EqWorld logo

EqWorld

The World of Mathematical Equations

IPM Logo

Home Page Exact Solutions Methods Software Education About This Site Math Forums

Exact Solutions > Integral Equations > Fredholm Integral Equations of the Second Kind and Related Linear Integral Equations with Constant Limits of Integration

PDF version of this page

4. Fredholm Integral Equations of the Second Kind

4-1. Integral equations whose kernels contain power-law functions

  1. y(x) − λ (x − t) y(t) dt = f(x).
  2. y(x) + A |x − t| y(t) dt = f(x).
  3. Ay(x) + Bπ−1 (t − x)−1 y(t) dt = f(x).
  4. y(x) − λ [(t − x)−1 − (x + t − 2xt)−1] y(t) dt = f(x).    Tricomi's equation.

4-2. Integral equations with kernels involving exponential or hyperbolic functions

  1. y(x) + λ e−|x−t| y(t) dt = f(x).
  2. y(x) − λ e−|x−t| y(t) dt = 0.    Lalesco--Picard equation.
  3. y(x) + λ e−|x−t| y(t) dt = f(x).
  4. y(x) + A eλ|x−t| y(t) dt = f(x).
  5. y(x) + λ {cosh[b(x − t)]}−1 y(t) dt = f(x).

4-3. Integral equations with kernels involving trigonometric functions

  1. y(x) − λ cos(xt) y(t) dt = f(x).
  2. y(x) − λ sin(xt) y(t) dt = f(x).
  3. y(x) − λ sin(x − t)(x − t)−1 y(t) dt = f(x).
  4. Ay(x) − B(2π)−1 cot(t/2 − x/2) y(t) dt = f(x).
  5. y(x) − λ eμ(x − t) cos(xt) y(t) dt = f(x).
  6. y(x) − λ eμ(x − t) sin(xt) y(t) dt = f(x).

4-4. Integral equations with kernels involving arbitrary functions

  1. y(x) − K(x − t) y(t) dt = f(x).
  2. y(x) − K(x − t) y(t) dt = f(x).    Wiener--Hopf equation of the second kind.

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2004-2017 Andrei D. Polyanin