 |
EqWorld
The World of Mathematical Equations |
 |
Exact Solutions >
Functional Equations >
Linear Difference and Functional Equations with One Independent Variable

PDF version of this page
1. Linear Difference and Functional Equations with One Independent Variable
1.1. Linear Difference and Functional Equations Containing Unknown Function with Two Different Arguments
First-order linear difference equations
-
y(x + 1) − ay(x) = 0.
First-order constant-coefficient linear homogeneous difference equation.
-
y(x + 1) − ay(x) = f(x).
First-order constant-coefficient linear nonhomogeneous difference equation.
-
y(x + 1) − xy(x) = 0.
-
y(x + 1) − a(x − b)(x − c)y(x) = 0.
-
y(x + 1) − R(x)y(x) = 0,
where R(x) is a rational function.
-
y(x + 1) − f(x)y(x) = 0.
-
y(x + a) − by(x) = 0.
-
y(x + a) − by(x) = f(x).
-
y(x + a) − bxy(x) = 0.
-
y(x + a) − f(x)y(x) = 0.
Linear functional equations containing y(x)
and y(ax)
-
y(ax) − by(x) = 0.
-
y(ax) − by(x) = f(x).
Linear functional equations containing y(x)
and y(a − x)
-
y(x) − y(a − x) = 0.
-
y(x) + y(a − x) = 0.
-
y(x) + y(a − x) = b.
-
y(x) + y(a − x) = f(x).
-
y(x) − y(a − x) = f(x).
-
y(x) + g(x)y(a − x) = f(x).
Linear functional equations containing y(x)
and y(z),
where z = φ(x)
-
y(xa) − by(x) = 0.
-
y(x) − y(a/x) = 0.
-
y(x) + y(a/x) = 0.
-
y(x) + y(a/x) = b.
-
y(x) + y(a/x) = f(x).
-
y(x) − y(a/x) = f(x).
-
y(x) + g(x)y(a/x) = f(x).
-
y(x) − y((a − x)/(1 + bx)) = 0.
-
y(x) + y((a − x)/(1 + bx)) = 0.
-
y(x) + y((a − x)/(1 + bx)) = f(x).
-
y(x) − y((a − x)/(1 + bx)) = f(x).
-
y(x) − cy((a − x)/(1 + bx)) = f(x).
-
y(x) + g(x)y((a − x)/(1 + bx)) = f(x).
-
y(x) + cy((ax − β)/(x + b)) = f(x), β = a2 + ab + b2.
-
y(x) + cy((bx + β)/(a − x)) = f(x), β = a2 + ab + b2.
-
y(x) + g(x)y((ax − β)/(x + b)) = f(x), β = a2 + ab + b2.
-
y(x) + g(x)y((bx + β)/(a − x)) = f(x), β = a2 + ab + b2.
-
y(x) − y((a2 − x2)1/2) = 0.
-
y(x) + y((a2 − x2)1/2) = 0.
-
y(x) + y((a2 − x2)1/2) = b.
-
y(x) + y((a2 − x2)1/2) = f(x).
-
y(x) − y((a2 − x2)1/2) = f(x).
-
y(x) + g(x)y((a2 − x2)1/2) = f(x).
Linear functional equations containing y(sin x)
and y(cos x)
-
y(sin x) − y(cos x) = 0.
-
y(sin x) + y(cos x) = 0.
-
y(sin x) + y(cos x) = a.
-
y(sin x) + y(cos x) = f(x).
-
y(sin x) − y(cos x) = f(x).
-
y(sin x) + g(x)y(cos x) = f(x).
Linear functional equations containing y(x)
and y(ω(x)), where ω(ω(x)) = x
-
y(x) − y(ω(x)) = 0,
where ω(ω(x)) = x.
-
y(x) + y(ω(x)) = 0,
where ω(ω(x)) = x.
-
y(x) + y(ω(x)) = b,
where ω(ω(x)) = x.
-
y(x) + y(ω(x)) = f(x),
where ω(ω(x)) = x.
-
y(x) − y(ω(x)) = f(x),
where ω(ω(x)) = x.
-
y(x) + g(x)y(ω(x)) = f(x),
where ω(ω(x)) = x.
1.2. Other Linear Difference and Functional Equations
Second-order linear difference equations,
yn = y(n)
-
yn+2 + ayn+1 + byn = 0.
Second-order constant-coefficient linear homogeneous difference equation.
-
yn+2 + ayn+1 + byn = fn.
Second-order constant-coefficient linear nonhomogeneous difference equation.
-
y(x + 2) + ay(x + 1) + by(x) = 0.
Second-order constant-coefficient linear homogeneous difference equation.
-
y(x + 2) + ay(x + 1) + by(x) = f(x).
Second-order constant-coefficient linear nonhomogeneous difference equation.
-
y(x + 2) + a(x + 1)y(x + 1) + bx(x + 1)y(x) = 0.
Other functional equations
-
Ay(ax) + By(bx) + y(x) = 0.
-
Ay(xa) + By(xb) + y(x) = 0.
-
y(y(x)) − x = 0.
Babbage equation (equation of involutory functions).
-
y(y(x)) + ay(x) + bx = 0.
-
y(y(y(x))) − x = 0.
-
Ay(x) + By((ax − β)/(x + b)) +
Cy((bx + β)/(a − x)) = f(x), β = a2 + ab + b2.
-
f1(x)y(x) + f2(x)y((ax − β)/(x + b)) +
f3(x)y((bx + β)/(a − x)) = g(x), β = a2 + ab + b2.
-
yn+m + am−1yn+m−1 + ... + a1yn+1 + a0yn = 0.
mth-order constant-coefficient linear homogeneous difference equation.
-
yn+m + am−1yn+m−1 + ... + a1yn+1 + a0yn = fn.
mth-order constant-coefficient linear nonhomogeneous difference equation.
-
y(x + n) + an−1y(x + n − 1) + ... + a1y(x + 1) + a0y(x) = 0.
nth-order constant-coefficient linear homogeneous difference equation.
-
y(x + n) + an−1y(x + n − 1) + ... + a1y(x + 1) + a0y(x) = f(x).
nth-order constant-coefficient linear nonhomogeneous difference equation.
-
y(x + bn) + an−1y(x + bn−1) + ... + a1y(x + b1) + a0y(x) = 0.
-
ay(xα) + by(xβ) + cy(xσ) + ... + y(x) = 0.
-
y(anx) + bn−1y(an−1x) + ... + b1y(a1x) + b0y(x) = 0.
-
y[n](x) + an−1y[n−1](x) + ... + a1y(x) + a0x = 0,
y[n](x) = y(y[n−1](x)).
The EqWorld website presents extensive information on solutions to
various classes of
ordinary differential equations,
partial differential equations,
integral equations,
functional equations,
and other mathematical
equations.
Copyright © 2004-2017 Andrei D. Polyanin
|