|
EqWorld
Мир математических уравнений |
|
Точные решения >
Системы уравнений c частными производными >
Системы дифференциальных уравнений в частных производных общего вида
PDF версия этой стр.
5. Системы дифференциальных уравнений в частных производных общего вида
Обозначение: L -- произвольный линейный дифференциальный оператор по
пространственным переменным x1, ..., xn.
5.1. Линейные системы дифференциальных уравнений
-
ut = L[u] + f1(t)u + g1(t)w,
wt = L[w] + f2(t)u + g2(t)w.
-
utt = L[u] + a1u + b1w,
wtt = L[w] + a2u + b2w.
5.2. Нелинейные системы двух уравнений, содержащие первые производные по t
-
ut = L[u] + uf(t, au − cw) + g(t, au − cw),
wt = L[w] + wf(t, au − cw) + h(t, au − cw).
-
ut = L1[u] + uf(u/w),
wt = L2[w] + wg(u/w).
-
ut = L[u] + uf(t, u/w),
wt = L[w] + wg(t, u/w).
-
ut = L[u] + uf(u/w) + g(u/w),
wt = L[w] + wf(u/w) + h(u/w).
-
ut = L[u] + uf(t, u/w) + u/w h(t, u/w),
wt = L[w] + wg(t, u/w) + h(t, u/w).
-
ut = L[u] + uf(t, u/w) ln u + ug(t, u/w),
wt = L[w] + wf(t, u/w) ln w + wh(t, u/w).
5.3. Нелинейные системы двух уравнений, содержащие вторые производные по t
-
utt = L[u] + uf(t, au − bw) + g(t, au − bw),
wtt = L[w] + wf(t, au − bw) + h(t, au − bw).
-
utt = L1[u] + uf(u/w),
wtt = L2[w] + wg(u/w).
-
utt = L[u] + uf(t, u/w),
wtt = L[w] + wg(t, u/w).
-
utt = L[u] + uf(u/w) + g(u/w),
wtt = L[w] + wf(u/w) + h(u/w).
-
utt = L[u] + au ln u + uf(t, u/w),
wtt = L[w] + aw ln w + wg(t, u/w).
5.4. Нелинейные системы уравнений, содержащие много неизвестных
-
(um)t = L[um] +
umf(t, u1 − b1un, ...,
un − 1 − bn − 1un)
+ gm(t, u1 − b1un, ...,
un − 1 − bn − 1un),
m = 1, ..., n.
-
(um)t = L[um] +
umfm(t, u1/un, ...,
un − 1/un) +
um/un g(t, u1/un, ...,
un − 1/un), m = 1, ..., n − 1,
(un)t = L[un] +
unfn(t, u1/un, ...,
un − 1/un) +
g(t, u1/un, ...,
un − 1/un).
Веб-сайт EqWorld содержит обширную информацию о решениях
различных классов обыкновенных дифференциальных уравнений,
дифференциальных уравнений в частных производных,
интегральных уравнений, функциональных уравнений и других математических уравнений.
Copyright © 2004-2017 А. Д. Полянин
|