Andrei D. Polyanin
|