|
EqWorld
The World of Mathematical Equations |
|
Exact Solutions >
First-Order Partial Differential Equations >
Nonlinear Partial Differential Equations
PDF version of this page
3. First-Order Nonlinear Partial Differential Equations
Preliminary remarks.
For first-order partial differential equations in two independent variables,
an exact solution
(*)
w = Φ(x, y, C1, C2)
that depends on two arbitrary constants C1 and
C2
is called a complete integral. The general integral (general solution) can be
represented in parametric form by using the complete integral (*) and the two equations
C2 = f(C1),
ΦC1 +
ΦC2f′(C1) = 0,
where f(C1) is an arbitrary function, the prime stands for the derivative,
and ΦC1 and ΦC2
are partial derivatives.
References
- E. Kamke, Differentialgleichungen: Losungsmethoden und Losungen, II,
Partielle Differentialgleichungen Erster Ordnung fur eine gesuchte Funktion,
Akad. Verlagsgesellschaft Geest & Portig, Leipzig, 1965.
- A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux,
Handbook of First Order Partial Differential Equations,
Taylor & Francis, London, 2002.
3.1. Equations Quadratic in One Derivative
-
wx + a(wy)2 = by.
-
wx + a(wy)2 + by2 = 0.
-
wx + a(wy)2 = f(x) + g(y).
-
wx + a(wy)2 = f(x)y + g(x).
-
wx + a(wy)2 = f(x)w + g(x).
-
wx − f(w)(wy)2 = 0.
-
f1(x)wx + f2(y)(wy)2
= g1(x) + g2(y).
-
wx + a(wy)2 + bwy
= f(x) + g(y).
-
wx + a(wy)2 + bwy
= f(x)y + g(x).
-
wx + a(wy)2 + bwy
= f(x)w + g(x).
3.2. Equations Quadratic in Two Derivatives
-
a(wx)2 + b(wy)2 = c.
Differential equation of light rays (for a = b).
-
(wx)2 + (wy)2 = a − 2by.
-
(wx)2 + (wy)2
= a(x2 + y2)−1/2 + b.
-
(wx)2 + (wy)2 = f(x).
-
(wx)2 + (wy)2 = f(x) + g(y).
-
(wx)2 + (wy)2
= f(x2 + y2).
-
(wx)2 + (wy)2 = f(w).
-
(wx)2 + x−2(wy)2
= f(x).
-
(wx)2 + f(x)(wy)2 = g(x).
-
(wx)2 + f(y)(wy)2 = g(y).
-
(wx)2 + f(w)(wy)2 = g(w).
-
f1(x)(wx)2
+ f2(y)(wy)2
= g1(x) + g2(y).
3.3. Equations with Arbitrary Nonlinearities in Derivatives
-
wx + f(wy) = 0.
-
wx + f(wy) = g(x).
-
wx + f(wy) = g(x)y + h(x).
-
wx + f(wy) = g(x)w + h(x).
-
wx − F(x, wy) = 0.
-
wx + F(x, wy) = aw.
-
wx + F(x, wy) = g(x)w.
-
F(wx, wy) = 0.
-
w = xwx + ywy + F(wx, wy).
Clairaut's equation.
-
F1(x, wx) = F2(y, wy).
Separable equation.
-
F1(x, wx) + F2(y, wy) + aw = 0.
Separable equation.
-
F1(x, wx/w)
+ wkF2(y, wy/w) = 0.
-
F1(x, wx)
+ eλwF2(y, wy) = 0.
-
F1(x, wx/w)
+ F2(y, wy/w) = k ln w.
-
wx + yF1(x, wy)
+ F2(x, wy) = 0.
-
F(wx + ay, wy + ax) = 0.
-
(wx)2 + (wy)2
= F(x2 + y2, ywx − xwy).
-
F(x, wx, wy) = 0.
-
F(ax + by, wx, wy) = 0.
-
F(w, wx, wy) = 0.
-
F(ax + by + cw, wx, wy) = 0.
-
F(x, wx, wy, w − ywy) = 0.
-
F(w, wx, wy, xwx + ywy) = 0.
-
F(ax + by, wx, wy,
w − xwx − ywy) = 0.
-
F(x, wx, G(y, wy)) = 0.
Separable equation.
The EqWorld website presents extensive information on solutions to
various classes of
ordinary differential equations,
partial differential equations,
integral equations,
functional equations,
and other mathematical
equations.
Copyright © 2004-2017 Andrei D. Polyanin
|