 |
EqWorld
The World of Mathematical Equations |
 |
Exact Solutions >
Systems of Partial Differential Equations >
Nonlinear Systems of Two Hyperbolic Equations

PDF version of this page
4. Nonlinear Systems of Two Hyperbolic Equations
-
utt = ax−n(xnux)x + uf(bu − cw) + g(bu − cw),
wtt = ax−n(xnwx)x + wf(bu − cw) + h(bu − cw).
-
utt = ax−n(xnux)x + eλuf(λu − σw),
wtt = bx−n(xnwx)x + eσwg(λu − σw).
-
utt = ax−n(xnux)x + uf(u/w),
wtt = bx−n(xnwx)x + wg(u/w).
-
utt = ax−n(xnux)x + uf(u/w) + u/w h(u/w),
wtt = ax−n(xnwx)x + wg(u/w) + h(u/w).
-
utt = ax−n(xnux)x + ukf(u/w),
wtt = bx−n(xnwx)x + wkg(u/w).
-
utt = ax−n(xnux)x + uf(x, ukwm),
wtt = bx−n(xnwx)x + wg(x, ukwm).
-
utt = ax−n(xnux)x + uf(u2 + w2) − wg(u2 + w2),
wtt = ax−n(xnwx)x + wf(u2 + w2) + ug(u2 + w2).
-
utt = ax−n(xnux)x + uf(u2 − w2) + wg(u2 − w2),
wtt = ax−n(xnwx)x + wf(u2 − w2) + ug(u2 − w2).
The EqWorld website presents extensive information on solutions to
various classes of
ordinary differential equations,
partial differential equations,
integral equations,
functional equations,
and other mathematical
equations.
Copyright © 2004-2017 Andrei D. Polyanin
|