EqWorld logo

EqWorld

The World of Mathematical Equations

IPM Logo

Home Page Exact Solutions Methods Software Education About This Site Math Forums

Exact Solutions > Systems of Partial Differential Equations > Systems of Partial Differential Equations of General Form

PDF version of this page

5. Systems of Partial Differential Equations of General Form

Notation: L is an arbitrary linear differential operator in coordinates x1, ..., xn.

5.1. Linear Systems of PDEs

  1. ut = L[u] + f1(t)u + g1(t)w,   wt = L[w] + f2(t)u + g2(t)w.
  2. utt = L[u] + a1u + b1w,   wtt = L[w] + a2u + b2w.

5.2. Nonlinear Systems of Two PDEs Containing the First Derivatives in t

  1. ut = L[u] + uf(t, au − cw) + g(t, au − cw),   wt = L[w] + wf(t, au − cw) + h(t, au − cw).
  2. ut = L1[u] + uf(u/w),   wt = L2[w] + wg(u/w).
  3. ut = L[u] + uf(t, u/w),   wt = L[w] + wg(t, u/w).
  4. ut = L[u] + uf(u/w) + g(u/w),   wt = L[w] + wf(u/w) + h(u/w).
  5. ut = L[u] + uf(t, u/w) + u/w h(t, u/w),   wt = L[w] + wg(t, u/w) + h(t, u/w).
  6. ut = L[u] + uf(t, u/w) ln u + ug(t, u/w),   wt = L[w] + wf(t, u/w) ln w + wh(t, u/w).

5.3. Nonlinear Systems of Two PDEs Containing the Second Derivatives in t

  1. utt = L[u] + uf(t, au − bw) + g(t, au − bw),   wtt = L[w] + wf(t, au − bw) + h(t, au − bw).
  2. utt = L1[u] + uf(u/w),   wtt = L2[w] + wg(u/w).
  3. utt = L[u] + uf(t, u/w),   wtt = L[w] + wg(t, u/w).
  4. utt = L[u] + uf(u/w) + g(u/w),   wtt = L[w] + wf(u/w) + h(u/w).
  5. utt = L[u] + au ln u + uf(t, u/w),   wtt = L[w] + aw ln w + wg(t, u/w).

5.4. Nonlinear Systems of Many PDEs Containing the First Derivatives in t

  1. (um)t = L[um] + umf(t, u1b1un, ..., un − 1bn − 1un)   + gm(t, u1b1un, ..., un − 1bn − 1un),
    m = 1, ..., n.
  2. (um)t = L[um] + umfm(t, u1/un, ..., un − 1/un) + um/un g(t, u1/un, ..., un − 1/un),   m = 1, ..., n − 1,
    (un)t = L[un] + unfn(t, u1/un, ..., un − 1/un) + g(t, u1/un, ..., un − 1/un).

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2004-2017 Andrei D. Polyanin