|
EqWorld
Мир математических уравнений |
|
Точные решения >
Функциональные уравнения>
Линейные разностные и функциональные уравнения с одной независимой переменной
PDF версия этой стр.
1. Линейные разностные и функциональные уравнения с одной независимой переменной
1.1. Линейные разностные и функциональные уравнения, содержащие неизвестную функцию с двумя различными аргументами
Линейные разностные уравнения первого порядка
-
y(x + 1) − ay(x) = 0.
Линейное однородное разностное уравнение первого порядка с постоянными коэффициентами.
-
y(x + 1) − ay(x) = f(x).
Линейное неоднородное разностное уравнение первого порядка с постоянными коэффициентами.
-
y(x + 1) − xy(x) = 0.
-
y(x + 1) − a(x − b)(x − c)y(x) = 0.
-
y(x + 1) − R(x)y(x) = 0,
где R(x) -- рациональная функция.
-
y(x + 1) − f(x)y(x) = 0.
-
y(x + a) − by(x) = 0.
-
y(x + a) − by(x) = f(x).
-
y(x + a) − bxy(x) = 0.
-
y(x + a) − f(x)y(x) = 0.
Линейные функциональные уравнения, содержащие y(x)
и y(ax)
-
y(ax) − by(x) = 0.
-
y(ax) − by(x) = f(x).
Линейные функциональные уравнения, содержащие y(x)
и y(a − x)
-
y(x) − y(a − x) = 0.
-
y(x) + y(a − x) = 0.
-
y(x) + y(a − x) = b.
-
y(x) + y(a − x) = f(x).
-
y(x) − y(a − x) = f(x).
-
y(x) + g(x)y(a − x) = f(x).
Линейные функциональные уравнения, содержащие y(x)
и y(z),
где z = φ(x)
-
y(xa) − by(x) = 0.
-
y(x) − y(a/x) = 0.
-
y(x) + y(a/x) = 0.
-
y(x) + y(a/x) = b.
-
y(x) + y(a/x) = f(x).
-
y(x) − y(a/x) = f(x).
-
y(x) + g(x)y(a/x) = f(x).
-
y(x) − y((a − x)/(1 + bx)) = 0.
-
y(x) + y((a − x)/(1 + bx)) = 0.
-
y(x) + y((a − x)/(1 + bx)) = f(x).
-
y(x) − y((a − x)/(1 + bx)) = f(x).
-
y(x) − cy((a − x)/(1 + bx)) = f(x).
-
y(x) + g(x)y((a − x)/(1 + bx)) = f(x).
-
y(x) + cy((ax − β)/(x + b)) = f(x), β = a2 + ab + b2.
-
y(x) + cy((bx + β)/(a − x)) = f(x), β = a2 + ab + b2.
-
y(x) + g(x)y((ax − β)/(x + b)) = f(x), β = a2 + ab + b2.
-
y(x) + g(x)y((bx + β)/(a − x)) = f(x), β = a2 + ab + b2.
-
y(x) − y((a2 − x2)1/2) = 0.
-
y(x) + y((a2 − x2)1/2) = 0.
-
y(x) + y((a2 − x2)1/2) = b.
-
y(x) + y((a2 − x2)1/2) = f(x).
-
y(x) − y((a2 − x2)1/2) = f(x).
-
y(x) + g(x)y((a2 − x2)1/2) = f(x).
Линейные функциональные уравнения, содержащие y(sin x)
и y(cos x)
-
y(sin x) − y(cos x) = 0.
-
y(sin x) + y(cos x) = 0.
-
y(sin x) + y(cos x) = a.
-
y(sin x) + y(cos x) = f(x).
-
y(sin x) − y(cos x) = f(x).
-
y(sin x) + g(x)y(cos x) = f(x).
Линейные функциональные уравнения, содержащие y(x)
и y(ω(x)), где ω(ω(x)) = x
-
y(x) − y(ω(x)) = 0,
где ω(ω(x)) = x.
-
y(x) + y(ω(x)) = 0,
где ω(ω(x)) = x.
-
y(x) + y(ω(x)) = b,
где ω(ω(x)) = x.
-
y(x) + y(ω(x)) = f(x),
где ω(ω(x)) = x.
-
y(x) − y(ω(x)) = f(x),
где ω(ω(x)) = x.
-
y(x) + g(x)y(ω(x)) = f(x),
где ω(ω(x)) = x.
1.2. Другие линейные разностные и функциональные уравнения
Линейные разностные уравнения второго порядка,
yn = y(n)
-
yn+2 + ayn+1 + byn = 0.
Линейное однородное разностное уравнение второго порядка с постоянными коэффициентами.
-
yn+2 + ayn+1 + byn = fn.
Линейное неоднородное разностное уравнение второго порядка с постоянными коэффициентами.
-
y(x + 2) + ay(x + 1) + by(x) = 0.
Линейное однородное разностное уравнение второго порядка с постоянными коэффициентами.
-
y(x + 2) + ay(x + 1) + by(x) = f(x).
Линейное неоднородное разностное уравнение второго порядка с постоянными коэффициентами.
-
y(x + 2) + a(x + 1)y(x + 1) + bx(x + 1)y(x) = 0.
Другие функциональные уравнения
-
Ay(ax) + By(bx) + y(x) = 0.
-
Ay(xa) + By(xb) + y(x) = 0.
-
y(y(x)) − x = 0.
Уравнение Беббиджа (Babbage).
-
y(y(x)) + ay(x) + bx = 0.
-
y(y(y(x))) − x = 0.
-
Ay(x) + By((ax − β)/(x + b)) +
Cy((bx + β)/(a − x)) = f(x), β = a2 + ab + b2.
-
f1(x)y(x) + f2(x)y((ax − β)/(x + b)) +
f3(x)y((bx + β)/(a − x)) = g(x), β = a2 + ab + b2.
-
yn+m + am−1yn+m−1 + ... + a1yn+1 + a0yn = 0.
Линейное однородное разностное уравнение m-го порядка с постоянными коэффициентами.
-
yn+m + am−1yn+m−1 + ... + a1yn+1 + a0yn = fn.
Линейное неоднородное разностное уравнение m-го порядка с постоянными коэффициентами.
-
y(x + n) + an−1y(x + n − 1) + ... + a1y(x + 1) + a0y(x) = 0.
Линейное однородное разностное уравнение n-го порядка с постоянными коэффициентами.
-
y(x + n) + an−1y(x + n − 1) + ... + a1y(x + 1) + a0y(x) = f(x).
Линейное неоднородное разностное уравнение m-го порядка с постоянными коэффициентами.
-
y(x + bn) + an−1y(x + bn−1) + ... + a1y(x + b1) + a0y(x) = 0.
-
ay(xα) + by(xβ) + cy(xσ) + ... + y(x) = 0.
-
y(anx) + bn−1y(an−1x) + ... + b1y(a1x) + b0y(x) = 0.
-
y[n](x) + an−1y[n−1](x) + ... + a1y(x) + a0x = 0,
y[n](x) = y(y[n−1](x)).
Веб-сайт EqWorld содержит обширную информацию о решениях
различных классов обыкновенных дифференциальных уравнений,
дифференциальных уравнений в частных производных,
интегральных уравнений, функциональных уравнений и других математических уравнений.
Copyright © 2004-2017 А. Д. Полянин
|