EqWorld logo

EqWorld

The World of Mathematical Equations

IPM Logo

Home Page Exact Solutions Methods Software Education About This Site Math Forums

Exact Solutions > Systems of Partial Differential Equations > Nonlinear Systems of Two Elliptic Equations (Reaction-Diffusion Equations)

PDF version of this page

3. Nonlinear Systems of Two Elliptic Equations

3.1. Reaction-Diffusion Systems of the Form uxx + uyy = F(u, w), wxx + wyy = G(u, w)

Preliminary comments. Similar systems of equations are encountered in stationary problems of the theory of heat and mass transfer in reacting media, the theory of chemical reactors, combustion theory, mathematical biology, and biophysics. The functions f(φ), g(φ), and h(φ) appearing below are arbitrary functions of an argument φ = φ(u, w); the equations are arranged in order of complicating this argument.

  1. uxx + uyy = uf(au − bw) + g(au − bw),   wxx + wyy = wf(au − bw) + h(au − bw).
  2. uxx + uyy = eλufu − σw),   wxx + wyy = eσwgu − σw).
  3. uxx + uyy = uf(u/w),   wxx + wyy = wg(u/w).
  4. uxx + uyy = uf(u/w) + u/w h(u/w),   wxx + wyy = wg(u/w) + h(u/w).
  5. uxx + uyy = unf(u/w),   wxx + wyy = wng(u/w).
  6. uxx + uyy = uf(unwm),   wxx + wyy = wg(unwm).
  7. uxx + uyy = uf(u2 + w2) − wg(u2 + w2),   wxx + wyy = wf(u2 + w2) + ug(u2 + w2).
  8. uxx + uyy = uf(u2w2) + wg(u2w2),   wxx + wyy = wf(u2w2) + ug(u2w2).

3.2. Other Systems

  1. axux + ayuy = uxx + uyyf(u, w),   axwx + aywy = wxx + wyyg(u, w).

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2004-2017 Andrei D. Polyanin